
J. Cryptol. (2008) 21: 149–177
DOI: 10.1007/s00145-007-9005-7

Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups*

Dan Boneh1

Stanford University, Stanford, CA, USA
dabo@cs.stanford.edu

Xavier Boyen
Voltage Security Inc., Palo Alto, CA, USA

xb@boyen.org

Communicated by Arjen K. Lenstra

Received 20 January 2005 and revised 26 December 2006
Online publication 11 September 2007

Abstract. We describe a short signature scheme that is strongly existentially un-
forgeable under an adaptive chosen message attack in the standard security model. Our
construction works in groups equipped with an efficient bilinear map, or, more gener-
ally, an algorithm for the Decision Diffie-Hellman problem. The security of our scheme
depends on a new intractability assumption we call Strong Diffie-Hellman (SDH), by
analogy to the Strong RSA assumption with which it shares many properties. Signa-
ture generation in our system is fast and the resulting signatures are as short as DSA
signatures for comparable security. We give a tight reduction proving that our scheme
is secure in any group in which the SDH assumption holds, without relying on the
random oracle model.

Key words. Digital signatures, Bilinear pairings, Strong unforgeability, Standard
model.

1. Introduction

Short signatures have always been desirable in applications with constrained space or
bandwidth, such as those with printed material or a human typist in the loop. Although
several approaches have been proposed over the years, it has remained a challenge to
construct short signatures with generic provable security guarantees, especially without
the use of random oracles. Towards this goal, Boneh, Lynn, and Shacham (BLS) [11]
proposed a short digital signature scheme where signatures are about half the size of
DSA signatures with the same level of security. The BLS scheme is shown to be ex-
istentially unforgeable under an adaptive chosen message attack in the random oracle

* An extended abstract entitled “Short Signatures Without Random Oracles” (Boneh and Boyen in Ad-
vances in Cryptology—EUROCRYPT 2004, LNCS, vol. 3027, pp. 56–73, 2004) appears in Eurocrypt 2004.

1 Supported by NSF and the Packard Foundation.

149

150 D. Boneh and X. Boyen

model; its security is based on the Computational Diffie-Hellman (CDH) assumption
on certain elliptic curves equipped with a bilinear map that effectively renders the De-
cisional Diffie-Hellman (DDH) problem easy.

In this paper we describe a signature scheme in a similar setting, but whose security
does not require random oracles. In addition, our signatures can be made as short as
BLS signatures, and are much more efficient. We prove security of our scheme using
a complexity assumption we call the Strong Diffie-Hellman assumption, or SDH for
short. Roughly speaking, for some parameter q , the SDH assumption in a group G of
prime order p states that the following problem is intractable:

Given g,gx, g(x2), . . . , g(xq) ∈ G as input, output a pair (c, g1/(x+c)) where c ∈ Zp.

Asymptotically, we say that the SDH assumption holds in some infinite family of
groups, if the q-SDH problem above is hard for any function q that is polynomially
bounded in the security parameter, where the group size p grows exponentially with
the security parameter. Using this assumption, we construct a signature scheme that is
existentially unforgeable under an adaptive chosen message attack, without relying on
the random oracle methodology.1

Currently, the most practical signature schemes secure without random oracles, such
as [18,23], are based on the Strong RSA assumption. It states that, given an RSA mod-
ulus N and s ∈ Z

×
N , it is difficult to construct a non-trivial pair (c, s1/c) where c ∈ Z.

Roughly speaking, what makes Strong RSA useful for constructing secure signature
schemes is the following property: given a problem instance (N, s) it is possible to con-
struct a new instance (N, s′) with some number q of known solutions (ci, (s

′)1/ci), such
that learning any additional solution (c, (s′)1/c) makes it possible to solve the original
problem instance. This property provides a way to prove security against an adaptive
chosen message attack.

In this paper, we exploit a similar property of the q-SDH problem as a foundation for
our constructions, albeit in a vastly different algebraic setting. Hence, the SDH assump-
tion may be viewed as a discrete logarithm analogue of the Strong RSA assumption.
We believe that the properties of SDH make it a useful tool for constructing crypto-
graphic systems, and we expect to see many other systems based on it in the future.
Some examples can already be found in [10,19]. We remark that Mitsunari, Sakai, and
Kasahara [35] previously used a weaker assumption related to SDH to construct a traitor
tracing scheme (see also [47] for an analysis of the system). Complexity assumptions
and their properties are discussed in Section 3.

Our short signatures necessitate a special kind of group in which the Diffie-
Hellman problem can be decided efficiently. The only well-known examples of this
are (sub)groups of points on certain algebraic curves equipped with a bilinear map such
as the Weil pairing. For concreteness, we shall thus describe our constructions in terms
of bilinear pairings, although it should be noted that any efficient method for testing the
Diffie-Hellman property can be substituted in all our constructions. We provide some
background on secure signatures and bilinear maps in Section 2.

1 We mention that the SDH assumption studied in this article is slightly weaker and more general than the
original assumption proposed in the Eurocrypt 2004 extended abstract [9].

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 151

We construct our main secure signature scheme from bilinear pairings, and prove its
security against existential forgery under adaptive chosen message attack in the standard
model. Our full signatures are as short as DSA signatures, but are provably secure in the
absence of random oracles. They support efficient off-line/on-line signing, and a limited
form of message recovery which makes it possible to further reduce the total length of
the signed message by embedding a few bits of the message in the signature itself. We
present all these constructions in Section 4.

We further show that with random oracles, the SDH assumption gives even shorter
signatures. We do so using a generalization of the Katz-Wang construction [29]. The
resulting scheme produces signatures whose length is about the same as BLS signatures,
but which can be verified twice as fast, and created five to ten times faster. A related
system using random oracles has been independently described by Zhang et al. [48].
These random oracle signatures are discussed in Section 5.

To gain some confidence in the SDH assumption in the presence of bilinear maps,
we provide a lower bound on the computational complexity of solving the q-SDH prob-
lem in a generic group model [45]. This shows that, even with the help of pairings, no
generic attack on the SDH assumption is possible. In other words, any system provably
reducible to SDH can only be defeated in the mathematical sense by considering the
structure of the particular groups in which it is implemented. Any attack on SDH in the
elliptic curve bilinear groups used in practice would have to expose heretofore unknown
structural properties of these curves. Our lower bound shows that the time to break q-
SDH in a generic group of size p is at least �(

√
p/q) provided that q < O(3

√
p).

Brown and Gallant [12] and Cheon [14] presented a matching generic upper bound:
when q is approximately 3

√
p, they gave generic group algorithms that can solve the q-

SDH problem in time Õ(
√

p/q) under certain conditions. We prove our generic lower
bound in Section 6.

We refer to [11] for applications of short signatures. We merely mention that short
digital signatures are needed in environments with stringent bandwidth constraints, such
as bar-coded digital signatures on postage stamps [37,41]. In fact, our short signatures
with limited message recovery in the standard model are particularly well-suited for
these types of applications where the message itself is very compact, such as a serial
number. Other short signature systems, proposed by Patarin et al. [17,39], are based on
the Hidden Field Equation (HFE) problem.

2. Preliminaries

Before presenting our results we briefly review two notions of security for signature
schemes and give a succinct refresher on groups equipped with a bilinear map.

2.1. Secure Signature Schemes

A signature scheme is made up of three algorithms, KeyGen, Sign, and Verify, for gen-
erating keys, signing, and verifying signatures, respectively. For a fixed security para-
meter, these algorithms work as follows:

KeyGen outputs a random key pair (PK,SK);
Sign takes a private key SK and a message M from some set M, and returns a signa-

ture σ ;

152 D. Boneh and X. Boyen

Verify takes a public key PK and a signed message (M,σ), and returns valid or
invalid.

The signature scheme is said to be correct, or consistent, if it satisfies the following prop-
erty: ∀M ∈ M, ∀(PK,SK) ← KeyGen(), ∀σ ← Sign(SK,M) : Pr[Verify(PK,M,σ) =
valid] = 1.

Strong Existential Unforgeability

The standard notion of security for a signature scheme is called existential unforge-
ability under an adaptive chosen message attack [25]. We consider a slightly stronger
notion of security, called strong existential unforgeability [1], which is defined using the
following game between a challenger and an adversary A:

Setup: The challenger runs algorithm KeyGen to obtain a public key PK and a private
key SK. The adversary is given PK.

Queries: Proceeding adaptively, the adversary requests signatures on at most qS mes-
sages of its choice M1, . . . ,Mqs ∈ {0,1}�, under PK. The challenger responds to each
query with a signature σi ← Sign(SK,Mi).

Output: Eventually, the adversary outputs a pair (M,σ) and wins the game if:

1. (M,σ) is not any of (M1, σ1), . . . , (Mqs , σqs); and
2. Verify(PK,M,σ) = valid.

We define Sig AdvA to be the probability that the adversary A wins in the above game,
taken over the coin tosses made by A and the challenger.

Definition 1. A forger A is said to (t, qS, ε)-break a signature scheme if A runs in
time at most t , A makes at most qS signature queries, and Sig AdvA is at least ε. A sig-
nature scheme is (t, qS, ε)-strongly existentially unforgeable under an adaptive chosen
message attack if there exists no forger that (t, qS, ε)-breaks it.

When discussing security in the random oracle model, we add a fourth parameter qH

to denote an upper bound on the number of queries that the adversary A makes to the
random oracle.

We note that the definition above captures a stronger version of existential unforge-
ability than the standard one, as it requires that the adversary cannot even generate a
new signature on a previously signed message. This property is required for some ap-
plications [1,13,42]. All our signature schemes satisfy this stronger security notion.

Weak Chosen Message Attacks

We will also use a less stringent notion of security which we call existential unforge-
ability under a weak chosen message attack (this is sometimes called a generic chosen
message attack). In a weak chosen message attack, we require that the adversary sub-
mit all signature queries before seeing the public key. This notion is defined using the
following game between a challenger and an adversary A:

Query: The adversary sends to the challenger a list of qS messages M1, . . . ,Mqs ∈
{0,1}�.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 153

Response: The challenger runs algorithm KeyGen to generate a public key PK and
a private key SK. Next, the challenger generates signatures σi ← Sign(SK,Mi) for
i = 1, . . . , qS . The challenger then gives to the adversary the public key PK and the
qS signatures σ1, . . . , σqs .

Output: The adversary outputs a pair (M,σ) and wins the game if:

1. (M,σ) is not any of (M1, σ1), . . . , (Mqs , σqs); and
2. Verify(PK,M,σ) = valid.

We define W-Sig AdvA to be the probability that the adversary A wins in the above
game, taken over the coin tosses made by A and the challenger.

Definition 2. A forger A (t, qS, ε)-weakly breaks a signature scheme if A runs in
time at most t , A makes at most qS signature queries, and W-Sig AdvA is at least ε.
A signature scheme is (t, qS, ε)-existentially unforgeable under a weak chosen message
attack if there exists no forger that (t, qS, ε)-weakly breaks it.

2.2. Bilinear Groups

Signature verification in our scheme requires a decision procedure for the Diffie-
Hellman problem, which can be implemented using a bilinear map. We briefly review
the necessary facts about bilinear maps and groups, in the notation of [11]:

• (G1,∗), (G2,∗), and (GT ,∗) are three cyclic groups of prime order p;
• g1 is a generator of G1 and g2 is a generator of G2;
• e is a bilinear pairing e : G1 × G2 → GT , i.e., a map satisfying the following

properties:
Bilinearity: ∀u ∈ G1, ∀v ∈ G2, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;
Non-degeneracy: e(g1, g2) 	= 1 and is thus a generator of GT .

All group operations and the bilinear map must be efficiently computable. Formally,
one defines a bilinear group generation algorithm G that takes as input a security pa-
rameter λ ∈ Z

+ and outputs the description of groups G1,G2,GT and a bilinear map
e : G1 ×G2 → GT . We then require the existence of probabilistic polynomial time algo-
rithms (in λ) for computing the group operation in G1,G2,GT and the bilinear map e.

For simplicity one can set G1 = G2. However, as in [11], we consider the more gen-
eral case where G1 	= G2; this allows us to take advantage of certain families of alge-
braic curves in order to obtain the shortest possible signatures. Specifically, when G1

and G2 are realized as (sub)groups of points on certain elliptic curves over a finite field
F, the coordinates of the points in G1 may live in the ground field F, whereas those of
the points in G2 may live in an extension of F. Since the elements in G1 may have a
shorter representation than those of G2, it is useful for us to distinguish the two.

Several papers that use a bilinear map where G1 	= G2 also assume the existence of
a homomorphism ψ from G2 to G1. Such a homomorphism, known as the trace map,
often exists when G1 and G2 are subgroups of an elliptic curve. However there are
several cases, called type 3 groups [22], where this homomorphism is degenerate. In
this paper we will not need a homomorphism ψ from G2 to G1 or its inverse. This
enables our signatures to operate with any bilinear group construction currently known.

154 D. Boneh and X. Boyen

The bilinear map e can be realized on Abelian varieties using variants of the Weil or
Tate pairing [21,40]. On algebraic curves in particular, these are very efficiently com-
putable using an algorithm proposed in 1986 by Miller [34]. In the usual instantiations,
the groups G1 and G2 are subgroups of order p of the groups, defined by a curve E

over a finite field F, of points with coordinates in F or in an extension of F. The target
group GT is then the multiplicative subgroup of order p in a large enough extension of
F to contain all p-th roots of unity. Recent advances in the area of bilinear pairings have
produced new and more efficient variants of the Tate pairing, known as “Eta” [3] and
“Ate” [27]. All these pairings can be efficiently computed using variants of the Miller
algorithm on the appropriate curves. We note that in all known examples, GT is always
different from G1 and G2.

We define the general notion of bilinear group as follows.

Definition 3. We say that (G1,G2) are a bilinear group pair if there exists a group
GT and a non-degenerate bilinear map e : G1 × G2 → GT , such that the group order
p = |G1| = |G2| = |GT | is prime, and the pairing e and the group operations in G1, G2,
and GT are all efficiently computable.

Joux and Nguyen [28] showed that an efficiently computable bilinear map provides
an algorithm for solving the Decision Diffie-Hellman (DDH) problem when G1 = G2.
More generally, when G1 	= G2, we can build from the bilinear map a predicate for a
“cross-group” DDH relation between pairs of elements of G1 and G2. The cross-group
DDH problem is as follows:

Given g1, g
a
1 ∈ G1 and g2, g

b
2 ∈ G2, decide whether a = b (mod p).

This problem is easily solved by using the pairing to test whether e(ga
1 , g2) = e(g1, g

b
2)

in GT . Pairings are merely used for that purpose in all of our constructions. For the
sake of concreteness, our exposition shall make explicit use of the bilinear map, al-
though we emphasize that all our results can be restated using a generic predicate (given
as an oracle) for cross-group DDH in (G1,G2), without the need for an explicit pair-
ing.

3. The Strong Diffie-Hellman Assumption

We now give a formal definition of the SDH computational complexity assumption.
The definition we propose presently is weaker and cleaner than in the Eurocrypt 2004
original paper [9], as it no longer requires the existence of an efficiently computable
group homomorphism ψ : G2 → G1.

We first define the concrete q-SDH problem, stated with respect to a specific bilinear
group pair (G1,G2) and a parameter q . We then give an asymptotic definition of the
SDH assumption.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 155

3.1. Concrete Formulation of SDH

Let G1 and G2 be two cyclic groups of prime order p, respectively generated by g1

and g2. In the bilinear group pair (G1,G2), the q-SDH problem is stated as follows:

Given as input a (q + 3)-tuple of elements

(g1, g
x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2) ∈ G

q+1
1 × G

2
2,

output a pair (c, g
1/(x+c)

1) ∈ Zp × G1 for a freely chosen value c ∈ Zp \ {−x}.

Note that when G1 = G2 the pair (g2, g
x
2) is redundant since in that case (g2, g

x
2) can

be generated by raising (g1, g
x
1) to a random power. An algorithm A solves the q-SDH

problem in the bilinear group pair (G1,G2) with advantage ε if

SDH Advq,A := Pr

[
A

(
g1, g

x
1 , . . . , g

(xq)
1 , g2, g

x
2

) =
(
c, g

1
x+c

1

)]
≥ ε, (1)

where the probability is over the random choice of generators g1 ∈ G1 and g2 ∈ G2, the
random choice of x ∈ Z

×
p , and the random bits consumed by A.

Definition 4. We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if no t-time
algorithm has advantage at least ε in solving the q-SDH problem in (G1,G2).

The concrete security results we shall obtain are based on Definition 4 and will de-
pend on four parameters: p, q , t , ε. Occasionally we drop the t and ε and assume that
the groups are understood from context, and speak of the q-SDH problem and the SDH
assumption.

3.2. Asymptotic Formulation of SDH

To formulate the SDH assumption asymptotically, we need a bilinear group generation
algorithm G.

Definition 5. A bilinear group generator G is a Probabilistic Polynomial Time (PPT)
algorithm that, on input 1λ, outputs the description of groups G1,G2,GT and a bilinear
map e : G1 × G2 → GT , so that (G1,G2) form a bilinear group pair.

We now define the asymptotic SDH assumption. In these settings, the quantity
SDH Advq,A from (1) becomes a function of λ. It is easy to interpret our results based
on Definition 6.

Definition 6. Let G be a bilinear group generator. We say that the SDH assumption
holds for G if, for every PPT algorithm A and for every polynomially bounded function
q : Z → Z the function SDH Advq(λ),A(λ) is a negligible function in λ.

156 D. Boneh and X. Boyen

3.3. Properties of SDH and Related Assumptions

As we will see and exploit in the next section, the SDH problem shares with the Strong
RSA problem the very useful property of admitting a large number of solutions that
are “insulated” from each other. Therefore, we view the SDH assumption as a discrete
logarithm analogue of the Strong RSA assumption, even though the latter is based on
the hardness of factoring.

Random Self Reduction. We observe that the Strong Diffie-Hellman problem has a
simple random self-reduction. Consider an instance (g1, g

x
1 , . . . , gxq

1 , g2, g
x
2) given as

input. To reduce this input to a random q-SDH instance in the same groups, we select

random y, z1, z2 ∈ Z
×
p , define g̃1 ← g

z1
1 and g̃2 ← g

z2
2 , and compute g̃

(xy)i

1 ← (gxi

1)y
iz1

for i = 1, . . . , q , and g̃
xy

2 ← (gx
2)yz2 . Consequently, (g̃1, g̃

(xy)

1 , . . . , g̃
(xy)q

1 , g̃2, g̃
(xy)

2) is a
random q-SDH instance, statistically independent from the first. Then, given any valid
solution (c̃, h̃) = (c̃, g̃

1/(xy+c̃)

1) to the second instance, we can extract a solution (c,h)

to the first by letting c ← c̃/y (mod p) and h ← (h̃)y/z1 = g
1/(x+c)

1 .

Relation to DHI. We mention that a weaker version of the SDH assumption was pre-
viously used by Mitsunari, Sakai, and Kasahara [35] to construct a traitor tracing sys-
tem (see also [47]), by Boneh and Boyen [8] to construct an identity-based encryption
system, and by Dodis and Yampolskiy [19] to construct a verifiable pseudo-random
function.

Using our notation, this weaker assumption requires the solver to output g
1/(x+c)

1
for a prescribed value of c listed in the problem instance. Recall that in SDH the
solver may freely choose c. The weaker assumption can be shown to be equivalent
to the hardness of the following problem (stated concretely in a single group G): given
g,gx, g(x2), . . . , g(xq), output g1/x . This problem is called the q-Diffie-Hellman Inver-
sion problem or q-DHI for short. We note that each instance of the DHI problem admits
exactly one solution, whereas an SDH instance in a group of order p admits p − 1
distinct solutions. Indeed, despite their superficial resemblance, the SDH and DHI as-
sumptions exhibit rather different properties.

Generic Group Analysis. To provide some confidence in the SDH assumption, we
gave in [9] a lower bound on the complexity of solving the q-SDH problem for any
suitably bounded q in a generic group [45] of prime order p. In particular, we showed
that any generic solver for the q-SDH problem with q < O(3

√
p) must run in expected

time �(
√

p/q).
Analyses due to Brown and Gallant [12] and to Cheon [14] imply that for special

p, the secret exponent x in the q-SDH problem (and related problems such as q-DHI)
can be recovered generically in less time than needed to compute the discrete log. More
precisely, Cheon shows that if either p − 1 or p + 1 has a factor r ≤ q , then the secret
x can be computed generically in time Õ(

√
p/r + √

r) or Õ(
√

p/r + r) respectively,
rather than O(

√
p) per the generic discrete log. For values of q ≈ 3

√
p, Cheon’s method

is most efficient when there is a large factor r ≈ q , in which case the time and space
complexity is O(logp · 3

√
p) = Õ(

√
p/q). Hence, these generic algorithms can be

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 157

viewed as a matching upper bound to our generic lower bound, showing that the lower
bound is tight, at least for certain p. We prove the generic lower bound for all primes p

in Section 6.

4. Short Signatures Without Random Oracles

We now construct a fully secure short signature scheme in the standard model using the
SDH assumption. We consider this to be the main result of the paper.

4.1. The Full Signature Scheme

Let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p. For the mo-
ment we assume that the messages m to be signed are elements in Zp , but as we mention
in Section 4.7, the domain can be extended to all of {0,1}� using (target) collision re-
sistant hashing.

Key Generation: Select random generators g1 ∈ G1 and g2 ∈ G2, and random integers
x, y ∈ Z

×
p . Compute u ← gx

2 ∈ G2 and v ← g
y

2 ∈ G2. Also compute z ← e(g1, g2) ∈
GT . The public key is the tuple (g1, g2, u, v, z). The secret key is the triple (g1, x, y).

Signing: Given a secret key (g1, x, y) and a message m ∈ Zp , pick a random r ∈ Zp \
{− x+m

y
} and compute σ ← g

1/(x+m+yr)

1 ∈ G1. Here, the inverse 1/(x + m + yr) is
computed modulo p. The signature is the pair (σ, r).

Verification: Given a public key (g1, g2, u, v, z), a message m, and a signature (σ, r),
verify that (g1, g2, σ, gm

2 vru) is a DDH tuple by testing whether e(σ, u · gm
2 · vr) =

z. If the equality holds the signature is declared valid; otherwise it is declared
invalid.

We note that including both g1 and z in the public key is redundant. It is convenient to
carry them both in the description of the system since g1 is needed for signing and z is
used for fast verification. In practice, g1 need not be included in the public key.

Theorem 7. The signature scheme is consistent.

Proof. We need to show that for all key pairs and all messages, any signature gener-
ated by the signing procedure verifies as valid under the corresponding public key.
Indeed, we have

e(σ,u · gm
2 · vr) = e(g

1/(x+m+yr)

1 , gx
2 · gm

2 · gyr

2) = e(g1, g2)
x+m+yr
x+m+yr = z

provided that x + m + yr 	= 0 (modp), as required. �

4.2. Main Features and Security

We list below the principal properties of our signature scheme. Additional features,
extensions, and related constructions will be discussed in later sections.

158 D. Boneh and X. Boyen

Bandwidth. A signature contains two elements (σ, r), each of length approximately
log2 p bits, therefore the total signature length is approximately 2 log2 p. When we in-
stantiate the pairing using the elliptic curves described in [2,11], we obtain a signature
whose length is approximately the same as a DSA signature with the same security, but
which is proven secure without the random oracle model.

Performance. Key generation times are comparable to the BLS scheme [11]. Signature
times are much faster than BLS, by up to an order of magnitude, because our signing
algorithm only makes one exponentiation to the fixed base g1, and this can be greatly
accelerated with a moderate amount of reusable pre-computation. Verification times
are also faster than BLS since verification requires only one pairing and one multi-
exponentiation, instead of two pairing computations in BLS. Since exponentiation tends
to be faster than pairing, signature verification is faster than in the BLS system. We note
that BLS verification time can be improved using multi-pairing [26], but the result is
still slower than the system in this paper.

Security. The following theorem shows that the scheme above is existentially unforge-
able in the strong sense under adaptive chosen message attacks, provided that the SDH
assumption holds in (G1,G2). We consider an attacker who makes up to qS adaptive
signature queries, and reduce the forgery to the resolution of a random q-SDH instance
for q = qS . Our reduction is tight (up to a small constant factor approximately equal
to 2).

Theorem 8. Suppose the (q, t ′, ε′)-SDH assumption holds in (G1,G2). Then the sig-
nature scheme above is (t, qS, ε)-secure against strong existential forgery under an
adaptive chosen message attack provided that

qS ≤ q, ε ≥ 2ε′ + qS/p ≈ 2ε′ and t ≤ t ′ − �(q2T),

where T is the maximum time for an exponentiation in G1, G2, and Zp .

Proof. We prove the theorem using two lemmas. In Lemma 9, we first describe a sim-
plified signature scheme and prove its existential unforgeability against weak chosen
message attacks under the SDH assumption. In Lemma 10, we then show that the se-
curity of the basic scheme implies the security of the full scheme. From these results
(Lemmas 9 and 10), Theorem 8 follows easily. We present the proof in two steps since
we will make another use of the construction used to prove Lemma 9 later on in this
paper. �

4.3. A Weakly Secure Short Signature Scheme

We first show how the SDH assumption can be used to construct an existentially un-
forgeable scheme under a weak chosen message attack. This construction demonstrates
the main properties of the SDH assumption. In the next section we show that the security
of this basic scheme implies the security of the full scheme.

The weakly secure short signature scheme is as follows. As before, let (G1,G2) be
a bilinear group pair where |G1| = |G2| = p for some prime p. For the moment we
assume that the messages m to be signed are elements in Zp .

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 159

Key Generation: Select random generators g1 ∈ G1 and g2 ∈ G2, and a random inte-
ger x ∈ Z

×
p . Compute v ← gx

2 ∈ G2 and z ← e(g1, g2) ∈ GT . The public key is the
tuple (g1, g2, v, z). The secret key is (g1, x).

Signing: Given a secret key (g1, x) and a message m ∈ Zp , output the signature

σ ← g
1/(x+m)

1 ∈ G1. Here 1/(x + m) is computed modulo p. By convention in this
context we define 1/0 to be 0 so that in the unlikely event that x + m = 0 we have
σ ← 1 ∈ G1.

Verification: Given a public key (g1, g2, v, z), a message m, and a signature σ , verify
the equality e(σ, v · gm

2) = z. If the equality holds, or if σ = 1 and v · gm
2 = 1, the

result is valid. Otherwise, the result is invalid.

Again, in practice one would omit g1 from the public key, and keep it instead with the
private key.

We show that the basic signature scheme above is existentially unforgeable under a
weak chosen message attack (Definition 2). The proof of the following lemma uses a
similar method to the proof of Theorem 3.5 of Mitsunari et al. [35].

Lemma 9. Suppose the (q, t ′, ε)-SDH assumption holds in (G1,G2). Then the basic
signature scheme above is (t, qS, ε)-secure against existential forgery under a weak
chosen message attack provided that

qS ≤ q and t ≤ t ′ − �(q2T),

where T is the maximum time for an exponentiation in G1, G2, and Zp .

Proof. Assume that A is a forger that (t, qS, ε)-breaks the signature scheme. We con-
struct an algorithm B that, by interacting with the forger A, solves the q-SDH problem
in time t ′ with advantage ε.

Algorithm B is given a random instance (g1, d1, . . . , dq, g2, h) of the q-SDH prob-

lem in (G1,G2), where di = g
(xi)
1 ∈ G1 for i = 1, . . . , q , and h = gx

2 ∈ G2, for some
unknown x ∈ Zp . For convenience we set d0 ← g1. The objective of B is to produce a

pair (c, g
1/(x+c)

1) for some value c ∈ Zp \ {−x} of its choice. Algorithm B does so by
interacting with the forger A as follows:

Query: The attacker A outputs a list of qS distinct messages m1, . . . ,mqs ∈ Zp , where
qS ≤ q . Since A must reveal its queries up front, we may assume that A outputs
exactly q messages to be signed. (If fewer queries are made, we can always virtually
reduce the value of q to q ′ = qS , since the hardness of q-SDH entails that of q ′-SDH
for all q ′ < q .)

Response: The simulator B must respond with a public key and q signatures on the
respective messages from A. Let f be the univariate polynomial defined as f (X) =∏q

i=1(X + mi). Expand f and write f (X) = ∑q

i=0 αiX
i where α0, . . . , αq ∈ Zp

are the coefficients of the polynomial f . Algorithm B picks a random θ ∈ Z
×
p , and

computes

g′
1 ←

q∏
i=0

d
αiθ
i ∈ G1 hence g′

1 = g
θf (x)

1 .

160 D. Boneh and X. Boyen

Algorithm B also computes z′ = e(g′
1, g2). The public key given to A is (g′

1, g2, h, z′).
It has the correct distribution provided that f (x) 	= 0; in particular, g′

1 and g2 are in-
dependently and uniformly distributed random generators of their respective groups,
thanks to the action of θ . If, however, f (x) = 0, then x = −mi for some i, in which
case B can easily recover the secret key x, and hence solve the given instance of the
SDH problem with no further help from the forger A.
Next, for each i = 1, . . . q , the simulator B must generate a signature σi on mi . To do
so, let fi be the polynomial fi(X) = f (X)/(X + mi) = ∏q

j=1,j 	=i (X + mj). As be-

fore, we expand fi and write fi(X) = ∑q−1
j=0 βjX

j while calculating its coefficients.
Algorithm B computes

σi ←
q−1∏
j=0

d
βj θ

j ∈ G1 hence σi = g
θfi(x)

1 = (g′
1)

1/(x+mi).

Observe that σi is a valid signature on message mi under the public key (g′
1, g2, h, z′),

since e(σi, h · (g′
2)

mi) = e((g′
1)

1/(x+mi), (gx
2)(g2)

mi) = z′. Algorithm B performs
these steps for each message, and gives to A the q −1 resulting signatures σ1, . . . , σq .
Since each message admits only a unique signature, the output distribution is trivially
correct.

Output: The forger A returns a forgery (m∗, σ∗) such that σ∗ ∈ G1 is a valid signature
on m∗ ∈ Zp . Note that, necessarily, m∗ /∈ {m1, . . . ,mq} since the pair (m∗, σ∗) is
novel and to each message corresponds only one valid signature. Since a successful
forgery entails e(σ∗, h · g

m∗
2) = z′ where h = gx

2 and z′ = e(g′
1, g2) we deduce that

e(σ∗, g
x+m∗
2) = e(g′

1, g2) and therefore

σ∗ = (g′
1)

1/(x+m∗) = (g1)
θ ·f (x)/(x+m∗).

We use long division to compute the ratio f (x)/(x + m∗) that appears in the expo-
nent. Using long division we rewrite the polynomial f as f (X) = (X+m∗)γ (X)+γ∗
for some easily computable polynomial γ (X) = ∑q−1

i=0 γiX
i and constant γ∗ ∈ Zp .

Then the ratio f (X)/(X + m∗) can be written as f (X)/(X + m∗) = γ∗
X+m∗ +∑q−1

i=0 γiX
i and the expression of σ∗ becomes

σ∗ = g
θ ·x(

γ∗
x+m∗ +∑q−1

i=0 γix
i)

1 .

Observe that γ∗ 	= 0, since f (X) = ∏q

i=1(X + mi) and m∗ /∈ {m1, . . . ,mq}, as thus
(X + m∗) does not divide f (X). Taking roots of order θ and γ∗ modulo p, the simu-
lator B can compute

w ←
(

(σ∗)1/θ ·
q−1∏
i=0

(di)
−γi

)1/γ∗
∈ G1.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 161

Hence, we obtain

w =
(

g
γ∗

x+m∗
1 · g

∑q−1
i=0 γix

i

1 ·
q−1∏
i=0

g
−γix

i

1

)1/γ∗
= g

1/(x+m∗)
1 .

B returns the pair (m∗,w) as the solution to the submitted instance of the SDH prob-
lem.

The claimed bounds are obvious by construction of the reduction. �

4.4. From Weak Security To Full Security

We now present a reduction from the security of the basic scheme we just described to
the security of our full signature scheme presented in Section 4.1. This will complete
the proof of Theorem 8.

Lemma 10. Suppose that the basic signature scheme of Section 4.3 is (t ′, qS, ε
′)-

weakly secure. Then the full signature scheme is (t, qS, ε)-secure against strong exis-
tential forgery under an adaptive chosen message attack provided that

ε ≥ 2ε′ + qS/p ≈ 2ε′ and t ≤ t ′ − �(qST),

where T is the maximum time for an exponentiation in G1, G2, and Zp .

We first give some intuition for the proof. Suppose A is a forger for the full scheme
under an adaptive chosen message attack. We build a forger B for the basic scheme
under a weak chosen message attack. Forger B starts by requesting signatures on ran-
dom messages w1, . . . ,wq ∈ Zp . In response, it is given a public key (g1, g2, u, z) and
signatures σ1, . . . , σqs ∈ G1 for the basic scheme.

In principle, B could create a public key for the full scheme by picking a random
y ∈ Z

×
p and giving A the public key (g1, g2, u, g

y

2 , z). Now, when A issues a signature
query for an adaptively chosen message mi ∈ Zp , forger B could choose an ri ∈ Zp

such that mi + yri equals wi . Then (σi, ri) would be a valid signature on mi for the
full scheme and hence a proper response to A’s query. Eventually, A would output a
forgery (m∗, σ∗, r∗). Since (m∗ + yr∗, σ∗) would then be a valid message/signature pair
for the basic scheme, B could output that pair as an existential forgery against the basic
scheme.

The only problem is that m∗ + yr∗ might be in {w1, . . . ,wqs } in which case
(m∗ + yr∗, σ∗) would not be a valid existential forgery for the basic scheme. However,
when this happens B learns the value of y, which would be useful information if it did
not know it already, i.e., if the public key had been constructed differently. Dealing with
this case forces us to consider two types of adversaries, which complicates the proof by
requiring us to build a different reduction for either adversary. The full proof follows.

Proof of Lemma 10. Assume that A is a forger that (t, qS, ε)-breaks the full signature
scheme. We construct an algorithm B that (t ′, qS,

1
2 (ε−qS/p))-weakly breaks the basic

signature scheme of Section 4.3.

162 D. Boneh and X. Boyen

Before describing the algorithm B we distinguish between two types of forgers that
A can emulate. Let (h1, h2,U,V, z) be the public key given to A, where U = gx

2 and
V = g

y

2 . First, we note that by adding dummy queries as necessary, we may always
assume that A makes exactly qS signature queries. Suppose then that A adaptively
asks for signatures on messages m1, . . . ,mqs ∈ Zp and is given signatures (σi, ri) for
i = 1, . . . , qS in response. Let wi = mi + yri for each i, and denote by (m∗, σ∗, r∗) the
forgery eventually produced by A.

1. We say that A is a type-1 forger, denoted A1, if it either
(a) makes a signature query for the message m = −x, or
(b) outputs a forgery where m∗ + yr∗ /∈ {w1, . . . ,wqs }.

2. We say that A is a type-2 forger, denoted A2, if it both
(a) never makes a signature query for the message m = −x, and
(b) outputs a forgery where m∗ + yr∗ = wi for some i ∈ {1, . . . , qS}.

These cases form a partition that exhausts all possible successful forgeries. We show
that in either case the forger can be exploited to forge a signature in the weak signature
scheme of Section 4.3. However, the reduction works differently for each forger type.
For each type of forger A1, A2, we show how to construct a suitable simulator B1, B2.

Type-1 forger. First, we describe the simulator B1, which interacts with a type-1 forger
A1 to produce a forgery for the signature scheme of Section 4.3, as follows:

Setup: Algorithm B1 selects a list of qS random messages w1, . . . ,wqs ∈ Zp , which it
sends to the challenger. The challenger responds with a valid public key (g1, g2, u, z)

and a list of qS signatures σ1, . . . , σqs ∈ G1 on these messages. Algorithm B1 checks
whether all σi 	= 1 ∈ G1. If some σi = 1 ∈ G1, then B1 just learned the challenger’s
private key, x = −wi , which it can then use to produce a valid forgery. Otherwise, we
know that all wi are uniform in Zp \ {−x} and that e(σi, g

wi

2 u) = e(g1, g2) = z for
i = 1, . . . , qS .
To proceed, B1 picks a random y ∈ Z

×
p and gives to A1 the public key PK1 =

(g1, g2,U,V, z) ← (g1, g2, u, g
y

2 , z). Note that PK1 does not depend on the wi or σi .
Queries: The forger A1 issues qS signature queries in an adaptive fashion. In order to

respond, B1 maintains a query counter
 which is initially set to 0.
Upon receiving a signature query for m ∈ Zp , the simulator B1 increments
 by one,
sets r
 ← (w
 − m)/y ∈ Zp , and gives A1 the signature (σ
, r
). We claim that
(σ
, r
) is a valid signature on m under PK1. First, r
 is uniform in Zp \ {− x+m

y
}

since w
 is uniform in Zp \ {−x}. Second,

e(σ
, U · gm
2 · V r
) = e(σ
, u · gm

2 · gyr

2) = e(σ
, u · gw

2) = z

as required. The reason this works is that B1 chose an r
 such that m
 + yr
 = w
.
We set m
 ← m.
A type-1 forger may issue a signature query for m ∈ Zp where m = −x. If this ever
happens then Algorithm B1 obtains the private key for the public key (g1, g2, u, z) it
was given. This allows B1 to forge the signature on any message of its choice without
further interaction with A1. It terminates the simulation and wins the game.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 163

Output: Eventually, suppose A1 returns a forgery (m∗, σ∗, r∗), where (σ∗, r∗) is a
valid forgery distinct from any previously given signature on message m∗. Since the
forgery is valid, we have

e(g1, g2) = e(σ∗, U · gm∗
2 · V r∗) = e(σ∗, u · gm∗+yr∗

2).

Let w∗ = m∗ + yr∗. It follows that (w∗, σ∗) is a valid message/signature pair in the
basic signature scheme. Furthermore, the pair is a valid existential forgery in that
scheme since for a type-1 forger we have w∗ /∈ {w1, . . . ,wqs }.

It is easy to see that, if the forger A1 outputs a valid forgery with probability ε in time
t , then the reduction B1 succeeds in time t + �(qST) with the same probability ε.

Type-2 forger. Second, we describe the simulator B2, which interacts with a type-2
forger A2 to produce a forgery for the signature scheme of Section 4.3, as follows:

Setup: Algorithm B2 starts by sending a list of qS random messages w1, . . . ,wqs ∈ Z
×
p

to its challenger, and receives in response a valid public key (g1, g2, u, z) and a list of
qS signatures σ1, . . . , σqs ∈ G1 on these messages. We write u = g

y

2 for some y ∈ Z
×
p .

Notice that for this reduction we restricted the wi to non-zero values.
Algorithm B2 checks whether some σi = 1 ∈ G1, in which case u = g

−wi

2 , which
would allow B2 to produce a valid forgery using −wi as private key. In this case B2
stops the simulation and wins the game. Otherwise, for all i = 1, . . . , qS the wi are
uniform in Z

×
p \ {−y} and satisfy e(σi, g

wi

2 u) = e(g1, g2) = z.
To proceed, B2 picks a random x ∈ Z

×
p and gives to A2 the public key PK2 =

(g1, g2,U,V, z) ← (g1, g2, g
x
2 , u, z).

Queries: The forger A issues qS signature queries in an adaptive fashion. In order to
respond, B maintains a list L of tuples (mi, ri ,Wi) which is initially empty, and a
query counter
 which is initially set to 0.
Upon receiving a signature query for m, the algorithm B2 increments
 by one, and
defines r
 ← (x + m)/w
 ∈ Zp . Note that r
 	= 0 since m 	= −x in a type-2 forgery.
B2 then adds the tuple (m, r
, g

m
2 V r
) to the list L, and responds to the query by

giving A2 the signature (σ
1/r

 , r
). This is a valid signature on m under PK2 since

e(σ
1/r

 ,U · gm

2 · V r
) = e(σ
1/r

 , gx

2 · gm
2 · ur
) = e(σ
, g

(x+m)/r

2 · u)

= e(σ
, g
w

2 · u) = z.

Since r
 is uniform over Z
×
p \{− x+m

y
} instead of Zp \{− x+m

y
}, the signature is almost

correctly distributed with a statistical distance of 1/p from the correct distribution.
Taken as a whole, the qS signatures are jointly distributed with statistical distance at
most qS/p from the specification.

Output: Eventually, suppose A2 returns a forgery (m∗, σ∗, r∗), where (σ∗, r∗) is a
valid forgery distinct from any previously given signature on message m∗. Let W∗ ←
g

m∗
2 V r∗ , and let (mj , rj ,Wj) be a tuple on the list L such that Wj = W∗; in a type-2

forgery such a tuple always exists. Since V = u we know that g
mj

2 urj = g
m∗
2 ur∗ .

Write V = g
y

2 for some y ∈ Z×
p so that mj + yrj = m∗ + yr∗. We know that

164 D. Boneh and X. Boyen

(mj , rj) 	= (m∗, r∗), otherwise the forgery would be identical to a previously given
signature on the query message mj . Since g

mj

2 urj = g
m∗
2 ur∗ , it follows that mj 	= m∗

and rj 	= r∗. Therefore, B2 can compute y ← (m∗ − mj)/(rj − r∗) ∈ Z
×
p , thus re-

covering the private key corresponding to the public key (g1, g2, u, z) it was given.
Algorithm B2 can then forge a signature on any message of its choice.

It is easy to see that, if the forger A2 outputs a valid forgery with probability ε in
time t , then the reduction B2 succeeds in time t + �(qST) with probability at least
ε − qS/p.

This completes the description of the two reduction algorithms, B1 and B2. Regard-
less of which reduction is used, a standard argument shows that if the algorithm does not
abort, then, from the viewpoint of the adversary, A1 or A2, the simulation is indistin-
guishable from a real attack environment. In particular, the public keys and signatures
are correctly distributed, and the adversary cannot tell whether it is interacting with B1
and B2.

Therefore, given an arbitrary adversary A that (t, qS, ε)-breaks the full signature
scheme but whose type is unknown, it suffices to let B be an algorithm that randomly
executes one of B1 and B2 with equal probability. We obtain an algorithm that breaks
the basic signature scheme with probability 1

2 min(ε, ε − qS/p) = 1
2 (ε − qS/p) ≥ ε′ in

time t + �(qST) ≥ t ′. This completes the proof of Lemma 10. �

Since in the full scheme a single message has many valid signatures, it is worth
repeating that the full signature scheme is existentially unforgeable in the strong sense:
the adversary cannot make any forgery, even on messages which are already signed.

4.5. Relation to Chameleon Hash Signatures

It is instructive to consider the relation between the full signature scheme of Section 4.1
and an elegant signature construction based on the Strong RSA assumption due to Gen-
naro, Halevi, and Rabin (GHR) [23]. GHR signatures are pairs (r, s1/H(m,r)) where H

is a Chameleon hash [30], r is random in some range, and arithmetic is done modulo
an RSA modulus N . Looking closely, one can see some parallels between the proof
of security in Lemma 10 and the proof of security in [23]. There are three interesting
points to be made:

• The m + yr component in our signature scheme provides us with the functionality
of a Chameleon hash: given m, we can choose r so that m + yr maps to some
predefined value of our choice. This makes it possible to handle adaptive chosen
message attacks. Embedding the hash m+ yr directly within the signature scheme
results in a much more efficient construction than using an explicit Chameleon
hash (which requires additional exponentiations). Such an easy embedding is not
known to be possible with Strong RSA signatures, though we refer to the work of
Fischlin [20] for ideas in that direction.

• One difficulty with GHR signatures is that given a “non-prime” solution such
as (6, s1/6) to the Strong RSA problem, one can deduce another solution, e.g.,
(3, s1/3). Thus, given a GHR signature on one message it possible to deduce a
GHR signature on another message (see [16,23] for details). Gennaro et al. [23]
solve this problem by ensuring that H(m, r) always maps to a prime; however,

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 165

that makes it difficult to compute the hash (a different solution is given in [18]).
This issue does not come up at all in the SDH assumption and in our constructions.

• We obtain short signatures since, unlike Strong RSA, the SDH assumption applies
to groups with a short element representation. This is especially true at high secu-
rity levels.

Thus, we see that Strong Diffie-Hellman leads to signatures that are simpler and shorter
than their Strong RSA counterparts.

4.6. Limited Message Recovery

We now describe another useful property of the signature schemes whereby the total
size of signed messages can be further reduced at the cost of increasing the verification
time. The technique applies equally well to the fully secure signature scheme as to the
weakly secure one. Unlike all the other constructions in the paper, it also makes fuller
use of the pairing than as the mere provider of a DDH predicate.

A common technique for shortening the total length of a signed message is to en-
code a part of the message in the signature [33, §11]. In the standard terminology, such
schemes are called signatures with message recovery, as opposed to signatures with
appendix. Signatures based on trapdoor permutations support very efficient message
recovery. At the other end of the spectrum, any signature scheme can support a very in-
efficient form of message recovery, based on the following trivial signature compression
mechanism. Rather than transmit a message/signature pair (M,σ), the sender transmits
(M̂, σ) where M̂ is a truncated version of M that omits its last t bits. To verify (M̂, σ)

and recover M , the verifier tries to verify the signature on all concatenations of M̂ with
the 2t possible values for the missing bits; if one verification succeeds, the signature is
accepted and the corresponding reconstitution is output as the message M . This trivial
method shows that a signed message (M,σ) can be shortened by t bits at the cost of
increasing verification time by a factor of 2t .

For our signature scheme we obtain a better tradeoff than with the trivial method
above, although not as good as provided by trapdoor permutations. The signed message
(M,σ) can be shortened by t bits at the cost of increasing verification time by a factor of
2t/2 only. We refer to this property as limited message recovery. Our technique applies
to both the full strongly secure signature scheme of Section 4.1 and the basic weakly
secure signature scheme of Section 4.3. The main requirement is that whichever scheme
is used be implemented using an actual pairing (instead of a generic DDH predicate).

Achieving Limited Message Recovery. For simplicity, we only show how limited mes-
sage recovery applies to the full signature scheme. Assume messages are k-bit strings
represented as integers in Zp . Let (g1, g2, u, v, z) be a public key in the full scheme—
although for this application one might prefer to abbreviate the public key as (g2, u, v)

and let the verifier derive g1 and z. Suppose we are given the signed message (m̂, σ, r)

where m̂ is a truncation of the last t bits of m ∈ Zp . Thus m = m̂ · 2t + δ for some
integer 0 ≤ δ < 2t . Our goal is to verify the signed message (m̂, σ, r) and to recon-
struct the missing bits δ in time 2t/2. To do so, we first rewrite the verification equation
e(σ, u · vr · gm

2) = e(g1, g2) as

e(σ, g2)
m = e(g1, g2)

e(σ,u · vr)
.

166 D. Boneh and X. Boyen

Then, substituting m = m̂ · 2t + δ we obtain

e(σ, g2)
δ = e(g1, g2)

e(σ,u · vr · gm̂2t

2)
. (2)

Now, we say that (m̂, σ, r) is valid if there exists an integer δ ∈ [0,2t) satisfying (2).
Finding such a δ takes time approximately 2t/2 using Pollard’s Lambda method [33,
p. 128] for computing discrete logarithms. Thus, we can verify the signature and recover
the t missing message bits in time 2t/2, as required.

Very Short Weakly Secure Signatures. Obvious applications of limited message recov-
ery are situations where bandwidth is extremely limited, such as when the signature is
an authenticator that is to be typed-in by a human. The messages in such applications
are typically chosen and signed by a central authority, so that adaptive chosen message
attacks are typically not a concern. It is safe in those cases to use the weakly secure
signature scheme of Section 4.3, and apply limited message recovery to further shrink
the already compact signatures it produces. Specifically, using t-bit truncation as above
we obtain a total signature overhead of (160 − t) bits for common security parameters,
at the cost of requiring 2t/2 arithmetic operations for signature verification. The total
bandwidth requirement is thus even smaller than BLS signatures in the random oracle
model [11], even though the security of our application does not rely on random oracles.

4.7. Arbitrary Message Signing

We can extend our signature schemes to sign arbitrary messages in {0,1}�, as opposed
to merely messages in Zp , by first hashing the message using a collision resistant hash
function H : {0,1}� → Zp prior to both signing and verifying. A standard argument
shows that if the scheme above is secure against existential forgery under an adaptive
chosen message attack (in the strong sense) then so is the scheme with the hash. The
result is a signature scheme for arbitrary messages in {0,1}�. We note that there is no
need for a full domain hash into Zp; a collision resistant hash function H : {0,1}� →
{1, . . . ,2b} such that 2b < p is sufficient for the security proof. This transformation
applies to both the fully and the weakly secure signature schemes described above.

More rigorously in the asymptotic setting, a target collision resistant hash (TCR) [6,
38,46] may be substituted for H at the expense of a slightly longer signature to accom-
modate the extra random seed or index.

4.8. Off-line/On-line Signatures

Even though our signature scheme already provides a very efficient signing operation—
dominated by a single inversion in Zp and a single exponentiation to a fixed base—, it
is possible to make it almost instantaneous for on-line signing by doing essentially all
of the work off-line.

The idea is very simple. In the off-line phase, the signer would pick any number
of random integers ρi ∈ Z

×
p , and for each of them compute σi = g

1/ρi

1 ahead of time;
the pairs (ρi, σi) must be stored securely. In the on-line phase, to sign a message or
message hash m ∈ Zp , the signer would select an unused pair (ρ,σ), erase it from its

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 167

secure storage, compute r = (ρ −m−x)y−1, and output the signature (σ, r). The entire
on-line signature process requires only two subtractions and a single multiplication in
Zp , provided that the signer stores his private key as (x, y−1).

Observe that the private key is not needed in the off-line phase. In particular, this
means that exposure of unused pair (ρ,σ) causes no harm as long as the compromised
pairs are not subsequently used to create signatures. A similar approach was proposed
by Shamir and Halevi [44].

4.9. Efficiency Considerations

As noted earlier, the signing operation in the full scheme is dominated by an inversion
in Z

×
p and an exponentiation with a fixed base g1 ∈ G. With some pre-computations,

a fixed-base exponentiation can be made much faster than a general exponentiation by
eliminating the sequence of repeated squarings and grouping the ancillary multiplica-
tions into a few large chunks or windows.

Window-Ladder Pre-computation. Specifically, we would pre-compute a “power lad-
der” of w-bit “windows” for the fixed base g1 ∈ G1, comprising the 2w
log2(p)/w�
group elements

(g1)
y·2kw

for all y = 0, . . . ,2w − 1 and all k = 0, . . . ,
log2(p)/w� − 1.

Using these values, raising g1 to any power in Zp requires no more than
log2(p)/w�
group operations in G1. The main cost of the pre-computation is the storage require-
ment, which grows as 2w/w; however, even for small windows of width w ∈ {4, . . . ,8}
the efficiency gains are very substantial. To illustrate, a general exponentiation using
the fast “signed m-ary windows” method [7, §IV.2] requires on average (2m−2 − 2) +

log2(p)�+ [log2(p)+ 1]/(m+ 1) group operations, or about 6 + 7

6 log2(p) for the op-
timal choice m = 5 under common values of log2(p). Hence, with our window-ladder
method for w = 8, a fixed-base exponentiation will be close to 10 times faster than the
fastest known general exponentiation algorithm. Notice also that the pre-computed val-
ues are not secret and are thus easy to handle. Since the value of g1 rarely ever changes
for a given signer, the (rather benign) pre-computation effort can be amortized over
many signatures.

The off-line phase in the off-line/on-line signature process described in Section 4.8
benefits equally from pre-computations for all exponentiations (and, as noted earlier,
the on-line phase is already almost instantaneous).

Real-World Performance. For comparison, a signature in our scheme can be generated
in less than 1/10-th of the time needed for a BLS signature, since the latter involves a
full domain hash directly into G1 as well as a general exponentiation (whose base is
the unpredictable hash output). The speed-up of our scheme over RSA-based signatures
is even more pronounced since not only do the latter require a general exponentiation,
they also need a much larger modulus for a given security level.

The following table, courtesy of Shacham [43], compares the time required to per-
form general and fixed-base exponentiations in a group G1 of 158-bit prime order, us-
ing various methods. Here, an exponentiation in G1 is a point multiplication on an

168 D. Boneh and X. Boyen

MNT [36] elliptic curve over a 159-bit finite field with embedding degree 6, resulting
in 79-bit brute force and 953-bit finite field MOV [32] security levels. The reported
timings pertain to the c159 curve from Lynn’s PBC [31] library running on top of Gnu
GMP [24], on a G4 model CPU clocked at 1.25 GHz with 512 MB of RAM.

Method General Fixed base Time Storage

Double-and-add exponentiation � 5.92 ms –
Sliding windows (m = 4) on the fly � 5.13 ms –
Sliding windows (m = 8) from cache � 4.29 ms 255 elts
Window-ladder pre-computation (w = 5) � 0.74 ms 1024 elts

Similar ideas can be used to speed up the verification process. Recall from Section 4.1
that signature verification amounts to testing whether e(σ,ugm

2 vr) = z. Since g2 and v

(as well as u) are fixed for each signatory, the window-ladder pre-computation trick
can be used exactly as in the signing process. The main difference is that the verifier
needs one set of pre-computations for each new signer public key it encounters, whereas
the signer only has one private key to contend with. In practice, pre-computation for
verification might require a queuing strategy to delay the pre-computation investment
for a particular public key until there is evidence that it might pay off.

More realistically, pre-computations will only be used for signature and not for ver-
ification. In that case, the verification expression ugm

2 vr should be evaluated as a one
multi-exponentiation rather than two exponentiations, with only one sequence of re-
peated doublings instead of two. Verification time will then amount to slightly more
than the time of one exponentiation and one pairing, versus two pairings (or one multi-
pairing [26]) for BLS verification.

5. Shorter Signatures With Random Oracles

For completeness we show that the weakly secure signature scheme of Section 4.3 can
also be transformed into particularly efficient and fully secure short signatures in the
random oracle model [4]. To do so, we show a general transformation from any exis-
tentially unforgeable signature scheme under a weak chosen message attack into an ex-
istentially unforgeable signature scheme under an adaptive chosen message attack (in
the strong sense), in the random oracle model. This gives a very efficient short signature
scheme based on q-SDH in the random oracle model. We analyze our construction us-
ing a method of Katz and Wang [29] which gives a very tight reduction to the security
of the underlying signature. We note that a closely related system was independently
proposed by Zhang et al. [48].

5.1. Strongly Secure Tight Conversion

Let (KeyGen, Sign, Verify) be an existentially unforgeable signature under a weak
chosen message attack. We assume that the scheme signs messages in some finite
set � and that the private keys are in some set �. We need two hash functions
H1 : � × {0,1}� → {0,1} and H2 : {0,1} × {0,1}� → � that will be viewed as ran-
dom oracles in the security analysis. The hash-signature scheme is as follows:

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 169

Key Generation: Same as KeyGen. The public key is PK; the secret key is SK ∈ �.
Signing: Given a secret key SK, and given a message M ∈ {0,1}�, compute b ←

H1(SK,M) ∈ {0,1} and m ← H2(b,M) ∈ �. Output the signature (b,Sign(m)).
Note that signatures are one bit longer than in the underlying signature scheme.

Verification: Given a public key PK, a message M ∈ {0,1}�, and a signature (b, σ),
output valid if Verify(PK,H2(b,M),σ) = valid.

Theorem 11 below proves security of the scheme by leveraging the weak scheme
from Section 4.3. The security reduction in Theorem 11 is tight and generic, in the sense
that an attacker on the hash-signature scheme with success probability ε is converted to
an attacker on the underlying signature with success probability approximately ε/2.

Theorem 11. Suppose (KeyGen,Sign,Verify) is (t ′, q ′
S
, ε′)-existentially unforgeable

under a weak chosen message attack. Then the corresponding hash-signature scheme
is (t, qS, qH , ε)-secure against strong existential forgery under an adaptive chosen mes-
sage attack, in the random oracle model, whenever qS + qH ≤ q ′

S
, and for all t and ε

satisfying

ε ≥ 2ε′/
(

1 − q ′
S

|�|
)

≈ 2ε′ and t ≤ t ′ − o(t ′).

Proof. Assume A is a forger that (t, qS, qH , ε)-breaks the hash-signature scheme (in
the random oracle model). We construct an algorithm B that interacts with A and
(t ′, q ′

S
, ε′)-breaks the underlying signature scheme. Algorithm B works as follows:

Setup: Algorithm B picks q ′
S random and independent messages m1, . . . ,mq ′

s
in � and

sends them to the challenger. The challenger responds with a public key PK and
signatures σ1, . . . , σq ′

s
on m1, . . . ,mq ′

s
. Algorithm B gives PK to the adversary A.

Hash queries: At any time, the forger A can query the hash functions H1 and H2. It
can query these functions qH times each. Since B can maintain tables to ensure that
repeated queries are answered consistently, we assume without loss of generality that
A never queries on the same input twice.
To respond to a query for H1(K,M) our algorithm B first checks if K = SK by
attempting to sign a random message using K . If the signature is valid then B outputs
that message/signature pair as an existential forgery and terminates. Otherwise, B
picks a random bit b ∈ {0,1} and tells A that H1(K,M) = b.
To respond to a query for H2(c,M) our algorithm B maintains a list of tuples
(Mi, bi, i) called the H -list, and a counter
 which is initially set to 0. The H -list
is initially empty. When responding to a query for H2(c,M) we set things up so that
we know the signature on either H2(0,M) or H2(1,M) but A will not know which
one. More precisely, to respond to the query H2(c,M) the simulator B does the fol-
lowing:

1. If M does not appear as first component in any tuple in the H -list then pick a
random bit b ∈ {0,1}, set
 ←
 + 1, and add (M,b,
) to the H -list.

2. Let then (M,b, j) be the entry on the H -list corresponding to M . If b = c,
output H2(c,M) = mj (for which we know that σj is a valid signature). Oth-
erwise, pick a random message m ∈ � and output H2(c,M) = m. Observe that

170 D. Boneh and X. Boyen

j ≤ qS + qH ≤ q ′
S (since
 is always less than this value) and hence mj is well

defined.

Signature queries: A can issue up to qS signature queries. To respond to a signa-
ture query for M ∈ �, the simulator B first runs the algorithm for responding to a
hash query for H2(0,M), which incidentally is why the total number of H2 queries
is qS + qH . Let (M,b, j) be the entry on the H -list corresponding to M . Algo-
rithm B responds with (b, σj) as the signature on M . This is a valid signature on
M since H2(b,M) = mj and σj is a valid signature on mj . Note that this defines
H1(SK,M) = b even though B does not know SK.

Output: Eventually, suppose A returns a forgery, (M∗, (b∗, σ∗)), such that (b∗, σ∗) is a
valid signature on M∗ in the hash-signature scheme and A did not previously obtain
(b∗, σ∗) from B in response to a signature query on M∗. It follows that σ∗ is a valid
signature in the underlying signature scheme for the message m∗ = H2(b∗,M∗). If
m∗ ∈ {m1, . . . ,mq ′

s
} then B reports failure and aborts. Otherwise, it outputs (m∗, σ∗)

as the existential forgery for the underlying signature scheme.

Algorithm B simulates the random oracles and signature oracle perfectly for A.
Therefore A produces a valid forgery for the hash-signature scheme with probability
at least ε. It remains to bound the probability that m∗ ∈ {m1, . . . ,mq ′

s
}. Let (M∗, b, j)

be the entry on the H -list corresponding to M∗. First, consider the case where A
never issued a signature query for M∗. In this case the bit b is independent of A’s
view. Therefore, Pr[b∗ = b] = 1/2. Next, note that if b∗ = b then, by construction,
m∗ = H2(b∗,M∗) = mj and therefore in this case B will fail. When b∗ 	= b, by con-
struction, H2(b∗,M∗) is chosen at random in � and therefore, in this case, B will fail
with probability at most q ′

S
/|�|. Now, in the case where A did issue a signature query

for M∗, we necessarily have b∗ 	= b, otherwise A’s forgery would be a replay of B’s
response. B’s failure rate in this case is thus also at most q ′

S
/|�|. Thus, in all cases, it

follows that B succeeds with probability at least

Pr[success(B)] ≥ ε

2
·
(

1 − q ′
S

|�|
)

≥ ε′

as required. �

We note that in the proof above H1 can be replaced with a Pseudo Random Function
(PRF) and does not need to be modeled as a random oracle. However, modeling H2 as
a random oracle appears to be unavoidable.

Concrete Short Hash-Signature Scheme with Random Oracles. Applying Theorem 11
to the weakly secure scheme of Section 4.3 gives an efficient short signature that is
strongly existentially unforgeable under an adaptive chosen message attack in the ran-
dom oracle model assuming the hardness of the (qS + qH)-SDH problem in (G1,G2).
For a public key (g1, g2, v = gx

2 , z) and a hash function H : {0,1}� → Zp a signature

on a message m is defined as the group element σ ← g
1/(x+H(b,m))

1 ∈ G1 concate-

nated with the bit b ∈ {0,1}. To verify the signature, one checks that e(σ, v ·gH(b,m)
2) =

z = e(g1, g2). We see these signatures are essentially as short as BLS signatures, and

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 171

can be verified in approximately half the time. As before, signature time is where our
scheme really shines compared to BLS, being up to an order of magnitude faster with
pre-computations on g1, as discussed in Section 4.9.

We note that the random oracle (RO) construction relies on the hardness of the
q-SDH problem for q = qS + qH , whereas the system of Section 4.1 in the standard
model only required q = qS . In practice, one often considers qS = 240 and qH = 280

as bounds on the attacker’s capabilities. Hence, we see that the RO system relies on a
stronger SDH assumption than the non-RO system. For the RO system, this qH is suf-
ficiently large compared to p that one has to take special care in choosing p to avoid
the Brown-Gallant [12] and Cheon [14] generic algorithms for SDH discussed in Sec-
tion 3.3. Alternatively, for the RO system one could choose a larger group size p that
satisfies p ≈ q3

H
, in accordance with the generic complexity lower bounds we give in

Section 6. The resulting signatures are still shorter than the non-RO system, but longer
than BLS signatures.

5.2. Full Domain Hash Conversion

Another method for converting a signature scheme secure under a weak chosen mes-
sage attack into a scheme secure under an adaptive chosen message attack is to simply
apply Sign and Verify to H(M) rather than M . In other words, we hash M ∈ {0,1}� us-
ing a full domain hash H prior to signing and verifying. Security in the random oracle
model is shown using a similar argument to Coron’s analysis [15] of the Full Domain
Hash [5]. However, the resulting reduction is not tight: an attacker on this hash-then-
sign signature with success probability ε yields an attacker on the underlying signature
with success probability approximately ε/qS . We note, however, that these proofs are
set in the random oracle model and therefore it is not clear whether the efficiency of the
security reduction is relevant to actual security in the real world. Therefore, since this
full domain hash conversion is slightly simpler that the tight conversion of Theorem 11
it might be preferable to use it rather than the system of Section 5.1. When we apply the
full domain hash to the weakly secure scheme of Section 4.3, we obtain a secure signa-
ture under an adaptive chosen message attack assuming that the (qS +qH)-SDH problem
is hard in (G1,G2). A signature is one element, namely σ ← g

1/(x+H(m))

1 ∈ G1. As be-
fore, signature verification is twice as fast as in BLS signatures, and signing five to ten
times faster.

As mentioned above, a similar scheme was independently proposed by Zhang
et al. [48], with a different reduction: in the random oracle model, security of this full
domain hash scheme can be proven under Mitsunari’s et al. [35] slightly weaker com-
plexity assumption, rather than SDH. That assumption amounts to pre-specifying the
value c in the q-SDH instance instead of letting it be chosen by the adversary. However,
the resulting security reduction is far less efficient.

6. Generic Security of the SDH Assumption

To provide more confidence in the SDH assumption we prove a lower bound on the
computational complexity of the q-SDH problem for generic groups in the sense of

172 D. Boneh and X. Boyen

Shoup [45]. We slightly extend the original model to account for the multiple groups
and the bilinearity.

In the generic bilinear group model, elements of G1, G2, and GT appear to be en-
coded as arbitrary unique strings, so that no property other than equality can be directly
tested by the adversary. The representation may use random-looking strings, or even
sequential integers where the ith string that the adversary sees is represented by the
number i. The adversary performs operations on group elements by interacting with
various oracles: three oracles for the group operation in each of the three groups G1,
G2, GT , two oracles for the homomorphism ψ : G2 → G1 and its inverse ψ−1, and one
oracle for the bilinear pairing e : G1 × G2 → GT . We remark that this model gives too
much power to the adversary in bilinear groups where ψ or ψ−1 cannot be computed
efficiently.

To represent and simulate the working of the oracles, we model the opaque encod-
ing of the elements of G1 using an injective function ξ1 : Zp → {0,1}
log2 p�, where
p is the group order. Internally, the simulator represents the elements of G1 not as
themselves but as their discrete logarithms relative to some arbitrary generator g1.
This is captured by the function ξ1, which maps any integer a ∈ Zp to the exter-
nal string representation ξ1 ∈ {0,1}
log2 p� of the element ga

1 ∈ G1. We similarly de-
fine a second function ξ2 : Zp → {0,1}
log2 p� to represent G2, and a third function
ξT : Zp → {0,1}
log2 p� to represent GT . The adversary communicates with the oracles
using the string representation of the group elements exclusively. Note that the adver-
sary is given p = |G1| = |G2| = |GT |.

The following theorem establishes the unconditional hardness of the q-SDH problem
in the generic bilinear group model.

Theorem 12. Suppose A is an algorithm that solves the q-SDH problem in generic
bilinear groups of order p, making at most qG oracle queries for the group opera-
tions in G1, G2, and GT , the homomorphisms ψ and ψ−1, and the bilinear pair-
ing e, all counted together. Suppose also that the integer x ∈ Z

×
p and the encoding

functions ξ1, ξ2, ξT are chosen at random. Then, the probability, ε, that A on input
(p, ξ1(1), ξ1(x), . . . , ξ1(x

q), ξ2(1), ξ2(x)) outputs (c, ξ1(
1

x+c
)) with c ∈ Zp \ {−x},

ε = Pr

[
AG

(
p, ξ1(1), ξ1(x), . . . , ξ1(x

q),

ξ2(1), ξ2(x)

)
=

(
c, ξ1

(
1

x + c

))]

is bounded as

ε ≤ (qG + q + 3)2(q + 1)

p − 1
.

Asymptotically we have, ε ≤ O(
q2
G q+q3

p
).

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs L1 = {(F1,i , ξ1,i) : i = 1, . . . , τ1}, L2 = {(F2,i , ξ2,i) :

i = 1, . . . , τ2}, and LT = {(FT,i , ξT ,i) : i = 1, . . . , τT }, such that, at step τ in the game,
τ1 + τ2 + τT = τ + q + 3. The entries F1,i and F2,i will be univariate polynomials of
degree ≤ q in Zp[X], and the FT,i polynomials of degree ≤ 2q in Zp[X]. The entries

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 173

ξ1,i , ξ2,i , ξT ,i will be all the strings given out to the adversary. The lists are initialized
at step τ = 0 by setting τ1 = q + 1, τ2 = 2, and τT = 0, and assigning F1,i = Xi−1 for
i = 1, . . . , q + 1 and F2,i = Xi−1 for i = 1,2. The corresponding ξ1,i and ξ2,i are set to
random distinct strings. All polynomials are stored as coefficients of powers of X.

We assume that A only makes oracle queries on strings previously obtained from B,
a rule that is easy for B to enforce. Hence, given any query string ξ1,i , it is easy for
B to determine its index i into the table L1, and from there the corresponding poly-
nomial F1,i . If the same string appears multiple times in the list L1, ties are broken
arbitrarily. (The same applies to L2 and LT .)

To start the game, B provides A with the q + 3 strings ξ1,1, . . . , ξ1,q+1, ξ2,1, ξ2,2 that
correspond to the challenge SDH instance. B answers A’s queries as follows:

Group operations: A may request a group operation in G1 as a multiplication or as
a division. Before answering a G1 query, the simulator B starts by incrementing the
τ1 counter by one. A gives B two operands ξ1,i , ξ1,j with 1 ≤ i, j < τ1, and a mul-
tiply/divide selection bit. To respond, B creates a polynomial F1,τ1 ∈ Zp[x] which
it sets to F1,τ1 ← F1,i + F1,j for a multiplication or to F1,τ1 ← F1,i − F1,j for a
division. If the result is identical to an earlier polynomial F1,l for some l < τ1, the
simulator B duplicates its string representation: ξ1,τ1 ← ξ1,l ; otherwise, it lets ξ1,τ1

be a fresh random string in {0,1}
log2 p� distinct from ξ1,1, . . . , ξ1,τ1−1. The simulator
appends the pair (F1,τ1 , ξ1,τ1) to the list L1 and gives the string ξ1,τ1 to A.
Group operation queries in G2 and GT are answered in a similar manner, based on
the lists L2 and LT respectively.

Homomorphisms: To answer a homomorphism query from G2 to G1, the simulator
starts by incrementing the τ1 counter by one. A gives to B a string operand ξ2,i with
1 ≤ i < τ2. To respond, B makes a copy of the associated L2 polynomial into L1: it
sets F1,τ1 ← F2,i . If L1 already contained a copy of the polynomial, i.e., F1,τ1 = F1,l

for some l < τ1, then B duplicates its existing string representation: ξ1,τ1 ← ξ1,l ;
otherwise, it sets ξ1,τ1 to a random string in {0,1}
log2 p� \ {ξ1,1, . . . , ξ1,τ1−1}. The
pair (F1,τ1 , ξ1,τ1) is added to the list L1, and the string ξ1,τ1 is given to A as answer
to the query.
Inverse homomorphism queries from G1 to G2 are answered similarly. Note that in
this case the counter τ2 is to be incremented, and a string from L2 is to be returned.

Pairing: A pairing query consists of two operands ξ1,i and ξ2,j with 1 ≤ i ≤ τ1 and 1 ≤
j ≤ τ2 for the current values of τ1 and τ2. Upon receipt of such a query from A, the
counter τT is incremented. The simulator then computes the product of polynomials
FT,τT

← F1,i · F2,j . The result is a polynomial of degree at most 2q in Zp[X]. If the
same polynomial was already present in LT , i.e., if FT,τT

= FT,l for some l < τT ,
then B simply clones the associated string: ξT ,τT

← ξT ,l ; otherwise, it sets ξT ,τT
to a

new random string in {0,1}
log2 p� \ {ξT ,1, . . . , ξT ,τT −1}. The simulator then adds the
pair (FT,τT

, ξT ,τT
) to the list LT , and gives the string ξT ,τT

to A.

Note that A can implement exponentiation generically using O(logp) calls to the group
operation oracles, so we need not provide an exponentiation oracle. Similarly, A can
obtain the identity element in each group by requesting the division of any element into
itself. Observe also that the following invariant is preserved throughout the game, where

174 D. Boneh and X. Boyen

τ is the total number of oracle queries that have been answered at any given time:

τ1 + τ2 + τT = τ + q + 3. (3)

When A terminates it returns a pair (c, ξ1,
) where c ∈ Zp and 1 ≤
 ≤ τ1. Let
F1,
 be the corresponding polynomial in the list L1. In order to exhibit the correctness
of A’s answer within the simulation framework, B computes the polynomial FT,� =
F1,
 ·(F2,2 +c ·F2,1) = F1,
 ·(X+c). Notice that if A’s answer is correct for a particular
secret SDH exponent x ∈ Zp , then for X = x we must necessarily have

FT,�(X) = 1. (4)

Indeed, this equality corresponds to the DDH relation “e(A,gx
2 gc

2) = e(g1, g2)” where
A denotes the element of G1 represented by ξ1,
. Observe that since the constant mono-
mial “1” has degree 0 and FT,� = F1,
 · (X + c) where (X + c) has degree 1, the above
relation (4) cannot be satisfied identically in Zp[X] unless F1,
 has degree ≥ p − 2.
We know that the degree of F1,
 is at most q , therefore we deduce that there exists an
assignment in Zp to the variable X for which (4) does not hold. Since (4) is thus a
non-trivial polynomial equation of degree ≤ q + 1, it admits at most q + 1 roots in Zp .

At this point, B chooses a random x ∈ Z
×
p as the secret SDH exponent, and evaluates

all the polynomials under the assignment X ← x. If the assignment causes two non-
identical polynomials within either of the lists L1, L2, and LT to assume the same
value, then the simulation provided by B to A was flawed since it presented as distinct
two group elements that were in fact equal. If it causes the non-trivial equation (4) to
be satisfied, then the adversary has won the game. However, if no non-trivial equality
emerged from the assignment, then B’s simulation was perfect and nonetheless resulted
in A’s failure to solve the instance it was given.

By the above argument, the success probability of A in the generic model is bounded
by the probability that at least one equality among the following collections is satisfied,
for random x ∈ Z

×
p :

1. F1,i (x) = F1,j (x) in Zp—for some i, j such that F1,i 	= F1,j in Zp[X],
2. F2,i (x) = F2,j (x) in Zp—for some i, j such that F2,i 	= F2,j in Zp[X],
3. FT,i(x) = FT,j (x) in Zp—for some i, j such that FT,i 	= FT,j in Zp[X],
4. F1,
(x) · (x + c) = 1 in Zp .

Since each non-trivial polynomial F1,i − F1,j has degree at most q , it vanishes at a
random x ∈ Z

×
p with probability at most q/(p − 1). In a similar way, each non-trivial

polynomial F2,i − F2,j vanishes with probability ≤ q/(p − 1), and FT,i − FT,j with
probability ≤ 2q/(p − 1) since polynomials in LT can have degree up to 2q . The last
equality holds with probability ≤ (q + 1)/(p − 1), as already shown. Summing over all
valid pairs (i, j) in all four cases, we deduce that A wins the game with probability

ε ≤
(

τ1

2

)
q

p − 1
+

(
τ2

2

)
q

p − 1
+

(
τT

2

)
2q

p − 1
+ q + 1

p − 1
.

It follows from (3) that the game ended with τ1 + τ2 + τT ≤ qG + q + 3, and we obtain:
ε ≤ (qG + q + 3)2q/(p − 1) = O(q2

G q/p + q3/p). �

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 175

The following corollary restates in a simpler way the asymptotic hardness of the SDH
assumption against generic attacks.

Corollary 13. Any adversary that solves the q-SDH problem with constant probability
ε > 0 in generic bilinear groups of order p such that q < O(3

√
p) requires �(

√
εp/q)

generic operations.

7. Conclusion

We presented a number of short signature schemes based on the SDH assumption in bi-
linear groups. Our main result is a short signature which is fully secure without random
oracles or hash functions. The signature is very efficient and as short as DSA signatures,
but is provably secure in the standard model under a tight security reduction. We also
described a number of useful extensions to our scheme, such as limited message recov-
ery for even greater compactness, off-line/on-line operation for instantaneous signing,
and a random oracle signature that is as compact as and much more efficient than the
BLS scheme.

These constructions are possible thanks to properties of the Strong Diffie-Hellman
assumption, which we introduced, motivated, and proved secure in the generic group
model. The Strong DH assumption can be regarded as a discrete logarithm analogue of
the Strong RSA assumption. We hope that the SDH assumption will establish itself as a
useful tool for constructing cryptographic systems.

Acknowledgements

We thank Mihir Bellare, Hovav Shacham, and Nigel Smart for their helpful comments
on this paper.

References

[1] J.H. An, Y. Dodis, T. Rabin, On the security of joint signature and encryption. In Advances in
Cryptology—EUROCRYPT 2002. LNCS, vol. 2332 (Springer, Berlin, 2002), pp. 83–107.

[2] P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order. Cryptology ePrint
Archive, Report 2005/133, 2005. http://eprint.iacr.org/.

[3] P.S.L.M. Barreto, S. Galbraith, C. O’hEigeartaigh, M. Scott, Efficient pairing computation on supersin-
gular Abelian varieties. Cryptology ePrint Archive, Report 2004/375, 2004. http://eprint.iacr.org/.

[4] M. Bellare, P. Rogaway, Random oracle are practical: a paradigm for designing efficient protocols. In
Proceedings of ACM CCS 1993 (ACM Press, New York, 1993), pp. 62–73.

[5] M. Bellare, P. Rogaway, The exact security of digital signatures: how to sign with RSA and Rabin. In
Advances in Cryptology—EUROCRYPT 1996. LNCS, vol. 1070 (Springer, Berlin, 1996), pp. 399–416.

[6] M. Bellare, P. Rogaway, Collision-resistant hashing: Towards making UOWHFs practical. In Advances
in Cryptology—CRYPTO 1997. LNCS, vol. 1294 (Springer, Berlin, 1997), pp. 470–484.

[7] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography. London Mathematical Society Lecture
Notes, vol. 265 (Cambridge University Press, Cambridge, 1999).

[8] D. Boneh, X. Boyen, Efficient selective-ID identity based encryption without random oracles. In Ad-
vances in Cryptology—EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 223–238.

[9] D. Boneh, X. Boyen, Short signatures without random oracles. In Advances in Cryptology—
EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 56–73.

176 D. Boneh and X. Boyen

[10] D. Boneh, X. Boyen, H. Shacham, Short group signatures. In Advances in Cryptology—CRYPTO 2004.
LNCS, vol. 3152 (Springer, Berlin, 2004), pp. 41–55.

[11] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. J. Crypt. 17(4), 297–319
(2004). Extended abstract in Proceedings of Asiacrypt 2001, LNCS, vol. 2248.

[12] D. Brown, R. Gallant, The static Diffie-Hellman problem. Cryptology ePrint Archive, Report 2004/306,
2004. http://eprint.iacr.org/.

[13] R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption. In Advances
in Cryptology—EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 207–222.

[14] J.H. Cheon, Security analysis of the strong Diffie-Hellman problem. In Advances in Cryptology—
EUROCRYPT 2006. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 1–13.

[15] J.-S. Coron, On the exact security of full domain hash. In Advances in Cryptology—CRYPTO 2000.
LNCS, vol. 1880 (Springer, Berlin, 2000), pp. 229–235.

[16] J.-S. Coron, D. Naccache, Security analysis of the Gennaro-Halevi-Rabin signature scheme. In Ad-
vances in Cryptology—EUROCRYPT 2000. LNCS, vol. 1807 (Springer, Berlin, 2000), pp. 91–101.

[17] N. Courtois, M. Daum, P. Felke, On the security of HFE, HFEv- and Quartz. In Proceedings of PKC
2003. LNCS, vol. 2567 (Springer, Berlin, 2003), pp. 337–350.

[18] R. Cramer, V. Shoup, Signature schemes based on the strong RS assumption. ACM TISSEC 3(3), 161–
185 (2000). Extended abstract in Proceedings of ACM CCS, ACM Press, 1999.

[19] Y. Dodis, A. Yampolskiy, A verifiable random function with short proofs and keys. In Proceedings of
PKC 2005. LNCS, vol. 3386 (Springer, Berlin, 2005), pp. 416–431.

[20] M. Fischlin, The Cramer-Shoup strong-RSA signature scheme revisited. In Proceedings of PKC 2003.
LNCS, vol. 2567 (Springer, Berlin, 2003), pp. 116–129.

[21] S. Galbraith, Pairings. In Advances in Elliptic Curve Cryptography, ed. by I.F. Blake, G. Seroussi,
N. Smart, London Mathematical Society Lecture Notes, vol. 317 (Cambridge University Press, Cam-
bridge, 2005), pp. 183–213, chap. IX.

[22] S. Galbraith, K. Paterson, N. Smart, Pairings for cryptographers. Cryptology ePrint Archive, Report
2006/165, 2006. http://eprint.iacr.org/.

[23] R. Gennaro, S. Halevi, T. Rabin, Secure hash-and-sign signatures without the random oracle. In Ad-
vances in Cryptology—EUROCRYPT 1999. LNCS, vol. 1592 (Springer, Berlin, 1999), pp. 123–139.

[24] GMP Project. The GnuMP multiprecision arithmetic library. http://www.swox.com/gmp/.
[25] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message

attacks. SIAM J. Comput. 17(2), 281–308 (1988).
[26] R. Granger, N. Smart, On computing products of pairings. Cryptology ePrint Archive, Report 2006/172,

2006. http://eprint.iacr.org/.
[27] F. Hess, N.P. Smart, F. Vercauteren, The Eta pairing revisited. Cryptology ePrint Archive, Report

2006/110, 2006. http://eprint.iacr.org/.
[28] A. Joux, K. Nguyen, Separating decision Diffie-Hellman from computational Diffie-Hellman in crypto-

graphic groups. J. Cryptol. 16(4), 239–247 (2003).
[29] J. Katz, N. Wang, Efficiency improvements for signature schemes with tight security reductions. In

Proceedings of ACM CCS 2003 (ACM Press, New York, 2003), pp. 155–164.
[30] H. Krawczyk, T. Rabin, Chameleon signatures. In Proceedings of NDSS 2000 (Internet Society, 2000).
[31] B. Lynn, The PBC pairing-based cryptography library. http://rooster.stanford.edu/~ben/pbc/.
[32] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms in a finite field. IEEE Trans.

Inform. Theory 39(5), 1639–1646 (1993).
[33] A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca

Raton, 1997)
[34] V. Miller, The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–261 (2004).
[35] S. Mitsunari, R. Sakai, M. Kasahara, A new traitor tracing. IEICE Trans. Fundam. E85-A(2), 481–84

(2002).
[36] A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction.

IEICE Trans. Fundam. E84-A(5), 1234–1243 (2001).
[37] D. Naccache, J. Stern, Signing on a postcard. In Proceedings of Financial Cryptography—FC 2000.

LNCS, vol. 1962 (Springer, Berlin, 2000), pp. 121–135.
[38] M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications. In Proceed-

ings of ACM STOC 1989 (ACM Press, New York, 1989), pp. 33–43.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups 177

[39] J. Patarin, N. Courtois, L. Goubin, QUARTZ, 128-bit long digital signatures. In Proceedings of CT-RSA
2001. LNCS, vol. 2020 (Springer, Berlin, 2001), pp. 282–297.

[40] K. Paterson, Cryptography from pairings. In Advances in Elliptic Curve Cryptography, ed. by I.F. Blake,
G. Seroussi, N. Smart, London Mathematical Society Lecture Notes, vol. 317 (Cambridge University
Press, Cambridge, 2005), pp. 215–251, chap. X.

[41] L. Pintsov, S. Vanstone, Postal revenue collection in the digital age. In Proceedings of Financial
Cryptography—FC 2000. LNCS, vol. 1962 (Springer, Berlin, 2000), pp. 105–120.

[42] A. Sahai, Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
Proceedings of IEEE FOCS 1999 (IEEE Press, New York, 1999).

[43] H. Shacham, Implementing pairing-based signature schemes. Presentation at the Pairings in Cryptogra-
phy workshop—PiC 2005. Dublin, Ireland, 2005.

[44] A. Shamir, Y. Tauman, Improved online/offline signature schemes. In Advances in Cryptology—
CRYPTO 2001. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 355–367.

[45] V. Shoup, Lower bounds for discrete logarithms and related problems. In Advances in Cryptology—
EUROCRYPT 1997. LNCS, vol. 1233 (Springer, Berlin, 1997), pp. 256–266.

[46] V. Shoup, A composition theorem for universal one-way hash functions. In Advances in Cryptology—
EUROCRYPT 2000. LNCS, vol. 1807 (Springer, Berlin, 2000), pp. 445–452.

[47] V.D. Tô, R. Safavi-Naini, F. Zhang, New traitor tracing schemes using bilinear map. In Proceedings of
DRM Workshop, 2003.

[48] F. Zhang, R. Safavi-Naini, W. Susilo, An efficient signature scheme from bilinear pairings and its appli-
cations, In Proceedings of PKC 2004. LNCS, vol. 2947 (Springer, Berlin, 2004), pp. 277–290.

	Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groupsid1
	Abstract
	Introduction
	Preliminaries
	Secure Signature Schemes
	Strong Existential Unforgeability
	Weak Chosen Message Attacks
	Bilinear Groups

	The Strong Diffie-Hellman Assumption
	Concrete Formulation of SDH
	Asymptotic Formulation of SDH
	Properties of SDH and Related Assumptions
	Random Self Reduction.
	Relation to DHI.
	Generic Group Analysis.

	Short Signatures Without Random Oracles
	The Full Signature Scheme
	Main Features and Security
	Bandwidth.
	Performance.
	Security.

	A Weakly Secure Short Signature Scheme
	From Weak Security To Full Security
	Type-1 forger.
	Type-2 forger.

	Relation to Chameleon Hash Signatures
	Limited Message Recovery
	Achieving Limited Message Recovery.
	Very Short Weakly Secure Signatures.

	Arbitrary Message Signing
	Off-line/On-line Signatures
	Efficiency Considerations
	Window-Ladder Pre-computation.
	Real-World Performance.

	Shorter Signatures With Random Oracles
	Strongly Secure Tight Conversion
	Concrete Short Hash-Signature Scheme with Random Oracles.

	Full Domain Hash Conversion

	Generic Security of the SDH Assumption
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

