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Abstract. We discuss two different ways to speed up exponentiation in nonprime
finite fields: on the one hand, reduction of the total number of operations, and on the
other hand, fast computation of a single operation. Two data structures are particularly
useful: sparse irreducible polynomials and normal bases. We report on implementation
results for our methods.
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1. Introduction

This paper deals with fast exponentiation in finite fields Fqn , which is a fundamental op-
eration in several cryptosystems (e.g., Diffie and Hellman, 1976; ElGamal, 1985). There
are two different ways to speed up exponentiation: reducing the number of operations in
Fqn , or improving each single operation. There is a particularly attractive data structure
for finite fields, namely normal bases, which gives us qth powers essentially for free.
The task then is to reduce the number and cost of (other) multiplications.

Our goal is to compare two well-known representations of Fqn : polynomial and nor-
mal bases. In Section 2 we study three approaches using a polynomial basis. Namely
we discuss two types of sparse polynomials: sedimentary polynomials, which have all
nonzero terms at low degrees, except the leading one, and the usual sparse polynomials
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with as few nonzero terms as possible, mainly trinomials. A third method uses the poly-
nomial representation of the Frobenius automorphism introduced by von zur Gathen and
Shoup (1992) and modular composition. In Section 3 we compare classical arithmetic
for normal bases with the work of Gao et al. (2000) which connects normal bases and fast
polynomial arithmetic using Gauss periods. The theoretical estimates for the better ones
of these methods are too close to each other to distinguish between them. Therefore we
ran a substantial series of experiments, reported in Section 4. Two champions emerge:
sparse irreducible polynomials, in particular trinomials, for the polynomial representa-
tion and, when available, normal bases generated by Gauss periods of type (n, 1).

2. Polynomial Basis

Let q, n ∈ N≥2 with q a prime power, and let Fqn be the finite field with qn elements.
Regarding Fqn as a vector space of dimension n over Fq , we consider two different types
of bases in this and the next section: polynomial and normal bases.

Let f ∈ Fq [x] be an irreducible polynomial of degree n. Then we have Fqn ∼=
Fq [x]/( f ), and ((1 mod f ), (x mod f ), . . . , (xn−1 mod f )) is the canonical polyno-
mial basis. The canonical representative of β ∈ Fqn is the unique polynomial g ∈ Fq [x]
of degree less than n such that (g mod f ) = β. We call a function M:N>0 → R>0 a
multiplication time for Fq [x] if polynomials in Fq [x] of degree less than n can be mul-
tiplied using at most M(n) operations in Fq . Classical polynomial multiplication yields
M(n) ≤ 2n2. We can choose M(n) ∈ O(n log n log log n) according to Schönhage and
Strassen (1971) and Schönhage (1977). Detailed presentations can be found in Sec-
tion 8.3 of Aho et al. (1974), and in Chapter 9 of von zur Gathen and Gerhard (2003).
Implementations are discussed in von zur Gathen and Gerhard (2002); the crossover
between classical and Karatsuba multiplication is at degree 576 for that implementation.
Allowing O(M(n)) precomputation depending only on f , two elements of Fqn can be
multiplied with at most 3M(n)+ O(n) operations in Fq . Using an appropriate addition
chain for exponentiation (Brauer, 1939; see Section 4.6.3 of Knuth 1998) we get the
following result.

Fact 2.1. Let e ∈ N>0 with 2 ≤ e < qn and let Fqn be represented by a polynomial ba-
sis. An element of Fqn can be raised to the eth power with 3nM(n) log q+O(n2 log q) ⊆
O(n2 log n log log n log q) operations in Fq .

Using modular composition à la Brent and Kung (1978) and the polynomial repre-
sentation of the Frobenius automorphism from von zur Gathen and Shoup (1992), Gao
et al. (2000) present an algorithm which uses O(n2 log log n) operations in Fq .

Sparse modulus. We consider two kinds of sparse polynomials. An s-sparse poly-
nomial f in the usual sense is of the form f = ∑

1≤i≤s fi xei with all fi ∈ Fq\{0}
and ei ∈ N≥0, and we want the number s of nonzero terms to be small. The minimal
sparseness of irreducible polynomials of this kind is

σq(n) = min

{
s ∈ N>0:

there exists an s-sparse irreducible polynomial
in Fq [x] of degree n

}
.
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A special type of sparse polynomials is of the form f = xn + h ∈ Fq [x] with t =
deg h 
 n small. All the “relevant material” of f sits at the bottom, and we call f a
t-sedimentary polynomial. For n ∈ N>0 and a prime power q ≥ 2, we define

τq(n) = min{deg h: xn + h ∈ Fq [x] is irreducible}.
Obviously σq(n)−2 ≤ τq(n) ≤ n−1, since sedimentarity is a special case of sparseness
with s ≤ t + 2.

Sparse polynomials. We first discuss arithmetic in Fq [x]/( f ) for a sparse polynomial
f . The following algorithm (which actually works over any commutative ring R) com-
putes the quotient u and remainder v of a polynomial g on division by a monic sparse
polynomial f . The idea is based on the observation that the top part of u, called u1,
equals the top part of g. Furthermore, the bottom part u0 of u equals the top part of
g − u1 f xk−n for a suitable k ≥ n; this yields a recursive approach.

Algorithm 2.2. Sparse division.

Input: An integer n ∈ N>0, a polynomial g ∈ R[x] of degree m, and f =∑
1≤i≤s fi xei ,

where 0 = e1 < · · · < es = n and f1, . . . , fs ∈ R with s ≥ 2 and fs = 1, and R is a
commutative ring.

Output: Uniquely determined polynomials u, v ∈ R[x] such that deg v < n and g =
u · f + v.

1. If m < n then
2. set (u, v)← (0, g). Return (u, v).
3. Set k = max{n,m− (n− es−1)+1} ≥ n. Write g = u1xk+w with u1, w ∈ Fq [x]

and degw < k.
4. Compute g1 ← w − u1 · ( f − xn)xk−n .
5. Call the algorithm recursively with input n, g1 and f to receive (u0, v).
6. Set u ← u1xk−n + u0.
7. Return (u, v).

Theorem 2.3. Algorithm 2.2 works correctly. Division with remainder of a polynomial
of degree m by an s-sparse monic polynomial of degree n can be executed using at most
2(s − 1)(m − n + 1) operations in R (if m + 1 ≥ n).

Proof. We prove correctness by induction on m, and thus assume that the algorithm
works correctly if the dividend has degree less than m. We always have 0 = e1 ≤ es−1 <

es = n. Furthermore, in Step 3 we are working on the case that n ≤ m. We find that
k = max{n,m − (n − es−1) + 1} ≤ max{n,m} ≤ m and thus n ≤ k ≤ m. By the
induction hypothesis we get

u f + v 6.= (u1xk−n + u0) f + v = u1 f xk−n + (u0 f + v)
5.= u1 f xk−n + g1

4.= u1 f xk−n + w − u1( f − xn)xk−n

= w + u1xk + (u1 f xk−n − u1 f xk−n)
3.= g.
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Since deg v < n, this shows partial correctness. In order to prove termination, we show
that the degree of g1 is less than deg g = m. Since degw < k and

deg u1 = deg g − deg(xk) = m − k ≥ 0,

we have

deg g1 ≤ max{degw, deg(u1 · ( f − xn)xk−n)}
≤ max{k − 1,m − k + es−1 + k − n}
= max{max{n,m − (n − es−1)+ 1} − 1,m − (n − es−1)}
= max{n,m − (n − es−1)+ 1} − 1 = k − 1 < m,

and the algorithm terminates.
Now we turn to the cost estimate. The polynomials u1 andw can be generated in Step

3 from g without operations in Fq . The cost to compute g1 is given by subtracting the
polynomial f − xn =∑

1≤i≤s fi xei − fs xes =∑
1≤i<s u1 fi xei+(k−n) from w in Step 4.

For each 1 ≤ i < s we can compute u1 fi xei+(k−n) with at most 1+ deg u1 = 1+m − k
scalar multiplications, and subtract it as required with m− k+1 subtractions, so that we
have a total of 2(s − 1)(m − k + 1) operations in Fq . Since g1 = u0 · f + v and hence
deg u0 = deg g1 − deg f ≤ k − 1− n < k − n, no more operations in Fq are needed to
compute u.

If T (m) denotes the number of operations in Fq to compute (u, v) for g of degree
m, then we have T (m) = 0 if m < n and T (m) ≤ 2(s − 1)(m − k + 1) + T (k − 1)
since deg g1 ≤ k − 1. A recursive call of Algorithm 2.2 in Step 5 reduces the remaining
problem size by m− k+ 1, namely from m to k− 1. For the last call we have k = n. We
have a total of S = �(m − n + 1)/(n − es−1)� calls. All but the last call are performed
with 2(s − 1)(n− es−1) operations. The last call causes 2(s − 1)(m − n+ 1− (S− 1) ·
(n − es−1 + 1)) operations. This yields a total of

T (m) ≤ (S − 1) · 2(s − 1)(n − es−1)

+2(s − 1)(m − n + 1)− (S − 1) · 2(s − 1)(n − es−1)

= 2(s − 1)(m − n + 1)

operations as claimed.

The cost estimate generalizes in a natural way the cost of 2n(m−n+1) for division with
remainder of (dense) polynomials of degrees m ≥ n with monic divisor (see Section 2.4
of von zur Gathen and Gerhard, 2003).

Corollary 2.4. Let s = σq(n). Then

• two elements in Fqn can be multiplied with at most

M(n)+ 2(s − 1)(n − 1)

operations in Fq ,
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• an element can be raised to the qth power with at most

2(s − 1)(n − 1) or with 2M(n) log2 q + 4(s − 1)(n − 1) log2 q

operations in Fq .

Proof. The first claim follows from Theorem 2.3 by noting that the product of two
representatives has degree m ≤ 2(n − 1), so that

2(s − 1)(m − n + 1) ≤ 2(s − 1)(2n − 2− n + 1) = 2(s − 1)(n − 1).

There are two possibilities to evaluate a qth power. One may profit from the observation
that the qth power of g = ∑

0≤i<n gi xi is just gq = ∑
0≤i<n gi xiq with deg(gq) =

m ≤ q(n − 1). This can be evaluated without operations in Fq . A final division with
remainder yields the first estimate. Repeated squaring for the qth power yields the second
estimate.

In the case q = 2 squaring can be done with cost at most 2(n − 1)(s − 1). We worked
out a table of irreducible trinomials. For 5146 values of n in the range 2 ≤ n < 10,000
there exists an irreducible trinomial of degree n in F2[x], see also Zierler and Brill-
hart (1968). For the remaining 4852 values, there exist irreducible pentanomials. Swan
(1962) discusses the number of irreducible factors for trinomials in F2[x], and shows
that σ2(n) ≥ 5 when n is a positive integer multiple of 8.

The factorization of trinomials over F2 is also discussed in Chapter 5 of Golomb
(1967). Further tables of irreducible trinomials in F2[x] are given in Zierler and Brillhart
(1969), Zierler (1970), and Fredricksen and Wisniewski (1981), and some of large degree
in Brent et al. (2003). See Loidreau (2000) and von zur Gathen (2003) for trinomials
over F3. Interestingly, in the experiments of the latter paper trinomials turned out to
be irreducible slightly more often than general polynomials. These computations and
Tables 2.1 and 2.2 motivate the following conjecture.

Table 2.1. Irreducible sparse polynomials of degree n over prime fields Fq with σq (n) nonzero
coefficients.

Polynomial ring Fq [x]
Degree

n F2 F3 F5 F7

1 x + 1 x + 1 x + 1 x + 1
2 x2 + x + 1 x2 + 1 x2 + 2 x2 + 1
3 x3 + x + 1 x3 + 2x + 1 x3 + x + 1 x3 + 2
4 x4 + x + 1 x4 + x + 2 x4 + 2 x4 + x + 1
5 x5 + x2 + 1 x5 + 2x + 1 x5 + 4x + 1 x5 + x + 3
6 x6 + x + 1 x6 + x + 2 x6 + x + 2 x6 + 2
7 x7 + x + 1 x7 + x2 + 2 x7 + x + 1 x7 + 6x + 1
8 x8 + x4 + x3 + x + 1 x8 + x2 + 2 x8 + 2 x8 + x + 3
9 x9 + x + 1 x9 + x4 + 2 x9 + x4 + 4 x9 + 2

10 x10 + x3 + 1 x10 + 2x2 + 1 x10 + 4x2 + 2 x10 + 2x + 3
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Table 2.2. Irreducible sparse polynomials of degree n over finite fields Fq with σq (n) nonzero
coefficients. We adjoin a root a of an irreducible polynomial over the prime field of Fq to construct

Fq . The chosen modulus is given in row 2.

Polynomial ring Fq [x] with composite q
Degree

n F4 = F2[y]/(y2 + y + 1) F8 = F2[y]/(y3 + y + 1) F9 = F3[y]/(y2 + 1)

1 x + 1 x + 1 x + 1
2 x2 + x + a x2 + x + 1 x2 + 1+ a
3 x3 + a x3 + x + a x3 + x + a
4 x4 + x2 + ax + 1 x4 + x + 1 x4 + (1+ a)
5 x5 + x + a x5 + x2 + 1 x5 + x + (1+ a)
6 x6 + x3 + a x6 + x + a x6 + x2 + (1+ a)
7 x7 + x + 1 x7 + a x7 + x + (1+ a)
8 x8 + x3 + x + a x8 + x3 + ax + (1+ a) x8 + (1+ a)
9 x9 + a x9 + x + (1+ a) x9 + x2 + a

10 x10 + x5 + a x10 + x3 + 1 x10 + x + (2+ a)

Conjecture 2.5. For all n, q ∈ N≥2 with q a prime power, we have σq(n) ≤ 5. If
q ≥ 3, then σq(n) ≤ 4.

We have σ3(n) = 4 for the six values 49, 57, 65, 68, 75, and 98 of n ≤ 100. A summary
on results discussing the complete factorization of sparse polynomials over a prime field
Fp is given in the book of Shparlinski (1999, Sections 3.2 and 3.3).

Corollary 2.6. Let F2n be defined by an s-sparse polynomial f with σ2(n) nonzero
entries. If Conjecture 2.5 is true, then two elements in F2n can be multiplied with at most
M(n)+ 8n − 8 operations in F2. Squaring can be done with 8n − 8 operations in F2. A
power of an element in F2n can be computed with at most

(M(n)+ 8n − 8)
n

log n
(1+ o(1))+ 8n2 − 8n

operations in F2.

Corollary 2.7. Assume that Conjecture 2.5 is true and that M(n) ∈ 
(n log n). Then
an element of F2n can be raised to a power with O(M(n)(n/ log n)) ⊆ O(n2 log log n)
operations in F2.

Sedimentary polynomials. Coppersmith’s (1984) algorithm for solving the discrete
logarithm problem in characteristic 2 uses t-sedimentary polynomials. His idea and
further improvements of it are also discussed in Odlyzko (1985). He remarks on the
existence of such polynomials: “Choose a primitive polynomial P(x) of degree n,
such that P(x) = xn + Q(x), where the degree of Q(x) is smaller than n2/3. (This
should be possible; heuristically, for a given n, we expect the best possible Q(x) to
have degree about log2 n.)” This describes a t-sedimentary polynomial f = xn + h
with t = deg h 
 n. Sedimentarity is a special case of sparseness with s ≤ t + 2.
A fraction of about 1/n of all polynomials of degree n is irreducible; more detailed
bounds are given in Hardy and Wright (1985). Thus heuristically one might hope for
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Table 2.3. Irreducible sedimentary polynomials of degree n over prime fields Fq . The sediment h =
f − xn has degree τq (n).

Polynomial ring Fq [x]
Degree

n F2 F3 F5 F7

1 x + 1 x + 1 x + 1 x + 1
2 x2 + x + 1 x2 + 1 x2 + 2 x2 + 1
3 x3 + x + 1 x3 + 2x + 1 x3 + x + 1 x3 + 2
4 x4 + x + 1 x4 + x + 2 x4 + 2 x4 + x + 1
5 x5 + x2 + 1 x5 + 2x + 1 x5 + 4x + 1 x5 + x + 3
6 x6 + x + 1 x6 + x + 2 x6 + x + 2 x6 + 2
7 x7 + x + 1 x7 + x2 + 2 x7 + x + 1 x7 + 6x + 1
8 x8 + x4 + x3 + x + 1 x8 + x2 + 2 x8 + 2 x8 + x + 3
9 x9 + x + 1 x9 + 2x3 + x2 + 1 x9 + x2 + 2x + 3 x9 + 2

10 x10 + x3 + 1 x10 + 2x2 + 1 x10 + x2 + x + 3 x10 + 2x + 3

τq(n) = min{deg h: xn + h ∈ Fq [x] is irreducible} to be roughly logq n, since there are
about n polynomials with degree up to logq n. Indeed, we found τ2(n) ≤ 2+�log2 n� 
 n
for all tested n (see Table 2.6, column 5, and Table 4.2, column 7). Gordon and McCurley
(1992) found τ2(n) ≤ 11 for all n ≤ 600. The experiments of Gao and Panario (1997)
and Gao et al. (1999) showed τ2(n) ≤ 3+ log2 n for q = 2 and all n < 2000. Our own
calculations validate this bound on τ2(n) for all n ≤ 5000. The following conjecture is
motivated by these experiments and Tables 2.3 and 2.4.

Conjecture 2.8. For all n, q ∈ N>0, with q ≥ 2 a prime power, we have τq(n) ≤
3+ logq n.

We have chosen the numerical parameters in our conjectures about sparse and sedimen-
tary polynomials in the strongest form compatible with our experimental results, thus

Table 2.4. Irreducible sedimentary polynomials of degree n over finite fields Fq . The sediment h =
f − xn has degree τq (n). We adjoin a root a of an irreducible polynomial over the prime field of Fq to

construct Fq . The chosen modulus is given in row 2.

Polynomial ring Fq [x] with composite q
Degree

n F4 = F2[y]/(y2 + y + 1) F8 = F2[y]/(y3 + y + 1) F9 = F3[y]/(y2 + 1)

1 x + 1 x + 1 x + 1
2 x2 + x + a x2 + x + 1 x2 + (1+ a)
3 x3 + a x3 + x + a x3 + x + a
4 x4 + x2 + ax + 1 x4 + x + 1 x4 + (1+ a)
5 x5 + x + a x5 + x2 + 1 x5 + x + (1+ a)
6 x6 + x2 + x + a x6 + x + a x6 + x2 + (1+ a)
7 x7 + x + 1 x7 + a x7 + x + (1+ a)
8 x8 + x3 + x + a x8 + x3 + ax + (1+ a) x8 + (1+ a)
9 x9 + a x9 + x + 1+ a x9 + x2 + a

10 x10 + x3 + ax2 + (1+ a) x10 + x2 + ax + 1 x10 + x + (2+ a)



344 J. von zur Gathen and M. Nöcker

facilitating their refutation—if incorrect. For practical purposes, it is quite sufficient for
the conjectures to hold for “most” degrees, or with one more term in the irreducible
polynomials.

We rewrite the results of the previous paragraph for sedimentary polynomials f =
xn + h ∈ Fq [x] with h �= 0 and t = deg h < n. This special kind of sparseness
yields s ≤ t + 2 and es−1 = t . Algorithm 2.2 works well in the case of t-sedimentary
polynomials. We can apply polynomial multiplication in Step 4 of Algorithm 2.2 to
compute g1. This yields the following result.

Theorem 2.9. Let f, g ∈ Fq [x] with deg g = m and let f = xn + h be a sedimentary
polynomial with 0 ≤ t = deg h ≤ (n − 1)/2. Division with remainder of g by f can be
performed with at most ((m−n+1)/(t+1)+1)M(t+1)+2(m−n+1)+ t operations
in Fq .

Proof. We substitute Step 3 in Algorithm 2.2 by

3′. Set k = max{n,m − t} ≥ n. Write g = u1xk + w with u1, w ∈ Fq [x] and
degw < k.

By assumption we have n − es−1 − 1 = n − t − 1 ≥ n − (n − 1)/2 − 1 = (n − 1)/2
which yields correctness for this modified choice of k. The cost is determined by the
computation of g1 = w−u1 · ( f − xn)xk−n in Step 4 of Algorithm 2.2. Now f − xn = h
is a polynomial of degree t and u1 has degree m − k. If k = m − t, then deg u1 = t .
Else we have k = n ≥ m − t and m − k = m − n ≤ m − (m − t) = t . In both cases
u1 · h can be evaluated with at most M(t + 1) operations in Fq in Step 4. The resulting
polynomial has at most t + m − k + 1 many nonzero coefficients. It can be subtracted
from w with at most this number of operations in Fq .

Let T (m) denote the number of operations to compute (u, v) with Algorithm 2.2.
Then T (m) = 0 if m < n. Else the problem size for the recursive call is the degree
of g1. If m − t ≥ n, then deg g1 = max{degw, deg u1h + k − n} ≤ max{m − (t +
1), 2t + m − t − n} = m − (t + 1) since 2t ≥ n − 1 by assumption. Thus after a
recursive call the problem size is decreased by t + 1. Let S be the number of recursive
calls until the algorithm stops. Then m − S · (t + 1) ≤ n − 1 < m − (S − 1) · (t + 1)
which yields S ≤ �(m − n + 1)/(t + 1)�. For S − 1 calls we have k = m − t and thus
t + m − k + 1 = 2t + 1 operations in Fq in Step 4. For the final call we have k = n
and deg u1 = m − (S − 1)(t + 1)− n with m the input degree of the original call. Then
Step 4 causes t + (m− (S− 1)(t + 1)− n)+ 1 operations in Fq . Thus we have a total of

T (m) ≤ S ·M(t + 1)+ (S − 1) · (2t + 1)+ m − n + 1− (S − 1)(t + 1)+ t

= S ·M(t + 1)+ m − n + 1+ t · (S − 1)+ t

≤
⌈

m − n + 1

t + 1

⌉
·M(t + 1)+ m − n + 1+ t · m − n + 1

t + 1
+ t

≤
⌈

m − n + 1

t + 1

⌉
·M(t + 1)+ 2(m − n + 1)+ t

operations in Fq as claimed.
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The qth power gq of a polynomial g ∈ Fq [x] with deg g ≤ n − 1 has degree at most
m = q(n−1) and is computed without arithmetic operations. Using this to exponentiate
in Fqn , we have the following analog of Corollary 2.4.

Corollary 2.10. Let f = xn + h ∈ Fq [x] be irreducible of degree n, and t = deg h ≤
(n − 1)/2. Then two elements in Fq [x]/( f ) can be multiplied with at most

M(n)+
(

n − 1

t + 1
+ 1

)
·M(t + 1)+ 2(n − 1)+ t

operations in Fq , and an element can be raised to the qth power with at most

(
(q − 1)(n − 1)

t + 1
+ 1

)
M(t + 1)+ 2(q − 1)(n − 1)+ t

operations in Fq .

Finally we formulate this result for the case q = 2. We assume fast multiplication with
M(t + 1) ∈ O(t log t log log t) for the asymptotic estimate. For implementations the
sedimentary part h is of very small degree compared with deg f = xn + h, and then
classical multiplication with M(t + 1) = 2(t + 1)2 would be used.

Corollary 2.11. Let F2n be defined by a sedimentary polynomial f = xn + h with
deg h = τ2(n), and assume Conjecture 2.8 to be true.

• Two elements in F2n can be multiplied with at most

M(n)+
(

n

log n
M(log n)

)
∈ O(n log n log log n)

operations in F2.
• Squaring can be done with

O

(
n

log n
M(log n)

)
∈ O(n log log n log log log n)

operations in F2.
• A power of an element in F2n can be computed with at most

M(n)
n

log n
(1+ o(1))+ O

(
n2

log n
M(log n)

)
∈ O(n2 log log n log log log n)

operations in F2.

Experimental results. We have implemented in C++ some exponentiation algorithms
over BbbF2n , using the software library BIPOLAR written by Jürgen Gerhard for fast
polynomial arithmetic over F2; for details see Section 9.7 of von zur Gathen and Gerhard
(2003). Three different polynomial multiplication algorithms are available: classical
multiplication with M(n) ∈ O(n2) is used for n < 576. The subquadratic algorithm
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Table 2.5. Multiplication and squaring in F2[x]/( f ) for dense and sparse f . The running time (in CPU
milliseconds on a SUN Sparc ULTRA-IIi) is the average of 1000 experiments for each value of n.

Random f Sedimentary f Random f Sedimentary f

n Mult. Square Mult. Square n Mult. Square Mult. Square

209 0.1 0.1 0.1 0.0 5199 13.9 9.1 5.5 0.3
398 0.3 0.2 0.1 0.0 5399 14.6 9.7 5.7 0.3
606 0.5 0.3 0.3 0.0 5598 15.1 9.8 5.9 0.3
803 0.7 0.4 0.4 0.1 5812 15.8 10.5 6.2 0.3

1018 0.9 0.7 0.4 0.1 6005 16.3 11.0 6.3 0.4
1199 1.4 0.9 0.6 0.1 6202 17.1 11.0 6.6 0.3
1401 1.7 1.2 0.7 0.1 6396 18.0 12.0 6.9 0.3
1601 2.1 1.4 0.9 0.1 6614 18.5 12.3 7.2 0.4
1791 2.5 1.7 1.0 0.1 6802 19.1 11.9 7.5 0.4
1996 3.0 2.2 1.1 0.1 7005 19.5 12.9 7.6 0.4
2212 3.8 2.6 1.5 0.2 7205 20.2 13.4 8.0 0.6
2406 4.4 3.0 1.7 0.2 7410 20.7 13.9 8.0 0.4
2613 5.1 3.5 1.9 0.2 7602 21.2 14.1 8.2 0.4
2802 5.6 4.0 2.0 0.2 7803 21.5 14.4 8.3 0.5
3005 6.3 4.5 2.2 0.2 8003 22.0 14.7 8.6 0.7
3202 7.1 5.1 2.5 0.2 8218 23.9 15.9 9.1 0.4
3401 7.8 5.7 2.7 0.3 8411 29.5 17.8 10.4 0.5
3603 8.6 6.4 2.7 0.2 8601 30.1 20.1 11.2 0.5
3802 9.3 7.0 2.8 0.2 8802 32.0 21.5 12.2 0.6
4002 10.1 7.8 3.0 0.3 9006 33.3 22.3 12.5 0.5
4211 9.2 6.1 3.6 0.3 9202 34.6 23.2 12.8 0.5
4401 10.4 7.0 4.1 0.3 9396 36.6 24.0 13.6 0.5
4602 11.3 7.6 4.4 0.3 9603 37.8 24.9 15.5 0.9
4806 13.0 9.1 5.0 0.3 9802 39.0 26.0 15.2 0.7
5002 12.9 8.6 5.2 0.3 9998 39.8 25.9 14.9 0.5

of Karatsuba—described in Karatsuba and Ofman (1962)—with M(n) ∈ O(nlog2 3) is
applied for 576 ≤ n < 35,840. For larger n the library chooses a fast multiplication
routine based on Cantor (1989) which is nearly linear: M(n) ∈ O(n(log n)2).

The library also contains an implementation of the modular composition algorithm of
Brent and Kung (1978), using classical matrix multiplication. The sedimentary division
with remainder has been implemented by Olaf Müller for q = 2; we added division by
trinomials to the arithmetic package of BIPOLAR. These special versions are significantly
faster than the implementation for general divisors in our range of inputs as documented
in Table 2.5. We did not experiment with pentanomials.

Table 2.6 shows experimental results on a SUN Sparc ULTRA-IIi rated at 269.5 MHz
for the three algorithms discussed for Fq [x]/( f ) in this section. We choose trinomials
as well as sedimentary polynomials for the implementations of Algorithm 2.2. We use
a first test Series Linear with n ≈ 200i and 1 ≤ i ≤ 50. This includes the range for
cryptographic applications nowadays. Each entry is the average for 100 pairs of base
and exponent chosen at random. The irreducible polynomials defining F2n are chosen at
random for the columns labeled 2.1 and “polynomial representation of the Frobenius,”
which we now call the Frobenius method for short.
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Table 2.6. Comparison of exponentiation for different polynomial basis representations of F2n . The running
time (in CPU seconds on a SUN SparcULTRA-IIi) is the average of 100 experiments for each value n. The
chosen n (column 6) for trinomials differs from the one in column 1 if no irreducible trinomial of degree n

(column 1) over F2 exists.

Corollary 2.11 Corollary 2.6
Fact 2.1 Poly. rep. f = xn + h f = xn + xk + 1
rand. f Frobenius

n time time Time deg h n Time k

209 0.02 0.03 0.01 5 209 0.01 6
398 0.09 0.15 0.03 7 399 0.02 26
606 0.25 0.37 0.07 9 606 0.06 165
803 0.51 0.63 0.12 8 804 0.09 75
1018 0.91 1.01 0.15 10 1020 0.12 135
1199 1.47 1.92 0.24 11 1199 0.21 114
1401 2.18 2.62 0.33 11 1401 0.28 92
1601 3.16 3.57 0.51 11 1601 0.39 548
1791 4.22 4.46 0.53 12 1791 0.46 190
1996 5.64 5.60 0.62 9 1996 0.54 307
2212 7.61 7.52 0.97 11 2212 0.78 423
2406 9.62 9.25 1.17 8 2407 0.95 91
2613 11.88 11.39 1.28 11 2614 1.13 553
2802 14.32 13.07 1.44 9 2801 1.29 279
3005 17.28 16.10 1.65 9 3004 1.46 351
3202 20.84 18.93 2.36 9 3201 1.71 674
3401 24.48 22.17 2.40 11 3401 1.94 531
3603 28.44 24.81 2.50 10 3604 2.09 637
3802 33.01 28.06 2.57 13 3801 2.30 112
4002 38.28 31.57 3.18 8 4001 2.45 137
4211 38.17 40.23 3.47 12 4212 3.05 243
4401 46.87 43.21 4.34 12 4401 3.89 394
4602 52.36 46.88 4.72 14 4602 4.30 67
4806 59.14 52.50 5.76 12 4806 4.90 2349
5002 65.02 56.39 6.18 11 5001 5.27 637
5199 70.37 64.00 6.36 12 5199 5.74 1546
5399 78.12 67.57 6.84 9 5399 6.24 485
5598 81.96 71.43 7.26 9 5598 6.62 101
5812 90.40 77.43 7.74 11 5812 7.17 295
6005 138.35 84.11 8.20 12 6006 7.57 1025
6202 101.60 86.94 8.76 12 6202 8.00 867
6396 109.68 92.88 9.39 12 6396 8.61 91
6614 116.60 98.53 9.77 12 6614 8.96 2105
6802 118.99 100.43 10.36 11 6801 9.52 140
7005 129.63 106.28 10.95 13 7004 9.89 291
7205 137.54 114.91 12.74 14 7204 10.43 1695
7410 147.29 120.37 12.02 10 7410 10.92 2179
7602 151.38 124.68 12.38 10 7602 11.53 555
7803 158.21 129.90 13.36 12 7802 11.82 2103
8003 165.40 134.23 15.59 8 8004 12.44 3087
8218 180.72 152.07 14.69 12 8218 13.39 1443
8411 207.55 176.35 16.87 12 8412 15.33 1049
8601 228.47 190.43 18.30 7 8601 17.21 734
8802 254.54 210.35 21.66 14 8802 18.30 2139
9006 270.58 222.12 21.79 9 9006 19.25 1477
9202 287.79 231.27 21.93 12 9202 20.04 211
9396 309.67 252.12 23.33 13 9396 22.14 369
9603 328.73 267.77 27.20 12 9601 26.15 963
9802 348.95 275.81 28.06 12 9801 24.49 284
9998 358.00 281.96 27.51 13 9998 24.82 4013
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For random f we have a dominant term of at most 3nM(n) in Fact 2.1 and of
O(M(n)(n/ log n)) in the Frobenius method. Indeed, the advantage of the Frobenius
method is shown in the comparison of columns 2 and 3 in Table 2.6. The implementa-
tion of the Frobenius method is superior by a factor of roughly 1

10 log2 n compared with
straightforward exponentiation with Brauer’s addition chain. For sedimentary polyno-
mials and trinomials of degree n < 10,000, the dominating cost is M(n)(n/ log n) by
Corollaries 2.11 and 2.6, respectively, since M(n) ∈ O(nlog2 3). This is asymptotically
the same as for modular composition. Indeed, column 3 grows asymptotically at the
same rate as columns 4 and 7, but with a factor of about 10 for sedimentary polynomials
and about 11 for trinomials, respectively. This constant factor makes sparse polynomials
the clear winner.

3. Normal Basis Representation

If α ∈ Fqn is such that its conjugates α, αq , αq2
, . . . , αqn−1

form a vector space basis for
Fqn over Fq , then α is normal over Fq , and N = (α0, . . . , αn−1) is a normal basis. A
normal basis exists for all finite fields (seeTheorem 2.35 of Lidl and Niederreiter, 1983).
There are different ways to multiply in a normal basis representation. The efficient ones
only work for special choices of α.

Classical arithmetic. Let N = (α, . . . , αqn−1
) be a normal basis of Fqn over Fq . Then

any β ∈ Fqn can be given by its normal basis representation β = ∑
0≤i<n biαi ,

where b0, . . . , bn−1 ∈ Fq . Let σ :Fqn → Fqn with σ(β) = βq be the Frobenius
automorphism. It is a linear operator on Fqn as an Fq -vector space. We have βq =
σ(β) = σ(∑0≤i<n biαi ) =

∑
0≤i<n biσ(αi ) =

∑
0≤i<n biαi+1 =

∑
0≤i<n bi−1αi , with

index arithmetic modulo n. Hence raising to the qth power is just a cyclic shift of
the coordinates and therefore essentially free. With an appropriate q-addition chain, a
power in Fqn can be computed with O(n/logqn) operations in Fqn (von zur Gathen,
1991).

Multiplication is more difficult and expensive. We define a multiplication matrix
TN = (ti, j )0≤i, j<n such that αiαj =

∑
0≤h<n ti−h,h− jαh for all 0 ≤ i, j < n. Details of

the corresponding Massey–Omura multiplier—designed for hardware applications—are
given in Chapter 5 of Menezes et al. (1993). We call the number of nonzero entries in
TN the density dN . Then two elements of Fqn can be multiplied with at most 2ndN
multiplications in Fq .

Obviously dN ≤ n2. Mullin et al. (1989) prove 2n − 1 ≤ dN as a lower bound on
dN . They call a normal basis N with dN = 2n − 1 optimal.

Fact 3.1. LetFqn be given by a normal basis representation. We can compute any power
in Fqn with 2dN (n2/log n)(1 + o(1)) ∈ O(n4/log n) operations in Fq . If the normal
basis is optimal then we have at most 4(n3/log n)(1 + o(1)) operations
in Fq .

An optimal normal basis does not exist for all n and q, but seems to exist for a
reasonably dense set of values of n, e.g., for 23% of all n ≤ 1200 if q = 2 (Mullin et al.,
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Table 3.1. Percentage of fieldsFqn with n ≤ 10,000 for which there exists an optimal
normal basis over Fq .

q 2 3 5 7 11 13 17 19
% 17.07∗ 4.92 4.92 4.65 4.43 4.57 4.50 4.72

∗ We have two different types of optimal normal bases only for q = 2: the first one appears in
4.70%, the second one exists in 12.37% of the field extensions over F2.

1989). The percentage of fields Fqn for which optimal normal bases do exist for some
small primes q and n ≤ 10000 is given in Table 3.1.

Gauss periods

Definition 3.2. Let n, k ∈ N≥1 such that nk+1 is prime. LetK ⊆ Z×nk+1 be the unique
subgroup of Z×nk+1 of order k, and let ξ be a primitive (nk + 1)st root of unity in Fqnk .
Then α =∑

a∈K ξ
a is called a Gauss period of type (n, k) over Fq .

Fact 3.3 (Wassermann, 1990, 1993). Let α be a Gauss period of type (n, k) and let K
be the uniquely determined subgroup of Z×nk+1 of order k. Then α is normal in Fqn if and
only if q and K together generate Z×nk+1.

Mullin et al. (1989) showed that Gauss periods of type (n, 1) and (n, 2) generate
optimal normal bases. Gao and Lenstra (1992) proved that the constructions presented
by Mullin et al. (1989) cover all optimal normal bases.

Normal bases with fast polynomial multiplication. Gao et al. (2000) have combined
fast polynomial multiplication and normal bases if the normal element α is generated by
a Gauss period.

Fact 3.4 (Gao et al., 2000). Let α ∈ Fqn be a normal Gauss period of type (n, k). Then
two elements in Fqn given in the normal basis representation generated by α can be
multiplied with M(kn)+ (2k + 1)n − 2 operations in Fq .

Corollary 3.5. Let α ∈ Fqn be a normal Gauss period of type (n, k) and let Fqn be
represented in the normal basis N = (α, . . . , αqn−1

). We can compute a power in Fqn

with (n/ log n)(M(kn) + (2k + 1)n − 2)(1 + o(1)) ∈ O(kn2 log log(kn)(1 + log k))
operations in Fq . If α is optimal, then we have O(n2 log log n) operations in Fq .

Experiments. We concentrate on F2n using BIPOLAR again. We represent 32 coeffi-
cients in one machine word when implementing the normal basis representation of F2n

in C++. All experiments are confined to optimal normal bases.
We implemented the classical normal basis multiplication (Fact 3.1) using the multi-

plication matrix TN . Details on this Massey–Omura multiplier are given in the patent of
Omura and Massey (1986). Our implementation profits from the distribution of nonzero
entries in TN in the case k = 1. Thus the multiplication time is reduced to roughly 3

5
compared with the times for k = 2.
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Table 3.2. Comparison of the two exponentiation algorithms for normal basis representation. The running
time (in CPU seconds on a SUN Sparc ULTRA-IIi) is the average of 100 experiments for each value of n.
All normal elements are generated by Gauss periods of type (n, k) with k ∈ {1, 2}. Such normal elements are

called optimal.

Fact 3.1 Corollary 3.5 Fact 3.1 Corollary 3.5
n k Massey–Omura Gauss period n k Massey–Omura Gauss period

209 2 0.11 0.01 5199 2 1061.87 15.28
398 2 0.64 0.04 5399 2 1183.07 16.65
606 2 2.19 0.12 5598 2 1307.12 17.80
803 2 4.56 0.20 5812 1 947.32 7.16

1018 1 6.07 0.12 6005 2 1678.64 20.02
1199 2 14.73 0.50 6202 1 1142.87 7.95
1401 2 23.03 0.68 6396 1 1227.81 8.36
1601 2 34.11 0.98 6614 2 2080.97 25.27
1791 2 47.16 1.15 6802 1 1485.51 9.68
1996 1 41.21 0.56 7005 2 2644.03 27.42
2212 1 55.03 0.81 7205 2 2680.38 28.58
2406 2 108.17 3.12 7410 1 1930.91 11.08
2613 2 138.94 3.00 7602 1 1958.51 11.42
2802 1 107.77 1.30 7803 2 3344.95 33.28
3005 2 215.04 4.01 8003 2 3689.48 34.62
3202 1 159.40 1.72 8218 1 13.85
3401 2 314.63 5.10 8411 2 43.67
3603 2 375.25 5.54 8601 2 47.98
3802 1 258.59 2.38 8802 1 18.42
4002 1 303.90 2.52 9006 2 54.55
4211 2 601.99 8.34 9202 1 21.02
4401 2 678.34 10.33 9396 1 22.64
4602 1 471.36 4.37 9603 2 64.36
4806 2 845.78 13.00 9802 1 24.95
5002 1 580.68 5.38 9998 2 69.77

For Gauss periods we have implemented the polynomial multiplication of Theo-
rem 3.4. The results are listed in Table 3.2. In columns 4 and 8 of Table 3.2, we see
that for neighboring values of n, k = 2 leads to a constant factor times the cost for k = 1.
Since n < 10,000 the preferred multiplication algorithm is the one of Karatsuba. It has
time M(n) = O(nlog2 3) which yields M(2n) = 3M(n) in theory. Our implementation
shows a factor of 2.66 on average.

We select our n such that an optimal normal basis forF2n overF2 exists. Thus k ∈ {1, 2}
in columns 2 and 6 of Table 3.2. We again choose 100 values for each n at random in
test Series Linear. It shows the same significant difference between both algorithms in
theory and by experiments, as is visible in Fig. 1. In theory the classical multiplication is
O(n3/log n). For kn < 20,000 BIPOLAR uses the multiplication algorithm of Karatsuba
and Ofman (1962) with M(kn) ≤ 27(kn)log2 3. For the Gauss periods involved this yields
O(n2.59/log n).

4. Final Comparison

We summarize the theoretical results of Section 3 in Table 4.1. Using fast multiplication
with M(n) ∈ O(n2 log n log log n), the asymptotic behavior is roughly quadratic for
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Fig. 1. Graphical representation of the results for test Series Linear as given in Tables 2.6 and 3.2.

all representations except the matrix-based optimal normal basis multiplication à la
Omura and Massey (1986) (Fact 3.1). We do not have a clear winner, but the latter is a
loser.

Table 4.2 gives the running times of a second test Series Exp. Here we choose n near
2i for 10 ≤ i ≤ 16, plus some intermediate values for n, driven by the condition that

Table 4.1. The weights and number of steps for exponentiation using different representations of F2n .

Representation Multiplication Squaring Operations in F2

Polynomial basis
Random f

(Fact 2.1)
3M(n)+ O(n) 2M(n)+ O(n) O(n2 log n log log n)

Mod. comp. 3M(n)+ O(n) O(n1.688)

Sparse f ∗
(Cor. 2.6)

M(n)+ O(n) 8n − 8 O(n2 log log n)

Sedimentary f †

(Cor. 2.11)
M(n)+ O((n/log n)M(log n)) O((n/log n)M(log n)) O(n2 log log n log log log n)

Normal basis
Matrix TN ‡

(Fact 3.1)
4n2 − 2n 0 O(n3/log n)

Gauss periods§

(Cor. 3.5)
M(kn)+ O(kn) 0 O(kn2 log k log log kn)

∗ Assumes σ2(n) ≤ 5.
† Assumes τ2(n) ∈ O(log n).
‡ For optimal normal bases.
§ Only for some n.
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Table 4.2. Exponentiation inF2n for test Series Exp. Bases and exponents are chosen randomly. The times are
averages for ten random experiments. Again the choice of n for trinomials (column 8) differs if no irreducible

trinomial of degree n (as given in column 1) exists over F2.

Normal basis Polynomial basis

Corollary 3.5 Corollary 2.11 Corollary 2.6
Gauss Fact 2.1 Poly. rep. f = xn + h f = xn + xk + 1

rand. f Frobenius

n k t /sec t /sec t /sec t /sec deg h n t /sec k

1,018 1 0.12 0.88 0.91 0.16 10 1,020 0.01 135
1,034 2 0.31 0.97 1.05 0.18 10 1,034 0.01 75
2,140 1 0.71 6.63 6.16 0.81 12 2,140 0.08 283
2,141 2 1.79 6.85 5.99 0.81 6 2,142 0.07 69
4,211 2 8.23 38.17 40.23 3.47 12 4,212 0.31 243
4,218 1 3.13 37.01 30.61 3.49 14 4,218 0.31 287
8,292 1 14.57 195.10 137.00 17.72 12 8,292 1.47 637
8,325 2 41.38 199.71 142.54 17.85 13 8,324 1.54 1,149

16,679 2 269.42 1,159.00 728.72 90.97 14 16,679 8.10 6,692
16,692 1 76.61 1,152.56 712.03 84.79 9 16,692 8.11 2,115
23,898 1 188.86 3,061.21 1,717.91 202.09 11 23,898 19.36 3,459
23,903 2 490.47 3,036.22 1,789.66 205.00 14 23,903 19.39 2,891
32,075 2 901.09 5,425.19 3,031.90 385.18 12
32,076 1 339.49 5,408.11 2,930.06 383.56 15 32,076 34.51 1,825
43,371 2 1,756.39 1,1211.40 5,784.43 915.43 16 43,372 85.64 11,097
43,396 1 830.10 11,203.90 5,761.00 921.28 17 43,396 85.91 10,755
51,251 2 2,403.48 13,587.40 7,003.02 1,207.40 14 51,252 119.53 3,887
51,282 1 1,131.75 13,591.00 6,983.55 1,203.71 10 51,282 119.54 2,667
61,709 2 3,315.68 16,751.10 8,687.20 1,750.20 17 61,710 161.14 173
61,716 1 1,545.99 16,946.60 8,621.95 1,673.85 14 61,716 161.66 27,507

an optimal normal basis exists. Each entry is the average time for ten random choices of
the base β ∈ F2n and exponent e ∈ N≥1.

We omit the algorithm of Omura and Massey (1986) since it is much too slow. The
basic result is that sparse polynomials, both trinomials and sedimentary ones, are best
to build F2n . Gauss periods of type (n, 1) are a good alternative but they exist only for
fairly few values of n.

Ning and Yin (2001) study algorithms for normal basis multiplication and give timings
for fields with up to 575 bits. They mention polynomial bases, but do not compare their
results with that approach.

5. Conclusion

We have considered two ways of improving exponentiation algorithms in finite fields:
reducing the number of operations in Fqn and speeding up each operation. Both aspects
are presented in theory as well as by implementation.

Our experiments show that it is worth while to work on a trade-off for the cost of qth
powers and multiplications. Speeding up only one operation is not sufficient to achieve
fast exponentiation, as shown by the high cost for multiplication in software implemen-
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tations of the Omura and Massey (1986) algorithm. Of course, it was originally designed
for hardware, and it was only recently found how to use Karatsuba’s method efficiently in
hardware (Grabbe et al., 2003). Our results—in theory as well as by experiment—suggest
choosing as the data structure representing the finite field Fqn either sparse irreducible
polynomials or normal bases generated by optimal Gauss periods of type (n, 1) over Fq .

Algorithms that benefit from a special structure of the q-ary representation of the
exponent—which occurs, e.g., in inversion and primitivity testing—are discussed in
von zur Gathen and Nöcker (2003).

One question is left open in this paper: do there exist irreducible sparse polynomials
as claimed in Conjectures 2.5 and 2.8?
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Joachim von zur Gathen and Michael Nöcker (2003). Computing special powers in finite fields. Mathematics
of Computation 73, 1499–1523.

Joachim von zur Gathen and Victor Shoup (1992). Computing Frobenius maps and factoring polynomials.
Computational Complexity 2, 187–224.

Solomon W. Golomb (1967). Shift Register Sequences. Holden-Day Series in Information Systems. Holden-
Day, San Francisco, CA. With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred
W. Hales.

Daniel M. Gordon and Kevin S. McCurley (1992). Massively parallel computation of discrete logarithms. In
Advances in Cryptology: Proceedings of CRYPTO ’92, Santa Barbara, CA (Ernest F. Brickell, editor),
pp. 312–323. Number 740 of Lecture Notes in Computer Science. Springer-Verlag, Berlin. ISSN 0302-
9743.

C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich and J. von zur Gathen (2003). FPGA designs of parallel high
performance G F(2233)multipliers. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS-03), volume II, pp. 268–271.

G. H. Hardy and E. M. Wright (1985). An introduction to the theory of numbers. Clarendon Press, Oxford, 5th
edition. First edition 1938.

A. Karatsuba and Yu. Ofman (1962). Umno�enie mnogoznaqnyh qisel na avtomatah. Doklady
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