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Abstract. We know that trapdoor permutations can be used to construct all kinds
of basic cryptographic primitives, including trapdoor functions, public-key encryption,
private information retrieval, oblivious transfer, key agreement, and those known to
be equivalent to one-way functions such as digital signature, private-key encryption,
bit commitment, pseudo-random generator and pseudo-random functions. On the other
hand, trapdoor functions are not as powerful as trapdoor permutations, so the structural
property of permutations seems to be something special that deserves a more careful
study. In this paper we investigate the relationships between one-way permutations and
all these basic cryptographic primitives. Following previous works, we focus on an im-
portant type of reductions called black-box reductions. We prove that no such reductions
exist from one-way permutations to either trapdoor functions or private information re-
trieval. Together with previous results, all the relationships with one-way permutations
have now been established, and we know that no such reductions exist from one-way
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Lecture Notes in Computer Science, volume 2501, Springer-Verlag, Berlin, 2002. Work by Yan-Cheng Chang
and Chun-Yuan Hsiao was done while they were with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan.
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permutations to any of these primitives except trapdoor permutations. This may have
the following meaning, with respect to black-box reductions. We know that one-way
permutations imply none of the primitives in “public cryptography,” where additional
properties are required on top of “one-wayness” [17], so permutations cannot be traded
for any of these additional properties. On the other hand, we now know that none of these
additional properties can be traded for permutations either. Thus, being a permutation
seems to be something orthogonal to those additional properties on top of one-wayness.
Like previous non-reducibility results [27], [17], [28], [29], [20], [11], [10], [12], [8],
[9], our proofs follow the oracle separation paradigm of Impagliazzo and Rudich [17].

Key words. Cryptographic primitives, Black-box reductions, One-way permutations,
Trapdoor functions, Private information retrieval.

1. Introduction

Modern cryptography has provided us with all kinds of protocols for various interesting
and important tasks involving security issues. However, almost all of these protocols
have their security based on some intractability assumptions which all imply P �= NP .
So unconditional proofs of security for these protocols may seem far beyond our reach.
One important line of research then is to understand the relationships among these
assumptions. However, there are many interesting cryptographic tasks, and even a single
task may have several variants. So potentially the whole picture could become very
messy and have little help in clarifying our understanding. Instead, we want to focus
on the most basic cryptographic tasks in their most primitive forms, which can serve as
building blocks for more advanced protocols. We also restrict ourselves to the classical
world of cryptography, and leave questions in quantum cryptography for future studies.

According to [11], such basic cryptographic primitives can be roughly divided into
two categories: private cryptography and public cryptography.1 Private cryptography is
represented by private-key encryption, and includes one-way permutation (OWP), one-
way function (OWF), pseudo-random generator (PRG), pseudo-random function (PRF),
bit commitment (BC), and digital signature (DS). Public cryptography is represented
by public-key encryption (PKE), and includes trapdoor permutation (TDP), trapdoor
function (TDF), oblivious transfer (OT), private information retrieval (PIR), and key
agreement (KA). “One-wayness” turns out to be essential as these primitives all are
known to imply one-way functions [16], [26], [3], [2], [11]. For private cryptography,
one-wayness basically is also sufficient as one-way functions can be used to construct all
the primitives therein, except one-way permutations. For public cryptography, additional
properties are required on top of one-wayness, and the relationships among primitives
appear to be rather complicated. We know that trapdoor permutations imply all of them,
but some implications among others are known to fail, in the sense to be discussed next.

It is not quite clear how to prove that one primitive Q does not imply the other primitive
P , or equivalently P cannot be reduced to Q, especially when both primitives exist under
some plausible assumptions. After all, if the primitive P exists, there is a protocol of P

1 This classification is just a convenient one for us and is by no means a precise or complete one. The situation
becomes complicated when one wants to talk about variations of primitives meeting additional requirements
(e.g., [29] and [8]).



The Impossibility of Basing OWPs on Central Cryptographic Primitives 99
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Fig. 1. Relationships between OWP and other cryptographic primitives.

based on Q that simply ignores Q. Facing the difficulty of showing non-existence of all
reductions, Impagliazzo and Rudich [17] turned to a restricted but important subclass of
reductions called black-box reductions, and gave a method to separate primitives with
respect to them. Informally speaking, a black-box reduction from P to Q is a construction
of P out of Q that ignores the internal structure of the implementation of Q. Furthermore,
the security of P’s implementation can also be guaranteed in a black-box way that one
can use any adversary breaking P as a subroutine to break Q. In fact, in cryptography
almost all constructions of one primitive from another known so far are done in this
way,2 so it makes sense to focus on reductions of this kind. Hereafter, all the reductions
or implications we refer to in this paper will be black-box ones. Following [17], to prove
that no black-box reduction exists from P to Q, it suffices to construct an oracle relative
to which Q exists whereas P does not. Using this approach, Impagliazzo and Rudich [17]
showed that no such black-box reduction exists from KA to OWP. As every primitive
in public cryptography implies KA [3], [6], [11], this provides a strong evidence that
primitives in public cryptography require strictly more than one-wayness. Since then,
more and more separations between cryptographic primitives [29], [11], [12], [8] as well
as results on efficiency lower bound [28], [20], [10], [9] have been established following
this oracle separation paradigm.

We know that trapdoor permutations imply all those basic cryptographic primitives, but
it is not the case for trapdoor functions as they do not imply OT [11] and thus PIR [6]. So
there seems to be something special for being a permutation which deserves further study.
We also know that one-way functions do not imply one-way permutations [27], [18], so
permutation does not seem to be a property that one can have for free. We know that one-
way permutations imply none of the primitives in public cryptography [17], so on top of
one-wayness, one cannot trade permutations for any of the additional properties required
in public cryptography. Then the question we want to ask is: Can any of those additional
properties required in public cryptography be traded for permutations? Formally, can any
of the primitives except TDP in public cryptography imply OWP? Figure 1 summarizes
the relationships known so far between primitives and OWP.3 We will show that neither
TDF nor PIR implies OWP, so the answer to that question is actually no!

We first construct an oracle, relative to which (injective) TDF exists whereas OWP
does not. As TDF implies PKE [30], [3] and PKE (two-pass KA) implies KA, we

2 As pointed out in [17], one important exception is that the existence of OWF implies the existence of
zero-knowledge proof systems for all languages inNP .

3 Some known non-reducible relationships (with respect to black-box reductions) are omitted in the figure;
e.g., PKE �→ OT, PKE �← OT, PKE �→ TDF [11], [12]. Such omissions do not affect the known relationship
between OWP and each primitive, which is the focus of our paper.
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establish the impossibility of having black-box reductions from OWP to either TDF,
PKE, or KA. Next, we construct an oracle, relative to which PIR exists whereas OWP
does not. Because PIR implies OT [6], we establish that no black-box reduction exists
from OWP to either PIR or OT. One immediate corollary is that PIR does not imply
TDP, in contrast to the known result that TDP does imply PIR [22].4 So according to our
results, none of the primitives in public cryptography implies OWP in a black-box way.
This is interesting in the sense that all the powerful primitives, except TDP, in public
cryptography, are still unable to yield OWP.5

Our results suggest that permutation is really a special property that is orthogonal
to other additional properties required in cryptography. Furthermore, as the reducibil-
ity from each primitive to OWP was already known before, now all the relationships,
with respect to black-box reductions, between one-way permutations and those basic
cryptographic primitives have been established. However, we want to stress that we are
still far from being able to settle the real relationships among primitives, and in fact, to
have separations beyond black-box reductions would require some major breakthrough
in complexity theory [17].

For each separation between primitives, we need to find a suitable oracle that is
powerful enough for making one primitive possible, but still not so for the other. We
basically follow the approach of Impagliazzo and Rudich [17] and Gertner et al. [11].
It is known that a random function is one-way with high probability, even relative to a
PSPACE-complete function [17]. Then OWF exists relative to an oracle containing a
random function and a PSPACE-complete function, but on the other hand, OWP does
not exist relative to such an oracle [27], [18]. We want to separate OWP from TDF and
PIR. Each time we look for a special function which realizes the additional property
required by that primitive but does not yield permutations. By adding such a function
to the oracle, we can build the corresponding primitive, TDF or PIR, but relative to the
oracle, OWP still does not exist. Our strategy of finding such special functions is based on
the observation that both TDF and PIR can be seen as two-party primitives while OWP
involves only one party. So we look for those functions that are useful in a two-party
setting but are useless in a one-party case.

The rest of the paper is organized as follows. In Section 2 we describe our notation
and provide definitions for the cryptographic primitives involved in this paper. Then, in
Sections 3 and 4, we prove that no black-box reductions exist from OWP to TDF and
PIR, respectively.

2. Notation and Definitions

Let [n] denote the set {0, 1, . . . , n− 1}. For x ∈ {0, 1}n , let x[i] denote the i th bit of x if
i ∈ [n], and an arbitrary value, say 0, otherwise. We write poly(n) to denote a polynomial
in n. We write ∗ for {0, 1}∗ and (∗, q, ∗) for those (u, q, v) with u, v ∈ {0, 1}∗. For a

4 TDP is only known to imply “weak” PIR, in the sense that the resulting PIR in [22] has high communication
complexity. More specifically, the server needs to send at least a constant fraction of the entire database to the
user. Under various number-theoretical assumptions, more efficient PIRs are known [21], [4].

5 We do not consider variants of primitives satisfying additional conditions, such as dense PKE, homomor-
phic PKE, non-interactive zero-knowledge proof of knowledge, etc.



The Impossibility of Basing OWPs on Central Cryptographic Primitives 101

distribution S, we write s ∈R S to denote sampling s according to the distribution S. For
any n ∈ N, let Un denote the uniform distribution over {0, 1}n .

Parties in cryptographic primitives are assumed to run in polynomial time, and are
modeled by probabilistic polynomial-time Turing machines (PPTM). Each cryptographic
primitive is associated with a security parameter k, for evaluating how secure that
primitive is. A negligible function is a function which vanishes faster than any inverse
polynomial.

Definition 1. A function δ: N→ R is called negligible if for any constant c ≥ 0 there
exists an integer kc such that δ(k) < k−c for every k ≥ kc.

In the following we give standard definitions of the cryptographic primitives studied
in this paper. More details can be found in standard textbooks (e.g., [13]) or the original
papers. The most fundamental primitive is one-way function, which is essential to all
cryptographic primitives.

Definition 2 (OWF). A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the follow-
ing two conditions hold:

1. There exists a (deterministic) polynomial-time algorithm which on any input x
outputs f (x).

2. For every probabilistic polynomial-time algorithm A there exists a negligible func-
tion δ such that for sufficiently large n,

Pr
x∈RUn

[A(1n, f (x)) ∈ f −1( f (x))] ≤ δ(n).

From one-way functions, we define primitives with additional properties. Call a func-
tion f : {0, 1}∗ → {0, 1}∗ a permutation if for any n ∈ N, f maps {0, 1}n to {0, 1}n in a
bijective way, or, equivalently, f acts as a permutation on {0, 1}n .

Definition 3 (OWP). A function f : {0, 1}∗ → {0, 1}∗ is called a one-way permutation
if in addition to being one-way, it is a permutation.

Instead of talking about a single function f : {0, 1}∗ → {0, 1}∗, sometimes it is
convenient to talk about a collection of functions, each defined over some finite domain.
We can define a collection of functions or permutations to be one-way in the following
way.

Definition 4. Let S be a set of indices and for i ∈ S let Di and Ri be finite sets.
A collection of functions F = { fi : Di → Ri }i∈S is called one-way if it satisfies the
following four conditions:

1. There is a PPTM I which on input 1k outputs an index i ∈ {0, 1}k ∩ S.
2. There is a PPTM J which on input i ∈ S outputs an x ∈ Di .
3. There is a PPTM which on input i ∈ S and x ∈ Di outputs fi (x).
4. For any PPTM A there exists a negligible function δ such that for sufficiently

large k,

Pr
i∈R I (1k ),x∈R J (i)

[A(1k, i, fi (x)) ∈ f −1
i ( fi (x))] ≤ δ(k).
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F is called a collection of one-way permutations if in addition to being one-way, every
fi in it is a permutation.

Next, we define collections of trapdoor functions, which are collections of one-way
functions with the additional property that when given some trapdoor information of a
function, it becomes easy to invert.

Definition 5 (TDF/TDP). Let S be a set of indices and for i ∈ S let Di and Ri be finite
sets. F = { fi : Di → Ri }i∈S is called a collection of trapdoor functions if it satisfies the
following five conditions:

1. There is a PPTM I which on input 1k outputs a pair (i, ti ), where i ∈ {0, 1}k ∩ S
is the index for the function fi and ti ∈ {0, 1}kc

, for some constant c, is called the
trapdoor for fi .

2. There is a PPTM J which on input i ∈ S outputs an x ∈ Di .
3. There is a PPTM which on input i ∈ S and x ∈ Di outputs fi (x).
4. There is a PPTM such that given input (i, fi (x), ti ), for i ∈ S, x ∈ Di and the

trapdoor ti for fi , it outputs some x ′ ∈ f −1( fi (x)).
5. For any PPTM A there exists a negligible function δ such that for sufficiently

large k,

Pr
i∈R I (1k ),x∈R J (i)

[
A(1k, i, fi (x)) ∈ f −1

i ( fi (x))
] ≤ δ(k).

F is called a collection of trapdoor permutations if in addition to being a collection of
trapdoor functions, every fi in it is a permutation.

In this paper when we talk about trapdoor functions (permutations), we always mean a
collection of them satisfying the conditions above. We drop the terms “a collection of”
for notational convenience.

Finally, we describe private information retrieval, which was introduced by Chor et al.
[5]. Here we consider the version in which there are two parties, one user and one server,
and the security is only guaranteed in a computational sense [21], [4], [2], [6], [22]. The
task is for the user to learn some bit of the server’s database secretly, conditioned on a
non-trivial upper bound on the server’s communication complexity.

Definition 6 (PIR). Private information retrieval is a protocol between two parties
Server and User, both running in polynomial time. Server has a database x ∈ {0, 1}n ,
User has an index i ∈ [n], and the security parameter k is given to them as 1k . They
then communicate with each other, and finally User decides on a value for x[i]. Let
C(x, i, 1k) denote the distribution of their communication. A PIR protocol must satisfy
the following two conditions:

• Correctness: For any x ∈ {0, 1}n and for any i ∈ [n], User always learns x[i] and
Server always sends less than n bits to User.

• User’s security: For any P PT M A there exists a negligible function δ such that for
any x ∈ {0, 1}n , for any i, j ∈ [n], and for sufficiently large k,∣∣∣∣ Pr

z∈RC(x,i,1k )
[A(1k, x, z) = 1]− Pr

z′∈RC(x, j,1k )
[A(1k, x, z′) = 1]

∣∣∣∣ ≤ δ(k).
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2.1. Black-Box Reductions

Next, we discuss the notion of black-box reductions. The formalization which we adopt
here is due to Gertner et al. [11].6

Definition 7. There exists a black-box reduction from primitive P to primitive Q, if
there exist two oracle PPTMs M and AQ satisfying the following two conditions:

1. Correctness: For any N that implements Q, M N implements P .
2. Security: For any N that implements Q and for any AP , if AP breaks M N (as an

implementation of P) then AAP ,N
Q breaks N (as an implementation of Q).

Note that the term “implement” above is only used to mean that the functional specifica-
tion of the primitive is met, and it says nothing about security. For example, to implement
OWP, it suffices to provide a polynomial-time algorithm that computes a permutation,
and whether or not it is hard to invert is irrelevant. So the first condition only says that if
N satisfies the functional requirement of Q, then M N satisfies the functional requirement
of P . The security issue is addressed by the second condition. It essentially says that if
M N is not secure (as an implementation of P), neither is N (as an implementation of
Q); or, equivalently, if N is secure, so is M N .

Most reductions we know today fall into this category. For example, when proving
“OWP implies PRG,” we are given an OWP f and asked to build an oracle PPTM M such
that M f computes a length-increasing function, say from n bits to n + 1 bits, for every
n. Then we proceed by building another oracle PPTM A such that for any distinguisher
D that can distinguish M f (Un) from Un+1 with a non-negligible probability, AD, f can
invert f with a non-negligible probability.

To show that there is no black-box reduction from P to Q, it suffices to construct an
oracle 	 relative to which Q exists whereas P does not. The reason is the following.
Assume that there is an oracle PPTM N such that N	 securely implements Q, but no
PPTM with oracle access to 	 can securely implement P . Now suppose, for the sake of
contradiction, that there is a black-box reduction from P to Q, with M and AQ being the
associated oracle PPTMs. M N	

is an implementation of P , but it cannot be secure and
must be broken by some oracle PPTM A with access to 	. However, according to the
definition of black-box reduction, this implies that N	 can be broken by AA	,N	

Q , which
is an oracle PPTM with access to 	. This contradicts the assumption that N	 is a secure
implementation of Q.

3. TDF Does Not Imply OWP

In this section we construct an oracle 	 relative to which there are (injective) trapdoor
functions but no one-way permutations. It is shown in [27] and [18] that no OWP exists
relative to an oracle with a PSPACE-complete problem and some random functions.

6 Recently, Reingold et al. [24] gave a more careful taxonomy of the ways in which black-box reductions
can be formalized. We refer interested readers to their paper. The black-box reduction we use here corresponds
to their fully-black-box reduction.
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We add a function G into such an oracle to do the inverting job when provided with the
trapdoor, and we want G to be useless in constructing OWP. Our oracle 	 consists of
the following:

• A PSPACE-complete problem.
• A length-tripling random function F(·, ·), with inputs of the form {0, 1}n ×{0, 1}3n

for every n. This will play the role as a collection of one-way functions. The first
argument is the input, while the second is the index of a function in the collection.

• A length-tripling random function H(·). We call it using the trapdoor information
as input and the output will be used as the index of a function in the collection of
one-way functions.

• A function G defined as follows:

∀(u, v) ∈ {0, 1}∗ × {0, 1}∗, G(u, v) =
{
w if ∃w: u = F(w, H(v)),
⊥ otherwise.

G will be used to invert F on u when given the trapdoor information v.

In	 the functions F and H are random while the function G is completely determined
by F and H . Call a query to G invalid if its answer is ⊥, and valid otherwise. Note that
we can assume without loss of generality that both F and H are injective, because one
can show that length-tripling random functions are injective on sufficiently long inputs
with measure one.7

G is designed in this way for the following purpose. The function F(·, H(t)) can be
inverted if one has t , because for any x ,

G(F(x, H(t)), t) = x .

Without knowing t , queries to G are likely to be invalid and thus useless. As we will
see, this makes the construction of trapdoor functions possible. On the other hand, the
function G is not helpful in a one-party primitive (OWP in particular), for the following
reason. To have a valid query G(y, t), y is likely to come from a query F(x, H(t))
for some x , but then one knows x = G(y, t) already, which makes such a query to G
unnecessary. Our approach basically follows those of [17] and [11].

3.1. TDF in 	

On input 1k , the trapdoor-function generator I outputs the pair (H(t), t), where t ∈R Uk is
the trapdoor and H(t) is the index for the function F(·, H(t)). For convenience, we write
FH(t)(·) to denote the function F(·, H(t)), and assume its domain is {0, 1}k . Given the
index H(t), the function FH(t) is easy to compute, just by querying the oracle F(·, H(t)).
Having the trapdoor t , FH(t) is easy to invert, with the help from the oracle G as

G(FH(t)(x), t) = G(F(x, H(t)), t)
= x .

It remains to show that FH(t) is hard to invert without knowing the trapdoor t .

7 The reason is the following. For any n ∈ N, there are at most 22n pairs of inputs of length n, each being
mapped to the same output with probability 1/23n . Since

∑
n 22n/23n converges, by the Borel–Cantelli lemma

(see the Appendix), measure one of length-tripling random functions are injective when inputs are long enough.
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Consider any oracle PPTM M as an inverter. We know from [27] that a random
function is one-way with high probability, even relative to aPSPACE-complete oracle.
So without the oracle G, FH(t) is a random function and is one-way with high probability
Now we will prove that even with the oracle G, FH(t) is still one-way with high probability
The idea is that unless M	 can guess the trapdoor t correctly, G is unlikely to provide
useful information for inverting FH(t). Formally, for a negligible function δ(k), we want
to upper-bound the probability

Pr
	

[
Pr
x,t

[
M	(FH(t)(x), H(t)) = x

]
> δ(k)

]
,

which by the Markov inequality is at most

Ex
	

[
Pr
x,t

[
M	(FH(t)(x), H(t)) = x

]]
/δ(k) = Pr

	,x,t

[
M	(FH(t)(x), H(t)) = x

]
/δ(k).

We need the following lemma.

Lemma 1. Pr	,x,t [M	(FH(t)(x), H(t)) = x] ≤ kc2−k , for some constant c.

Proof. Define the following probability event:

• B1: M	 on input (FH(t)(x), H(t)) queries H on t or G on (∗, t).

B1 corresponds to the bad event that M “knows” the trapdoor t . The following claim
shows that it is unlikely to happen.

Claim 1. Pr	,x,t [B1] ≤ poly(k)2−k .

Proof. Fix any x, t and consider any restriction 	0 of 	 that leaves only H(t) random.
Note that G(∗, t) is not fixed yet as it depends on the value of H(t). We claim that
although M has (FH(t)(x), H(t)) as the input, the probability of B1 happening remains
the same if the input is replaced by (Fh(x), h) for a random h independent of H(t). The
idea is that whether or not B1 happens is completely determined by the input value given
to M ; it is independent of the value of H(t) or G(∗, t), for the following reason. If M
never queries H on t or G on (∗, t), B1 does not happen. Otherwise, the first time M
makes such a queries, B1 happens and remains so afterwards, regardless of the value
returned by the query. Therefore, we have

Pr
	,x,t

[B1] = Ex
x,t,	0

[
Pr

H(t)

[
M	0(FH(t)(x), H(t)) queries H on t or G on (∗, t)

]]

= Ex
x,t,	

[
Pr
h

[
M	(Fh(x), h) queries H on t or G on (∗, t)

]]

= Ex
x,	,h

[
Pr
t

[
M	(Fh(x), h) queries H on t or G on (∗, t)

]]
≤ poly(k)2−k,
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where the second equality follows from the discussion above, and the last inequality is
because M makes at most poly(k) queries.

Next, we want to show that if the bad event B1 does not happen, M	 is unlikely to
invert the input correctly. We may assume without loss of generality that M	 always uses
its output to query FH(t) at the final step before it stops. This does not affect its inverting
probability, which is then bounded above by the probability of the following event:

• B2: M	 on input (FH(t)(x), H(t)) queries FH(t) on x .

It remains to prove the following claim.

Claim 2. Pr	,x,t [B2|¬B1] ≤ poly(k)2−k .

Proof. The proof is very similar to that of Claim 1, by observing the correspondence
between (x, FH(t)) and (t, H). Fix any x, t and any restriction 	1 of 	 that leaves only
FH(t)(x) random. Again G(∗, t) is not determined yet, but it has no effect as it is not
queried conditioned on ¬B1. Then whether or not M	 queries FH(t) on x is completely
determined by the input value, because all oracle answers that may matter have been
fixed. The rest is similar.

With these two claims, we have

Pr
	,x,t

[
M	(FH(t)(x), H(t)) = x

] ≤ Pr
	,x,t

[B1]+ Pr
	,x,t

[B2|¬B1]

≤ poly(k)2−k + poly(k)2−k

≤ kc2−k,

for some constant c. This completes the proof of Lemma 1.

Let δ(k) = kc+22−k . Then we have

Pr
	

[
Pr
x,t

[
M	(FH(t)(x), H(t)) = x

]
> δ(k)

]
≤ 1

k2
.

As
∑

k(1/k
2) converges, the Borel–Cantelli lemma (the Appendix) tells us that with

probability one over	, Prx,t [M	(FH(t)(x), H(t)) = x] is at most δ(k) and thus negligible
for sufficiently large k. There are only countably many machine M’s, each of which can
only succeed as an inverter over a measure zero of 	, so we have the following.8

Lemma 2. Relative to measure one of random 	, injective trapdoor functions exist.

8 Like previous work on this subject, we only consider uniform adversaries. The analysis does not appear
to work against non-uniform adversaries, as there are uncountably many of them.
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3.2. No OWP in 	

In this section we prove that no OWP exists relative to 	. It was shown in [27] and [18]
that no OWP exists relative to an oracle with a PSPACE-complete problem and some
random functions. We proceed by showing that the function G does not help us build
OWP either. The idea is that it is unlikely to have a valid long input (F(x, H(t)), t) to
G without querying F at (x, H(t)) first. However, with x , which is the answer to the
query G(F(x, H(t)), t), one can eliminate this application of G.

We can think of the random oracle 	 as a family of oracles, with each oracle in the
family being a possible instance of 	.

Assume to the contrary that OWP exists relative to some positive measure of oracles
in 	. According to [27], this implies that for any constant δ > 0, there exists a machine
M that computes OWP on measure 1 − δ of oracles in 	. For some δ to be determined
later, let 	′ denote this subset of oracles with measure 1 − δ relative to which some M
computes an OWP. We will show that for this M , there is another machine N which never
queries G but still produces the same outputs for most inputs in most oracles. Then we
will show that a good inverter exists for N , which can also invert M well, so M cannot
be one-way.

Consider inputs from {0, 1}n . Suppose M’s running time is bounded above by nc1 ,
for some constant c1 independent of n. Choose c = max(c1, 3). Let N be the machine
that simulates M step by step, keeping track of the queries to F , but answers any query
to G, say on (u, v), in the following way. Look for w with u = F(w, H(v)), by going
through previous queries to F or searching through the space {0, 1}|u|/3 if |u| ≤ 3c log n.
If such w is found, N uses it as the answer for G(u, v). Otherwise N assumes (u, v) is
an invalid query to G and uses ⊥ as the answer. This takes at most polynomial time.

We next argue that for any fixed input x ∈ {0, 1}n , N (x) agrees with M(x) relative to
most of the oracles in 	.

Claim 3. For every x ∈ {0, 1}n , Pr	[N (x) �= M(x)] ≤ 1/n2.

Proof. Call a query (u, v) of M to G lucky if it is a valid query and u is longer
than 3c log n but not obtained by a previous query to F . Note that for any x ∈ {0, 1}n ,
N (x) �= M(x) only if M ever makes a lucky query. M makes at most nc queries to G. We
next show that the i th query is the first lucky query with probability at most nc/(n3c− i).
Note that before the i th query, say on (u, v), we know less than i values in {0, 1}|u| that
are not in the image of F . As F is length-tripling, u is in the image of F with probability
at most 2|u|/3/(2|u| − i) ≤ 2c log n/(23c log n − i) = nc/(n3c − i). By the union bound, the
probability we want to bound is at most nc ·nc/(n3c−nc) = 1/(nc−n−c) ≤ 1/n2, since
c ≥ 3.

Recall that 	′ is a subset of 	 with measure 1−δ. From the claim, for any x ∈ {0, 1}n ,
N (x) �= M(x) for at most 1/((1−δ)n2) ≤ 2/n2 fraction of oracles in 	′, if δ ≤ 1

2 . It can
be used to show that relative to most oracles M and N agree on most inputs. However,
this is not enough because N may not be a permutation relative to most oracles, so we
cannot apply the result of [27] directly to invert N . Some modification is needed. First,
we need the following.
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Lemma 3. There are at most 2/n fraction of n-bit strings y such that N−1(y) �=
M−1(y) relative to at least 2/n fraction of oracles in 	′.

Proof. Consider the Boolean matrix A with rows indexed by y ∈ {0, 1}n and columns
indexed γ ∈ 	′, such that Ay,γ = 1 if and only if N−1(y) �= M−1(y) relative to γ . For
each x ∈ {0, 1}n , N (x) �= M(x) relative to at most 2/n2 fraction of oracles in γ ∈ 	′.
Any such pair of x and γ with N (x) �= M(x) contributes at most two 1’s to the matrix
A (in particular, to the entries AN (x),γ and AM(x),γ ). So the total fraction of 1’s in A is
at most 4/n2. By the pigeonhole principle, there are at most 2/n fraction of rows in A
which have at least 2/n fraction of columns of 1’s.

For any y, M−1(y) is unique relative to any oracle in 	′ since it is a permutation.
So by Lemma 3, there are at least 1 − 2/n fraction of n-bit strings y such that N−1(y)
is unique relative to at least 1 − 2/n fraction of oracles in 	′, and hence for at least
1 − 2/n − δ > 1 − ε fraction of oracles in 	, for any constant ε > δ and sufficiently
large n. Observe that based on [18], the proofs of Theorem 9.2 and 9.3 in [27] actually
yield the following stronger statement.

Lemma 4. Relative to an oracle � that contains only a PSPACE-complete problem
and random functions, there is a constant λ such that for every oracle polynomial-
time machine N , there exists an oracle polynomial-time machine N ′ with the following
property. For any ε < λ and for any y, if N−1(y) is unique for 1− ε fraction of �, then
N ′(y) = N−1(y) for 1−√

ε fraction of �.

Then the rest follows closely the proof of Theorem 9.4 in [27]. Let λ be the constant
specified in Lemma 4, and choose δ, ε such that δ < ε < λ and ε+ 4

√
ε < 1. Note that N

never queries the function G in 	. It only queries the PSPACE-complete problem and
the random functions, so Lemma 4 can be applied. As a result, for any n and for at least
1− 2/n fraction of n-bit string y, an oracle PPTM can find N−1(y), which is M−1(y),9

relative to at least 1 − √
ε fraction of oracles in 	. We need the following, which is a

variant of the pigeonhole principle.

Claim 4. Suppose B is a Boolean matrix in which there are at least 1 − 2/n fraction
of the rows that have at least 1 − √

ε fraction of 1’s. Then there are at least 1 − 4
√
ε

fraction of the columns that have at least 1− 2/n − 4
√
ε fraction of 1’s.

Proof. It is not hard to see that there are totally at most 2/n+√ε fraction of 0’s in B.
Then the number of columns that have more than 2/n + 4

√
ε fraction of 0’s is at most

2/n +√
ε

2/n + 4
√
ε
≤
√
ε

4
√
ε
= 4
√
ε.

Thus, at least 1 − 4
√
ε fraction of columns have at least 1 − 2/n − 4

√
ε fraction

of 1’s.

9 Recall that for these y and 	 such that we can find N−1(y), we have N−1(y) = M−1(y).
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From the claim, there are at least 1 − 4
√
ε fraction of oracles in 	 relative to which we

can compute M−1(y) for at least 1− 2/n − 4
√
ε fraction of n-bit strings y for infinitely

many n. As 4
√
ε < 1 − ε < 1 − δ, M is one-way relative to less than 1 − δ fraction

of oracles in 	, a contradiction. So our assumption in the beginning that OWP exists
relative to some positive measure of oracles in 	 must be false. Thus, with probability
one over 	, no one-way permutation exists relative to 	. Together with Lemma 2, we
have the following theorem.

Theorem 5. There is no black-box reduction from OWP to (injective) TDF.

4. PIR Does Not Imply OWP

In this section we construct an oracle � relative to which PIR exists but OWP does
not. Similarly to Section 3 we add a special function G to an oracle with a PSPACE-
complete problem and some random functions. Formally, the oracle � consists of the
following:

• A PSPACE-complete oracle.
• A length-tripling random function F(·, ·).
• A random function T : {0, 1}∗ → {0, 1}.
• A family of random functions H = {Hk : {0, 1}∗ → {0, 1}k |k ∈ N}.
• A family of functions G = {Gk |k ∈ N} defined as follows:

∀(u, v) ∈ {0, 1}∗ × {0, 1}∗,

Gk(u, v) =
{

u[s]⊕ T (Hk(u), t) if ∃s, t : v = F(s, t),
⊥ otherwise.

The idea behind this design is the following. In PIR, User shall use F to encrypt her
index i as F(i,m) for a randomly chosen M , and Server shall call G with F(i,m) and
his database x to get an encryption of x[i], which can only be decrypted by User with
the knowledge of m. The formal description of the protocol will be given shortly. As
in the previous section, we will show that the function G is not useful for a one-party
primitive, and thus not useful for building OWP.

Although the oracle � is designed to enable PIR, we stress that the definition of �
does not depend on any instance of PIR. In� the functions F, T, H are random, and the
function G is completely determined by F, T, H . When we want to carry out a particular
PIR instance, the oracle functions will then be queried at some particular places. For
example, with database x and index i , G will be queried at (x, F(i,m)) for a random m.

Note that G is a family of functions, but later when we refer to it, we usually mean
some Gk ∈ G, and similarly for H . G is well defined if F is injective, which is not an
issue as with probability one, it is so for sufficiently long inputs, and we can make G
output 0 on those short inputs. Call a query (u, v) to G valid if G(u, v) �= ⊥.

4.1. PIR in �

The following is a 2-pass PIR using the oracle�, where Server has x ∈ {0, 1}n and User
has i ∈ [n]. Let k be the security parameter. For this parameter, we let H denote Hk and
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let G denote Gk :

Server User
α←− α = F(i,m), for m ∈R Uk

β1 = G(x, α), β2 = H(x)
β1, β2−→ x[i] = β1 ⊕ T (β2,m)

The idea is the following. User needs to send her index i to Server in some way in
order to obtain the bit x[i]. As User does not want Server to learn her index i , she would
like to have it encrypted. So User chooses a random private key m and uses the random
function F to encrypt i as F(i,m). Server receives F(i,m) but has no idea about i . How
can Server send information about x[i] to User without explicitly knowing the index i?
The function G does the magical work, which takes any x together with F(i,m) and
returns the bit

G(x, F(i,m)) = x[i]⊕ T (H(x),m),

an encryption of x[i]. We want x[i] encrypted, since otherwise Server may recover i by
calling G using several different x’s (User’s security will be formally proved later). On
the other hand, User has the key m, so after receiving G(x, F(i,m)) and H(x), she can
query T (H(x),m) and derive

x[i] = G(x, F(i,m))⊕ T (H(x),m).

The total number of bits sent by Server to User is

|β1| + |β2| = 1+ k,

which is okay when n > 1+ k.
It remains to prove User’s security. Note that Server cannot affect what User would

send, so whether Server is malicious or not makes no difference on User’s security.
If Server never queries the function G, the proof is standard as the rest of the oracle
consists of merely random functions and a PSPACE-complete function. The idea is
that unless Server can guess User’s private key m correctly, queries to G are unlikely to
provide useful information. To see this, assume Server does not know m. The function
H serves as a random hash and it is unlikely for Server to find distinct x ′, x ′′ such that
H(x ′) = H(x ′′) due to the large image of H(·), for sufficiently large k. Then for a query
G(x ′, F(i,m)), the answer x ′[i]⊕T (H(x ′),m) is likely to look random as T (H(x ′),m)
is likely so, and such a query is unlikely to be useful. That is, unless G is queried at
(x ′, α) and (x ′′, α) for distinct x ′, x ′′ such that H(x ′) = H(x ′′), G looks like a random
function too.

Formally, we show that Server cannot distinguish the messages from User having
indices i and j respectively. Consider any distinguisher M . Assume for the moment
that M is a deterministic circuit family. Let δ = 2−k/4. For any i, j ∈ [n], define
�i, j

m = M�(F(i,m))− M�(F( j,m)), which is a random variable of �. Then

Ex
m

[�i, j
m ] = Pr

m
[M�(F(i,m)) = 1]− Pr

m
[M�(F( j,m)) = 1].
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We want to bound the probability

Pr
�

[
∃i, j :

∣∣∣Ex
m

[�i, j
m ]

∣∣∣ > δ
]
,

which by the union bound is at most

∑
i, j

Pr
�

[∣∣∣Ex
m

[�i, j
m ]

∣∣∣ > δ
]
=

∑
i, j

Pr
�

[(
Ex
m

[�i, j
m ]

)2
> δ2

]

≤
∑
i, j

Ex
�

[(
Ex
m

[�i, j
m ]

)2
]
/δ2,

where the last line is due to the Markov inequality. Then we need the following lemma.

Lemma 6. ∀i, j , Ex�[(Exm[�i, j
m ])2] ≤ poly(n)2−k .

Proof. Fix any i, j ∈ [n]. Write �m for �i, j
m and note that Ex�[(Exm[�m])2] =

Ex�,m,m ′ [�m�m ′ ]. Define the following probability events, with �,m,m ′ chosen ran-
domly:

• B1: On input F(i,m) or F( j,m), M� queries F(∗,m) or T (∗,m), or queries
G(x ′, ∗) and G(x ′′, ∗) with x ′ �= x ′′ and H(x ′) = H(x ′′).

• B2: On input F(i,m ′) or F( j,m ′), M� queries F(∗,m), T (∗,m), or G(∗, F(∗,m)).

These are the bad events, which happen with probability at most poly(n)2−k . Next we
show that the expectation of �m�m ′ is small if neither bad event happens.

Consider any restriction �0 of � with F(∗,m) and T (∗,m) still random but the rest
fixed. M’s computation is determined by the input and the answers to its oracle queries.

Assume the condition ¬B1. We will show that the computation of M�0(F(i,m)) and
the computation of M�0(F( j,m)) have the same distribution. We do this by establishing
a one-to-one correspondence between all the possible computations of M�0(F(i,m))
and all the possible computations of M�0(F( j,m)). Initially, their inputs F(i,m) and
F( j,m) have the same distribution. Consider the branch of M�0(F(i,m)) and the branch
of M�0(F( j,m)) that start with the same input value (i.e., F(i,m) = F( j,m)) and then
get the same oracle answers, up to some query. Their first difference can only happen
when M queries G(x ′, F(i,m)) and G(x ′, F( j,m)), respectively, for some x ′. The oracle
answers x ′[i] ⊕ T (H(x ′),m) and x ′[ j] ⊕ T (H(x ′),m) have the same distribution as
T (H(x ′),m) remains free up to this point, because under the condition of ¬B1, no
G(x ′′, ∗) with x ′ �= x ′′ and H(x ′) = H(x ′′), nor T (∗,m) is queried. Again, we can
choose the branch of M�0(F(i,m)) and the branch of M�0(F( j,m)) that have the same
value for G(x ′, F(i,m)) and G(x ′, F( j,m)), and then repeat the same process. We
can show by induction that for each possible computation of M�0(F(i,m)), there is
a corresponding computation of M�0(F( j,m)), and vice versa. This implies that the
computations of M�0(F(i,m)) and M�0(F( j,m)) have the same distribution. Thus,
given ¬B1, Ex�0 [M�0(F(i,m))] = Ex�0 [M�0(F( j,m))] and Ex�0 [�m] = 0.

Next, consider any m ′ �= m. Given ¬B2, �m ′ is fixed under �0 as it does not de-
pend on F(∗,m) or T (∗,m). Let B = B1 ∪ B2. Then given ¬B, Ex�0 [�m�m ′ ] =
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Ex�0 [�m]�m ′ = 0 for any restriction �0. Thus, we have Ex�,m,m ′ [�m�m ′ |¬B] ≤
Prm,m ′ [m = m ′] = 2−k and

Ex
�,m,m ′ [�m�m ′ ] ≤ Pr

�,m,m ′
[B]+ Ex

�,m,m ′
[�m�m ′ |¬B]

≤ poly(n)2−k .

From the lemma, we have Pr�[∃i, j |Exm[�i, j
m ]| > δ] ≤ poly(n)2−k/2. As∑

n poly(n)2−k/2 converges for, say, k = �(log2 n), the Borel–Cantelli lemma tells
us that with probability one over �, |Exm[�i, j

m ]| ≤ δ for any i, j ∈ [n] for sufficiently
large n and sufficiently large k. Note that the analysis so far works for any deterministic
polynomial-sized circuit family, so it works for any (uniform) probabilistic polynomial-
time machine, too. There are only countably many (uniform) machines as distinguishers,
each of which succeeds with measure zero over �. Then with probability one over �,
Server cannot learn User’s index for sufficiently large n. So we have the following.

Lemma 7. Our protocol is a PIR relative to measure one of �.

4.2. No OWP in �

The proof that no OWP exists in� is almost identical to the one in Section 3.2. Assume
to the contrary that there is a PPTM M , with time bound nc, that computes an OWP. We
construct a PPTM N by simulating M and replacing any query to G at (u, v) by⊥ if v is
longer than 3c log n and not obtained from a previous query to F . If v is obtained from a
previous query F(s, t) or short enough to find the corresponding (s, t) by an exhaustive
search, N replaces G(u, v) by u[s] ⊕ T (H(u), t). Then, as in Section 3.2, N and M
have the same output on most inputs, but N can be inverted on most inputs. It follows
that M is not one-way, a contradiction. So we have the following.

Theorem 8. There is no black-box reduction from OWP to PIR.

Together with Theorem 5 and previous results, we have the following.

Corollary 9. There is no black-box reduction from OWP to any of the basic primitives,
including TDF, PKE, PIR, OT, KA, OWF, PRG, PRF, BC, and DS.
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Appendix. The Borel-Cantelli Lemma

We need the following lemma, known as the Borel–Cantelli lemma, which can be found in
many textbooks on measure theory, such as [1]. It says that if the sum of the probabilities
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of a sequence of events converges, then the probability that infinitely many of these
events happen is zero. We give a proof here for completeness.

Lemma 10. Let B1, B2, . . . be a sequence of probability events on the same probability
space. Then

∑∞
n=1 Pr[Bn] <∞ implies Pr[

∧∞
k=1

∨
n≥k Bn] = 0.

Proof. Let B = ∧∞
k=1

∨
n≥k Bn and let Ak =

∨
n≥k Bn . Note that B = ∧∞

k=1 Ak ; so
Pr[B] ≤ Pr[Ak] for all k. Suppose

∑∞
n=1 Pr[Bn] <∞. Then for every ε > 0 there exists

a k0 ∈ N such that
∑

n≥k0
Pr[Bn] < ε, so we have

Pr[B] ≤ Pr[Ak0 ] = Pr

[∨
n≥k0

Bn

]
≤

∑
n≥k0

Pr[Bn] < ε.

Since ε can be arbitrarily small, we must have Pr[B] = 0.
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