
J. Cryptol. (2008) 21: 430–457
DOI: 10.1007/s00145-007-9017-3

Cryptanalysis of an E0-like Combiner with Memory

Yi Lu
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,

Singapore 637616
luyi666@gmail.com

Serge Vaudenay
EPFL, CH-1015 Lausanne, Switzerland

Communicated by Eli Biham

Received 12 June 2006 and revised 23 July 2007
Online publication 13 October 2007

Abstract. In this paper, we study an E0-like combiner with memory as the keystream
generator. First, we formulate a systematic and simple method to compute correlations
of the FSM output sequences (up to certain bits). An upper bound of the correlations
is given, which is useful to the designer. Second, we show how to build either a uni-
bias-based or multi-bias-based distinguisher to distinguish the keystream produced by
the combiner from a truly random sequence, once correlations are found. The data
complexity of both distinguishers is carefully analyzed for performance comparison.
We show that the multi-bias-based distinguisher outperforms the uni-bias-based dis-
tinguisher only when the patterns of the largest biases are linearly dependent. The
keystream distinguisher is then upgraded for use in the key-recovery attack. The latter
actually reduces to the well-known Maximum Likelihood Decoding (MLD) problem
given the keystream long enough. We devise an algorithm based on Fast Walsh Trans-
form (FWT) to solve the MLD problem for any linear code with dimension L and
length n within time O(n + L · 2L). Meanwhile, we summarize a design criterion for
our E0-like combiner with memory to resist the proposed attacks.

Key words. Stream cipher, Combiner, Bluetooth, E0, Correlation

1. Introduction

To protect confidentiality, stream ciphers are often used in the constrained environment
(e.g. high speed, minimal area, limited power supply, low power consumption). For
this reason, wireless encryption often uses stream ciphers (e.g. A5/1 in GSM, E0 in
Bluetooth, RC4 in WEP).

Many stream ciphers are based on Linear Feedback Shift Registers (i.e. LFSRs [41]).
They use different mechanisms such as the irregular clocking, the nonlinear combina-
tion function or the nonlinear filtering function to destroy the fatally weak property of
LFSRs: linearity. We call them by clock-controlled generators, nonlinear combiners and
nonlinear filter generators respectively.

© International Association for Cryptologic Research 2007

Cryptanalysis of an E0-like Combiner with Memory 431

As one of the mainstream attacks on LFSR-based stream ciphers, correlation attack
was first introduced by Siegenthaler [50] to attack the nonlinear combiners. The basic
idea is to “divide and conquer” when the keystream output is correlated to the individ-
ual LFSR output sequence due to the poor choice of the combining function. That is,
instead of the naive exhaustive search on all possible combinations of the initial states
of the component LFSRs, we only perform an exhaustive search for the initial state of
each individual LFSR independently and test the correlation between each LFSR out-
put sequence and the keystream. The optimum (deterministic) Maximum Likelihood
Decoding (MLD) strategy yields the answer for the initial state of the LFSR. This idea
can be applied to attack nonlinear filter generators (e.g. [20,23,47,51]).

Apparently, the time complexity of the basic correlation attack [50] grows exponen-
tial in the length of the LFSR, which is impractical for a long LFSR. As a matter of fact,
in coding theory, the MLD problem for linear codes, according to [5], was shown to
be NP-complete (see [21] for definition). The focus of cryptographers has been on the
general problem where the individual LFSR may be arbitrarily long. In order to speed
up the attack for the general setting, Meier and Staffelbach [38,39] used the probabilis-
tic iterative decoding strategy to refine the basic correlation attack into a so-called “fast
correlation attack” to reconstruct each individual LFSR. A critical factor for the effi-
ciency of the fast correlation attack is the novel use of the multiple polynomial of the
LFSR’s feedback polynomial with low weight (and low degree). This fast correlation
attack of [38,39] was improved by a series of variant fast correlation attacks (e.g. [10,
13,44–46,55]). Recently, various (still probabilistic) decoding techniques have proved
very successful to further improve the performance of the fast correlation attack (e.g.
[8,9,11,12,27–29,42,43]).

As a new emerging short-range wireless radio standard with low power consumption,
Bluetooth [6] uses the stream cipher E0. It is a combiner with memory and actually a
variant of the summation generator [48]. In this paper, we propose an E0-like combiner
with memory as the stream cipher. A systematic computation method is formulated to
calculate correlations of the FSM output sequences (up to certain bits) by a recursive
expression. Furthermore, we give an upper bound of the correlations, which is use-
ful to the designer. Prior to our work, correlation properties of combiners with one-bit
memory, and with m-bit memory were studied in [40], and [22] respectively. As they
considered correlations of a general form, the length of the correlation pattern is re-
stricted to be rather small for the analysis. By comparison, as we restrict ourselves to a
special class of correlations (i.e. correlations of the FSM output sequence), we are able
to investigate those correlations with the sequence length of much a wider range. This
is quite an important result, since the search of a correlation as large as possible con-
stitutes one of the crucial tasks for efficient correlation attacks on LFSR-based stream
ciphers.

When correlations are found, we can build either a uni-bias-based or multi-bias-based
distinguisher to distinguish the keystream produced by the combiner from a truly ran-
dom sequence. We apply the concept of convolution to the data complexity analysis
of the multi-bias-based distinguisher that uses all the correlations. Based on the the-
ory of [4], we show that the multi-bias-based distinguisher outperforms the uni-bias-
based distinguisher only when the patterns of the largest biases are linearly depen-
dent.

432 Y. Lu, S. Vaudenay

The keystream distinguisher not only enables the keystream distinguishing attack,
but also can upgrade into the key-recovery attack to reconstruct the initial states of
the LFSRs. The latter actually reduces to the well-known MLD problem given the
keystream long enough (or the bias large enough). By means of Fast Walsh Transform
(FWT), we devise an algorithm to solve the MLD problem for any linear code with di-
mension L and length n within time O(n+L · 2L). It is the best deterministic decoding
algorithm known so far. Interestingly, an FWT-based algorithm was proposed in another
context to speed up other kinds of fast correlation attacks [12].

Finally, the analysis principle is successfully applied to the core of Bluetooth encryp-
tion algorithm E0. Our key-recovery attack reconstructs the initial states of the LFSRs
in time 239 given 239 consecutive keystream bits after O(237) precomputation.1 This is
the best academic key-recovery attack against the core E0 compared with all the attacks
[1,2,14,16–19,24–26,30,49] on the core E0. Considering a maximal keystream length
of 2745 bits for E0 used in Bluetooth, the attack is impractical. Nonetheless, the re-
synchronization flaw of E0 (see [34]) enables us to deduce non-trivial correlations of
full E0 from those of the core E0; this finally leads to the fastest (and only) practical
known-plaintext attack on full E0 in 2005 (see [33]).

As part of the thesis [32], this paper extends the results of [35] with a more general
approach, and summarizes a design criterion for our E0-like combiner with memory to
resist the proposed attacks. The rest of the paper is structured as follows. In Sect. 2, we
give the mathematical model of our E0-like combiner with memory. Then we study the
correlation properties of the FSM output sequence in Sect. 3. The correlation properties
enables to mount the distinguishing attack on our combiner in Sect. 4; we first build a
uni-bias-based distinguisher and then a multi-bias-based distinguisher, and performance
comparison between the two is also analyzed. In Sect. 5, we study the key-recovery
attack based on our former distinguishing attacks; we show that the key-recovery attack
reduces to the MLD problem. In Sect. 6 we investigate the MLD algorithm for a linear
code. We conduct a case study on the core E0 in Sect. 7. Finally, we give conclusions in
Sect. 8.

2. Mathematical Model

Our model of the E0-like combiner with memory is depicted in Fig. 1. It belongs to
the LFSR-based combiner (with or without memory). To briefly outline, the keystream
generator consists of n maximum-length LFSRs denoted by R1, . . . ,Rn. Let the Ri

have pairwise distinct lengths Li (for convenience, let L1 < L2 < · · · < Ln) and prim-
itive characteristic polynomials pi(x). Besides, the combination generator has a Fi-
nite State Machine (FSM) of k memory bits. Denote the k-bit state at time t by
σt = (σ k−1

t , . . . , σ 0
t). We denote λt hereafter the content of LFSRs at time t . Then the

state of the combiner at time t is fully represented by the (L+k)-bit pair (λt , σt), where
L = ∑n

i=1 Li .
At each clock cycle t , the LFSRs output bits xt = (x1

t , x2
t , . . . , xn

t) serve as the input
to the FSM. Its next state σt+1 can be expressed by a nonlinear function F of its current

1 Throughout this paper, O(·) is used to provide a rough estimate on complexities, e.g., O(237) here means

c · 237 operations, where c is a small constant.

Cryptanalysis of an E0-like Combiner with Memory 433

Fig. 1. The core stream cipher.

state σt and xt , i.e.

σt+1 = F(xt , σt). (1)

The FSM emits one bit

ψt = � · σt , (2)

which is an inner product2 of its current state σt and the constant � ∈ GF(2)k . Finally,
the combiner generates one bit zt of keystream, which is obtained by xoring one FSM
output bit ψt together with the sum of the LFSRs outputs, that is,

ξt ⊕ ψt = zt , (3)

where ξt = ⊕n
i=1 xi

t .

Lemma 1. Assuming that σt �→ σt+1 is a permutation for any xt , if σ0 is random
and uniformly distributed, then, σt is random and uniformly distributed for any t . If λ0
is random and uniformly distributed, then, λt is random and uniformly distributed for
any t . If (λ0, σ0) is random and uniformly distributed, the L1-tuple (σ0, σ1, . . . , σL1−1)

is independent of xL1−1.

Proof. Noticing that λt �→ λt+1 is a permutation, by induction, we know that λ0 �→ λt

is a permutation for any t . Similarly, we deduce that σ0 �→ σt is a permutation for any t .
To prove the remaining part of the lemma, as x0, . . . , xL1−1 are contained in λ0, we

know that L1 − 1 consecutive vectors x0, . . . , xL1−2 are i.i.d. random variables all inde-
pendent of both σ0 and xL1−1 assuming that (λ0, σ0) is random and uniformly distrib-
uted. From this statement we apply (1) consecutively for t = 0, . . . ,L1 − 2 and deduce
that the L1-tuple (σ0, σ1, . . . , σL1−1) is independent of xL1−1 assuming that (λ0, σ0) is
random and uniformly distributed. �

Throughout this paper, we restrict ourselves to F that satisfies σt �→ σt+1 is a permu-
tation for any xt .

2 An inner product between two �-bit binary vectors x = (x1, . . . , x�) and y = (y1, . . . , y�) is defined by

x · y def= x1y1 ⊕ · · · ⊕ x�y� .

434 Y. Lu, S. Vaudenay

3. Correlation Properties

Definition 2. The bias of a random Boolean variable X is defined as

Δ(X)
def= Pr(X = 0) − Pr(X = 1) = E[(−1)X].

The correlation between two random Boolean variables X and Y is Δ(X ⊕ Y). As-
suming that (x0, σ0) is a uniformly distributed random vector of (n + k) bits, we know
that given a, b ∈ GF(2)k , Δ(a · σ1 ⊕ b · σ0) is a fixed value, which can be computed
as follows. For all possible (x0, σ0), we use (1) to compute σ1; thus, we can collect all
possible (σ0, σ1) and calculate Δ(a ·σ1 ⊕ b ·σ0) by Definition 2. The following lemma,
inspired by [26], gives an easy way to compute the bias for iterative structures.

Lemma 3. Given a set E and Θ : E×GF(2)k → GF(2) and Λ : GF(2)ε → GF(2)k ,
let X and Y be two independent random variables in E and GF(2)ε respectively. As-
suming that Λ(Y) is uniformly distributed in GF(2)k , then, for any v ∈ GF(2)ε , we
have

Δ(Θ(X,Λ(Y)) ⊕ v · Y) =
∑

w∈GF(2)k

Δ(Θ(X,Λ(Y)) ⊕ w · Λ(Y))

× Δ(w · Λ(Y) ⊕ v · Y).

Proof. Let Z = Λ(Y). By our assumption, Z is a random variable independent of X

with uniform distribution. We have Δ(Θ(X,Λ(Y))⊕w ·Λ(Y)) = Δ(Θ(X,Z)⊕w ·Z)

for any w ∈ GF(2)k . We rewrite the right-hand side as follows:
∑

w

Δ(Θ(X,Z) ⊕ w · Z) · Δ(w · Λ(Y) ⊕ v · Y)

=
∑

w

E[(−1)Θ(X,Z)⊕w·Z] · E[(−1)w·Λ(Y)⊕v·Y]

=
∑

w

(∑

x,z

Pr(x, z) · (−1)Θ(X,Z)⊕w·Z
)

·
(∑

y

Pr(y) · (−1)w·Λ(Y)⊕v·Y
)

=
∑

x

∑

y

∑

z

∑

w

Pr(x, z) · Pr(y) · (−1)Θ(x,z)⊕v·y⊕w·(z⊕Λ(y)).

As the inner sum over w is zero for all z �= Λ(y), we continue

2k ·
∑

x,y

Pr(X = x,Z = Λ(y)) · Pr(Y = y) · (−1)Θ(x,Λ(y))⊕v·y

=
∑

x,y

Pr(x, y) · (−1)Θ(x,Λ(y))⊕v·y

= E[(−1)Θ(X,Λ(Y))⊕v·Y],
which is Δ(Θ(X,Λ(Y)) ⊕ v · Y). �

Cryptanalysis of an E0-like Combiner with Memory 435

Now we introduce the general iterative computation method to calculate the biases.

Theorem 4. Assuming that σt �→ σt+1 is a permutation for any xt and that (λ0, σ0) is
uniformly distributed, for any ε ≤ L1 + 1 and a, b,α1, . . . , αε ∈ GF(2)k , we define

δ(α1, . . . , αε)
def= Δ(α1 · σt ⊕ · · · ⊕ αε · σt+ε−1)

and the state transition matrix U = {Uab} where

Uab
def= Pr(σt+1 = b|σt = a).

δ(α1, . . . , αε) and Uab do not depend on t . Additionally, we have

δ(α1, . . . , αε) = 1

2k

∑

w∈GF(2)k

Ûw,αε · δ(α1, . . . , αε−2, αε−1 ⊕ w),

where Û is the Walsh transform of U .

Proof. We apply Lemma 3 with X = xε−2, Y = (σ0, . . . , σε−2), Λ(Y) = σε−2,
Θ(X,Λ(Y)) = αε · F(xε−2, σε−2) = αε · σε−1 and v = (α1, . . . , αε−1). Note that the
assumption of Lemma 3 holds by Lemma 1, and that the connection with Û comes

from δ(a, b) = Δ(a · σ0 ⊕ b · σ1) = Ûab

2k . �

In order to state our result on the upper bound of the correlations for the combiner’s
FSM output sequence of short length, we recall a few definitions from information
theory (see [15]). The entropy H(X) of a discrete random variable X with alphabet
X is defined by

H(X)
def= −

∑

x∈X
Pr(x) log2 Pr(x).

The binary entropy function h(p) for 0 < p < 1 is defined by

h(p)
def= −p log2 p − (1 − p) log2(1 − p).

The conditional entropy H(Y |X) of Y given X is

H(Y |X)
def=

∑

x∈X
Pr(x)H(Y |X = x).

The following results on their relationship are useful for us. For any two random vari-
ables X,Y we always have H(X) ≥ H(X|Y) with equality if and only if X and Y

are independent. Analogously, for any three random variables X,Y and Z, we always
have H(X|Z) − H(X|Y,Z) ≥ 0 with equality if and only if X and Y are conditionally
independent given Z. Based on information theory, we have the following lemma.

436 Y. Lu, S. Vaudenay

Lemma 5. With the assumptions of Theorem 4, there exists a positive ρ such that

H(ψ1|σ0) = h

(
1

2
+ ρ

2

)

,

and ρ only depends on the state transition matrix U .

Proof. We compute H(ψ1|σ0) by definition:

H(ψ1|σ0) =
∑

a

H(ψ1|σ0 = a) · Pr(σ0 = a)

= E
a

[

h

(
1

2
+ 1

2

∑

b:� ·b=1

Uab − 1

2

∑

b:� ·b=0

Uab

)]

. (4)

So there exists such a unique ρ ≥ 0 to satisfy the equation in Lemma 5, that is,

h

(
1

2
+ ρ

2

)

= E
a

[

h

(
1

2
+ 1

2

∑

b:� ·b=1

Uab − 1

2

∑

b:� ·b=0

Uab

)]

, (5)

and from (5) we know that ρ depends on U only. �

Note that (5) tells that if |∑b:� ·b=1 Uab − ∑
b:� ·b=0 Uab| is a constant ρ0 for all a,

then, ρ = ρ0. In particular, ρ = 0 if and only if
∑

b:� ·b=1 Uab ≡ ∑
b:� ·b=0 Uab , i.e.

Pr(ψ1 = 1|σ0 = a) = Pr(ψ1 = 0|σ0 = a) = 1
2 , for all a. Equivalently, ρ = 0 if and only

if H(ψ1|σ0) = 1, that is, ρ = 0 if and only if � · F(x0, σ0) and σ0 are independent
assuming (x0, σ0) is uniformly distributed.

From Lemma 5, we can prove the upper bound of the correlations for the combiner’s
FSM output sequence of short length.

Theorem 6. For any ε ≤ L1 + 1 and any binary α1, . . . , αε−1, let the ε-bit vectors
α = (α1, . . . , αε−1,1) and � = (ψ0, . . . ,ψε−1). With the assumptions of Theorem 4, we
have

|Δ(α · �)| ≤ ρ,

where ρ is defined in (5).

Proof. First, by the property of the relation between the entropy and the conditional
entropy, we deduce that

H(α · �) ≥ H(α · �|σ0, . . . , σε−2) = H(ψε−1|σ0, . . . , σε−2). (6)

According to the property of the conditional entropy, we have

H(ψε−1|σε−2) − H(ψε−1|σ0, . . . , σε−2) ≥ 0

with equality if and only if ψε−1 and (σε−3, . . . , σ0) are conditionally independent given
σε−2, which is valid here by the precondition ε ≤ L1 + 1 and Lemma 1. Thus, we have

H(ψε−1|σε−2) = H(ψε−1|σ0, . . . , σε−2). (7)

Cryptanalysis of an E0-like Combiner with Memory 437

Combining (6) and (7), we get H(α · �) ≥ H(ψε−1|σε−2) = h(1
2 + ρ

2). Because h(p)

is symmetric in p = 1
2 with the maximum at p = 1

2 , this is equivalent to

1

2
− ρ

2
≤ Pr(α · � = 0) ≤ 1

2
+ ρ

2
. (8)

Finally, we verify

|Δ(α · �)| = |Pr(α · � = 0) − Pr(α · � �= 0)|
= |2 · Pr(α · � = 0) − 1|. (9)

Putting (8) and (9) together we complete our proof. �

Remark 7. This theorem tells that the basic FSM design principle should satisfy
H(ψ1|σ0) = 1 to avoid the bias, which enables the keystream distinguishing attack and
key-recovery attack as detailed in the rest of the paper.

Notice that the only purpose of the restriction on the dimension of α (i.e. ε ≤ L1 +1),
is to ensure validity of U being the state transition matrix. In other words, if we loose
this requirement by supposing U is always the state transition matrix,3 we still obtain the
same upper bound ρ for |Δ(α · �)|. Though it is not known yet which tuple(s) α makes
|Δ(α · �)| the maximum from Theorem 6, one thing is certain:4 once H(ψ1|σ0) = 1,
no correlation exists for sequences of bitlength up to L1 + 1.

Prior to our work, correlation properties of combiners with one-bit memory, and with
m-bit memory were studied in [40], and [22] respectively. As they considered corre-
lations of a general form (i.e. correlation between any linear function of the sequence
{ξt } of ε bits and any linear function of the keystream {zt } of ε bits), ε is restricted
to be rather small for the analysis. In our work, we restrict ourselves to a special class
of correlations—correlations of the FSM output sequence (i.e. correlations of any linear
function of the sequence {ξt ⊕zt } of ε bits). This allows to investigate those correlations
for the sequence length ε ≤ L1 + 1 with much a wider range.5

4. The Keystream Distinguisher

4.1. The Equivalent Single LFSR

Let θi be the order of the characteristic polynomial pi(x) of Ri , for i = 1, . . . , n.
Since all pi(x) are primitive polynomials, θi = 2Li − 1; furthermore, by Lemma 6.57
of [31, p. 218], the equivalent LFSR which generates the same sequence {ξt } as the
sum of the n original LFSR outputs over GF(2) has the characteristic polynomial
p(x) = ∏n

i=1 pi(x) with order θ = lcm(θ1, θ2, . . . , θn) (by Lemma 6.50 of [31, p. 214])
and degree L = ∑n

i=1 Li .

3 This is a (weak) common assumption in cryptanalysis.
4 This result was published recently by an independent work [3] with different proof.
5 For instance, in the core of E0 (described in Sect. 7.1 later), according to [24], the sequence length ε ≤ 6

by analysis of [22] for general correlations; in contrast, for the special class of correlations in our work the
sequence length ε ≤ 27 (see Sect. 7.2).

438 Y. Lu, S. Vaudenay

4.2. Finding the Multiple Polynomial with Low Weight

Let L be the degree of a general polynomial p(x) with order θ . We use the standard
approximation6 to estimate the minimal weight wd of multiples of p(x) with degree at
most d by the following constraint: wd is the smallest w such that

1

2L
×

(
d

w − 1

)

≥ 1. (10)

Listed in Table 1 is the estimated7 wd corresponding to d with L = 128 by solving
inequality (10).

To find multiples with minimum weight, Canteaut and Chabaud [7] proposed an ef-
ficient algorithm for a not too large degree d (e.g. less than 211). Here, we are inter-
ested in the case with very large d
 211. So we can use the conventional birthday
paradox to find Q(x) with the minimal d (i.e. w = wd), which takes precomputation

time PT ≈ O(d� w−1
2
); alternatively, we can use the generalized birthday problem to

find Q(x) of same weight but higher degree with much less precomputation as trade-
off (see [53] for detail). Table 2 compares the two algorithms. Note that unless other-
wise mentioned explicitly in the notations, throughout the paper, we always use log(·)
to represent the natural logarithm to the base of e, which is omitted from the nota-
tions.

4.3. Building a Uni-Bias-Based Distinguisher

Let Q(x) = ∑w
i=1 xqi be the normalized multiple of p(x) = ∏n

i=1 pi(x) with degree d

and weight w, where 0 = q1 < q2 < · · · < qw = d . Let α be the ε-bit binary vector such
that |γ | is maximal where γ = Δ(α · (ψt , . . . ,ψt+ε−1)). As

⊕w
i=1 ξt0+qi

= 0 holds for

Table 1. The estimated minimal weight wd of multiples of p(x) with degree d and order θ by (10), where
L = 128.

d 247 458 855 1749 2387 218 223 227 233 244 265 θ

wd ≈31 ≈24 ≈20 ≈17 ≈16 ≈9 ≈7 ≈6 ≈5 ≈4 ≈3 =2

Table 2. Complexity PT of finding multiple of p(x) with degree d , weight w where L = 128.

Birthday problem
With minimal d Tradeoff

d 218 223 227 233 244 265 232 243

w 9 7 6 5 4 3 9 5
log2 PT 72 69 68 66 66 65 35 45

6 Note that this approximation of (10) is valid for typical settings in cryptography. However, it may not
hold for some special cases (e.g. some of the products of two primitive polynomials with the same degree do
not have any multiple polynomial of weight 3).

7 One special case occurs for d = θ because we know the exact value of wd .

Cryptanalysis of an E0-like Combiner with Memory 439

all t0, by (3), we deduce that

w⊕

i=1

α · (zt0+qi
, . . . , zt0+qi+ε−1) =

w⊕

i=1

α · (ψt0+qi
, . . . ,ψt0+qi+ε−1). (11)

With the heuristic assumption of independence, we know from the famous Piling-up
lemma [37] that the right-hand side of (11) has a bias |γ |w (resp. −|γ |w) if γ is pos-
itive (resp. negative). With standard linear cryptanalysis techniques, we can therefore
distinguish the keystream {zt } from a truly random sequence with a number of sam-
ples within the order of magnitude of ζ = γ −2·w , simply by checking the left-hand
side of (11) equals zero (resp. one) most of the time with the positive (resp. nega-
tive) γ . Based on Q(x) with d and w, we minimize the data complexity Ξ by choosing
Ξ = ζ + d = γ −2·w + d .

4.4. The Multi-Bias-Based Distinguisher

Preliminaries

Definition 8. Given f,g : GF(2)� → R, for a ∈ GF(2)�, we define

1. (f ⊗ g)(a) =
∑

b∈GF(2)�

f (b) · g(a ⊕ b),

f ⊗w(a) = (f ⊗ · · · ⊗ f
︸ ︷︷ ︸

w times

)(a);

2. f̂ (a) =
∑

b∈GF(2)�

(−1)a·bf (b);

3. ‖f ‖ =
√ ∑

a∈GF(2)�

f 2(a);

4. Δ(f) = 2
�
2 ·

∥
∥
∥
∥f − 1

2�
· 1

∥
∥
∥
∥, where 1 denotes a constant function equal to 1.

Note that the first two definitions correspond to convolution and Walsh transform re-
spectively. We recall these basic facts: for any f,g : GF(2)� → R, we have

– ̂f ⊗ g(a) = f̂ (a) · ĝ(a), for all a ∈ GF(2)�;
– 2�‖f ‖2 = ‖f̂ ‖2;
– if f is a distribution, i.e.

∑
a f (a) = 1 and f (a) ≥ 0 for all a ∈ GF(2)�, then the

distribution of the XOR of w i.i.d. random vectors with distribution f is f ⊗w ,
moreover, Δ2(f) = ∑

a �=0 f̂ 2(a);
– if the random Boolean variable A follows the distribution f , then Δ(f) = Δ(A),

where Δ(A) is defined in Definition 2, Sect. 3.

An Efficient Way to Deploy Multi-Biases Simultaneously We are interested in the
possibility of further improving the performance of the distinguisher by using more
than one bias simultaneously. To address this problem, we introduce a linear mapping

440 Y. Lu, S. Vaudenay

J : GF(2)ν → GF(2)� of rank �. Our goal is to find a better J to lower the date com-
plexity. Define �-bit vectors

At = J (ψ�t , . . . ,ψ�t+ν−1),

Bt =
w⊕

i=1

At+qi
.

Note that Bt can be derived from the keystream {zt } directly. Except for accidentally
bad choices of J , we make a heuristic assumption that all At ’s are independent. Let D
be the probability distribution of the ν-bit vector (ψ�t , . . . ,ψ�t+ν−1), and let DA be the
probability distribution of the �-bit vector At . Note that DA and D are linked by

DA(b) =
∑

a∈GF(2)ν

D(a) · 1b=J (a)

for any b ∈ GF(2)�. Moreover, the Walsh transforms of DA and D are also linked by

D̂A(b) = D̂(J�(b)),

for all b ∈ GF(2)�. Now we discuss how to design J in order to reduce the data com-
plexity. From Baignères et al. [4], we know that we can distinguish a distribution f

of �-bit random vectors from a uniform distribution with 1/Δ2(f) samples. Here, the
distribution of Bt is f = D⊗w

A . So the modified distinguisher needs data complexity

Ξ = �

Δ2(D⊗w
A)

+ d (bits).

Let μ be the number of nonzero b such that the Walsh coefficient D̂A(b) has the largest
absolute value8 (denoted by η). Since Δ2(D⊗w

A) ≈ μη2w , we have Ξ ≈ �
μ
η−2w + d . In

order to lower Ξ , it is necessary to have � < μ. This implies that only when the patterns
of the μ largest coefficients are linearly dependent, the multi-bias distinguisher is more
efficient than the uni-bias distinguisher; otherwise, the former is as efficient as the latter.
Note that Sect. 4.3 actually deals with the special type of distinguishers with � = μ = 1.

5. The Key-Recovery Attack

We use the same approach as in [16] to transform our keystream distinguisher of Sect. 4
into a key-recovery attack to reconstruct the shortest LFSR (i.e. R1).

Now, let Q(x) = ∑w
i=1 xqi be a multiple polynomial of

∏n
i=2 pi(x) with degree d

and weight w, which can be found by techniques in Sect. 4.2. Let x̃1 be a guess for x1,
the initial state of R1 which generates the keystream {zt } together with the other n − 1

8 Note that from Theorem 4 we have η ≤ γ ≤ ρ for ν ≤ L1 + 1 regardless of � and J , where ρ is defined
in (5).

Cryptanalysis of an E0-like Combiner with Memory 441

fixed LFSRs. Denote x̃1
t the output bit of R1 with the initial state x̃1 at time t . We define

rt =
w⊕

i=1

α · (x̃1
t+qi

, . . . , x̃1
t+qi+ε−1),

st =
w⊕

i=1

α · (zt+qi
, . . . , zt+qi+ε−1),

for t = 0, . . . , ζ − 1 (corresponding to the data complexity Ξ = ζ + d). It can be shown
that {rt } is also an m-sequence generated by the same LFSR. Let r be the initial state.

Let bt (x̃1)
def= st ⊕ rt for t = 0, . . . , ζ − 1. Given ζ -bit sequence of bt (x̃1)’s, we count

the occurrences9 N(x̃1) of ones, that is,

N(x̃1)
def=

ζ−1∑

t=0

bt (x̃1). (12)

Two cases of statistical characteristics arise. We use similar analysis [52] for the case
γ > 0, which can be easily adjusted for γ < 0.

Case One: x̃1 = x1. We have

bt (x̃1) =
w⊕

i=1

α · (ψt+qi
, . . . ,ψt+qi+ε−1).

Recall from Sect. 4.3, we know that p
def= Pr(bt (x̃1) = 0) = 1

2 + γ w

2 , assuming indepen-
dence of all α · (ψt+qi

, . . . ,ψt+qi+ε−1) for i = 1, . . . ,w. So N(x1) complies with the
binomial distribution B(ζ ;p). As convention, when ζ is large and p is close to 1

2 , we

approximate the binomial distribution of N(x1) by the normal distribution N (ζp,

√
ζ
4),

where the standard deviation is computed as
√

ζ · p(1 − p) ≈
√

ζ
4 .

Case Two: x̃1 �= x1. We have

∑

x̃1∈GF(2)L1

N(x̃1) = ζ · 2L1−1

for any fixed keystream {zt }. We immediately have

E

[∑

x̃1 �=x1

N(x̃1)

]

= ζ · 2L1−1 − ζ · p

9 w is fixed in the attack, so we omit it in the notation N(x̃1).

442 Y. Lu, S. Vaudenay

for any fixed keystream {zt }. We deduce that the average of N(x̃1) over all x̃1 �= x1 is

Ex̃1 �=x1 [N(x̃1)] = E[∑x̃1 �=x1 N(x̃1)]
2L1 − 1

= ζ

2
− ζ(p − 1

2)

2L1 − 1
≈ ζ

2
.

So N(x̃1) asymptotically complies with the binomial distribution B(ζ ; 1
2). Similarly

as the former case, we approximate the binomial distribution of N(x̃1) by the normal

distribution N (
ζ
2 ,

√
ζ
4), where the standard deviation is computed as

√
ζ · 1

2 (1 − 1
2) =

√
ζ
4 . Since we are interested in the probability of success to distinguish the two distinct

distributions, we compute the probability of error Prerr as

Prerr
def= Pr(N(x1) < N(x̃1)) = Pr(N(x1) − N(x̃1) < 0).

Assuming independence of N(x1) and N(x̃1), we expect that N(x1) − N(x̃1) asymp-

totically complies with the normal distribution N (
ζγ w

2 ,

√
ζ
2). We have

Prerr ≈ �

(

−
ζγ w

2√
ζ
2

)

= �

(

−
√

2ζ

2
· γ w

)

,

where � is the standard normal distribution. Thus we estimate the rank of N(x1) among
all N(x̃1) in ascending order by

E[RankN(x1)] = (2L1 − 1) · Prerr ≈ 2L1

γ w
√

πζ
e− ζ

4 γ 2w
. (13)

According to the conventional estimation [11,27] in correlation attacks, derived by
channel coding theory, the critical data complexity ζ0, on the order of γ −2w , is ζ0 =

L1

1−h(1
2 + 1

2 γ w)
≈ 2L1 log 2

γ 2w , and h is the binary entropy function. Note that this critical data

complexity ζ0 does not guarantee that N(x1) is the smallest (resp. largest) of all N(x̃1)

with positive (resp. negative) γ . According to [11] simulations showed the probability
of success is closer to 1

2 for ζ = ζ0. Here, we are interested with a minimum ζ such that
the probability of success is closer to 1. Hence, we set ζ = k0γ

−2w for some k0 to be
determined by solving E[RankN(x1)] = 1 in (13). Finally, we obtain that the minimum

ζ ≈ 4L1 log 2

γ 2w
(= 2ζ0) (14)

is needed to guarantee that N(x1) is the smallest (resp. largest) of all N(x̃1) with positive
(resp. negative) γ . Note that our analysis is consistent with simulation results in [11],
which showed that the probability of success is close to 1 for ζ = 2ζ0. Clearly, our
problem of recovering R1 right fits into the Maximum Likelihood Decoding (MLD)
problem for a general linear code, as described in Sect. 6. Thus, solving MLD problem
allows to recover r, after which we apply linear transform to solve x1.

Cryptanalysis of an E0-like Combiner with Memory 443

6. A Maximum Likelihood Decoding Algorithm

We first recall the following basics of linear codes (see [36] for details). Given a ma-
trix GL×κ (with L < κ), for every message r = (r1, . . . , rL), define the codeword

x = (x1, . . . , xκ)
def= rG. The set of all codewords form the linear code, defined by G.

The code is said to have dimension L, length κ and generator matrix G. The MLD
problem for the linear code is: find the message r which minimizes the Hamming dis-
tance10 between the associated codeword x and the received vector s = (s1, . . . , sκ), i.e.
find such r that minimizes N(r) = ∑κ

t=1(st ⊕ xt), where xt = rGt (Gt denotes the t-th
column vector of G).

For example, our preceding key-recovery attack in Sect. 5 can be transformed into
the MLD problem as follows. Define the column vector Gt of the generator matrix G

by Gt = (a0, . . . , aL1−1)
�, where a0 + a1x + · · · + aL1−1x

L1−1 = xt mod p1(x). And
let L = L1, κ = ζ , r = r, x = {rt } and s = {st }.

6.1. The Time-Domain Analysis

The trivial solution to find r is an exhaustive search in the time-domain: for every mes-
sage r̃ , we compute N(r̃) and keep the smallest. The final record leads to r . The time
complexity is O(κ · 2L) with memory κ bits.

6.2. The Frequency-Domain Analysis

We introduce an integer-valued function,

W(x)
def=

∑

1≤t≤κ:Gt=x�
(−1)st ,

for all x ∈ GF(2)L, where � denotes the matrix transpose. We compute the Walsh
transform Ŵ of W as follows:

Ŵ(r) =
∑

x∈GF(2)L

(−1)r·xW(x)

=
κ∑

t=1

(−1)st⊕rGt

=
κ∑

t=1

(−1)st⊕xt

= κ − 2N(r).

We thereby reach the theorem below.

10 The Hamming distance between two vectors x = (x1, . . . , x�) and y = (y1, . . . , y�) of equal dimension
is the number of coordinates where they differ.

444 Y. Lu, S. Vaudenay

Algorithm 1 The frequency transformation algorithm

Inputs:
G = (G1, . . . ,Gκ): the generator matrix
keystream s1s2 · · · sκ

Preprocessing:
for all L-bit r do

compute W(r) and keep in memory
end for

Processing:
use FWT to compute Ŵ
find r that achieves the maximal Ŵ(r)

output r

Table 3. Comparison of maximum likelihood decoding algorithms.

Time Memory

Exhaustive search κ · 2L κ

Frequency transformation κ + L · 2L min(κ,2L)

Theorem 9.

N(r) = 1

2
(κ − Ŵ(r)),

for all r ∈ GF(2)L.

This generalizes the result [36, p. 414] of a special case when κ = 2L and G�
t corre-

sponds to the binary representation of t . So, to solve the MLD problem, we just com-
pute W , perform FWT (see [54]), and find the maximum Ŵ(r) as shown in Algorithm 1.

The time and memory complexities of FWT are O(L ·2L), O(2L) respectively. Since
the precomputation of W takes time O(κ) with memory O(κ), we conclude that the
improved MLD algorithm runs in O(κ + L · 2L) with memory O(2L) (additionally,
using linear transformation allows to compute FWT over GF(2)k with memory O(2k)

where k = �log2 κ
). Note that when κ ≥ 2L, the time complexity corresponds to O(κ),
which is optimal in the sense that it stands on the same order of magnitude as the data
complexity does. Table 3 compares the original exhaustive search algorithm with the
improved frequency transformation algorithm. Note that the technique of FWT was
used in another context [12] to speed up other kinds of fast correlation attacks. In the
case of the core E0 (see Sect. 7), we will see how it helps to speed up the attack [16]
by a factor of 224. We estimate similar correlation attacks like [11] can be speeded up
by a factor of 10; undoubtedly, some other attacks can be significantly improved by our
FWT-based algorithm as well.

6.3. A More Generalized MLD Algorithm

We further generalize the preceding problem by finding the L-bit vector r such that
given a sequence of �-bit (� < L) vectors S1, . . . , Sτ and f : GF(2)� → R together
with matrices G1, . . . ,Gτ of size L by �, the sequence of �-bit vectors X1, . . . ,Xτ

Cryptanalysis of an E0-like Combiner with Memory 445

defined by Xt = rGt minimizes N(r) = ∑τ
t=1 f (St ⊕ Xt). It means the linear code

has length τ�, dimension L, and the generator matrix G = (G1, . . . ,Gτ). Note that our
previous problem in Sect. 6.2 is merely a special case of � = 1, τ = κ and f (a) = a for
a ∈ GF(2).

Define a real function

W(x) = 1

2�

∑

1≤t≤τ,a∈GF(2)�:aG�
t =x

(−1)a·St f̂ (a),

for all x ∈ GF(2)L. We compute the Walsh transform Ŵ of W as follows:

Ŵ(r) =
∑

x∈GF(2)L

(−1)r·xW(x)

= 1

2�

τ∑

t=1

∑

a∈GF(2)�

(−1)a·(rGt⊕St)f̂ (a)

=
τ∑

t=1

f (rGt ⊕ St)

= N(r).

Algorithm 2 directly follows above computation. The total running time of our algo-
rithm is O(τ�L2� +L2L) with memory O(2L). To speed up the computation of W , we
could precompute the inner products of all pairs of �-bit vectors in time O(22�) with
memory O(22�). Thus, the total running time of the algorithm is O(22� + τL2� +L2L)

with memory O(22� + 2L).
In the special case that Gt+1 = AGt for t = 1, . . . , τ , we precompute another table

to map any L-bit vector x to xA�. It takes time O(2L) with memory O(2L). The total

Algorithm 2 The generalized MLD algorithm

Parameters:
f, �

Inputs:
G = (G1, . . . ,Gτ): the generator matrix
vector stream S1, S2, . . . , Sτ

Processing:
apply FWT to compute the table of f̂

initialize the table of W to 0
for all �-bit a do

for t = 1, . . . , τ do
increment W(aG�

t) by 1
2� (−1)a·St f̂ (a)

end for
end for
use FWT to compute Ŵ
find r that achieves the minimal Ŵ(r)

output r

446 Y. Lu, S. Vaudenay

time of the algorithm is thus O(22� + (L + τ)2� + L2L), with memory O(22� + 2L).
Note that above special case is applicable to the core E0 (see Sect. 7).

6.4. Comments

According to [5], the general decoding problem for linear codes is shown to be NP-
complete (see [21] for definition) in the sense that the known deterministic algorithm
that decodes an arbitrary linear code with dimension L and length κ performs an ex-
haustive trial on all possible codewords. Thus, prior to us, the best deterministic decod-
ing algorithm takes time O(2L × κ). In our work, we showed that the decoding time
O(L · 2L + κ) is achievable and it grows linear in κ . This makes it possible now to
decode the linear code with not so large dimension but very large length in which case
the naive exhaustive decoding is infeasible.

7. Case Study: the Core of Bluetooth E0

7.1. Description

Specified in [6], the core keystream generator E0 (Fig. 2) used in Bluetooth fits in the
model in Sect. 2: n = 4, L1 = 25, L2 = 31, L3 = 33, L4 = 39 (thus L = 128) with
primitive characteristic polynomials

p1(x) = x25 + x17 + x13 + x5 + 1,

p2(x) = x31 + x19 + x15 + x7 + 1,

p3(x) = x33 + x29 + x9 + x5 + 1,

p4(x) = x39 + x35 + x11 + x3 + 1,

Fig. 2. Outline of the core E0.

Cryptanalysis of an E0-like Combiner with Memory 447

Table 4. State transition of σt+1 given w(xt) and σt .

σt

w(xt) 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

0 00 11 23 32 03 12 20 31 01 10 22 33 02 13 21 30
1 00 10 23 31 03 13 20 32 01 11 22 30 02 12 21 33
2 01 10 20 31 02 13 23 32 00 11 21 30 03 12 22 33
3 01 13 20 30 02 10 23 33 00 12 21 31 03 11 22 32
4 02 13 21 30 01 10 22 33 03 12 20 31 00 11 23 32

respectively. The state σt of the FSM contains (ct−1, ct) of k bits, where k = 4 and

ct = (c1
t , c

0
t) has 2 bits. Let w(xt)

def= ∑4
i=1 xi

t be the Hamming weight11 of xt . The
FSM has the update function F : (w(xt), ct−1, ct) �→ (ct , ct+1). Computing ct+1 from
σt can be described by

c1
t+1 = υ1

t+1 ⊕ c1
t ⊕ c0

t−1,

c0
t+1 = υ0

t+1 ⊕ c0
t ⊕ c1

t−1 ⊕ c0
t−1,

where the 2-bit υt+1 = (υ1
t+1, υ

0
t+1) is defined by

υt+1 =
⌊

w(xt) + 2 · c1
t + c0

t

2

⌋

.

Table 4 shows the state transition of the FSM, where the four-bit state is represented in
the quaternary system (e.g. the FSM changes from σt = 13 into σt+1 = 32 by the input
w(xt) = 2). One can check Table 4 by above equations.

With � = 01 in (2), at each clock cycle t , the FSM emits one bit ψt = c0
t . The

keystream output bit is zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t .

7.2. Correlations

From Sect. 3, we know that if (λ0, σ0) is uniformly distributed, then, for ε ≤ 26 and
any α1, . . . , αε ∈ GF(2)4, δ(α1, . . . , αε) = Δ(α1 · σt ⊕ · · · ⊕ αε · σt+ε−1) is a constant
and does not depend on t . It can be computed by Theorem 4. However, notice that
the core E0 has such a special FSM that the two consecutive states σt and σt+1 are
half overlapped (i.e. 2-bit ct is contained in both). Therefore, to compute the value of
Δ(α1 · σ0 ⊕ · · · ⊕ αε · σε−1), the sequence α1, . . . , αε is not unique. So, we resort to
another notation Ω for the unique expression of the same thing instead.

For ε ≤ 27 and any a1, . . . , aε ∈ GF(2)2, let Ω(a1, . . . , aε)
def= Δ(a1 · c0 ⊕ · · · ⊕ aε ·

cε−1). Similarly to Theorem 4, we apply Lemma 3 with X = xε−2, Y = (c0, . . . , cε−2),
Λ(Y) = (cε−3, cε−2), Θ(X,Λ(Y)) = aε · cε−1 and v = (a1, . . . , aε−1) and obtain
the following result. Assuming (λ0, σ0) is uniformly distributed, for any ε ≤ 27 and

11 Recall that the Hamming weight of a vector is the number of 1’s of its coordinates. Note that the
Hamming weight of a vector always equals its Hamming distance (defined in Sect. 6) to the all zero vector of
equal dimension.

448 Y. Lu, S. Vaudenay

a1, . . . , aε ∈ GF(2)2, we have

Ω(a1, . . . , aε) =
∑

w0,w1∈GF(2)2

Ω(w0,w1, aε)

× Ω(a1, . . . , aε−3, aε−2 ⊕ w0, aε−1 ⊕ w1).

Here is a full list of nonzero triplets:

Ω(0,0,0) = 1, Ω(1,3,2) = 1

4
, Ω(2,3,3) = −5

8
,

Ω(1,0,2) = 5

8
, Ω(2,0,3) = 1

4
, Ω(3,3,1) = −1

4
.

With the list, we computed all ε-tuple biases for ε ≤ 27 and found out that the largest
two biases are Ω(1,1,1,1,1) = − 25

256 and Ω(1,0,0,0,0,1) = 25
256 . Both biased were

mentioned in [17,24] without formal proof. Below we give formal proof on the two
biases.

Property 10. Assuming (λt , σt) is random and uniformly distributed, we have

Pr(c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1) = 1

2
+ 25

512
.

Proof. We show the equivalent Ω(1,1,1,1,1) = − 25
256 as follows:

Ω(1,1,1,1,1) = Ω(3,3,1) · Ω(1,1,1 ⊕ 3,1 ⊕ 3)

= −1

4
Ω(1,1,2,2)

= −1

4

∑

w0,w1

Ω(w0,w1,2) · Ω(1,1 ⊕ w0,2 ⊕ w1)

= −1

4
(Ω(1,0,2)Ω(1,1 ⊕ 1,2) + Ω(1,3,2)Ω(1,1 ⊕ 1,2 ⊕ 3))

= −1

4
(Ω2(1,0,2) + Ω(1,3,2)Ω(1,0,1))

= − 25

256
. �

Remark 11. Assuming w(xt) = 2 holds for t = t0, t0 + 1, t0 + 2, then, regardless of
the value of σt0 , we always have

c0
t0

⊕ c0
t0+1 ⊕ c0

t0+2 ⊕ c0
t0+3 ⊕ c0

t0+4 = 1.

Since Pr(w(xt) = 2) = 6
16 , this seems to suggest that

Pr(c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1) ≈ 1

2
+

(
6

16

)3

= 1

2
+ 27

512
,

Cryptanalysis of an E0-like Combiner with Memory 449

which explains the bias in Property 10. This special case was not pointed out in [17,24]
however.

Property 12. Assuming (λt , σt) is random and uniformly distributed, we have

Pr(c0
t = c0

t+5) = 1

2
+ 25

512
.

Proof. This bias is similarly proved from Ω(1,0,0,0,0,1) = 25
256 . �

Throughout the rest of the paper, we let

γ = Ω(1,0,0,0,0,1) = −Ω(1,1,1,1,1) = 25

256
.

Besides the above two largest biases, we have the only second largest bias up to 27 bits
Ω(1,0,1,1) = −2−4. This bias was already proved in [26]. Now, we apply Theorem 6
in Sect. 3 to compute the theoretical upper bound of Ω(a) for any a of at most 27 tuples
and compare γ with it. To show this, we first list the state transition matrix U (where
dashed entries denote zeros) as follows:

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5
16

10
16

1
16 − − − − − − − − − − − − −

− − − − 10
16

1
16 − 5

16 − − − − − − − −
− − − − − − − − 10

16
1

16 − 5
16 − − − −

− − − − − − − − − − − − 5
16

10
16

1
16 −

− 1
16

10
16

5
16 − − − − − − − − − − − −

− − − − 5
16 − 1

16
10
16 − − − − − − − −

− − − − − − − − 5
16 − 1

16
10
16 − − − −

− − − − − − − − − − − − − 1
16

10
16

5
16

10
16

5
16 − 1

16 − − − − − − − − − − − −
− − − − 1

16
10
16

5
16 − − − − − − − − −

− − − − − − − − 1
16

10
16

5
16 − − − − −

− − − − − − − − − − − − 10
16

5
16 − 1

16
1
16 − 5

16
10
16 − − − − − − − − − − − −

− − − − − 5
16

10
16

1
16 − − − − − − − −

− − − − − − − − − 5
16

10
16

1
16 − − − −

− − − − − − − − − − − − 1
16 − 5

16
10
16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From U , we notice that |∑b:� ·b=1 Uab −∑
b:� ·b=0 Uab| remains a constant ρ0 = 4

16 =
2−2 for all a. Hence ρ = ρ0 = 2−2. Consequently, applying Theorem 6, we know

|Ω(a)| ≤ 2−2,

for any a of at most 27 tuples. We check that γ ≈ 2−3.36 < 2−2.

450 Y. Lu, S. Vaudenay

7.3. Keystream Distinguishers

We are ready to build a distinguisher for the core E0 upon above largest correlations
together with the multiple Q(x) of

∏4
i=1 pi(x) with degree d and weight w, which

can be precomputed by birthday paradox as mentioned in Sect. 4.2 or easy manual
calculation as follows:

Examples of Q(x) with Weight Four Recall that θi = 2Li − 1 is the order of
pi(x) for i = 1,2,3,4. By definition, pi(x)|xθi + 1. On the other hand, pi(x)pj (x)|
lcm(xθi + 1, xθj + 1) = xlcm(θi ,θj) + 1 for i �= j , hence we deduce the following three
multiple polynomials of p(x) with weight 4 with ease:

Q1(x) = (xlcm(θ1,θ2) + 1)(xlcm(θ3,θ4) + 1),

Q2(x) = (xlcm(θ1,θ3) + 1)(xlcm(θ2,θ4) + 1),

Q3(x) = (xlcm(θ1,θ4) + 1)(xlcm(θ2,θ3) + 1),

where

lcm(θ1, θ2) = 256 − 231 − 225 + 1, lcm(θ1, θ3) = 258 − 233 − 225 + 1,

lcm(θ1, θ4) = 264 − 239 − 225 + 1, lcm(θ2, θ3) = 264 − 233 − 231 + 1,

lcm(θ2, θ4) = 270 − 239 − 231 + 1, lcm(θ3, θ4) = (239 − 1)

10∑

i=0

23i .

The degrees of Q1(x),Q2(x),Q3(x) are approximately 269,270,265 respectively. Note
that we may also expect optimal multiples with degree on the same order of magnitude
and weight 3 from Table 1.

Primary Distinguisher Table 5 summarizes the best performance of our primary (uni-
bias-based) distinguisher for the core E0 based on either the use of Q3(x) with weight 4,
or a search of Q(x), when we choose α = (1,1,1,1,1) or (1,0,0,0,0,1).

Advanced Distinguisher From Sect. 4.4, we know that the multi-bias-based distin-
guisher improves the uni-bias-based one only when the patterns of the largest correla-
tion coefficients are linearly dependent, which happens to be true in the core E0: recall
from Property 10 and Property 12 that the 6-tuple patterns of the three largest biases
satisfy the linear relation,

(1,1,1,1,1,0) ⊕ (0,1,1,1,1,1) = (1,0,0,0,0,1).

Table 5. Summary of the best primary distinguisher for the core E0.

Type d w Precomputation Data Time

Use Q(x) = Q3(x) 265 4 – 265

Find Q(x) with
minimal d 233 5 266 234

tradeoff 243 5 245 243

Cryptanalysis of an E0-like Combiner with Memory 451

As a simple solution we may just pick ν = 6, � = 2, J1 = (1,1,1,1,1,0) and
J2 = (0,1,1,1,1,1) (where Ji is the i-th row of J), then we obtain μ = 3. And
the data complexity Ξ is reduced to a factor of 2

3 for negligible d . Indeed, recall
that we proved by computation that the largest Walsh coefficient for ν ≤ 27 are
either (0, . . . ,0,1,1,1,1,1,0, . . . ,0) or (0, . . . ,0,1,0,0,0,0,1,0, . . . ,0). Thus μ ≤
(ν − 4) + (ν − 5) = 2ν − 9. This leads to a more general solution, if we pick ν = � + 4,
and the i-th row of J as

Ji = (0, . . . ,0
︸ ︷︷ ︸
i−1 zeros

,1,1,1,1,1, 0, . . . ,0
︸ ︷︷ ︸

ν−i−4 zeros

) for i = 1, . . . , �, (15)

then we obtain μ = 2� − 1. And so the improved factor �
2�−1 of data complexity Ξ

tends to 1
2 for negligible d when � goes to infinity; however, because of the underlying

assumption for the core E0, ν is restricted to no larger than 27, i.e. � ≤ 23. To conclude,
we show that the modified distinguisher (Algorithm 3) needs data complexity

Ξ ≈ �

2� − 1
· γ −2w + d, for 1 ≤ � ≤ 23. (16)

Table 6 shows the best improvement achieved with � = 23. We see that the minimum Ξ

drops from previous 234 to 233.

Algorithm 3 The advanced distinguisher for the core E0

Parameters:
� ∈ [1,23], ν = � + 4
J : GF(2)ν → GF(2)� defined in (15)
DA: the probability distribution of the �-bit vector At

Q(x) = ∑w
i=1 xqi : the multiple polynomial of p1(x)p2(x)p3(x)p4(x) with degree d

Ξ : the sample size by (16)
Inputs:

keystream z0z1 · · · zΞ−1 of either a truly random source S0 or the output S1 generated by the core E0
initialize counters u0, u1, . . . , u2�−1
for t = 0,1, . . . , �Ξ−d−4

�
� − 1 do

compute b = ⊕w
i=1 J (z�t+qi

, . . . , z�t+qi+ν−1)

increment ub

end for
if

∑
b ub · log(2� ·D⊗w

A
(b)) > 0 then

accept S1 as the source
else

accept S0 as the source
end if

Table 6. Data complexity Ξ of the advanced distinguisher for the core E0.

d L 247 458 855 1749 2387 218 223 227 233 244 265 232 243

w 49 31 24 20 17 16 9 7 6 5 4 3 9 5

log2 Ξ 328 208 161 134 114 107 60 46 40 33 44 65 60 43

452 Y. Lu, S. Vaudenay

Table 7. Complexity PC of finding the multiple of p2(x)p3(x)p4(x) with degree d and weight w.

Birthday problem
With minimal d Tradeoff

Weight w 5 4 3 2 5
Degree d 227 236 252 2100 234.3

Precomputation PC 254 254 252 – 236.3

Table 8. The estimated minimal ζ corresponding to w by (14) where L1 = 25, γ = 25/256.

w 5 4 3 2 1

ζ 240 233 227 220 214

Table 9. Summary of primary partial key-recovery attacks against R1 for the core E0.

w d ζ Data Ξ Precomputation PT Time Memory

Attack A 5 234.3 239 239 236.3 239 225

Attack B 4 236 233 236 254 236 225

7.4. The Key-Recovery Attack

Here we consider the key-recovery attack of how to reconstruct the initial states of the
LFSRs for the core E0. Let Q(x) = ∑w

i=1 xqi be the multiple polynomial of
∏4

i=2 pi(x)

with degree d and weight w. Q(x) can be found with (precomputation) complexity
PC by techniques in Sect. 4.2. Table 7 lists the corresponding triplets (w,d,PC)

for small w. As detailed in Sect. 5, we use the MLD algorithm in Sect. 6.2 to re-
cover x1. Table 8 shows our estimated minimal ζ corresponding to w by (14). More-
over, we conduct the same analysis as in Sect. 7.3 to decrease ζ by a factor of �

2�−1
for 1 ≤ � ≤ 23; and we apply the technique introduced in Sect. 6.3 to obtain the time
complexity O(Ξ + θ1 · 2� + L1 · 2L1), where Ξ = ζ + d . The attack complexities to
recover R1 for the core E0 are listed in Table 9 for two best cases denoted by A and B,
where we choose � = 12.

Once we recover R1, we target R2 next based on multiple of p3(x)p4(x). Last, we
use the technique of guess and determine in [19] to solve R3 and R4 with knowledge of
the shortest two LFSRs. The detailed complexities of each step are shown in Table 10.
A comparison of our attacks with the similar attack12 [16] and the best attacks [14,25]
(both were algebraic attacks) is shown in Table 11 for Case A and B.

Experimental Results with w = 1 We did the small-scale experiment to verify our
analysis in Sect. 5 on the keystream {⊕4

i=2(x
i
t ⊕ zt)} instead of {zt } to save the trouble

of searching the multiple Q(x) of
∏4

i=2 pi(x) with low weight (herein w = 1). First,
we test the rank of N(x1) among those of all the 2L1 values of N(x̃1) (see (12) for
definition) for a total of 100 randomly chosen initial states of the core E0. From (13),
we have E[RankN(x1)] = 1 for ζ = 214. It turned out that N(x1) ranks uniquely the top
without exception.

12 The estimate of data complexity in [16] uses a different heuristic formula than ours. However we believe
that their estimate and ours in Attack B are essentially the same.

Cryptanalysis of an E0-like Combiner with Memory 453

Table 10. Detailed complexities of our key-recovery attack against the core E0.

w d ζ Data Ξ Precomputation PT Time Memory

R1 5 234.3 239 239 236.3 239 225

R2 3 236 227 236 237 236 227

R3 and R4 – – – 76 – 233 –

Total – – – 239 237 239 227

Table 11. Complexities comparison of our attacks with the similar attack [16] and the best attacks [14,25].

Precomputation Time Data Memory

Algebraic attack [14,25] 237 249 223.4 237

Similar attack [16] 254 263 234 234

Our attacks
A 237 239 239 227

B 254 237 236 227

Second, we choose some random x1, then compute the corresponding average

and variance of N(x̃1)
ζ

over all x̃1 �= x1 individually, it turned out that Var(N(x̃1)
ζ

) ≈
1.526 × 10−5, approximately the same as the expected Var(N(x̃1)

ζ
) = 1

ζ 2 Var(N(x̃1)) =
1

4ζ
= 2−16 ≈ 1.526 × 10−5; and we got a consistent average of 0.5. The left curve in

Fig. 3 corresponds to the experimental probability distribution of N(x̃1)
ζ

for x̃1 �= x1,
where the dotted line represents the central symmetric line.

Last, we accordingly tested the average and variance of N(x1)
ζ

for 225 random initial
states of the core E0. And we got the average of around 0.5488 with variance 2.121 ×
10−5 (in contrast to the estimation of average 281

512 ≈ 0.5488, variance 2−16 ≈ 1.526 ×
10−5 respectively). Its experimental probability distribution is drawn on the right curve
of Fig. 3. It is worth noticing that the two curves are indeed distinct.

8. Conclusions

In this paper, we propose an E0-like combiner with memory as a keystream generator.
We formulate a systematic computation method to calculate correlations of the FSM
output sequences (up to certain bits) by a recursive expression. In addition, we give a
upper bound of the correlations, which is useful to the designer. When correlations are
found, we can build either a uni-bias-based or multi-bias-based distinguisher to distin-
guish the keystream produced by the combiner from a truly random sequence. We apply
the concept of convolution to the analysis of the multi-bias-based distinguisher that uses
all correlations. Based on the theory of [4], it is shown that the multi-bias-based distin-
guisher outperforms the uni-bias-based distinguisher only when the largest biases are
linearly dependent. The keystream distinguisher not only enables the keystream distin-
guishing attack, but also can upgrade into the key-recovery attack to reconstruct the
initial states of the LFSRs. The latter actually reduces to the well-known MLD problem
given the keystream long enough (or the bias large enough). By means of FWT, we

454 Y. Lu, S. Vaudenay

Fig. 3. The two distinct probability distributions of N(x̃1)
ζ

for x̃1 �= x1 (left) and x̃1 = x1 (right).

devise an MLD algorithm to recover the closest codeword for any linear code. It is the
best deterministic decoding algorithm known so far.

The analysis principle is successfully applied to the core of Bluetooth encryption
algorithm E0 completely. Our key-recovery attack reconstructs the initial states of the
LFSRs in 239 time given 239 consecutive keystream bits after O(237) precomputation.
This is the best academic key-recovery attack against the core E0 compared with all the
attacks [1,2,14,16–19,24–26,30,49] on the core E0. Considering a maximal keystream
length of 2745 bits for E0 used in Bluetooth, the attack is impractical. Meanwhile, our
proposed MLD algorithm can be easily adapted to speed up a class of fast correlation
attacks.

All in all, an ideal nonlinear combiner with memory should satisfy one necessary
design principle: the FSM must generate no biased output sequence, i.e.

H(ψ1|σ0) = 1.

References

[1] F. Armknecht, Improving fast algebraic attacks, in Fast Software Encryption 2004, ed. by B. Roy,
W. Meier. Lecture Notes in Computer Science, vol. 3017 (Springer, Berlin, 2004), pp. 65–82

Cryptanalysis of an E0-like Combiner with Memory 455

[2] F. Armknecht, M. Krause, Algebraic attacks on combiners with memory, in Advances in Cryptology—
CRYPTO2003, ed. by D. Boneh. Lecture Notes in Computer Science, vol. 2729 (Springer, Berlin, 2003),
pp. 162–175

[3] F. Armknecht, M. Krause, D. Stegemann, Design principles for combiners with memory, in Progress in
Cryptology—INDOCRYPT2005, ed. by S. Maitra, C.E.V. Madhavan, R. Venkatesan. Lecture Notes in
Computer Science, vol. 3797 (Springer, Berlin, 2005), pp. 104–117

[4] T. Baignères, P. Junod, S. Vaudenay, How far can we go beyond linear cryptanalysis? in Advances
in Cryptology—ASIACRYPT2004, ed. by P.J. Lee. Lecture Notes in Computer Science, vol. 3329
(Springer, Berlin, 2004), pp. 432–450

[5] E.R. Berlekamp, R.J. McEliece, H.C.A. Van Tilborg, On the inherent intractability of certain coding
problems. IEEE Trans. Inf. Theory IT-24(3), 384–386 (1978)

[6] Bluetooth specification (version 2.0 + EDR) (November 2004), http://www.bluetooth.org
[7] A. Canteaut, F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: applica-

tion to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory
44(1), 367–378 (1998)

[8] A. Canteaut, E. Filiol, Ciphertext only reconstruction of stream ciphers based on combination gen-
erators, in Fast Software Encryption 2000, ed. by B. Schneier. Lecture Notes in Computer Science,
vol. 1978 (Springer, Berlin, 2001), pp. 165–180

[9] A. Canteaut, M. Trabbia, Improved fast correlation attacks using parity-check equations of weight 4
and 5, in Advances in Cryptology—EUROCRYPT2000, ed. by B. Preneel. Lecture Notes in Computer
Science, vol. 1807 (Springer, Berlin, 2000), pp. 573–588

[10] V. Chepyzhov, B. Smeets, On a fast correlation attack on certain stream ciphers, in Advances in
Cryptology—EUROCRYPT’91, ed. by D.W. Davies. Lecture Notes in Computer Science, vol. 547
(Springer, Berlin, 1991), pp. 176–185

[11] V.V. Chepyzhov, T. Johansson, B. Smeets, A simple algorithm for fast correlation attacks on stream
ciphers, in Fast Software Encryption 2000, ed. by B. Schneier. Lecture Notes in Computer Science,
vol. 1978 (Springer, Berlin, 2001), pp. 181–195

[12] P. Chose, A. Joux, M. Mitton, Fast correlation attacks: an algorithmic point of view, in Advances in
Cryptology—EUROCRYPT2002, ed. by L.R. Knudsen. Lecture Notes in Computer Science, vol. 2332
(Springer, Berlin, 2002), pp. 209–221

[13] A. Clark, J.D. Golić, E. Dawson, A comparison of fast correlation attacks, in Fast Software Encryp-
tion’96, ed. by D. Gollmann. Lecture Notes in Computer Science, vol. 1039 (Springer, Berlin, 1996),
pp. 145–157

[14] N.T. Courtois, Fast algebraic attacks on stream ciphers with linear feedback, in Advances in
Cryptology—CRYPTO2003, ed. by D. Boneh. Lecture Notes in Computer Science, vol. 2729 (Springer,
Berlin, 2003), pp. 176–194

[15] T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)
[16] P. Ekdahl, On LFSR based stream ciphers: Analysis and design. Ph.D. Thesis, Lund University, Nov

2003
[17] P. Ekdahl, T. Johansson, Some results on correlations in the Bluetooth stream cipher, in Proceedings of

the 10th Joint Conference on Communications and Coding, Austria, 2000
[18] S. Fluhrer, Improved key recovery of level 1 of the Bluetooth encryption system (2002), http://eprint.

iacr.org/2002/068
[19] S. Fluhrer, S. Lucks, Analysis of the E0 encryption system, in Selected Areas in Cryptography 2001,

ed. by S. Vaudenay, A. Youssef. Lecture Notes in Computer Science, vol. 2259 (Springer, Berlin, 2002),
pp. 38–48

[20] R. Forré, A fast correlation attack on nonlinearly feedforward filtered shift-register sequences, in Ad-
vances in Cryptology—EUROCRYPT’89, ed. by J.J. Quisquater, J. Vandewalle. Lecture Notes in Com-
puter Science, vol. 434 (Springer, Berlin, 1990), pp. 586–595

[21] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness
(Freeman, New York, 2000)

[22] J.D. Golić, Correlation properties of a general binary combiner with memory. J. Cryptol. 9, 111–126
(1996)

[23] J.D. Golić, On the security of nonlinear filter generators, in Fast Software Encryption’96, ed. by D. Goll-
mann. Lecture Notes in Computer Science, vol. 1039 (Springer, Berlin, 1996), pp. 173–188

456 Y. Lu, S. Vaudenay

[24] J.D. Golić, V. Bagini, G. Morgari, Linear cryptanalysis of Bluetooth stream cipher, in Advances in
Cryptology—EUROCRYPT2002, ed. by L.R. Knudsen. Lecture Notes in Computer Science, vol. 2332
(Springer, Berlin, 2002), pp. 238–255

[25] P. Hawkes, G.G. Rose, Rewriting variables: The complexity of fast algebraic attacks on stream ciphers,
in Advances in Cryptology—CRYPTO2004, ed. by M. Franklin. Lecture Notes in Computer Science,
vol. 3152 (Springer, Berlin, 2004), pp. 390–406

[26] M. Hermelin, K. Nyberg, Correlation properties of the Bluetooth combiner, in Information Security and
Cryptology—ICISC’99, ed. by J. Song. Lecture Notes in Computer Science, vol. 1787 (Springer, Berlin,
2000), pp. 17–29

[27] T. Johansson, F. Jönsson, Fast correlation attacks based on turbo code techniques, in Advances in
Cryptology—CRYPTO’99, ed. by M. Wiener. Lecture Notes in Computer Science, vol. 1666 (Springer,
Berlin, 1999), pp. 181–197

[28] T. Johansson, F. Jönsson, Improved fast correlation attacks on stream ciphers via convolutional codes,
in Advances in Cryptology—EUROCRYPT’99, ed. by J. Stern. Lecture Notes in Computer Science,
vol. 1592 (Springer, Berlin, 1999), pp. 347–362

[29] T. Johansson, F. Jönsson, Fast correlation attacks through reconstruction of linear polynomials, in Ad-
vances in Cryptology—CRYPTO2000, ed. by M. Bellare. Lecture Notes in Computer Science, vol. 1880
(Springer, Berlin, 2000), pp. 300–315

[30] M. Krause, BDD-based cryptanalysis of keystream generators, in Advances in Cryptology—
EUROCRYPT2002, ed. by L.R. Knudsen. Lecture Notes in Computer Science, vol. 2332 (Springer,
Berlin, 2002), pp. 222–237

[31] R. Lidl, H. Niederreiter, Introduction to Finite Fields and Their Applications (Cambridge University
Press, Cambridge, 1986)

[32] Y. Lu, Applied stream ciphers in mobile communications. Ph.D. Thesis, EPFL, 2006
[33] Y. Lu, W. Meier, S. Vaudenay, The conditional correlation attack: a practical attack on Bluetooth encryp-

tion, in Advances in Cryptology—CRYPTO2005, ed. by V. Shoup. Lecture Notes in Computer Science,
vol. 3621 (Springer, Berlin, 2005), pp. 97–117

[34] Y. Lu, S. Vaudenay, Cryptanalysis of Bluetooth keystream generator two-level E0, in Advances
in Cryptology—ASIACRYPT2004, ed. by P.J. Lee. Lecture Notes in Computer Science, vol. 3329
(Springer, Berlin, 2004), pp. 483–499

[35] Y. Lu, S. Vaudenay, Faster correlation attack on Bluetooth keystream generator E0, in Advances
in Cryptology—CRYPTO2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152
(Springer, Berlin, 2004), pp. 407–425

[36] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, 9th edn. (North-Holland, Am-
sterdam, 1996)

[37] M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology—EUROCRYPT’93,
ed. by T. Helleseth. Lecture Notes in Computer Science, vol. 765 (Springer, Berlin, 1994), pp. 386–397

[38] W. Meier, O. Staffelbach, Fast correlation attacks on stream ciphers (extended abstract), in Advances
in Cryptology—EUROCRYPT’88, ed. by C. Günther. Lecture Notes in Computer Science, vol. 330
(Springer, Berlin, 1988), pp. 301–314

[39] W. Meier, O. Staffelbach, Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159–176
(1989)

[40] W. Meier, O. Staffelbach, Correlation properties of combiners with memory in stream ciphers. J. Cryp-
tol. 5, 67–86 (1992)

[41] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca
Raton, 1996)

[42] M.J. Mihaljević, M.P.C. Fossorier, H. Imai, A low-complexity and high-performance algorithm for the
fast correlation attack, in Fast Software Encryption 2000, ed. by B. Schneier. Lecture Notes in Computer
Science, vol. 1978 (Springer, Berlin, 2001), pp. 196–212

[43] M.J. Mihaljević, M.P.C. Fossorier, H. Imai, Fast correlation attack algorithm with list decoding and an
application, in Fast Software Encryption 2001, ed. by M. Matsui. Lecture Notes in Computer Science,
vol. 2355 (Springer, Berlin, 2002), pp. 196–210

[44] M.J. Mihaljević, J.D. Golić, A fast iterative algorithm for a shift register initial state reconstruction given
the noisy output sequence, in Advances in Cryptology—AUSCRYPT’90, ed. by J. Seberry, J. Pieprzyk.
Lecture Notes in Computer Science, vol. 453 (Springer, Berlin, 1990), pp. 165–175

Cryptanalysis of an E0-like Combiner with Memory 457

[45] M.J. Mihaljević, J.D. Golić, A comparison of cryptanalytic principles based on iterative error-correction,
in Advances in Cryptology—EUROCRYPT’91, ed. by D.W. Davies. Lecture Notes in Computer Science,
vol. 547 (Springer, Berlin, 1991), pp. 527–531

[46] W.T. Penzhorn, Correlation attacks on stream ciphers: computing low-weight parity checks based on
error-correcting codes, in Fast Software Encryption’96, ed. by D. Gollmann. Lecture Notes in Computer
Science, vol. 1039 (Springer, Berlin, 1996), pp. 159–172

[47] R.A. Rueppel, Analysis and Design of Stream Ciphers (Springer, Berlin, 1986)
[48] R.A. Rueppel, Correlation immunity and the summation generator, in Advances in Cryptology—

CRYPTO’85, ed. by H.C. Williams. Lecture Notes in Computer Science, vol. 218 (Springer, Berlin,
1986), pp. 260–272

[49] M. Saarinen, Re: Bluetooth and E0, 2000. Posted at sci.crypt.research
[50] T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Comput.

C-34(1), 81–85 (1985)
[51] T. Siegenthaler, Cryptanalysts representation of nonlinearly filtered ML-sequences, in Advances in

Cryptology—EUROCRYPT’85, ed. by F. Pichler. Lecture Notes in Computer Science, vol. 219
(Springer, Berlin, 1986), pp. 103–110

[52] S. Vaudenay, An experiment on DES—statistical cryptanalysis, in Proceedings of the 3rd ACM Confer-
ences on Computer Security (1996), pp. 139–147

[53] D. Wagner, A generalized birthday problem, in Advances in Cryptology—CRYPTO2002, ed. by
M. Yung. Lecture Notes in Computer Science, vol. 2442 (Springer, Berlin, 2002), pp. 288–304

[54] R.K. Yarlagadda, J.E. Hershey, Hadamard Matrix Analysis and Synthesis with Applications to Commu-
nications and Signal/Image Processing (Kluwer, Dordrecht, 1997)

[55] K. Zeng, M. Huang, On the linear syndrome method in cryptanalysis, in Advances in Cryptology—
CRYPTO’88, ed. by S. Goldwasser. Lecture Notes in Computer Science, vol. 403 (Springer, Berlin,
1990), pp. 469–478

	Cryptanalysis of an E0-like Combiner with Memory
	Abstract
	Introduction
	Mathematical Model
	Correlation Properties
	The Keystream Distinguisher
	The Equivalent Single LFSR
	Finding the Multiple Polynomial with Low Weight
	Building a Uni-Bias-Based Distinguisher
	The Multi-Bias-Based Distinguisher
	Preliminaries
	An Efficient Way to Deploy Multi-Biases Simultaneously

	The Key-Recovery Attack
	Case One: x1= x1.
	Case Two: x1<>x1.

	A Maximum Likelihood Decoding Algorithm
	The Time-Domain Analysis
	The Frequency-Domain Analysis
	A More Generalized MLD Algorithm
	Comments

	Case Study: the Core of Bluetooth E0
	Description
	Correlations
	Keystream Distinguishers
	Examples of Q(x) with Weight Four
	Primary Distinguisher
	Advanced Distinguisher

	The Key-Recovery Attack
	Experimental Results with w=1

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

