
DOI: 10.1007/s00145-005-0432-z

J. Cryptology (2007) 20: 3–37

© 2006 International Association for
Cryptologic Research

Another Look at “Provable Security”

Neal Koblitz
Department of Mathematics, Box 354350,

University of Washington,
Seattle, WA 98195, U.S.A.

koblitz@math.washington.edu

Alfred J. Menezes
Department of Combinatorics & Optimization,

University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

ajmeneze@uwaterloo.ca

Communicated by Johannes Buchmann

Received 16 August 2004 and revised 8 May 2005
Online publication 7 January 2006

Abstract. We give an informal analysis and critique of several typical “provable secu-
rity” results. In some cases there are intuitive but convincing arguments for rejecting the
conclusions suggested by the formal terminology and “proofs,” whereas in other cases
the formalism seems to be consistent with common sense. We discuss the reasons why
the search for mathematically convincing theoretical evidence to support the security
of public-key systems has been an important theme of researchers. However, we argue
that the theorem-proof paradigm of theoretical mathematics is often of limited relevance
here and frequently leads to papers that are confusing and misleading. Because our pa-
per is aimed at the general mathematical public, it is self-contained and as jargon-free
as possible.

Keywords. Cryptography, Public key, Provable security.

1. Introduction

Suppose that someone is using public-key cryptography to protect credit card numbers
during online purchases, maintain confidentiality of medical records, or safeguard na-
tional security information. How can she be sure that the system is secure? What type of
evidence could convince her that a malicious adversary could not somehow break into
the system and learn her secret?

At first glance it seems that this question has a straightforward answer. At the heart of
any public-key cryptosystem is a “one-way function”—a function y = f (x) that is easy
to evaluate but for which it is computationally infeasible to find the inverse x = f −1(y).
For example, the system might be based on the function y = xe (mod n), where n

3



4 N. Koblitz and A. J. Menezes

is an integer whose prime factors are secret and e is a constant exponent (this is the
so-called “RSA function”); or it might be based on the function y = gx , where g is a
fixed generator of a group of prime order in which the so-called “discrete logarithm” (the
inverse of this function) is believed to be hard to find. Then in order to have confidence
in the security of the system we have to be convinced that no one knows any algorithm
that could invert the one-way function in a reasonable amount of time.

Indeed, a large proportion of all of the mathematical research in public-key cryptog-
raphy is concerned with algorithms for inverting the most important one-way functions.
Hundreds of papers in mathematics as well as cryptography journals have been devoted
to index calculus methods for factoring integers and for finding the discrete logarithm
in the multiplicative group of a finite field, to improved Pollard-ρ algorithms and Weil
descent methods for finding discrete logarithms on elliptic curves, and to searches for
“weak parameters,” i.e., RSA moduli n that are a little easier to factor than most, finite
fields over which the elliptic curve discrete logarithm problem is slightly easier to solve,
and so on.

Many mathematicians working in cryptography regard the question of security of a
type of public-key system as equivalent to non-invertibility of the underlying one-way
function. This is in fact the impression conveyed in some of the mathematically oriented
introductions to cryptography. The first books on cryptography that the two of us wrote
in our naive youth1 [39], [45] suffer from this defect: the sections on security deal only
with the problem of inverting the one-way function.

The problem with this limited view of security is that it fails to anticipate most of
the attacks on a cryptographic system that are likely to occur. The underlying one-way
function is a basic ingredient in the system (in crypto jargon one calls it a “primitive”
or sometimes an “atomic primitive”), but it has to be incorporated into a particular set
of instructions (called a “protocol”) in order to accomplish a cryptographic objective.
Throughout the history of public-key cryptography almost all of the effective attacks
on the most popular systems have succeeded not by inverting the one-way function, but
rather by finding a weakness in the protocol.

For example, suppose that Alice is receiving messages that have been encrypted using
RSA. The plaintext messages have to adhere to a certain format, and if a decrypted
message is not in that form Alice’s computer transmits an error message to the sender.
This seems innocuous enough. However, Bleichenbacher [10] showed that the error
messages sometimes might compromise security.

Bleichenbacher’s idea can be illustrated if we consider a simplified version of the
protocol that he attacked in [10]. Suppose that we are using RSA with a 1024-bit modulus
n to send a 128-bit secret key m (for use in symmetric encryption). We decide to pad m
by putting a random number r in front of it, but since this does not take up the full 1024
bits, we just fill in zero-bits to the left of r and m. When Alice receives our ciphertext,
she decrypts it, checks that it has the right form with zero-bits at the left end—if not,
she informs us that there was an error and asks us to resend—and then deletes the zero-
bits and r to obtain m. In that case Bleichenbacher can break the system—in the sense
of finding the plaintext message—by sending a series of carefully chosen ciphertexts

1 In the case of the first author, “youth” refers not to chronological age at the time, but rather to the short
period that he had been working in cryptography.



Another Look at “Provable Security” 5

(certain “perturbations” of the ciphertext he wants to decipher) and keeping a record of
which ones are rejected because their eth root modulo n is not of the proper form, that
is, does not have the prescribed number of zero-bits.

In order to protect Alice and her friends from clever adversaries who are out to steal
their secrets, we clearly need much more elaborate criteria for security than just non-
invertibility of the underlying one-way function.

1.1. The First System with Reductionist Security—Rabin Encryption

Soon after the earliest papers [24], [53] on public-key cryptography appeared, many
people started to realize that breaking a system was not necessarily equivalent to solving
the underlying mathematical problem. For example, the RSA function y = xe (mod n)
was constructed to be easily invertible by someone who knows the prime factors p and
q of n = pq , but not by someone who does not. Number theorists thought that it was
highly unlikely that someone would find a quicker way than factoring n to find eth roots
modulo n. However, no one could really say for sure, and much more recently, work
by Boneh and Venkatesan [16] suggests that inverting the RSA function might not be
equivalent to factoring.

In 1979 Rabin [51] produced an encryption function that could be proved to be in-
vertible only by someone who could factor n. His system is similar to RSA, except that
the exponent is 2 rather than an integer e prime to ϕ(n), where ϕ denotes the Euler
phi-function. For n a product of two primes the squaring map is 4-to-1 rather than 1-to-1
on the residues modulo n, so Rabin finds all four square roots of a ciphertext y (and in
practice chooses the plaintext that makes sense to the message recipient).2

The most important feature of Rabin’s encryption scheme was that it was in some
sense “provably” secure, that is, it had a reductionist security property.

Reductionist security claim. Someone who can find messages m from the ciphertext
y must also be able to factor n.

Argument. Informally, the reason is that finding m means being able to find all four
square roots of y, because any one of them could be the true plaintext m. Those
square roots are ±m and ±εm, where ε is a residue mod n that is ≡ 1 (mod p) and
≡ −1 (mod q). That means that someone who can find messages must know the value
of ε, in which case n can be factored quickly using the Euclidean algorithm, since
gcd(n, ε − 1) = p.

We also give a slightly more formal argument, called a “reduction,” which will be
the prototype for all the reductionist security arguments that come later. The idea of
a reduction argument is that you can show that hardness of one problem P1 implies
hardness of another problem P2—or, equivalently, that “easiness” of P2 would imply
easiness of P1—by showing that anyone who had an algorithm to solve P2 could use it
to solve P1 with relatively little additional effort; in that case one says that P1 reduces to
P2. The most familiar use of reductions is in the theory of NP-completeness [28], where
P1 is a well-known NP-complete problem such as 3SAT and P2 is another NP problem
that you want to prove is NP-complete. In cryptography, P1 is a mathematical problem

2 Williams [63] developed a variant of Rabin encryption in which a plaintext is modified in a simple manner
so that the plaintext can be uniquely recovered from its square, that is, from the ciphertext.



6 N. Koblitz and A. J. Menezes

such as factoring that is assumed to be difficult, and P2 is a certain specified type of
successful attack on our cryptographic system.

Returning to Rabin encryption, we suppose that there exists an “adversary” that takes
n and y as input and produces one of the square roots of y modulo n. We think of the
adversary as a computer program, and we show how someone (whom we call Sam)
who has that program could use it to factor n quickly. That is, the adversary is a set
of instructions, available for anyone to use, that produce a successful attack on the
encryption scheme. If we thought of it as a person, we might wonder whether it could
change its behavior or refuse to cooperate with Sam the Simulator. If we think of it as a
computer program, we will not be tempted to ask such silly questions.

What Sam does is the following. He chooses a random residue x , sets y = x2 (mod
n), and inputs that value of y to the adversary. The adversary outputs a square root m of
y mod n. With probability 1/2 the root m is ±εx , and in that case Sam can immediately
compute ε = ±x/m and then factor n. If, on the other hand, m = ±x , then the value
of m will not help him factor n, and he tries again starting with a new value of x . There
is only a 1/2k chance that he will fail to factor n in k or fewer tries. We say that this
argument “reduces” factoring n to breaking Rabin encryption mod n (where “breaking”
means recovering plaintext messages). Rabin’s scheme was the first public-key system
to be proposed that was accompanied with a reductionist security argument. Users of
Rabin encryption could be certain that no one could recover plaintexts unless they knew
the factorization of n.

1.2. Chosen-Ciphertext Attacks

Soon after Rabin proposed his encryption scheme, Rivest (see [63]) pointed out that,
ironically, the very feature that gave it an extra measure of security would also lead to
total collapse if it were confronted with a different type of adversary, called a “chosen-
ciphertext” attacker. Namely, suppose that the adversary could somehow fool Alice into
decrypting a ciphertext of its own choosing. The adversary could then follow the same
procedure that Sam used in the previous paragraph to factor n. An adversary who could
trick Alice into deciphering k chosen ciphertexts would have a 1 − 2−k probability of
factoring n.

The original RSA enciphering scheme (which is often called “naive RSA” or “basic
RSA” or “the RSA primitive”) is also vulnerable to chosen-ciphertext attack. Namely,
suppose that the adversary wants to find a message m from the ciphertext y = me (mod
n). If it is allowed to ask Alice for a single decryption, then it can take random m̃, compute
y′ = ym̃e (mod n), send Alice y′ to decrypt, and divide the resulting m ′ by m̃ to recover
m. This is a serious weakness, but it is not as bad as the one that Rabin encryption suffers
from, since the adversary succeeds in obtaining just one message. In the attack on Rabin
it gets the factorization of n, and hence can read all subsequent secret communications
to Alice.

At this point the reader might wonder why anyone should worry about a chosen-
ciphertext attack. Cannot we assume that Alice knows enough not to give out decryptions
to strangers?

In the first place, one can imagine scenarios where Alice might think that such a
decryption request is reasonable—for example, if the system crashed and the attacker



Another Look at “Provable Security” 7

appears to be a legitimate user who is trying to recover lost data, or if the attacker is
someone who had legitimate business with Alice in the past, but now wants to steal some
data sent to her by someone else, etc.

In the second place, if a system is secure against chosen-ciphertext attacks, then it is
also secure against partial chosen-ciphertext attacks, that is, when the adversary obtains
only part of the information that it would get in a full chosen-ciphertext attack. Such
partial chosen-ciphertext attacks are very real possibilities. The best-known example is
Bleichenbacher’s attack [10] that we described earlier. He showed how to compromise
the security of an RSA protocol that had been approved by standards bodies and is still
used today in real-world applications. If an RSA protocol had been used that had been
shown to be secure against chosen-ciphertext attacks, then Bleichenbacher’s method
would not have succeeded against it.

1.3. Some Basic Concepts

Starting in the 1980s it became clear that there is a lot more to security of a public-
key cryptographic system than just having a one-way function, and researchers with
a background in theoretical computer science set out to systematically develop pre-
cise definitions and appropriate “models” of security for various types of cryptographic
protocols.

One of the seminal ideas of that period was probabilistic encryption [31], [32]. In
public-key cryptography, where everyone has the information needed to encipher, de-
terministic encryption—in which a given plaintext is enciphered into one and only one
possible ciphertext—has the drawback that the system is useless if the message is known
to belong to a small set. To avoid this defect, one should use an encryption function
fr (m) that depends on a random integer r as well as the message m. For example, one
could append r to m before applying the RSA function; this is called an RSA “padding.”

Another reason for the development of probabilistic encryption was to avoid the
problem pointed out by Rivest (see the beginning of Section 1.2). That is, people wanted
to be able to prove reductionist security results that do not come back to bite us in the
way that the equivalence between factoring and Rabin decryption had done. The key
point here is that the introduction of randomness into encryption greatly reduces the
power of a chosen-ciphertext attacker. Such an adversary no longer gets Alice to give
him the complete solution to the problem of inverting the basic encryption function. For
example, in Rabin encryption, if Alice pads a message m with random r before squaring
mod n, then the chosen-ciphertext attacker learns only m and not the full square root
modulo n, which is the concatenation of m and r .

In the context of probabilistic encryption with a passive adversary (one that does
not request decryptions of chosen ciphertexts), Goldwasser and Micali [31], [32] were
able to define two strong notions of security. The first was that of semantic security.
This notion can also be carried over to the chosen-ciphertext setting, where, informally
speaking, it means that the attacker is unable to obtain any information at all (except for
its bitlength) about the plaintext m∗ that was encrypted to produce a ciphertext y∗, even
if it is allowed to request the decryption of any ciphertexts of its choosing except for
y∗. Another security notion in [31], [32] is called indistinguishability. This notion can
be extended to cover chosen-ciphertext attacks using ideas from [48] and [52]. In that



8 N. Koblitz and A. J. Menezes

setting, indistinguishability means that the attacker chooses two messages m0 and m1,
one of which is then encrypted: y∗ = fr (mb), b ∈ {0, 1}. Even though the attacker is
allowed to request the decryption of any ciphertexts it wants (except for y∗) both before
and after it chooses m0,m1, it cannot guess which of the two messages was encrypted
with significantly more than 1/2 chance of success. These two strong notions of security
are closely related; in fact, in [31], [32], and [46] they were proved to be equivalent
against a passive adversary. However, for a long time it was not clear whether or not they
are equivalent under active attacks.

It is quite surprising that the equivalence of semantic security and indistinguishability
in the case of chosen-ciphertext attacks was not considered in the research literature until
2002. After all, semantic security is really the natural notion of what one should strive
for in public-key encryption, while indistinguishability is seemingly an artificial notion.
However, in practice it has been much easier to prove a public-key encryption scheme
to be secure using indistinguishability than using the more natural definition, and so
all proofs in the literature use it. The equivalence of indistinguishability and semantic
security under chosen-ciphertext attacks has purportedly been proved in [61] and [30].
If these proofs are correct, then the matter has finally been settled.

The second important theoretical advance in the mid-1980s was the first work [33],
[34] to give a definition of what it means for digital signatures to be secure. That definition
has stood the test of time and is still widely used today. Goldwasser et al. replace “chosen-
ciphertext” (used for encryption schemes) by “chosen-message” and replace semantic
security/indistinguishability by the idea of an existential forger. That is, a signature
scheme is said to be secure against chosen-message attack by an existential forger if
an adversary that has been allowed to request valid signatures for messages mi of its
choosing is unable to produce a valid signature for any message that is different from
all of the mi . A typical reductionist security result for a signature scheme says that it is
secure in this sense provided that certain assumptions (about hardness of an underlying
mathematical problem, randomness of some numbers, and properties of hash functions)
hold.

The idea that emerged in the 1980s of systematically using reduction arguments to
convince oneself of the security of encryption and signature schemes is elegant and
powerful. However, it is important always to keep in mind the limitations of the method.
Obviously, it cannot guarantee resistance against attacks that are not included in the
security definition. In particular, the usual security definitions do not account for attacks
that are based on certain features of the physical implementation of a cryptographic
protocol. Such side-channel attacks utilize information leaked by the computing de-
vices during the execution of private-key operations such as decryption and signature
generation. The kind of information that can be exploited includes execution time [40],
power consumption [41], electromagnetic radiation [1], induced errors [13], and error
messages [42].

Finally, we should mention two fundamental contributions in the 1990s to the theo-
retical study of security issues, both by Bellare and Rogaway. In [6] they studied the
use of the “random oracle model” for hash functions in reductionist security arguments.
The systematic use of the assumption that hash functions can be treated as random func-
tions made it possible for security results to be obtained for many efficient and practical
schemes. We shall have more to say about the random oracle model in later sections.



Another Look at “Provable Security” 9

In addition, Bellare and Rogaway developed the notion of “practice-oriented provable
security” (see [3]). As a result of their work, reductionist security arguments started to be
translated into an exact, quantitative form, leading, for example, to specific recommenda-
tions about keylengths. The objective of the work has been to move the subject away from
its roots in highly theoretical computer science and closer to real-world applications.

1.4. Outline of the Paper

This paper was written with four objectives in mind:

• to offer a point of view on provable security that differs from the prevailing one;
• to make the case that this field is as much an art as a science;
• to raise technical points about interpretation of the proofs that hopefully will cause

people to think more deeply about what the reductionist arguments actually mean;
• to provide a tutorial introduction for non-experts to an area that is usually impene-

trable to outsiders.

The main body of the paper consists of informal (but accurate) descriptions and
analyses of the reductionist security arguments for four important practical public-key
cryptographic systems. Two of them (in Sections 2 and 4) are encryption schemes (one
based on RSA and one based on the so-called “discrete log” problem in the multiplicative
group of a finite field), and two (in Sections 3 and 5) are signature schemes (one based on
RSA and one on discrete logs). By presenting these constructions and results with as few
technicalities as possible, we hope to make them accessible to the broad mathematical
public. At the same time, some of the conclusions we draw from our analyses are in
sharp disagreement with prevailing views.

In Section 6 we discuss some recent work that purportedly undermines the random
oracle model, but which we argue actually supports it, and in Sections 7 and 8 we end
with some technical conclusions and some informal remarks about whether “proving”
security is an art or a science.

2. Cramer–Shoup Encryption

We start by describing the basic ElGamal encryption scheme [25]. Let G be the subgroup
of prime order q of the multiplicative group of the prime field of p elements, where
q|p − 1, and let g ∈ G be a fixed element (not the identity). (In practice, p might be a
1024-bit prime and q a 160-bit prime.) We suppose that p, q, and g are publicly known.
Alice chooses a random integer z, 0 < z < q, as her private key; her public key is e = gz .

The sender Bob’s message m is an element of the finite field. To encrypt m, he first
chooses a random r , 0 < r < q , and computes u = gr and w = er m. He sends the pair
(u, w) to Alice, who deciphers it by dividing w by uz (where she uses her secret key to
compute uz = gzr = er ).

Like naive RSA, this naive version of ElGamal is vulnerable to chosen-ciphertext
attack. Namely, the attacker, who has the ciphertext (u, w) and wants to learn what m
is, chooses r ′ and m̃ at random, sets u′ = ugr ′ and w′ = wer ′m̃, and gets Alice to
decrypt (u′, w′) for him. She sends the attacker mm̃, after which he simply divides by
m̃ to obtain m.



10 N. Koblitz and A. J. Menezes

A first attempt to fix this problem might be to require that any ciphertext include a
string of bits that can be used to test that it was formed correctly, that is, that whoever
is sending the ciphertext knew the plaintext message from which it was generated. This
string of bits is a sort of “fingerprint” of the message, called its “hash value.”

More precisely, a hash function H is a map from strings of σ bits to strings of ν bits,
where generally σ is much greater than ν, that is easy to compute but not to invert (this
is called the “one-way” property). That is, given h, it is not feasible to find any m such
that h = H(m). Usually a somewhat stronger property, called “collision-resistance,” is
assumed. This means that it is not feasible to find any pair m, m ′ such that H(m) = H(m ′).

If the ElGamal ciphertext includes h = H(m), then Alice can verify that (gr , er m, h)
is a valid ciphertext by checking that h = H(m) after she decrypts. If the attacker sends
her (gr+r ′ , er+r ′mm̃, h), then she will reject it, because H(mm̃) 
= h. Note that we are
assuming that the attacker will not be able to find any m̃ such that H(mm̃) = h.

The problem with this solution is that it fails completely in a situation where the
message m is known to be one of a small set {mi } (for example, it is either “yes” or “no,”
or it is the date when an invasion is planned). In that case all the adversary needs to do
is run through the values H(mi ) until it comes to h.

Ideally, we would like the encryption system to have the property that, even if the
adversary knows that the plaintext is one of two messages m0 or m1, and even if the
adversary is allowed to choose the two messages and then see an encryption y∗ of one of
them, still it would not have appreciably more than a 50% chance of determining whether
m0 or m1 had been encrypted—even if it can ask for decryptions of any ciphertexts of its
choosing both before and after selecting the messages m0, m1 (except that after it receives
the target ciphertext y∗, it is not, of course, allowed to ask for y∗ to be decrypted). As
mentioned in the Introduction, if the encryption scheme is secure in this sense, we say
that it is indistinguishability-secure from chosen-ciphertext attack.

Before stating the Cramer–Shoup result, we need to describe three number-theoretic
problems in the group G of prime order q:

The Discrete Logarithm Problem. Given an element g 
= 1 of G and another element
u, find x ∈ {0, 1, . . . , q − 1} such that u = gx . (The solution x is called the “discrete
log” of u to the base g and is often denoted either logg u or else indg u.)

The Computational Diffie–Hellman Problem. Given elements g 
= 1, u1 and u2 in
G, find u3 such that x3 ≡ x1x2 (mod q), where xi = logg ui .

The Decision Diffie–Hellman Problem. Given a 4-tuple (g1, g2, u1, u2), determine
whether or not logg1

u1 = logg2
u2. (A formulation that is easily seen to be equivalent is

the following: Given a 4-tuple (g, u1, u2, u3), determine whether or not x3 ≡ x1x2 (mod
q), where xi = logg ui .)

These three problems are listed in order of decreasing difficulty, in the sense that an
algorithm that finds discrete logarithms can be used to solve the Computational Diffie–
Hellman Problem immediately, and an algorithm that solves the Computational Diffie–
Hellman Problem will also answer the decision version of the problem. The reverse
implications are not known, although there is evidence that the first two problems may



Another Look at “Provable Security” 11

be equivalent [43], [14] and the last two probably are not (the papers [11] and [37]
give examples of groups where the Decision Diffie–Hellman Problem is easy but the
Computational Diffie–Hellman Problem is believed to be hard).

2.1. The Cramer–Shoup Encryption Scheme and Security Claim

We are now ready to state the main result of Cramer and Shoup.
Reductionist security claim. If the Decision Diffie–Hellman Problem is hard in the

group G and if the hash function H is collision-resistant,3 then the modified ElGamal en-
cryption scheme described below is indistinguishability-secure from chosen-ciphertext
attack.

Description of the Cramer–Shoup encryption scheme. Let x = (x1, x2), y = (y1, y2),
and z = (z1, z2) denote pairs of integers between 0 and q − 1; let g = (g1, g2) and
u = (u1, u2) denote pairs of elements of G; and let r denote a random integer between
1 and q − 1. We use the notation gx = gx1

1 gx2
2 , gr x = gr x1

1 gr x2
2 , and so on.

The group G of prime order q in the field of p elements (where q|p − 1) and two
random non-identity elements g1, g2 are publicly known. We suppose that the collision-
resistant hash function H takes triples of integers mod p to integers between 0 and
q− 1 (that is, it takes bit-strings of length 3�log2 p� to bit-strings of length �log2 q�—in
practice, this might mean that it maps 3072-bit numbers to 160-bit numbers). Alice’s
private key consists of three randomly generated pairs x, y, z, and her public key consists
of the three group elements c = gx , d = gy , and e = gz .

To send a message m ∈ G, Bob chooses a random r , sets u1 = gr
1, u2 = gr

2, and
w = er m, and computes the hash value h = H(u1, u2, w) of the concatenation of these
three mod p integers. He computes v = cr drh , and sends Alice the ciphertext 4-tuple
(u1, u2, w, v). In this ciphertext the element v allows Alice to check that Bob enciphered
the message properly (after which she is confident that he is not really an adversary
using the attack on naive ElGamal that was described above);w contains the message m
“disguised” by the “mask” er ; and u1 and u2 are the clues she needs to remove the mask.

More precisely, to decipher the 4-tuple (u1, u2, w, v) Alice first computes h =
H(u1, u2, w) and uses her secret key to find ux+hy (that is, ux1+hy1

1 ux2+hy2
2 ), which should

be equal to v (because ux+hy = gr x+r yh = cr drh). If it is not equal to v, Alice rejects the
message. If the ciphertext passes this test, she proceeds to decrypt by dividing w by uz .
Since uz = grz = er and w = er m, this gives her the plaintext m. This concludes the
description of the cryptosystem.4

We say that a 4-tuple (u1, u2, w, v) is invalid—not a possible ciphertext—if logg1
u1 
=

logg2
u2. It is important to note that an invalid ciphertext will almost certainly be rejected

by Alice. Cramer and Shoup explain this by regarding the two pairs x , y as elements of
a four-dimensional vector space V over the field of q elements. Alice’s public key—the
relations c = gx , d = gy—constrain x, y to a two-dimensional subspace S. If r =
logg1

u1 = logg2
u2, then the verification equation v = ux+hy holds either everywhere on

3 Cramer and Shoup used a slightly weaker assumption in [23], namely, that H is a member of a universal
one-way hash family; however, collision-resistance is just as good in practice. Note that they do not make the
random oracle assumption.

4 The actual Cramer–Shoup cryptosystem in [23] is the special case with z2 = 0.



12 N. Koblitz and A. J. Menezes

S or nowhere on S (depending on the value of v), whereas if logg1
u1 
= logg2

u2, then the
equation v = ux+hy imposes another independent linear condition on x, y (regardless
of the value of v). In the latter case the 4-tuple (u1, u2, w, v) is accepted only if x, y lie
on a particular line in S, and the chance of that is 1/q, which is negligible. Note also
that the rejection of such a ciphertext does not give an adversary any significant amount
of information about (x, y); the adversary learns only that it cannot lie on the particular
line of the plane S.

2.2. The Reductionist Security Argument

Reductionist security argument. We must show that if there is an adversary (which, as
mentioned before, should be thought of as a computer program) that makes decryption
queries and is eventually able to distinguish whether a target ciphertext y∗ is an encryption
of m0 or m1, then someone (whom we call Sam) is able to use this adversary program
to determine whether or not a 4-tuple (g1, g2, u1, u2) has the Diffie–Hellman property
logg1

u1 = logg2
u2. Sam can simulate attacks by the adversary, during which he wants

to choose his input and responses to answer the Diffie–Hellman question.
So suppose that Sam is given a 4-tuple (g1, g2, u1, u2). He starts by playing the role of

Alice generating her keys; that is, he chooses three random pairs x, y, z and sets c = gx ,
d = gy , e = gz . He sends the public key (c, d, e) (and also g1, g2) to the adversary, which
makes decryption queries (u′1, u′2, w

′, v′). Sam decrypts just as Alice would, rejecting the
message unless v′ = u′ x+h′ y , where h′ = H(u′1, u′2, w

′), in which case he responds with
the decryptionw′/u′ z . When the adversary outputs the two plaintexts m0 and m1 for the
distinguishability test, Sam chooses b ∈ {0, 1} at random and sets the target ciphertext
equal to y∗ = (u1, u2, w, v) with w = uzmb and v = ux+yh , where h = H(u1, u2, w).

Now the adversary must decide whether y∗ is the encryption of m0 or m1. If
(g1, g2, u1, u2) has the Diffie–Hellman property, then y∗ is a true encryption of mb (with
r = logg1

u1 as Bob’s random number), and so the adversary will have a probability
significantly greater than 1/2 of correctly guessing b.

What if the 4-tuple (g1, g2, u1, u2) does not have the Diffie–Hellman property? One
possibility is that the adversary could fail; for example, it could output an error message,
or it could fail to terminate during its expected running time. On the other hand, the
adversary might function in the usual way and produce meaningful output whether or
not the 4-tuple has the Diffie-Hellman property.

In that case the adversary can ask for decryptions of ciphertexts y′ = (u′1, u′2, w
′, v′)

that are not identical to y∗ = (u1, u2, w, v) in the hope of learning whether y∗ encrypts
m0 or m1. If, for example, the adversary could find w′ 
= w such that H(u1, u2, w

′) =
h = H(u1, u2, w), then it could set y′ = (u1, u2, w

′, v), which would pass Sam’s test
(since v = ux+hy). Sam would give the adversary the decryption m ′, from which it could
compute mb = m ′w/w′ just as in the chosen-ciphertext attack on naive ElGamal. The
adversary’s success would lead Sam falsely to believe that his 4-tuple has the Diffie–
Hellman property (see the concluding paragraph of this argument). Fortunately, the
adversary has negligible probability of finding w′ 
= w such that H(u1, u2, w

′) =
H(u1, u2, w) because the hash function has been assumed to be collision-resistant. That
is, the only way the adversary could get the same hash value h = H(u1, u2, w) is to
take y′ = (u1, u2, w, v

′) with v′ 
= v (since y′ 
= y∗), in which case Sam would reject
y′ because v′ 
= ux+hy .



Another Look at “Provable Security” 13

Whenever the adversary asks for a decryption of an invalid 4-tuple
(u′1, u′2, w

′, v′), Sam rejects it (except with negligible probability); this follows by an
argument similar to the one at the end of Section 2.1. If the adversary asks for the
decryption of a valid 4-tuple (u′1, u′2, w

′, v′), where r ′ = logg1
u′1 = logg2

u′2, then it
learns the decryption m ′ = w′/u′ z = w′/er ′ (it learns this provided that y′ passes the
test v′ = u′ x+h′ y). Nothing in the adversary’s view, even after its decryption queries,
constrains Sam’s private key pair z = (z1, z2) further than the single relation e = gz

coming from the public key. In other words, all values of z in the plane over the field of q
elements that lie on a certain line will agree with the adversary’s view. However, only one
point on that line—namely, the value of z that also satisfies the relationw = uzmb, which
is independent of the relation e = gz because logg1

u1 
= logg2
u2—is consistent with

the choice of b ∈ {0, 1}. This means that (except with negligible probability) what the
adversary sees is independent of b. So if Sam’s 4-tuple fails to have the Diffie–Hellman
property, the adversary will have only a 50% chance of guessing b.

In order to decide whether or not his 4-tuple has the Diffie–Hellman property, Sam will
run this simulated attack several times with different x, y, z. If the adversary correctly
determines b significantly more than half the time, Sam is almost certain that the 4-tuple
has the Diffie–Hellman property. Otherwise, he is almost certain that it does not. This
completes the reduction argument.

Cramer and Shoup designed their encryption scheme specifically so that they could
get the above reductionist security argument to work. The desire to prove a certain type
of security result motivated their construction. Instead of first setting up a natural cryp-
tographic system and then trying to prove something about it, it has become increasingly
common for protocol designers to start with a reductionist security objective that they
want to achieve and then use it to guide them in their construction of a scheme.

Cramer–Shoup encryption attracted a lot of attention when it was proposed in 1998
because it was the first practical scheme for which a strong security property could be
demonstrated under a “standard” hash function assumption (such as collision-resistance)
rather than the stronger “random oracle model.” However, this weakening of the hash
function assumption came at a price: Cramer and Shoup needed to make a rather strong
number-theoretic assumption, namely, hardness of the Decision Diffie–Hellman Prob-
lem. As mentioned on p. 11, this decision problem is likely to be strictly easier than the
Computational Diffie–Hellman Problem; in fact, promising new cryptographic protocols
have recently been developed (see, for example, [15]) based on the “gap” in difficulty be-
tween these two problems in certain groups. On the other hand, these “Diffie–Hellman
gap groups” seem to be very exceptional (the best examples are supersingular ellip-
tic curves and certain families of ordinary elliptic curves [37], [47]). In the groups that
Cramer and Shoup would use, as far as we know there is no way to solve Decision Diffie–
Hellman that is faster than finding discrete logarithms. So their assumption that the De-
cision Diffie–Hellman Problem is hard seems reasonable in the setting of their scheme.5

5 It is worth noting that Shoup [56] has given a variant of the Cramer–Shoup encryption scheme for which
he can show indistinguishability under chosen-ciphertext attack either with the assumptions in Section 2.1
or else with the assumption that the Computational Diffie–Hellman Problem is hard and the hash function is
given by a random oracle (that is, with a weaker number-theoretic assumption and a stronger hash function
assumption).



14 N. Koblitz and A. J. Menezes

3. The Security of RSA Signatures

We first recall how Alice signs a message using the basic RSA system. Her public key
consists of a modulus n (which is a product of two primes) and an encryption exponent e
(which is relatively prime to ϕ(n)); and her secret key is a decryption exponent d (which
is the inverse of e modulo ϕ(n)). To sign a message m (which is an arbitrary sequence
of bits), Alice first applies a publicly known and easily computable hash function H(m)
which takes values in the interval 0 ≤ H(m) < n. We say that this is a “full-domain”
hash function because its values range through the full interval [0, n) rather than a smaller
subinterval. Just as in encryption schemes, the hash function acts like a “fingerprint”; in
practice, one usually assumes that it is computationally infeasible to find two different
messages that have the same hash value (“collision-resistance”). In what follows we
assume a stronger property, namely, that the hash function is chosen at random from the
set of all possible functions taking values in the set {0, 1, . . . , n − 1}. We then say that
we are “in the random oracle model.”

Alice computes the least non-negative residue of H(m)d modulo n. That value s is her
signature. Suppose that Bob receives the message m and the signature s. He computes
H(m) and also the least residue of se modulo n. If H(m) ≡ se (mod n), then he is satisfied
that Alice truly sent the message (because presumably only Alice knows the exponent
d that inverts the exponentiation s �→ se) and that the message has not been tampered
with (because any other message would presumably have a different hash value).

We now describe one of the classic “provable security” results for the above RSA
signature [6]. Our version is less formalistic than the published proofs, but it is essentially
complete.

Recall from Section 1.3 the notion of an “existential forger” that is allowed to make
“chosen-message attacks in the random oracle model.” This means that the forger (which,
as before, we should think of as a computer program, not a person) initially knows only
Alice’s public key (n, e). It is permitted to question Alice by sending her a sequence of
(a bounded number of) test-messages mi . In each case, if it is the first time the particular
message has been queried, Alice responds by sending its hash value; if it is the second
time, then she sends the signature.6 At the end, with high probability the forger will be
able to produce a valid signature for one of the messages mi that Alice has not signed.

Notice that in the random oracle model the forger does not have an algorithm to
produce a hash value, but rather must obtain these values one message at a time through
queries.

Reductionist security claim. With the above notation and definitions, if the problem
of inverting x �→ xe (mod n) is intractable, then the RSA signature with full-domain
hash function is secure in the random oracle model from chosen-message attack by an
existential forger.

Argument. Suppose that we are given an arbitrary integer y, 0 ≤ y < n, and
asked to find x such that y ≡ xe (mod n). The claim follows if we show how we
could find x (with high probability) if we had a forger that can mount chosen-message
attacks.

6 There is no loss of generality here in supposing that Alice always supplies the hash value of a message
before signing it. If she did not, then the adversary could easily compute the hash value from the signature.



Another Look at “Provable Security” 15

So suppose that we have such a forger. We give it Alice’s public key (n, e) and wait
for its queries. In all cases but one, we respond to the hash query for a message mi by
randomly selecting xi ∈ {0, 1, . . . , n− 1} and setting the hash value hi equal to xe

i (mod
n). For just one value mi0 we respond to the hash query by setting hi0 = y (recall that y
is the integer whose inverse under the map x �→ xe (mod n) we are required to find). We
choose i0 at random and hope that m = mi0 happens to be the message whose signature
will be forged by our existential forger. Any time a message mi with i 
= i0 is queried
a second time, we send xi as its signature. Notice that this will satisfy the forger, since
xe

i ≡ hi (mod n). If the forger ends up outputting a valid signature si0 for mi0 , that means
that we have a solution x = si0 to our original equation y ≡ xe (mod n) with unknown
x . If we guessed wrong and mi0 was not the message that the forger ends up signing,
then we will not be able to give a valid response to a signature query for mi0 . The forger
either will fail or will give us useless output, and we have to start over again. Suppose
that q is the bound on the number of queries of the hash function. If we go through the
procedure k times, the probability that every single time we fail to solve y ≡ xe (mod n)
for x is at most (1 − 1/q)k . For large k, this approaches zero; so with high probability
we succeed. This completes the argument.

3.1. An Informal Analysis

We now reexamine the claim and the argument to support it in a stripped down form,
without superfluous features and cryptographic terminology. Because of the assumption
regarding randomness of the hash function, the choice of messages mi is irrelevant.
What the forger has to work with is a random sequence of values hi (i 
= i0) along
with the corresponding xi (which are the eth roots mod n), and the forger is required to
produce the eth root mod n of a random hi0 . The security claim is that this is no easier
than producing the eth root mod n of a random number without having the sequence
of pairs (hi , xi ). The proof amounts to the rather trivial observation that, since both the
hi and the xi are randomly distributed over the set of integers {0, 1, . . . , n − 1}, you
can obtain an equally good sequence of pairs (hi , xi ) by starting with the random xi

and finding hi = xe
i (mod n). In other words, a sequence of random (hi , hd

i mod n)
is indistinguishable from a sequence of random (xe

i mod n, xi ). It makes no difference
whether you look at your sequence of pairs left-to-right or right-to-left. Thus, the proof
boils down to the following tautology: the problem of solving an equation is equivalent
to the problem of solving the equation in the presence of some additional data (hi , xi )

that are irrelevant to the problem and that anyone can easily generate.
There is a difference between the conclusions of the formal argument and the informal,

“stripped down” one. In the reduction we saw that the forgery program would have to
be used roughly O(q) times (where q is the number of hash queries) in order to find the
desired eth root modulo n. A result of Coron [21] shows that this can be improved to
O(qs), where qs denotes a bound on the number of signature queries.7 (Thus, q = qs+qh ,
where qh is a bound on the number of hash function queries that are not followed later
by a signature query for the same message.) On the other hand, the informal argument

7 In the above argument, instead of responding only to the i0th hash query with hi0 = y, Coron’s idea was
to respond to a certain optimal number i0, i1, . . . with hij = yze

j with zj random.



16 N. Koblitz and A. J. Menezes

basically says that, since the queries are of no help to the forger, the amount of time
needed for the forgery is the same as for solving the RSA eth root problem.

From the standpoint of practice (as emphasized, for example, in [3]) this difference
is important. What it means is the following. Suppose that you are using a large enough
RSA modulus n so that you are confident that eth roots modulo n cannot be found in
fewer than 280 operations. Suppose that you anticipate a chosen-message attack where
the attacker can get away with making up to 220 signature queries. Then Coron’s result
says that you can be sure only that a successful forger will require time at least 260,
whereas the informal argument says that the forger will need as much time, namely 280,
as to find an eth root modulo n.

Assuming that Coron’s result cannot be improved to give a tight reduction argument
(which he essentially proves to be the case in a later paper [22]), we are confronted
with a discrepancy between the informal argument and the result coming from formal
reduction. Who is right? What is going on here?

3.2. A Tale of Two RSA Problems

We can shed light on this question by looking at the basic RSA problem (given n, e, and
y, you are asked to find x with xe ≡ y (mod n)) and the following variant, which we
call RSA1—or, more precisely, RSA1(qs, qh). It can easily be seen that RSA1(qs, qh)

and the forgery problem are tightly equivalent.

Given n, e, and a set of qs+qh values yi chosen at random from the set {0, 1, . . . , n−1},
you are permitted (at whatever stages of your work that you choose) to select up to qs of
those yi for which you will be given solutions xi to xe

i ≡ yi (mod n). You must produce
a solution xe

i ≡ yi (mod n) for one of the remaining yi .

Obviously, if you can solve RSA, you can solve RSA1 in essentially the same time. It is
easy to see the converse when qs = 0. Namely, given n, e, and y, you create an instance
of RSA1(0, qh) by choosing random z1, . . . , zqh and setting yi = yze

i . An answer to
RSA1(0, qh) is a solution xe

i ≡ yi (mod n) for one of the yi . Then just set x = xi/zi .
The above informal argument for the equivalence of forgery and the RSA problem

boils down to the claim that the two problems RSA and RSA1(qs, qh) are indistinguish-
able in practice, in the sense that if you can solve RSA1(qs, qh) (for some fixed qs, qh),
then you can solve the RSA problem in essentially the same amount of time. However,
the best reduction known from RSA to RSA1—the one obtained by translating Coron’s
construction [21] to the terminology of these two problems—leads to the weaker con-
clusion that you can solve RSA in time of order O(qs) times the amount of time needed
to solve RSA1.

Is it reasonable to conjecture the equivalence in practice of RSA and RSA1? It seems
to us that in this context it is. After all, a very strong assumption is already being made—
that the RSA problem is intractable. In practice, what people mean by making that
assumption is that the integer factorization problem is hard, and that there is no way to
solve the RSA problem that is faster than factoring n. This assumption is being made in
the face of the dramatic result of Boneh and Venkatesan [16] that makes it doubtful that
there is a reduction of factorization to the RSA problem. Despite this negative result,



Another Look at “Provable Security” 17

though, people continue making the assumption that in practice the RSA problem is
indistinguishable from factorization. We maintain that the equivalence in practice of
RSA and RSA1 is at least as plausible as the equivalence of RSA and factoring.

Notice that in neither case is the word “equivalence” meant in the sense of a reduction
argument. Because of [22] it is not reasonable to hope for a tight reduction from RSA
to RSA1, and because of [16] it is not reasonable to hope for a reduction from factoring
to RSA. However, in both cases it is reasonable to believe that in the foreseeable future
no one will find a way to solve RSA1 without being able to solve RSA in essentially
the same amount of time and no one will find a way to solve RSA without being able to
factor the modulus.

Tight formal reductions are nice to have. However, sometimes in cryptography one
wants to assume that P1 is as hard as P2 even if there is no prospect of constructing such
a reduction from P2 to P1.

3.3. Pass on PSS

If we are correct about the equivalence in practice of the RSA and RSA1 problems, then
one consequence is that the Probabilistic Signature Scheme (PSS) version of RSA signa-
tures [8]—which was constructed in order to have a tight reduction argument between the
RSA problem and chosen-message existential forgery—gives no more security against
chosen-message attacks than does the original full-domain hash version.

Let us take an informal look at the question of the relative security of the two signature
schemes. We first describe (a slightly simplified version of) PSS. Here the signer first
pads the message m with a random sequence of bits r and then proceeds as before. That
is, she applies the hash function to (m, r) and then gets s by raising H(m, r) to the power
of her decryption exponent d modulo n. Her signature is not just s, but the pair (s, r),
since Bob has to know r in order to verify that se ≡ H(m, r) (mod n).

The basic reason why one can make a tight reductionist security argument for PSS
is that the simulator can distinguish between two types of hash function queries—those
that follow a signature query and are needed in order to verify the signature, and those
that do not. In the former case the r in the (m, r) that is queried was supplied by the
simulator, and in the latter case it is chosen by the adversary. The simulator answers
the first type of hash query by setting H(m, r) ≡ se (mod n); he answers the second
type of query by choosing random z and setting H(m, r) ≡ ze y (mod n), where y is
the input to the RSA problem (see the proof of equivalence of RSA and RSA1(0, qh) at
the beginning of Section 3.2). The reduction argument is tight because the simulator no
longer has to guess which message m the adversary will end up signing—he knows that
it will be one of the messages for which the adversary, not the simulator, chooses the
random padding.

If all we care about is formalistic “proofs,” then we might easily be misled into thinking
that the PSS system is provably more secure than the original RSA signature scheme.
If we use the language of practice-oriented provable security, then we might say that by
switching to PSS we have gained a factor of qs in the time a forger requires to complete
its nefarious task. As we have seen, such a conclusion is highly debatable.

Unless one believes that there is a difference in real-world intractability between the
RSA problem and the RSA1 problem, there is no point in wasting time and energy on



18 N. Koblitz and A. J. Menezes

replacing classical full-domain hash RSA by PSS. One possible reason, in fact, for not
adopting PSS is that it requires an additional cryptographic assumption—randomness of
some r -value—that is absent from the original full-domain hash RSA. Since randomness
is often poorly implemented in practice, it is wise to avoid such a step if it is easy to
do so, as in this case. Our conclusion is that, despite a quarter century of research on
RSA, the simple “hash and exponentiate” signature protocol that has been known since
the late 1970s (with the condition that the image of the hash function be the full set of
residues) seems still to be the one to use.8

3.4. A Variant of PSS

Before leaving the topic of RSA signature schemes, we look at a recent construction of
Katz and Wang [38] that is similar to PSS but more efficient. They show that instead of
the random string r one need only take a single random bit.

More precisely,9 to sign a message m Alice chooses a random bit b and evaluates the
hash function H at m concatenated with b. She then computes s = (H(m, b))d modulo
n; her signature is the pair (s, b). To verify the signature, Bob checks that se ≡ H(m, b)
(mod n).

Remarkably, Katz and Wang show that the use of a single random bit b is enough to
get a tight reduction from the RSA problem to the problem of producing a forgery of
a Katz–Wang signature. Namely, suppose that we have a forger in the random oracle
model that asks for the signatures of some messages and then produces a valid signature
of some other message. Given an arbitrary integer y, the simulator must use the forger
to produce x such that y ≡ xe (mod n). Without loss of generality we may assume that
when the forger asks for the hash value H(m, b), it also gets H(m, b′) (where b′ denotes
the complement of b). Now when the forger makes such a query, the simulator selects
a random bit c and two random integers t1 and t2. If c = b, then the simulator responds
with H(m, b) = t e

1 y and H(m, b′) = t e
2 ; if c = b′, it responds with H(m, b) = t e

2 and
H(m, b′) = t e

1 y. If the forger later asks the simulator to sign the message m, the simulator
responds with the corresponding value of t2. At the end the forger outputs a signature
that is either an eth root of t e

2 or an eth root of t e
1 y for some t1 or t2 that the simulator

knows. In the latter case, the simulator has succeeded in its task. Since this happens with
probability 1/2, the simulator is almost certain—with probability 1 − 2−k—to find the
desired eth root after running the forger k times. This gives us a tight reduction from the
RSA problem to the forgery problem.

In order to better see the relationship between Katz–Wang, PSS, and the basic RSA
signature, we consider the following variant of the RSA problem, which we call
RSA2(qs, qh):

Given n, e, and a set of qs + qh pairs of values (yi , zi ) chosen at random from the set
{0, 1, . . . , n − 1}, you are permitted (at whatever stages of your work that you choose)

8 Our purpose here is to highlight the comparison between PSS and full-domain hash RSA. There may,
however, be other RSA-type signature schemes that are superior to both. For example, Bernstein [9] argues in
favor of a version of Rabin signatures [51] for which he gives a tight reductionist security argument.

9 We are describing a slightly simplified version of the Katz–Wang scheme. In particular, we are assuming
that Alice never signs the same message twice.



Another Look at “Provable Security” 19

to select up to qs of those pairs for which you will be given the eth root modulo n of
exactly one (randomly selected) element of the pair. You must produce an eth root of
either element in one of the remaining pairs.

The RSA2 problem has the same relationship to Katz–Wang as the RSA1 problem has
to the basic RSA signature. The above argument gives a tight reduction from the RSA
problem to RSA2, but we have no tight reduction from the RSA problem to RSA1. Thus,
from the standpoint of reduction arguments RSA2 is as hard as the RSA problem, whereas
RSA1 might be easier than both by the factor qs , which might be quite large, say qs ≈ 220.
However, when we put the two problems RSA1 and RSA2 side by side and compare
them, we see that it defies common sense to suggest that in practice someone would find
RSA1 easier to solve than RSA2. By the same token, it seems to us implausible that the
Katz–Wang system could be appreciably more secure than the original RSA signature
with full-domain hash function.

4. The Search for Optimal RSA Encryption

In 1994, Bellare and Rogaway [7] proposed a protocol for encrypting messages that they
called Optimal Asymmetric Encryption Padding (OAEP). Their method was mainly
intended to be used with the RSA function y = xe (mod n)—in which case it was called
RSA-OAEP—but it could also be used with other trapdoor one-way functions. This was
the first time that a practical public-key encryption scheme was proposed along with an
accompanying reductionist security argument (see below).

Here is how OAEP works. We send a plaintext m of µ bits with ν zero-bits appended.
Let m0 denote the resulting σ -bit string, where σ = µ+ν. The purpose of the zero-bits is
to ensure that only an insignificant proportion of all σ -bit strings are of the required form.
As in Cramer–Shoup encryption (see Section 2), Alice performs a test before accepting
a message: she first checks that a deciphered bit-string m0 is of the proper form and, if
not, rejects it.

In addition to her RSA public key (n, e) and private key d, Alice chooses a random
function G from ν-bit strings to σ -bit strings and a random function H from σ -bit strings
to ν-bit strings. The two functions G and H are public knowledge; that is, the sender
Bob can compute them. A reasonable choice of µ, ν, and σ = µ + ν might be 864,
80, and 944, respectively, if Alice is using a 1024-bit modulus n. The bitlength of the
modulus should be σ + ν = µ+ 2ν.

If Bob wants to send a µ-bit message m to Alice, he first chooses a ν-bit random
number r . He evaluates G(r), sets m0 equal to m with ν zeros appended, and computes
s = m0 ⊕ G(r) (this is the XOR of m0 and G(r), that is, the componentwise sum
modulo 2). Next, he evaluates H(s), computes t = r ⊕ H(s), and sets x equal to s
concatenated with t . See Fig. 1. Finally, he exponentiates y = xe (mod n); his ciphertext
is y.

Alice starts her decryption as in naive RSA, using her secret exponent d to find x . She
applies H to s, which is the first σ bits of x , and takes the XOR of H(s) with the last
ν bits of x ; this gives her r . She then evaluates G(r) and takes the XOR of G(r) with
s to get m0. If m0 does not have ν zero-bits at the end, she rejects the message. If m0



20 N. Koblitz and A. J. Menezes

rm 0

���

tsx

s = m
0
�G(r)

t=r �H(s)

Fig. 1. OAEP padding.

does have the expected number of zero-bits, she deletes them to recover m. Notice that
the steps in Alice’s decryption after the exponentiation are very simple, much like the
“back substitution” stage in an elementary linear algebra problem.

The idea of XOR-ing m0 with G(r) and then XOR-ing r with H(m0 ⊕ G(r)) is a
familiar construction from classical symmetric cryptography, called a “two-round Feistel
cipher.” (The famous DES is a 16-round Feistel cipher.) Its purpose is to scramble ev-
erything thoroughly, while allowing rapid and simple decryption. The other two features
of OAEP are the ν zero-bits (used to give Alice a way to check legitimacy of the text)
and the ν bits of padding r .

4.1. Reductionist Security of RSA-OAEP

We now give an informal version of the original reductionist security argument of Bellare
and Rogaway [7]. Note that G and H are assumed to be random functions; that is, the
argument uses the “random oracle” assumption.

Reductionist security claim. The encryption system RSA-OAEP is indis-
tinguishability-secure against chosen-ciphertext attack in the random oracle model if
the RSA problem is intractable.

Argument. What the claim says is the following. Suppose that there is an adversary
(which again should be thought of as a computer program) that takes the RSA public
key (n, e) as input, makes some queries for values of the functions G and H and for
decryptions of various ciphertexts that it chooses, and then selects two plaintext messages
m0 and m1. It is now given an encryption y∗ of one of the mb (with b ∈ {0, 1} chosen
at random), after which it makes some more queries (but it is not, of course, allowed to
ask for the decryption of y∗), and finally guesses b with probability significantly greater
than 1/2 of being correct. If such an adversary exists, then Sam the Solver (also known
as Sam the Simulator), who has been given an arbitrary y, will be able to interact with
the adversary in such a way as to determine the solution x of xe ≡ y (mod n). We make
the reductionist security argument by describing how Sam sets up a simulated attack that
he uses to find x .

The description of what Sam does in this simulated attack is simple. He sets y∗ equal
to the value y for which he must find the eth root modulo n, and he uses random values
for G(r) and H(s) when answering queries for such values, unless the same value of r



Another Look at “Provable Security” 21

or s has been queried before, in which case he must give the same answer. Sam keeps
a record of all r and s that are queried and all of his answers G(r) and H(s) to those
queries.

In response to the attacker’s request for the decryption of some y 
= y∗, Sam runs
through the previously queried (r,G(r)) and (s, H(s)). In each case he checks whether
the concatenation of s and r ⊕ H(s) gives y when raised to the eth power modulo n.
If it does, then he sets m0 = s ⊕ G(r) and checks whether the ν rightmost bits of m0

are zero. If so, he deletes those zero-bits and outputs the resulting message m; if not,
he outputs the words “invalid ciphertext.” If Sam finishes running through all of the
previously queried pairs (r, s) and none leads to a valid decryption m, then Sam answers
the decryption query with “invalid ciphertext.”

At some point the attacker sends Sam m0 and m1, and Sam responds by sending y∗

(which is the integer whose eth root modulo n Sam wants to find). One question that
might occur to the reader is: What if y∗ is not the encryption of m0 or m1? In that case
it would not be proper input to the adversary. The answer is that the adversary must
function as if the values of G and H are values chosen at random at the time that a query
is made; this is what the random oracle assumption says. The values of G and H that are
used in the encryption of mb almost certainly have not been specified at the time when
y∗ is given. Since it is easy to see that there exist values s∗, H(s∗), r∗, and G(r∗) such
that the concatenation of s∗ with r∗ ⊕ H(s∗) is the eth root of y∗ modulo n and such
that s∗ ⊕G(r∗) is m0

b, the adversary must be able to guess mb when the target ciphertext
is y∗.

We are now ready to conclude the Bellare–Rogaway argument. Since the target mes-
sage m0

b is equal to s∗ ⊕G(r∗) with G(r∗) random (where s∗ is the first σ bits of the eth
root of y∗ modulo n), the only way the adversary would know any information about
m0

b (and hence mb) is to have queried G(r∗). This means that the adversary must have
known what value of r = r∗ to query. Since r∗ = t∗ ⊕ H(s∗) (where t∗ is the last ν bits
of the eth root of y∗ modulo n), the adversary must also have queried H(s∗). Now Sam
has a record of the r, s,G(r), H(s) from all of the queries. He runs through all pairs
(r, s) in his list of queries and in each case checks to see whether the concatenation of
s and r ⊕ H(s) gives y∗ when raised to the eth power modulo n. When he gets to
the pair (r∗, s∗), he finds the desired solution to the RSA problem. This concludes
the argument for indistinguishability-security of RSA-OAEP against chosen-ciphertext
attack.

If we think for a minute about this argument, we are struck by how much it seems
to give for little effort. Not only do we get a strong form of security against powerful
attackers, but the argument does not use any specific features of RSA or any assumptions
about our parameters µ and ν; in fact, the reductionist security claim seems to apply
equally to the OAEP construction with RSA replaced by any other trapdoor one-way
function (and, indeed, such a generalization was given in [7]). We might get suspicious,
and remind ourselves of the adage, “If it’s too good to be true, then it probably isn’t.” Our
first response might be to doubt the validity of the random oracle model, which seems to
allow Sam to “cheat” by leaving the values of the functions to be defined later (whereas
in practice an algorithm for computing them is publicly available from the beginning).

Another possible response is to point out the lack of tightness in the reduction. That
is, Sam must check all pairs (r, s) that were queried until he comes to (r∗, s∗). Since the



22 N. Koblitz and A. J. Menezes

number of queries could be of the same order of magnitude as the adversary’s running
time t , this means that the upper bound on the number of steps Sam needs to solve the
RSA problem is O(t2). In other words, if we want a guarantee that the adversary will
need at least 280 steps to succeed in its attack (in which case we say that we have “80
bits of security”), the above argument says that we should ensure that the RSA problem
requires at least 2160 steps. According to present estimates of the running time of the
number field sieve factoring algorithm, we should use roughly a 5000-bit RSA modulus
to achieve 80 bits of security. This would be pretty inefficient. So the practical guarantee
we get is not very useful.

4.2. Shoup’s Objection

However, the best objection to the “too good to be true” reductionist security argument
in [7] was discovered only 7 years later, and it caught everyone by surprise. In 2001
Shoup [57] showed that the argument is fallacious, because it assumes that the adversary
cannot work with the input y∗ to get useful information.

As Shoup pointed out, it is, for example, conceivable that the adversary is able to find
s∗ (which is the first σ bits of the solution x∗ to the equation x∗e ≡ y∗ (mod n)) and is
also able to solve the following problem: Given y∗ and a subset S of at most ν + 1 bit
positions, determine y′ such that the bits of the eth roots modulo n of y∗ and y′ agree
except on the subset S, where they disagree. No one knows how to solve this problem
without being able to find eth roots modulo n, but the possibility cannot be ruled out.
In such a case the adversary would find s∗ and query H(s∗). It would then set s ′ equal
to s∗ with the first bit switched, query H(s ′), and choose the set S of at most ν + 1 bits
to consist of the first bit along with the bits in the last ν positions that correspond to
one-bits of H(s∗) ⊕ H(s ′) (in other words, the positions where the bits of H(s∗) and
H(s ′) differ). The adversary would find y′ such that the solution x ′ to x ′e ≡ y′ (mod n)
differs from x∗ in precisely the bits of S. It would then ask for the decryption of y′. It
is easy to see that the answer to this decryption query must be the secret plaintext mb

with its first bit switched. Thus, the adversary will have succeeded without ever needing
the random r∗ used for the target ciphertext. So the argument that G(r∗)must have been
queried is wrong.

Fortunately, Shoup [57] also showed that not all was lost for RSA-OAEP. First, the
original argument of Bellare and Rogaway was partly correct, in that the adversary must
query H(s∗). Moreover, Shoup showed that if ν is much less than σ (which would be
true in practice) and if e = 3 (a restriction that was later removed by Fujisaki et al. [27]),
then the Bellare–Rogaway reductionist security claim is valid for RSA-OAEP (but not
for OAEP with other trapdoor one-way functions). The crucial point is that if you know
s∗ and y∗, then the equation x∗3 = (2νs∗ + t∗)3 ≡ y∗ (mod n) can be solved for t∗ using
Coppersmith’s method [20] for finding small roots of polynomials modulo n.

In addition, Shoup [57] proposed a modification of OAEP, which he called OAEP+
(“optimal asymmetric encryption padding plus”), for which he showed that the original
Bellare–Rogaway argument is valid. He modified OAEP by replacing the string of ν
zeros in m0 by H̃(m, r), where H̃ is another random function from strings of σ bits to
strings of ν bits, and defining s as m ⊕ G(r) concatenated with H̃(m, r), where G now
maps ν-bit strings to µ-bit strings.



Another Look at “Provable Security” 23

4.3. Boneh Brings Us Back to Rabin

At this point it might have appeared that the search for optimal RSA encryption had
ended with OAEP+. However, Boneh [12] was able to improve upon Shoup’s result. He
simplified the construction by reducing the number of Feistel rounds from two to one,
and he showed that the reductionist security claim still holds. In other words, Boneh
would apply the RSA function to ((m, H̃(m, r))⊕ G(r), r).

However, Boneh shows that it is actually much better to apply Rabin encryption
(squaring modulo n, see Section 1.1) rather than the RSA function, for two reasons:
(1) the assumption that finding eth roots modulo n is hard is replaced by the weaker
and more natural assumption that factoring n is hard (this was why Rabin introduced his
encryption method in 1979); and (2) the reduction argument is tight.

Of the three objections to OAEP mentioned above—use of the random oracle model
in the security argument, lack of tightness in the reduction, and a fallacy in the orig-
inal reductionist security argument—only the first one would apply to Boneh–Rabin.
However, in Section 6 we describe evidence that we believe supports the reliability of
the random oracle assumption. Thus, in our view Boneh–Rabin is currently the optimal
choice for an RSA-type encryption system.10

It is ironic that after a quarter century we come full circle and return to Rabin en-
cryption, which was the very first public-key system designed to have a reductionist
security property. Boneh shows that all it needed was some random padding and hashing
and just one Feistel round to go from being totally insecure to totally secure against
chosen-ciphertext attack.

Unfortunately, the Boneh–Rabin system will probably not be widely used in the real
world, at least not any time soon. The first reason is psychological. Cryptographers still
think of Rabin encryption as the classic example of complete vulnerability to chosen-
ciphertext attack. There is a saying, “Once bitten, twice shy.” Even if Boneh’s randomized
Rabin is immune from chosen-ciphertext attack, people will wonder whether perhaps
there is some other extreme vulnerability that is hiding around the corner. This fear is
not logical (since there is no basis for believing that such a possibility is more likely for
Boneh–Rabin than for any other system), but it is powerful nonetheless.

4.4. The Credibility Problem

The second reason is that “provable security” results seem to have much less credibility
in the real world than one might expect. Non-specialists usually find the terminology
and formalistic proofs hard to penetrate, and they do not read the papers. Moreover, the
strange history of OAEP—where a “proof” was accepted for 7 years before a fallacy
was noticed—hardly inspires confidence. Stern et al. [59] comment:

Methods from provable security, developed over the last twenty
years, have been recently extensively used to support emerging standards.
However, the fact that proofs also need time to be validated through public
discussion was somehow overlooked. This became clear when Shoup found
that there was a gap in the widely believed security proof of OAEP against

10 A slight disadvantage of Boneh–Rabin is that the plaintext m has bitlength at most half that of the modulus.



24 N. Koblitz and A. J. Menezes

adaptive chosen-ciphertext attacks.. . . the use of provable security is more
subtle than it appears, and flaws in security proofs themselves might have a
devastating effect on the trustworthiness of cryptography.

One has to wonder how many “proofs” of security are ever read carefully with a critical
eye. The purported proof of Bellare and Rogaway in [7] was short and well written, and
the result attracted much interest (and caused OAEP to be included in the SET electronic
payment standard of MasterCard and Visa [3]). If this proof went essentially unexamined
for 7 years, one cannot help asking whether the lengthy and often poorly written “proofs”
of less famous security claims are ever read carefully by anyone.

In theoretical mathematics, one of the reasons why theorems engender confidence and
trust is that the proof of a major result is almost always scrutinized carefully by referees
and others before publication. The most famous example of this occurred in 1993, when
Andrew Wiles submitted his 200-page manuscript purporting to prove Fermat’s Last
Theorem. Within 2 months a referee found a subtle gap in the long, extremely difficult
proof—a gap that was fixed a little over a year later by Taylor and Wiles [60], [62].
A more recent example of the scrutiny that a dramatic new result gets in mathematics
is the response to the theorem that “Primes is in P” of Agrawal et al. [2]. Their proof,
while ingenious, was relatively short and elementary; within a few days of the paper’s
posting, several of the world’s top number theorists had meticulously gone over it with
a fine-tooth comb and found it to be correct.

We would feel a little more at ease with “provable security” results if the same tradition
of careful examination of all important papers existed in theoretical cryptography.

* * *

The last three sections have dealt with Diffie–Hellman type encryption (that is, encryp-
tion using a discrete-log-based primitive), RSA-type signatures, and RSA encryption.
We next consider a signature scheme based on a discrete-log primitive.

5. Schnorr Signatures and the Forking Lemma

5.1. The Equivalence of Schnorr Signature Forgery and Discrete Logs

We first describe Schnorr’s method [55] for signing a message. As in Section 2, let q be
a large prime, and let p be an even larger prime such that p ≡ 1 (mod q). In practice,
roughly p ≈ 21024 and q ≈ 2160. Let g be a generator of the cyclic subgroup G of order q
in the multiplicative group of integers mod p. (It is easy to find such a generator by raising
a random integer to the ((p − 1)/q)th power modulo p.) Let H be a hash function that
takes values in the set {0, 1, . . . , q−1}. To prepare for signing messages, Alice chooses a
secret random integer x , 0 < x < q, which is her private key, and computes gx (mod p),
which is her public key. To sign a message m, Alice first chooses a random k, 0 < k < q,
where k must be chosen again for each new message. She computes r = gk (mod p),
where r is regarded as a non-negative integer less than p, and evaluates the hash function
H at the message m concatenated with r ; we set h = H(m, r). Finally, she sets s equal
to the least positive residue of k + hx modulo q. Her signature is the pair (h, s).



Another Look at “Provable Security” 25

To verify the signature, Bob divides gs by (gx )h . (Note that g and gx are publicly
known, and he knows h and s from the signature.) If Alice formed the signature correctly,
the result agrees with gk = r , and hence

H(m, gs(gx )−h) = h.

If this equality holds, Bob accepts the signature.
Clearly, if a prospective forger can solve the discrete logarithm problem in G, then it

can forge signatures, because it can determine x from the public key gx . As mentioned
in the Introduction, an important question to ask at this point is whether the converse is
true. There is a strong argument that it is.

Reductionist security claim. If an adversary can forge Schnorr signatures on all mes-
sages, then it can find discrete logarithms (in essentially the same amount of time that it
takes to forge a signature).

Argument. Suppose that the adversary can forge a signature for m. When it computes
h = H(m, r), suppose that it is suddenly given a second hash function H ′. Since, by
assumption, a hash function has no special properties that the forger can take advantage
of, whatever method it used will work equally well with H replaced by H ′. (A more
formal proof would use the random oracle model for the hash function.) So the forger
computes h′ = H ′(m, r) as well as h = H(m, r) and produces two valid signatures
(h, s) and (h′, s ′) for m, with the same r but with h′ 
= h.11 Note that the value of k is the
same in both cases, since r is the same. By subtracting the two congruences s ≡ k + xh
and s ′ ≡ k + xh′ (mod q) and then dividing by h′ − h, the forger finds the discrete log
x .12

This security result is fairly weak, because we have not allowed chosen-message
attacks, and the adversary is assumed to be able to forge a signature on an arbitrary
message. Later we describe the more complicated argument that is needed to get a
stronger security result. However, before discussing the so-called “forking lemma,” we
make a historical digression.

5.2. DSA and NSA

In the early 1990s, the U.S. government’s National Institute of Standards and Technology
(NIST), following the advice of the National Security Agency (NSA), proposed a Digital
Signature Algorithm (DSA) that combined features of an earlier scheme of ElGamal
[25] with the Schnorr signature described above. There were two main differences with
Schnorr’s scheme: first, in DSA the hash function h = H(m) is evaluated only as a
function of the message m and does not depend on the randomly generated r . Second,
the congruence s ≡ k−1(h + xr) (mod q) (rather than s ≡ k + xh) is used.

At the time, the proposed standard—which soon after became the first digital sig-
nature algorithm ever approved by the industrial standards bodies—encountered stiff

11 Strictly speaking, we should allow for the possibility that the forger gets H(m, r) for several different
values of r and signs only one of them. In that case we guess which value will be signed, and run the forger
program several times with random guesses until our guess is correct. We omit these details. In Section 5.4
we give a more rigorous argument than here for a stronger security result for Schnorr signatures.

12 Note that the forger does not need to know k.



26 N. Koblitz and A. J. Menezes

opposition, especially from advocates of RSA signatures and from people who mis-
trusted the NSA’s motives. Some of the leading cryptographers of the day tried hard to
find weaknesses in the NIST proposal. A summary of the most important objections and
the responses to them was published in the Crypto ’92 proceedings [17]. The opposition
was unable to find any significant defects in the system.

In retrospect, it is amazing that none of the DSA opponents noticed that when the
Schnorr signature was modified, the equivalence with discrete logarithms was lost. In
other words, there is no argument known that shows that the ability to forge DSA
signatures implies the ability to find discrete logs. In particular, if you try to repeat the
argument used above for the Schnorr signature, you find that the forgery program can
still be made to produce two different signatures for m with different h, but cannot be
forced to use the same value of r , since it does not have to choose r before the hash
function is evaluated.13

This reductionist security failure is a much more serious matter than any of the issues
that the anti-DSA people raised in 1992 [17]. It is also surprising that apparently none
of the NSA cryptographers noticed this possible objection to DSA; if they had, they
could have easily fixed it (without any significant loss of efficiency) by having the signer
evaluate the hash function at (m, r) rather than just at m.

The debate over DSA lasted many months and pitted powerful companies and institu-
tions against one another. Reputations and large sums of money were at stake. How could
everyone have missed an elementary observation that could have changed the course of
the debate?

5.3. The “Splitting Lemma”

The “splitting lemma” is the name cryptographers have given to a simple but useful
observation that we shall need when we modify the reductionist security argument in
Section 5.1 to allow for a more limited type of forgery. We shall want to know that even if
a forger succeeds only with a certain non-negligible probability, it can still find discrete
logs.

Suppose that we have two sets A and B, with a elements in A and b elements in B.
Suppose that εab of all pairs (α, β), where α ∈ A, β ∈ B, have a certain property (here
0 < ε < 1 is the probability that a random pair has the property). We say that a pair with
the property is a “good” pair. In our later application a pair is “good” when the algorithm
uses that pair to produce a useful output. Let A0 ⊂ A be defined as the set of elements α0

such that a pair (α0, β) (with α0 ∈ A fixed and β ∈ B varying) has a probability ≥ ε/2
of being good.

The “splitting lemma” says that there are at least εa/2 elements in A0; in other words,
an element α ∈ A has a probability at least ε/2 of being in A0. To see this, suppose the
contrary. We count the number of good pairs (α, β) with α ∈ A0 and the number with
α /∈ A0. By assumption, the first number is at most #(A0)b < (εa/2)b. By the definition

13 Aside from the question of whether or not equivalence can be shown between forging signatures and
solving the discrete log problem, it should have been clear to people in 1992 that replacing H(m, r) by H(m)
potentially gives more power to a forger, who has control over the choice of k (which determines r ) but no
control over the (essentially random) hash value. If H depends on r as well as m, the forger’s choice of k must
come before the determination of the hash value, so the forger does not “get the last word.”



Another Look at “Provable Security” 27

of A0, the second number is at most #(A\A0)εb/2 ≤ aεb/2. Then there are fewer than
(εa/2)b + aεb/2 = εab good pairs in all, and this is a contradiction.

5.4. The “Forking Lemma”

Following [49] and [50], we return to the forger in Section 5.1, but now make a weaker and
more realistic assumption, namely, that the signature scheme is attacked by a probabilistic
chosen-message existential forger in the random oracle model; the reductionist security
claim is then that such an attack would imply the ability to find discrete logarithms. The
term “chosen-message existential forger in the random oracle model” was explained in
Section 3. The word “probabilistic” means that the forger (which, as before, we should
think of as a computer program, not a person) is supplied with a long sequence of random
bits that it uses to make choices at various points in its work. We consider the set of all
random functions (that is, random values given in response to hash and signature queries)
and all sequences of random bits, and assume that with non-negligible probability at least
ε the forger is successful in producing a forged signature.14

Reductionist security claim. If the Schnorr signature succumbs to attack by a proba-
bilistic chosen-message existential forger in the random oracle model, then discrete logs
can be found.

Argument. Suppose that we have such a forger, which we want to use to find the
discrete logarithm x of the public key gx . The forger is allowed to make a bounded
number of signing inquiries and hash function inquiries. Our response to any such query
is to give a random value h (if it is a hash query) or pair of random values (h, s) (if it is
a signature query), except that the same value of h must be given if the forger asks for
H(m, r) twice. Note that since r = gs(gx )−h (see Section 5.1), the random choice of s
implies a random choice of r ∈ G. In the unlikely event that r turns out to be a value
such that we already responded to a query for H(m, r) with the same m and r and gave
a different h′ = H(m, r), then we have to restart the whole procedure. The same applies
if we answered an earlier query for a signature of the same message m by giving (h′, s ′)
with gs ′(gx )−h′ equal to r but h′ 
= h. However, the probability of either unfortunate
coincidence occurring is negligible.

Let qh be a bound on the number of pairs (mj , rj ) for which the forger queries the
hash function. We choose a random index j ≤ qh and hope that (mj , rj ) happens to be
the one for which the forger produces a signature. By the definition of our forger, with
some non-negligible probability ε it will forge a signature, and so with probability at
least ε/qh it will forge a signature for the j th pair for which it queries the hash function.

We use two copies of the forger (that is, two copies of the same computer program).
We give both forgers the public key gx , the same sequence of random bits, and the same
random answers to their queries for hash function values and signatures until they both
ask for H(mj , rj ). At that point we give two independent random answers to the hash
function query, and from then on use different sequences of random bits and different

14 In general, the probability space should be taken to be the ordered triples consisting of function, sequence
of random bits, public key. However, the discrete log problem has a convenient property, called self-reducibility,
that allows us not to vary the key. Roughly speaking, if we can find the discrete log of y for certain “easy”
y-values, then, given an instance y′ that we want to solve, we can always shift it to one of the easy instances
by exponentiating y′ by known amounts.



28 N. Koblitz and A. J. Menezes

random function values. (Hence the name “forking lemma.”) We hope that both forgers
produce signatures corresponding to the pair (mj , rj ). If they do not (or if we are unable
to proceed because no j th hash function query is made), then we start over again. If
they do output signatures (h1, s1) and (h2, s2), then almost certainly h1 
= h2. As before,
once we have two congruences k ≡ s1 − h1x ≡ s2 − h2x (mod q) with h1 
= h2, we
immediately find x .

We need to know that there is a non-negligible probability that this will all work as
hoped. Let S denote the set of all possible sequences of random bits and random function
values during the course of the above procedure, and let J = {1, 2, . . . , qh}. For each
j ∈ J let εj denote the probability that a sequence s ∈ S leads to a forgery of the
j th message. By assumption,

∑
j∈J εj = ε, where ε denotes the forger’s probability of

success.
We now use the “splitting lemma.” Let A be the set of possible sequences of random

bits and random function values that take the forgers up to the point where they ask for
H(mj , rj ); and let B be the set of possible random bits and random function values after
that. Suppose that there are a elements in A and b elements in B. Then S = A× B, and
#S = ab. For εj ab values of s ∈ S the forger produces a valid signature for (mj , rj ).
Applying the “splitting lemma,” we can say that there are at least εj a/2 elements of A that
have the following property: the remaining part of the forgery algorithm (starting with
the j th hash query) has probability at least εj/2 of leading to a signature for (mj , rj ). For
each such element of A the probability that both copies of the forger lead to signatures
for (mj , rj ) is at least (εj/2)2. In summary, the probability that an element of A×(B×B)
will lead to two different signatures for (mj , rj ) is at least (εj/2)3.

Since j is chosen uniformly at random from J , it follows that the probability that the
above procedure leads to two signatures of the same message is at least (1/8qh)

∑
j∈J ε

3
j .

The minimum of the sum
∑
ε3

j subject to the condition that
∑
εj = ε is achieved

when all the εj are equal, that is, when εj = ε/qh for all j .15 Thus, the probability of
success in one iteration of the procedure is at least 1/8qh · qh · (ε/qh)

3 = (ε/2qh)
3.

If we repeat the procedure k times, the probability that we fail to find the discrete
logarithm of x is at most (1 − (ε/2qh)

3)k , which approaches zero. This concludes the
argument.

5.5. Tightness

In order to arrive at a “practice-oriented” interpretation of the above result in the sense
of [3], we have to examine the “tightness” of the reductionist security argument. The
version of this argument given in the previous subsection is not tight at all. Namely, let
t denote the running time (number of steps) of the forger program, and let T be a lower
bound on the amount of time we believe it takes to solve the discrete logarithm problem
in the group G. If we have to run the forger program k times in order to find (with
high probability) the discrete logarithm, then we set T ≈ kt to get an estimate for the

15 It is an easy exercise (using partial derivatives) to show that for any � 
= 1 the sum x�1 + x�2 + · · · +
x�qh−1 + (ε− x1 − x2 − · · · − xqh−1)

� (with non-negative terms x1, x2, . . . , xqh−1, ε− x1 − x2 − · · · − xqh−1)

reaches its minimum when all the terms are equal.



Another Look at “Provable Security” 29

minimum time t that the forger takes. Since (1− (ε/2qh)
3)k is small for k = O(q3

h/ε
3),

it follows that we should set T ≈ tq3
h/ε

3.
For simplicity let us suppose that ε is not very small, for example, ε > 0.1 (in other

words, the forger has at least a 10% chance of success). In that case we can neglect the
ε−3 term (that is, set ε = 1) when making a rough estimate of the magnitude of t .

Now qh could be of the same magnitude as t ; there is no justification for assuming
that the number of hash queries the forger makes is bounded by anything other than
the forger’s running time. Setting qh = t and ε = 1, we get T ≈ t4. The practical
consequence is that to get a guarantee of 80 bits of security, we would have to choose q
and p in Schnorr’s signature scheme large enough so that the discrete log problem in G
requires time roughly 2320.

In [50] Pointcheval and Stern give a tighter reduction. We state their result when qh = t
and ε = 1, so that we can compare with the conclusion in the previous paragraph. In that
case they show that T < 217t2; that is, to get 80 bits of security p and q must be chosen
so that T ≈ 2177. According to current estimates of the amount of time required to solve
the discrete log problem in a generic group of q elements and in the multiplicative group
of the field of p elements using the best available algorithms (these are the Pollard-ρ
algorithm and the number field sieve, respectively), we have to choose roughly a 354-bit
q and a 7000-bit p. Such sizes would be too inefficient to be used in practice.

On the other hand, if we insist on efficiency and use 1024-bit p and 160-bit q, then what
does the Pointcheval–Stern argument give us? With these bitlengths of p and q we have
T ≈ 280. This means that t ≈ 231.5, which is a totally useless level of security. So if we do
not want the Schnorr scheme to lose its advantage of short signatures and rapid computa-
tion, we probably have to put aside any thought of getting a “provable security” guarantee.

Unfortunately, this type of analysis is generally missing from papers that argue for a
new protocol on the basis of a “proof” of its security. Typically, authors of such papers
trumpet the advantage that their protocol has over competing ones that lack a proof of
security (or that have a proof of security only in the random oracle model), then give a
non-tight reductionist argument, and at the end give key-length recommendations that
would make sense if their proof had been tight. They fail to inform the potential users
of their protocol of the true security level that is guaranteed by the “proof” if, say, a
1024-bit prime is used. It seems to us that cryptographers should be consistent. If one
really believes that reductionist security arguments are very important, then one should
give recommendations for parameter sizes based on an honest analysis of the security
argument, even if it means admitting that efficiency must be sacrificed.

Finally, returning to the question of reductions for Schnorr-type signatures, we note
that Goh and Jarecki [29] recently proposed a signature scheme for which they gave a
tight reduction (in the random oracle model) from the computational Diffie–Hellman
problem (see Section 2). Generally speaking, this is not as good as a scheme whose
security is closely tied to the discrete log problem, which is a more natural and possibly
harder problem. However, Maurer and Wolf [44] have proved that the two problems
Diffie–Hellman and discrete log are equivalent in certain groups. If the Goh–Jarecki
signature scheme is implemented in such groups, then its security is more tightly bound
to the hardness of the discrete logarithm problem than is the Schnorr signature scheme
under the Pointcheval–Stern reduction.



30 N. Koblitz and A. J. Menezes

6. Is the Random Oracle Assumption Bad for Practice?

In Sections 3–5 we saw reductionist security arguments for important cryptographic
systems that used the “random oracle model,” that is, treated hash functions as equivalent
to random functions. Intuitively, this seems like a reasonable thing to do. After all, in
practice a well-constructed hash function would never have any features that distinguish
it from random functions that an attacker could exploit.

However, over the years many researchers have expressed doubts about the wisdom
of relying on the random oracle model. For example, Canetti et al. [18] constructed
examples of cryptographic schemes that are “provably secure” under the random oracle
model but are insecure in any real-world implementation. Even though their examples
were contrived and unlike any system that would ever be designed in practice, many
felt that this work called into question the reliability of security results based on the
random oracle assumption and showed a need to develop systems whose security is based
on weaker assumptions about the hash function. Thus, the Cramer–Shoup encryption
scheme [23] in Section 2 aroused great interest at the time because it was a practical
system for which a reductionist security argument could be given under a weaker hash
function assumption.

Recently, Bellare et al. [5], [4] obtained a striking result. They constructed an example
of a type of cryptographic system that purportedly is practical and realistic and that has a
natural and important security property under the random oracle model but not with any
concrete hash function. The aim of [5] and [4] was to “bring concerns raised by previous
work closer to practice” and thereby show that in real-world cryptography it might be
wise to replace cryptosystems whose reductionist security depends on the random oracle
assumption by those whose security argument uses a weaker hash function model. In
this section we look at the construction in [5] and [4] and explain why we believe that
the papers support a conclusion that is exactly the opposite of that of the authors.

The setting in [5] and [4] is a “hybrid” system; this means that an asymmetric (public-
key) encryption scheme is used to establish a common key for a certain symmetric
(private-key) encryption scheme, after which messages can be sent back and forth effi-
ciently using the symmetric system.

Hybrid systems are important in real-world cryptography. In fact, most electronic
commerce and other secure Internet communications use such a system. For example,
an RSA-based protocol might establish a “session key”—perhaps a 128-bit random
integer—for a buyer and merchant, after which a credit card number and other sensitive
information are transmitted quickly and securely using a symmetric encryption method
(such as RC4) with the session key.

It is important to note that in practice the symmetric and asymmetric systems must
be constructed independently of one another. In Remark 2.1 of [4] it is emphasized that
both the keys and the hash function that are used in the symmetric system must have no
connection with any keys or hash functions used in the public-key system; otherwise, a
symmetric and an asymmetric system might be insecure together even if they are each
secure in isolation. This observation generalizes to a fundamental principle of sound
cryptographic practice for a hybrid system: None of the parameters and none of the
ingredients in the construction of one of the two systems should incorporate elements of
the other system.



Another Look at “Provable Security” 31

However, it turns out that the proof of the main results in [5] and [4] depends in an
essential way on a violation of this principle. Namely, inside the private-key encryption
algorithm is a step involving verification of a valid key and valid ciphertext for the
public-key system (see Figure 3 of [4]). That is, the argument in [4] fails completely
if the above principle of sound cryptographic practice is observed. This is clear from
Remark 4.4 in [4], where the authors explain the central role played by the public-key
verification steps in their private-key encryption.

Thus, one way to interpret their result is that it serves merely as a reminder of the
importance of strictly observing the above principle of independence of the two parts of
a hybrid system. However, we believe that there is a much more interesting and valuable
conclusion to be drawn. The inability of the authors of [4] to obtain their results without
using a construction that violates standard cryptographic practice could be interpreted
as evidence in support of the random oracle model. Our reasoning here is analogous to
what one does in evaluating the real-world intractability of a mathematical problem such
as integer factorization or the elliptic curve discrete logarithm problem (ECDLP). If the
top experts in algorithmic number theory at present can factor at most a 576-bit RSA
modulus [54], then perhaps we can trust a 1024-bit modulus. If the best implementers
of elliptic curve discrete logarithm algorithms have been able to attack at most a 109-bit
ECDLP [19], then perhaps we can have confidence in a 163-bit group size. By the same
token, if one of the world’s leading specialists in provable security (and coauthor of
the first systematic study of the random oracle model [6]) puts forth his best effort to
undermine the validity for practical cryptography of the random oracle assumption, and
if the flawed construction in [4] is the best he can do, then perhaps there is more reason
than ever to have confidence in the random oracle model.

What about other papers that call the random oracle model into question? In all cases
the constructions are at least as far removed from real-world cryptography as the one in
[5] and [4]. We briefly discuss a recent example of this type of work that is concerned
with signatures rather than encryption. In [35] and [36] Goldwasser and Tauman claim
to have found a difficulty with Pointcheval and Stern’s [49] use of the random oracle
assumption to show security of signature schemes constructed by the method of Fiat
and Shamir [26]. That is, suppose that we have an (α;β; γ ) identification protocol.
This means that Alice proves her identity to Bob by sending him a message α, then
receiving from him a random sequence β, and finally responding with a sequence γ
that Bob is convinced only Alice could have sent. In [26] an (α;β; γ ) identification
scheme is converted to an (α; H ; γ ) signature scheme (where H is a hash function) by
replacing Bob’s random β with the value H(α,m) (where m is the message). In [49] it is
shown that if the identification protocol is secure in a strong sense, then the correspond-
ing signature scheme is secure against chosen-message attack under the random oracle
model.

In [35] and [36] Goldwasser and Tauman show that a certain modification of the
(α;β; γ ) protocol that has no effect on the identification procedure leads to an (α; H ; γ )
signature scheme that is still provably secure under the random oracle assumption but is
completely insecure with any concrete hash function H . They modify the identification
scheme by stipulating that Bob accept Alice’s identity not only if she is able to supply a
γ that satisfies him, but also if she is able to guess the value of β when she sends him α.
Since only Bob would know this information at the α-stage of the protocol, this basically



32 N. Koblitz and A. J. Menezes

means that she is allowed to prove either that she is Alice or that she is Bob, which one
assumes she isn’t.16 So this modification of the identification procedure is innocuous.

However, the corresponding signature scheme is useless, because Bob is now told
to accept the signature if Alice can give the hash value H(α,m), and this anyone can
do, since H is computed by a publicly known algorithm. The main point in [35] and
[36] is that the security proof in [49] still goes through, because in the random oracle
model the value H(α,m) is unknown until the hash query is made during the β-stage of
the procedure. According to [35] and [36], this shows that something is wrong with the
random oracle model.

However, once again the random oracle assumption has led us astray only because a
set-up has been chosen that would never arise in practice. Even if the original (α;β; γ )
protocol had the peculiar feature that Bob is instructed to accept a correct guess of β
in lieu of a correct γ , that feature would never be carried over to the signature scheme.
So the difficulty in [35] and [36] would never arise in real-world cryptography. Like
[5], [4], and [18], the work by Goldwasser and Tauman seems to be another case where
leading experts dedicate considerable energy in an attempt to refute the validity of the
random oracle model, but can only come up with a contrived construction that has no
plausible connection with actual cryptographic practice. Our confidence in the random
oracle assumption is unshaken.

7. Conclusion

Here is a summary of the main conclusions of the previous sections:

• (Section 3) There is no need for the PSS or Katz–Wang versions of RSA; one
might as well use just the basic “hash and exponentiate” signature scheme (with a
full-domain hash function).
• (Section 4) Currently the optimal RSA-type encryption scheme is the Boneh–Rabin

“simplified OAEP.”
• (Section 5) Even though the reductionist security results for the Schnorr signature

scheme are quite weak from the standpoint of practical guarantees, it is nevertheless
surprising that the opponents of DSA in 1992 found only very minor objections to
DSA and failed to notice that the modifications of the Schnorr scheme used to get
DSA had caused all of the reductionist security to disappear.
• (Section 6) Some recent work that claims to give evidence against the random oracle

model actually is inadvertently providing evidence in support of that model.

Finally, we end with some informal comments.

8. An Art or a Science?

In his useful and wonderfully written survey [3], Bellare draws a sharp distinction be-
tween two phases in the development of a cryptographic system: the design and study

16 The Alice of cryptographic fame is neither hermaphroditic nor transgendered.



Another Look at “Provable Security” 33

of the underlying mathematical one-way function (what he calls the “atomic primitive”)
and the design and study of secure methods (called “protocols”) of using such a primi-
tive to achieve specific objectives. He argues that the former is an “art” because intuition
and experience play a large role, and the choice between two primitives is ultimately a
judgment call. In contrast, according to Bellare, the selection and analysis of protocols
can be a “science”—it can almost be mechanized—if provable security techniques are
used. He writes:

. . . the design (or discovery) of good atomic primitives is more an art than a
science. On the other hand, I’d like to claim that the design of protocols can
be made a science.

In our opinion, this is a spurious distinction: the protocol stage is as much an art as
the atomic-primitive stage. The history of the search for “provable” security is full of
zigzags, misunderstandings, disagreements, reinterpretations, and subjective judgments.
For example, all of our four assertions in the previous section are highly controversial,
and can neither be proved nor disproved.

Later in the same article, Bellare makes a comment about terminology that we found
helpful:

. . .what is probably the central step is providing a model and definition,
which does not involve proving anything. And one does not “prove a scheme
secure”: one provides a reduction of the security of the scheme to the security
of some underlying atomic primitive [i.e., to the hardness of an underlying
mathematical problem]. For that reason, I sometimes use the term “reduc-
tionist security” to refer to this genre of work.

We have taken his suggestion and used the term “reductionist security” instead of “prov-
able security.”

There are two unfortunate connotations of “proof” that come from mathematics and
make the word inappropriate in discussions of the security of cryptographic systems. The
first is the notion of 100% certainty. Most people not working in a given specialty regard
a “theorem” that is “proved” as something that they should accept without question.
The second connotation is of an intricate, highly technical sequence of steps. From a
psychological and sociological point of view, a “proof of a theorem” is an intimidating
notion: it is something that no one outside an elite of narrow specialists is likely to
understand in detail or raise doubts about. That is, a “proof” is something that a non-
specialist does not really expect to have to read and think about.

The word “argument,” which we prefer here, has very different connotations. An
“argument” is something that should be broadly accessible, and even a reasonably con-
vincing argument is not assumed to be 100% definitive. In contrast to a “proof of a
theorem,” an “argument supporting a claim” suggests something that any well-educated
person can try to understand and perhaps question.

Regrettably, many “provable security” papers seem to have been written to meet
the goal of semantic security against comprehension by anyone outside the field. A
syntactically scrambled informal argument (see, for example, [57]) is followed by a
formalistic proof that is so turgid that other specialists do not even read it. As a result,



34 N. Koblitz and A. J. Menezes

proof-checking has been a largely unmet security objective, leaving the papers vulner-
able to attack. Indeed, Stern [58] has proposed adding a validation step to any security
“proof”:

Also, the fact that proofs themselves need time to be validated through public
discussion was somehow overlooked.

Unfortunately, this validation step will be hard to implement if the public finds the
purported proof to be completely opaque.

Theoreticians who study the security of cryptographic systems should not try to em-
ulate the practices of the most arcane branches of mathematics and science. Mathe-
maticians who study p-adic differential equations, physicists who work on quantum
chromodynamics, and chemists who investigate paramagnetic spin–orbit interactions do
not seem bothered that their work is inaccessible to everyone outside a tiny circle of
fellow specialists. This is to be expected, since their results and methods are intrinsically
highly technical and out of reach to anyone who is not totally immersed in the narrow
subfield. Moreover, only a negligible proportion of the world’s people—somewhere be-
tween 2−25 and 2−30—have any interest in what they are doing; the rest of us do not care
one iota about any of it.

Cryptography is different. A lot of people in industry, government, and academia
would truly like to understand to what extent they can have confidence in the systems
used to protect, encrypt, and authenticate data.

The major theoretical advances—such as probabilistic encryption, the first good def-
inition of secure digital signatures, the random oracle model, and the idea of public-key
cryptography itself—are simple, natural, and easy to understand, or at least become so
with the passage of time. In retrospect they look inevitable and perhaps even “obvious.”
At the time, of course, they were not at all obvious. The fact that these fundamental
concepts seem natural to us now does not diminish our appreciation of their importance
or our high esteem for the researchers who first developed these ideas.

This brings us to another way in which theoretical cryptography is more an art than a
science. Its fruits, and even its inner workings, should be accessible to a broad public. One
can say that something “looks easy” without meaning any disrespect. Top-notch ballet
dancers make it look easy, as if anyone could do it; but the audience knows that their
achievement is possible only through great talent and hard work. By the same token,
researchers in “provable security” should strip away unnecessary formalism, jargon,
and mathematical terminology from their arguments and strive to make their work “look
easy.” If they do so, their influence on real-world cryptography will undoubtedly become
much greater than it is today.

Acknowledgments

We thank Steven Galbraith, Shafi Goldwasser, Ann Hibner Koblitz, Kenny Paterson,
Berkant Ustaoglu, and the two anonymous referees for their valuable comments on
earlier drafts of the paper.



Another Look at “Provable Security” 35

References

[1] D. Agrawal, B. Archambeault, J. Rao and P. Rohatgi, The EM side-channel(s), Cryptographic Hardware
and Embedded Systems – CHES 2002, LNCS 2523, Springer-Verlag, Berlin, 2002, pp. 29–45.

[2] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Ann. of Math., 160 (2004), 781–793.
[3] M. Bellare, Practice-oriented provable-security, Proc. First International Workshop on Information

Security (ISW ’97), LNCS 1396, Springer-Verlag, Berlin, 1998, pp. 221–231.
[4] M. Bellare, A. Boldyreva and A. Palacio, An uninstantiable random-oracle-model scheme for a hybrid-

encryption problem, Cryptology ePrint Archive, Report 2003/077, 2004.
[5] M. Bellare, A. Boldyreva and A. Palacio, An uninstantiable random-oracle-model scheme for a hybrid-

encryption problem, Advances in Cryptology – Eurocrypt 2004, LNCS 3027, Springer-Verlag, Berlin,
2004, pp. 171–188.

[6] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols,
Proc. First Annual Conf. Computer and Communications Security, ACM, New York, 1993, pp. 62–73.

[7] M. Bellare and P. Rogaway, Optimal asymmetric encryption—how to encrypt with RSA, Advances in
Cryptology – Eurocrypt ’94, LNCS 950, Springer-Verlag, Berlin, 1994, pp. 92–111.

[8] M. Bellare and P. Rogaway, The exact security of digital signatures—how to sign with RSA and Rabin,
Advances in Cryptology – Eurocrypt ’96, LNCS 1070, Springer-Verlag, Berlin, 1996, pp. 399–416.

[9] D. Bernstein, Proving tight security for standard Rabin–Williams signatures, Preprint, 2003.
[10] D. Bleichenbacher, A chosen ciphertext attack against protocols based on the RSA encryption standard

PKCS #1, Advances in Cryptology – Crypto ’98, LNCS 1462, Springer-Verlag, Berlin, 1998, pp. 1–12.
[11] D. Boneh, The decision Diffie–Hellman problem, Proc. Third Algorithmic Number Theory Symp., LNCS

1423, Springer-Verlag, Berlin, 1998, pp. 48–63.
[12] D. Boneh, Simplified OAEP for the RSA and Rabin functions, Advances in Cryptology – Crypto 2001,

LNCS 2139, Springer-Verlag, Berlin, 2001, pp. 275–291.
[13] D. Boneh, R. DeMillo and R. Lipton, On the importance of checking cryptographic protocols for faults,

Advances in Cryptology – Eurocrypt ’97, LNCS 1233, Springer-Verlag, Berlin, 1997, pp. 37–51.
[14] D. Boneh and R. Lipton, Algorithms for black-box fields and their application to cryptography, Advances

in Cryptology – Crypto ’96, LNCS 1109, Springer-Verlag, Berlin, 1996, pp. 283–297.
[15] D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, J. Cryptology, 17 (2004),

297–319.
[16] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring, Advances in Cryptology

– Eurocrypt ’98, LNCS 1233, Springer-Verlag, Berlin, 1998, pp. 59–71.
[17] D. Branstad and M. Smid, Responses to comments on the NIST proposed digital signature standard,

Advances in Cryptology – Crypto ’92, LNCS 740, Springer-Verlag, Berlin, 1993, pp. 76–88.
[18] R. Canetti, O. Goldreich and S. Halevi, The random oracle model revisited, Proc. 30th Annual Symp.

Theory of Computing, ACM, New York, 1998, pp. 209–218.
[19] Certicom Corp., Certicom announces elliptic curve cryptography challenge winner, Press Release, 27

April 2004.
[20] D. Coppersmith, Finding a small root of a univariate modular equation, Advances in Cryptology –

Eurocrypt ’96, LNCS 1070. Springer-Verlag, Berlin, 1996, pp. 155–165.
[21] J.-S. Coron, On the exact security of full domain hash, Advances in Cryptology – Crypto 2000, LNCS

1880, Springer-Verlag, Berlin, 2000, pp. 229–235.
[22] J.-S. Coron, Optimal security proofs for PSS and other signature schemes, Advances in Cryptology –

Eurocrypt 2002, LNCS 2332, Springer-Verlag, Berlin, 2002, pp. 272–287.
[23] R. Cramer and V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen

ciphertext attack, Advances in Cryptology – Crypto ’98, LNCS 1462, Springer-Verlag, Berlin, 1998,
pp. 13–25.

[24] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, IT-22 (1976),
644–654.

[25] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans.
Inform. Theory, IT-31 (1985), 469–472.

[26] A. Fiat and A. Shamir, How to prove yourself: practical solutions to identification and signature problems,
Advances in Cryptology – Crypto ’86, LNCS 263, Springer-Verlag, Berlin, 1987, pp. 186–194.



36 N. Koblitz and A. J. Menezes

[27] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern, RSA-OAEP is secure under the RSA assumption,
Advances in Cryptology – Crypto 2001, LNCS 2139, Springer-Verlag, Berlin, 2001, pp. 260–274.

[28] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, San Franicsco, CA, 1979.

[29] E. Goh and S. Jarecki, A signature scheme as secure as the Diffie–Hellman problem, Advances in
Cryptology – Eurocrypt 2003, LNCS 2656, Springer-Verlag, Berlin, 2003, pp. 401-415.

[30] O. Goldreich, Foundations of Cryptography, Vol. 2, Cambridge University Press, Cambridge, 2004.
[31] S. Goldwasser and S. Micali, Probabilistic encryption and how to play mental poker keeping secret all

partial information, Proc. 14th Annual Symp. Theory of Computing, ACM, New York, 1982, pp. 365–377.
[32] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984), 270–299.
[33] S. Goldwasser, S. Micali and R. Rivest, A “paradoxical” solution to the signature problem, Proc. 25th

Annual Symp. Foundations of Comput. Science, 1984, pp. 441–448.
[34] S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against adaptive chosen-

message attacks, SIAM J. Comput., 17 (1988), 281–308.
[35] S. Goldwasser and Y. Tauman, On the (in)security of the Fiat–Shamir paradigm, Proc. 44th Annual Symp.

Foundations of Comput. Science, 2003, pp. 102–113.
[36] S. Goldwasser and Y. Tauman, On the (in)security of the Fiat–Shamir paradigm, Cryptology ePrint

Archive, Report 2003/034, 2003.
[37] A. Joux and K. Nguyen, Separating Decision Diffie–Hellman from Computational Diffie–Hellman in

cryptographic groups, J. Cryptology, 16 (2003), 239–247.
[38] J. Katz and N. Wang, Efficiency improvements for signature schemes with tight security reductions, Proc.

10th ACM Conf. Computer and Communications Security, 2003, pp. 155–164.
[39] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, Berlin, 1987.
[40] P. Kocher, Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems,

Advances in Cryptology – Crypto ’96, LNCS 1109, Springer-Verlag, Berlin, 1996, pp. 104–113.
[41] P. Kocher, J. Jaffe and B. Jun, Differential power analysis, Advances in Cryptology – Crypto ’99, LNCS

1666, Springer-Verlag, Berlin, 1999, pp. 388–397.
[42] J. Manger, A chosen ciphertext attack on RSA optimal asymmetric encryption padding (OAEP) as

standardized in PKCS #1 v2.0, Advances in Cryptology – Crypto 2001, LNCS 2139, Springer-Verlag,
Berlin, 2001, pp. 230–238.

[43] U. Maurer, Towards the equivalence of breaking the Diffie–Hellman protocol and computing discrete
logarithms, Advances in Cryptology – Crypto ’94, LNCS 839, Springer-Verlag, Berlin, 1994, pp. 271–281.

[44] U. Maurer and S. Wolf, The relationship between breaking the Diffie–Hellman protocol and computing
discrete logarithms, SIAM J. Comput., 28(5) (1999), 1689–1731.

[45] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer, Dordrecht, 1993.
[46] S. Micali, C. Rackoff and B. Sloan, The notion of security for probabilistic cryptosystems, SIAM J.

Comput., 17 (1988), 412–426.
[47] A. Miyaji, M. Nakabayashi and S. Takano, New explicit conditions of elliptic curve traces for FR-

reduction, IEICE – Trans. Fund. Electron., Commun. Comput. Sci., E84-A(5) (2001), 1234–1243.
[48] M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, Proc.

22nd Annual Symp. Theory of Computing, ACM, New York, 1990, pp. 427–437.
[49] D. Pointcheval and J. Stern, Security proofs for signature schemes, Advances in Cryptology – Eurocrypt

’96, LNCS 1070, Springer-Verlag, Berlin, 1996, pp. 387–398.
[50] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind signatures, J. Cryptology,

13 (2000), 361–396.
[51] M. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Technical Report

LCS/TR-212, MIT Lab. for Computer Science, 1979.
[52] C. Rackoff and D. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext

attack, Advances in Cryptology – Crypto ’91, LNCS 576, Springer-Verlag, Berlin, 1992, pp. 433–444.
[53] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryp-

tosystems, Commun. ACM, 21(2) (1978), 120–126.
[54] RSA Security Inc., Mathematicians from around the world collaborate to solve latest RSA factoring

challenge, Press Release, 27 April 2004.
[55] C. P. Schnorr, Efficient signature generation for smart cards, J. Cryptology, 4 (1991), 161–174.



Another Look at “Provable Security” 37

[56] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, Advances in Cryptology –
Eurocrypt 2000, LNCS 1807, Springer-Verlag, Berlin, 2000, pp. 275–288.

[57] V. Shoup, OAEP reconsidered, Advances in Cryptology – Crypto 2001, LNCS 2139, Springer-Verlag,
Berlin, 2001, pp. 239–259.

[58] J. Stern, Why provable security matters, Advances in Cryptology – Eurocrypt 2003, LNCS 2656, Springer-
Verlag, Berlin, 2003, pp. 449–461.

[59] J. Stern, D. Pointcheval, J. Malone-Lee and N. Smart, Flaws in applying proof methodologies to signature
schemes, Advances in Cryptology – Crypto 2002, LNCS 2442, Springer-Verlag, Berlin, 2002, pp. 93–110.

[60] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math., 141 (1995),
553–572.

[61] Y. Watanabe, J. Shikata and H. Imai, Equivalence between semantic security and indistinguishability
against chosen ciphertext attacks, Public Key Cryptography – PKC 2003, LNCS 2567, Springer-Verlag,
Berlin, 2003, pp. 71–84.

[62] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math., 141 (1995), 443–551.
[63] H. Williams, A modification of the RSA public-key encryption procedure, IEEE Trans. Inform. Theory,

IT-26 (1980), 726–729.


