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Abstract. We show that supersingular Abelian varieties can be used to obtain higher
MOV security per bit, in all characteristics, than supersingular elliptic curves. We give
a point compression/decompression algorithm for primitive subgroups associated with
elliptic curves that gives shorter signatures, ciphertexts, or keys for the same security
while using the arithmetic on supersingular elliptic curves. We determine precisely
which embedding degrees are possible for simple supersingular Abelian varieties over
finite fields and define some invariants that are better measures of cryptographic secu-
rity than the embedding degree. We construct examples of good supersingular Abelian
varieties to use in pairing-based cryptography.

Key words. Elliptic curves, Pairing-based cryptography, Elliptic curve cryptography,
Abelian varieties, Compression.

1. Introduction

In this paper we show that supersingular Abelian varieties can be used to obtain higher
MOV security per bit, in all characteristics, than supersingular elliptic curves. We also
give a point compression/decompression algorithm that allows one to take advantage
of elliptic curve algorithms and software while obtaining shorter transmissions, signa-
tures, ciphertexts, and keys. We also define the “cryptographic exponent” and “security
parameter” for supersingular Abelian varieties and prove that they are closely related to
the embedding degree but are better measures of cryptographic security. We determine
precisely which embedding degrees are possible for simple supersingular Abelian vari-
eties over finite fields. We also construct optimal supersingular Abelian varieties to use
in pairing-based cryptography.

For pairing-based cryptography, it is useful to have Abelian varieties with embedding
degrees that are neither too small (which would lead to poor security) nor too large
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(which would make computations prohibitive). Supersingular Abelian varieties are a
natural source of varieties for these applications.

Elliptic curves are useful in cryptography because they are algebraic groups (also
known as group varieties). This implies that they, their group law, and inverse map are
all defined by polynomials and therefore are amenable to efficient computer computa-
tion, and the group structure gives a discrete logarithm problem on cyclic subgroups.
Abelian varieties are exactly the connected projective algebraic groups. Elliptic curves
are exactly the one-dimensional Abelian varieties. One of the advantages of using the
group A(Fq) of an Abelian variety in place of the multiplicative group F

×
q of a finite

field Fq is that there is no known subexponential algorithm for computing discrete loga-
rithms on general Abelian varieties or elliptic curves. While subexponential algorithms
exist for Abelian varieties (and elliptic curves) of small embedding degree, such vari-
eties nevertheless have been found to be useful for pairing-based cryptography.

Section 2 below gives some background on Abelian varieties. In Sect. 3 we discuss
pairings on Abelian varieties and generalize an elliptic curve result of Balasubramanian
and Koblitz. In Sect. 4 we define useful invariants for elementary supersingular Abelian
varieties, the cryptographic exponent cA,q and the security parameter α(A,q). In Sect. 6
we relate cA,q to the embedding degree and show that cA,q is a finer and more accurate
measure of the cryptographic security. If a prime � divides |A(Fq)|, then the embedding
degree of A over Fq with respect to � is defined as the multiplicative order of q modulo �

and (for � sufficiently large and for A elementary and supersingular) is cA,q if cA,q ∈ Z

and is 2cA,q otherwise. The security parameter α(A,q), which measures MOV security
per bit, is cA,q/g, where g is the dimension of the Abelian variety. This allows us to
compare security among Abelian varieties of different dimension. Theorem 6.3 below
is stronger than Theorem 7 of [38] (except for the harmless � > 7 condition), which was
stated there without proof. Our setting is that of elementary Abelian varieties, which is
more general than the setting of simple Abelian varieties in [38].

Galbraith [20] gave upper bounds on the embedding degrees (and therefore on the
security parameters) for supersingular Jacobian varieties of curves and asked whether
his bounds can be improved. Inspired by and building on [20] and making use of results
of Zhu, in Sect. 7 we determine exactly which values can occur as the security parame-
ters of simple supersingular Abelian varieties. In particular, we significantly improve
on Galbraith’s bounds when the dimension is more than two. Note that, since crypto-
graphic security is based on the cyclic subgroups of A(Fq), for purposes of cryptology,
it suffices to consider simple Abelian varieties A, i.e., Abelian varieties that do not
decompose as products of lower dimensional Abelian varieties. Our results in Sect. 7
imply that if A is a simple supersingular Abelian variety over Fq of dimension g, then
the security parameter α(A,q) is at most the corresponding entry in Table 1 (where
p = char(Fq)), and each entry can be attained. A ‘∗’ means that there are no simple
supersingular Abelian varieties of dimension g over Fq .

Our results imply that security parameters for simple supersingular Abelian varieties
are unbounded (as the dimension of the varieties grows). However, large security para-
meters require very large dimension. This, computational issues, and possibly security
considerations, preclude using high-dimensional Abelian varieties with high security
parameters, at least at this time. We therefore restrict the examples in this paper to small-
dimensional cases. Our results show that over every finite field, one can attain higher
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Table 1. Upper bounds on the security parameters α(A,q).

g 1 2 3 4 5 6

q a square 3 3 3 3.75 2.2 3.5
q not a square, p > 11 2 3 * 3 * 3
q not a square, p = 2 4 6 * 5 * 6
q not a square, p = 3 6 2 6 7.5 * 7
q not a square, p = 5 2 3 * 3.75 * 3
q not a square, p = 7 2 3 4 2

3 3 * 7
q not a square, p = 11 2 3 * 3 4.4 3

MOV security using four-dimensional simple supersingular Abelian varieties than using
supersingular elliptic curves, and supersingular Abelian surfaces attain higher MOV se-
curity per bit than supersingular elliptic curves over every finite field of nonsquare size
in characteristic �= 3. This answers in the affirmative the open question from [6] on
whether one can use higher-dimensional Abelian varieties to obtain higher security per
bit than [6]’s BLS short signature scheme. In fact, we show that higher security per bit
can be attained using only elliptic curve arithmetic, by using our compression algorithm
on primitive subgroups associated with elliptic curves. Supersingular Abelian surfaces
in large characteristic (especially those that are primitive subgroups coming from ellip-
tic curves) seem especially promising for pairing-based cryptography.

In Sect. 8 we discuss the “primitive” subgroups of the restrictions of scalars of
Abelian varieties. In Sect. 9 we obtain results on the cryptographic security of primitive
subgroups in the supersingular case. Corollary 9.4 gives an algorithm whose inputs are
a supersingular elliptic curve E over Fq and a “suitable” prime r and whose output is
an Abelian variety Er (the r th “primitive” subgroup) over Fq whose MOV security per
bit is higher by a factor of r/(r − 1). We have Er(Fq) ∼= A0 ⊆ E(Fqr ), where A0 is the
trace zero subgroup of E(Fqr ). It has been pointed out that Theorem 9.2 also shows that
only ϕ(r)/r of the bits in Boneh–Lynn–Shacham signatures over fields of the form Fqr

contribute to the security.
In Sect. 10 we present a compression/decompression algorithm for the points in

the trace zero subgroups of elliptic curves over Fqr , which compresses by a factor of
r/(r −1). We can make decompression practical when r = 3 or 5. The (de)compression
algorithm applied to the examples of Sect. 12 can be used to improve the bandwidth
efficiency of any pairing-based cryptosystem, giving shorter transmissions for the same
MOV security, while using only elliptic curve arithmetic. In [3] it is shown that for op-
timized pairing implementations in the supersingular characteristic two case, using our
compression on E3 in general outperforms Jacobians of genus two curves.

Our (de)compression algorithm is analogous to what Lucas-based cryptosystems [35,
47,48], XTR [31], the T2-cryptosystem and CEILIDH [39] accomplish for the multi-
plicative group of a finite field (see [40]). The restriction of scalars from Fqr to Fq of an
elliptic curve E over Fq splits (up to isogeny) into a direct sum

⊕
d|r Ed , where each

primitive subgroup Ed is an Abelian variety over Fq of dimension ϕ(d). Thus, doing
cryptography in E(Fqr ) reduces to doing cryptography in each Ed(Fq). For greatest ef-

ficiency, one would like to represent elements of Ed(Fq) in F
ϕ(d)
q , i.e., one would like a

low-degree “compression” map Ed → A
ϕ(d), where A

m is affine m-space, with a com-
putable decompression function. A compression map of degree b allows one to repre-
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sent elements of Ed(Fq) in F
ϕ(d)
q × {0,1}�log2 b	, since the extra �log2 b	 bits determine

which inverse image to choose. Our compression/decompression algorithm is efficient
when d = 3 and 5, with morphisms Ed − O → A

ϕ(d) of degree 8 and 54, respectively.
Note that for d = 1, we have E1 = E, and the usual elliptic curve point compression
(x, y) 
→ x gives a degree 2 map E1 − O → A

1, while for d = 2, in odd characteris-
tic, writing Fq2 = Fq(

√
D) and writing s ∈ Fq2 as s0 + s1

√
D with s0, s1 ∈ Fq , the map

(s, t) 
→ s0 from E(Fq2)−O to Fq induces a degree 2 compression map E2 −O → A
1,

for which decompression is easy since s1 = 0 for points (s, t) in the trace zero subgroup
of E(Fq2). Note that E2 is the quadratic twist of E. We leave it as an open question

to find efficient (i.e., low-degree) dominant maps Ed − O → A
ϕ(d) with efficiently

computable decompression maps when d > 5. For the T2-cryptosystem, one can work
directly with compressed elements; it is an open problem to find efficient arithmetic for
working directly with compressed elements of E3(Fq) or E5(Fq).

Pairing-based cryptography originated in papers of Joux [27] and Sakai–Ohgishi–
Kasahara [42] and has numerous applications (see [2]), including tripartite Diffie–
Hellman [27], identity-based cryptography [4], and short signatures [6]. We use short
signatures as an illustrative example. In [6], Boneh, Lynn, and Shacham used pairings
associated with supersingular elliptic curves and asked whether Abelian varieties can
be used instead to obtain shorter signatures. We answer this question in the affirma-
tive in Sect. 11. Our modification of the BLS signature scheme multiplies the MOV
security of BLS signatures (for supersingular elliptic curves) by r while multiplying the
signature size by ϕ(r), thus shortening BLS signatures over Fqr by a factor of r/ϕ(r)

(if gcd(r,2qcE,q) = 1). While we arrived at our method for compressing BLS signa-
tures by studying the arithmetic of Abelian varieties, our algorithm can be performed
entirely using elliptic curve arithmetic, without needing to know anything about higher
dimensional Abelian varieties. We also give a novel application of primitive subgroups
to obtain new instantiations of composite order bilinear groups.

In Sect. 12 we construct good supersingular Abelian varieties to use in cryptography,
in both large and small characteristic. In Sect. 13 we discuss some security considera-
tions that arise for the Abelian varieties Er .

We note that primitive and trace zero subgroups were studied by Frey, Lange, Nau-
mann (who did a compression/decompression algorithm for E3), Weimerskirch, and
Diem; we thank Tanja Lange for drawing our attention to [12,17,30,37,53].

We thank Dan Boneh for asking the question that led to Theorem 3.1 and Corol-
lary 3.2. We thank Steven Galbraith for drawing our attention to [3].

1.1. Notation

Let Fq denote the finite field with q elements. Let N denote the set of positive integers.
If r ∈ N, write Φr(x) for the r th cyclotomic polynomial

∏
ζ (x − ζ ), where the product

is over the primitive r th roots of unity ζ . Note that Φr(x) ∈ Z[x] and deg(Φr) = ϕ(r),
where ϕ is Euler’s ϕ-function. The positive square root of q is denoted

√
q . If K is

a field, K̄ denotes an algebraic closure. If G is an Abelian group, let |G| denote the
number of elements and let G[m] denote the subgroup of elements of order dividing m.
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2. Abelian Varieties

An Abelian variety over a field K is a connected projective group variety over K . The
one-dimensional Abelian varieties are the elliptic curves. It is a theorem that the group
law on every Abelian variety is Abelian. From now on, when we say Abelian variety,
we mean Abelian variety of dimension ≥ 1.

Definition 2.1. Suppose that A and B are Abelian varieties over the same field K .
A homomorphism f : A → B is a morphism that is also a group homomorphism. A ho-
momorphism f : A → B is an isogeny over K if f is surjective and defined over K

and dim(A) = dim(B). If an isogeny between A and B exists, we say that A and B are
isogenous over K . If A is an Abelian variety over K , A is called simple (over K) if it
is not isogenous over K to a product of lower-dimensional Abelian varieties, and A is
called elementary (over K) if it is isogenous over K to a power of a simple Abelian
variety over K (this is sometimes called isotypic).

Definition 2.2. An elliptic curve E over a finite field Fq of characteristic p is super-
singular if E(Fq) has no points of order p. If A is an Abelian variety over Fq , then A

is supersingular if A is isogenous over Fq to a power of a supersingular elliptic curve.

Definition 2.3. If A is an Abelian variety over Fq , let FA(x) (or FA,q(x) if necessary)
denote the characteristic polynomial of the Frobenius endomorphism of A over Fq . The
q-Weil numbers for A are the roots of FA(x).

Definition 2.4. If q is a prime power, then a supersingular q-Weil number is a complex
number of the form

√
qζ , where ζ is a root of unity.

Next we gather some important well-known results concerning Abelian varieties over
finite fields, due to Weil, Deuring, and others (see [51]), that we will use later.

Theorem 2.5. If A is an Abelian variety over Fq , then:

(i) FA(x) ∈ Z[x];
(ii) deg(FA) = 2 dim(A);

(iii) |A(Fq)| = FA(1);
(iv) if A is supersingular, then all the roots of FA are supersingular q-Weil numbers;
(v) if all the roots of FA are supersingular q-Weil numbers, then A is supersingular.

We will also make use of the following results.

Theorem 2.6 (Tate [49]). Two Abelian varieties A and B over Fq are isogenous over
Fq if and only if FA(x) = FB(x).

Theorem 2.7 (Honda–Tate [26,50]).

(i) If ω is a supersingular q-Weil number, then there is a simple supersingular
Abelian variety A such that ω is a q-Weil number for A.
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(ii) The map that associates to a simple supersingular Abelian variety over Fq one of
its q-Weil numbers gives a one-to-one correspondence between the Fq -isogeny
classes of simple supersingular Abelian varieties over Fq and the Gal(Q̄/Q)-
conjugacy classes of supersingular q-Weil numbers.

(iii) A supersingular Abelian variety A over Fq is elementary over Fq if and only
if FA(x) = GA(x)fA for some monic irreducible polynomial GA(x) ∈ Z[x] and
some fA ∈ N.

Theorem 2.8 (Zhu [54]). Suppose that A is an elementary supersingular Abelian va-
riety over Fq . Let p = char(Fq). Then with GA and fA as in Theorem 2.7(iii), we have:

(i) A(Fq) ∼= (Z/GA(1)Z)fA unless q is not a square and either
(a) p ≡ 3 (mod 4) and A is Fq -isogenous to a power of a supersingular elliptic

curve E with GE(x) = x2 + q , or
(b) p ≡ 1 (mod 4) and A is Fq -isogenous to a power of a supersingular Abelian

surface E with GE(x) = x2 − q ,
in which case, A(Fq) ∼= (Z/GA(1)Z)a × (Z/

GA(1)
2 Z×Z/2Z)b with nonnegative

integers a and b such that a + b = fA;
(ii) if A is simple over Fq , then fA = 1 or 2.

In (only) the next section, we mention dual Abelian varieties and polarizations. For
definitions of dual Abelian variety and the Weil pairing, see, for example, [36]. For a
definition of polarization, see, for example, [44]. An Abelian variety is isogenous to its
dual. A polarization gives an isogeny from the Abelian variety to its dual; a polarization
is principal if this isogeny is an isomorphism. The degree of a polarization is the degree
of the isogeny (and this degree is one if and only if the polarization is “principal”).
All elliptic curves, Jacobian varieties of curves, and products of principally polarized
Abelian varieties are principally polarized Abelian varieties.

3. Nondegenerate Pairings

We show that having an Abelian variety over Fq with a prescribed embedding degree k

is sufficient to give a nondegenerate Weil pairing over Fqk (assuming a condition on the
multiplicity of 1 as an eigenvalue of Frobenius). This answers a question asked of us by
Dan Boneh, generalizes an elliptic curve result of Balasubramanian and Koblitz, and is
important for scaling pairing-based cryptography to higher security levels.

Theorem 1 of [1] shows that if A is an elliptic curve over Fq , � is a prime, � � q(q −1),
O �= P ∈ A(Fq)[�], and k is the order of q modulo �, then A[�] ⊆ A(Fqk ) (and thus
e�(P,Q) �= 1 for some Q ∈ A(Fqk )[�], where e� is the Weil pairing). We generalize this
to Abelian varieties with a polarization of degree prime to �, generalizing the condition
� � (q − 1) to a condition on the multiplicity of 1 as an eigenvalue of Frobenius. As
shown in [1], some such condition is necessary. Our main conclusion (Corollary 3.2) is
that there is a Q ∈ A(Fqk )[�] that pairs nontrivially with P under the pairing induced
by the Weil pairing and the polarization.

If � is a prime and A is an Abelian variety over a field K whose characteristic is not �,
then the Weil pairing is a nondegenerate Galois-equivariant pairing from A[�] × A′[�]
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to μ�, where A′ is the dual Abelian variety, μ� is the group of �th roots of unity in
K̄ , and A[�] := A(K̄)[�]. Every polarization on A defined over K gives a K-isogeny
between A and A′, so if a polarization has degree relatively prime to �, it induces a
nondegenerate Galois-equivariant pairing

e� : A[�] × A[�] → μ�.

Frey and Rück (Proposition 2.5 of [19]; see also [43]) proved that if A is the Jacobian
of a curve over Fq , � is a prime not dividing q , k is the order of q modulo �, σ : x 
→ xq

is the Frobenius automorphism of Fq over Fq , and U is the kernel of σ − q in A[�],
then there is a nondegenerate Tate pairing

tm : U × A(Fq)/�A(Fq) → F
×
qk

/(
F

×
qk

)�
.

Theorem 3.1 below is an analogue for the Weil pairing.
If e is a Tate or Weil pairing, P ∈ A(Fq)[�], k is the order of q mod �, Q ∈ A(Fqk )[�],

and e(P,Q) �= 1, then the map from 〈P 〉 to F
×
qk defined by R 
→ e(R,Q) is injective,

where 〈P 〉 denotes the group (of order �) generated by P . Thus, as shown in [19,33],
the discrete log problem in 〈P 〉 reduces to the discrete log problem in F

×
qk . The “MOV

security” of 〈P 〉 is the discrete log security of F
×
qk .

If e : V × V → μ� is a pairing, a subspace W of V is isotropic with respect to e if
e(P,Q) = 1 for all P,Q ∈ W .

Theorem 3.1. Suppose that A is an Abelian variety over Fq , � is a prime not dividing
q , and A has a polarization over Fq of degree prime to �. Let k denote the order of
q modulo �, let e� : A[�] × A[�] → μ� denote the pairing induced by the Weil pairing
and the polarization, let V = A(Fq)[�], let d = dimF�

(V ), let σ : x 
→ xq denote the
Frobenius automorphism of Fq over Fq , let F denote the characteristic polynomial of
σ acting on A[�], and let U denote the kernel of σ − q in A[�]. Suppose that 1 occurs
as a root of F with multiplicity exactly d . Then:

(i) U ⊆ A(Fqk ),
(ii) e� : V × U → μ� is nondegenerate,
(iii) dimF�

(U) = dimF�
(V ) = d ,

(iv) if � � (q − 1), then U ∩ V = 0 and V is isotropic with respect to e�,
(v) if � | (q − 1) and V �= 0, then V is not isotropic with respect to e�.

Proof. If Q ∈ U , then σk(Q) = qkQ = Q (by the definition of U and the fact that
qk ≡ 1 (mod �), so Q ∈ A(Fqk ), and we have (i). The roots of F occur in pairs a,
q/a. Thus q is a root of F with multiplicity d . Write F(x) = (x − q)dg(x), let W =
ker(g(σ )), and let Ud = ker((σ − q)d) ⊇ U . Then gcd((x − q)d, g(x)) = 1, Ud and
W are σ -invariant subspaces of A[�], A[�] = Ud ⊕ W , and dim(Ud) = d . Since q is
not an eigenvalue for the action of σ on W , σ − q is an isomorphism on W . Thus,
W = (σ − q)W . If P ∈ V and T ∈ A[�], then

e�

(
P, (σ − q)T

) = e�

(
P,σ(T )

)
/e�(P, qT ) = σ

(
e�(P,T )

)
/e�(P,T )q = 1.
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Thus, e�(P,R) = 1 for all R ∈ W . Since e� is nondegenerate, either V = 0 or there
is a Q ∈ Ud such that e�(P,Q) �= 1. In either case, it follows that the σ -equivariant
homomorphism f : V → Hom(Ud,μ�) defined by f (P )(Q) = e�(P,Q) is injective.
Since dim(V ) = dim(Ud), f is an isomorphism, as is the corresponding map Ud →
Hom(V ,μ�). Thus the restriction of e� to V × Ud is nondegenerate. Since σ is the
identity on V and acts via q on μ�, σ − q kills Hom(V ,μ�) and thus kills Ud . Thus
Ud ⊆ U . So Ud = U , giving (ii) and (iii).

We have q ≡ 1 (mod �) if and only if U = V . If U = V �= 0, then (ii) implies that V

is not isotropic, and we have (v).
If V is not isotropic, then the restriction of e� to V × V is nontrivial but takes values

in μ�(Fq) (since V ⊆ A(Fq)). Thus μ�(Fq) �= 1, so � | (q − 1). So if � � (q − 1), then V

is isotropic, and then (ii) implies U ∩ V = 0. �

Corollary 3.2. Suppose that A is an Abelian variety over Fq , � is a prime not dividing
q , O �= P ∈ A(Fq)[�], 1 occurs with multiplicity one as a root of the characteristic
polynomial of Frobenius σ acting on A[�], and A has a polarization of degree relatively
prime to �. Let e� : A[�]×A[�] → μ� denote the pairing induced by the Weil pairing and
the polarization, let k denote the order of q modulo �, and let U = ker(σ − q) ⊆ A[�].
Then dimF�

(U) = 1, and for all O �= Q ∈ U , we have Q ∈ A(Fqk ) and e�(P,Q) �= 1.

Proof. Since 1 occurs with multiplicity one as an eigenvalue of σ , A(Fq)[�] has di-
mension one over F�. Now apply (i–iii) of Theorem 3.1 with d = 1. �

The hypotheses in Corollary 3.2 imply that � � (q − 1), since the pair 1 and q occur
as eigenvalues of Frobenius, but 1 occurs with multiplicity exactly one.

4. The Cryptographic Exponent cA,q

We begin by giving definitions of the cryptographic exponent cA,q and security para-
meter α(A,q) (we originally gave these definitions in [38]). The security parameter
α(A,q) is cA,q/g, where g = dim(A). It measures MOV security per bit and is the rele-
vant measure for comparing security among supersingular Abelian varieties of different
dimension. Roughly speaking, for a group G to have security parameter α means that
the discrete logarithm problem in G can be reduced to the discrete logarithm problem
in the multiplicative group of a field of size approximately |G|α . The group G = A(Fq)

has order approximately qg . We will relate qcA,q to the size of the smallest field F such
that every cyclic subgroup of A(Fq) can be embedded in F×.

Definition 4.1. If A is an elementary supersingular Abelian variety over Fq , define its
cryptographic exponent cA,q to be

cA,q :=
{

m
2 if q is a square,

m
gcd(2,m)

if q is not a square,

where
√

qζ is a q-Weil number for A with ζ a primitive mth root of unity.
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Lemma 4.2. The number cA,q is well defined.

Proof. If
√

qζ ′ is another q-Weil number for A, and m′ is the order of ζ ′, then ζ 2

and (ζ ′)2 are Galois conjugate and therefore have the same order, namely m
gcd(2,m)

=
m′

gcd(2,m′) . If q is a square, then ζ and ζ ′ are Galois conjugate, so m = m′. �

Remark 4.3.

(i) When q is not a square, cA,q ∈ N.
(ii) When q is a square, cA,q ∈ 1

2N = { s
2 : s ∈ N}.

Lemma 4.4. If gcd(t,2cA,q) = 1, then cA,qt = cA,q .

Proof. If ω = √
qζ is a q-Weil number for A over Fq , then ωt = √

qtζ t is a qt -Weil
number for A over Fqt . If ζ is a primitive mth root of unity and gcd(t,m) = 1, then ζ t

is a primitive mth root of unity. The lemma now follows from the definitions of cA,qt

and cA,q . �

The next definition builds on the definition of “security multiplier” for elliptic curves
in [7], extending it to measure security per bit for higher-dimensional Abelian varieties.

Definition 4.5. If A is an elementary supersingular Abelian variety over Fq , define its
security parameter α(A,q) to be

α(A,q) := cA,q

dim(A)
.

Recall the notation GA and fA from Theorem 2.7(iii). Recall that the exponent of a
finite Abelian group H is the smallest positive integer N such that NH = 0 (with the
group law written additively). See Proposition 3.1 of [55] for a version of the following
result that gives more information.

Theorem 4.6 ([55]). Suppose that A is an elementary supersingular Abelian variety
over Fq .

(i) If q is a square, then:
(a) GA(x) = √

qϕ(2cA,q )Φ2cA,q
( x√

q
), and

(b) the exponent of A(Fq) divides Φ2cA,q
(
√

q), which divides qcA,q − 1.
(ii) If q is not a square then:

(a) GA(x) divides qϕ(cA,q )ΦcA,q
( x2

q
), and

(b) the exponent of A(Fq) divides ΦcA,q
(q), which divides qcA,q − 1.

Proof. Part (i)(a) is a part of Proposition 3.1(I) of [55]. Thus if q is a square,
GA(1) = √

qϕ(2cA,q )Φ2cA,q
( 1√

q
) = ±Φ2cA,q

(
√

q). If q is not a square and ω is a q-Weil

number for A, then ΦcA,q
(ω2

q
) = 0, so GA(x) divides qϕ(cA,q )ΦcA,q

( x2

q
) and so GA(1)
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divides qϕ(cA,q )ΦcA,q
( 1
q
) = ±ΦcA,q

(q). By Theorem 2.8(i), the exponent of A(Fq) di-
vides GA(1). Since Φm(x) divides xm − 1, the result follows. �

Lemma 4.7. Suppose that A is an elementary supersingular Abelian variety over Fq ,
and ω is a q-Weil number for A. Then:

(i) 2 dim(A)/fA = deg(GA) = [Q(ω) : Q];
(ii) if q is a square, then deg(GA) = ϕ(2cA,q);

(iii) if q is not a square, then deg(GA) = ϕ(cA,q) or 2ϕ(cA,q), and ϕ(cA,q) =
[Q(ω2) : Q];

(iv) if � is a prime divisor of 2cA,q , then � ≤ 2 dim(A) + 1.

Proof. Part (i) follows from Theorems 2.5(ii) and 2.7(iii) and the definitions of GA

and ω. Let c = cA,q , g = dim(A), and ω = √
qζm. If q is a square, then [Q(ω) : Q] =

[Q(ζm) : Q] = ϕ(m) = ϕ(2c), giving (ii). If q is not a square, then [Q(ζ 2
m) : Q] = ϕ(c)

and deg(GA) = [Q(ω) : Q] = [Q(ω) : Q(ω2)]ϕ(c) = ϕ(c) or 2ϕ(c), and (iii) follows.
Suppose that � is a prime divisor of 2c. If q is a square then by (i, ii) we have 2g ≥
deg(GA) = ϕ(2c) ≥ � − 1, while if q is not a square then by (i, iii) we have 2g ≥
deg(GA) ≥ ϕ(c) ≥ � − 1, giving (iv). �

5. Lemmas

To prove Theorems 6.1 and 6.3 below, we begin with some lemmas.

Lemma 5.1. Suppose that Φm(d) is divisible by a prime number �, and � � m. Then m

is the order of d modulo �.

Proof. The roots of Φm in F� are exactly the primitive mth roots of unity, since � � m.
By assumption, d is a root of Φm in F�, and so m is the order of d in F

×
� . �

Lemma 5.2. For all positive integers n and r ,

Φn

(
xr

) =
∏

d|r
(d,n)=1

Φ r
d
n(x).

Proof. We induct on the number of prime divisors of r (with multiplicity). The r = 1
case is obvious. If all prime divisors of r divide n, then Φn(x

r) = Φrn(x) (see [23]),
giving the result. Suppose that r = ps with p a prime that does not divide n, and s ∈ Z.
Then

Φn

(
xr

) = Φn

(
xs

)
Φnp(xs) =

∏

t |s
(t,n)=1

Φs
t
n(x)

∏

u|s
(u,np)=1

Φ s
u
np(x)

=
∏

p|d|r
(d,n)=1

Φ r
d
n(x)

∏

u|r
(u,np)=1

Φ r
u
n(x) =

∏

d|r
(d,n)=1

Φ r
d
n(x),
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where the first equality is stated in [23] and is easy to show, the second is by induction,
and for the third let d = pt . �

6. The Cryptographic Exponent and MOV Security

Suppose that A is an Abelian variety over Fq , and p = char(Fq). Theorems 6.3 and 6.1
below show that the cryptographic exponent cA,q captures the MOV security of A. In
other words, if A(Fq) has a subgroup C of sufficiently large prime order, then Fq

cA,q is
the smallest extension F of Fp such that C can be embedded in the multiplicative group
F× of F .

If A(Fq) has a point of sufficiently large prime order �, then Theorem 6.1 shows that
cA,q is the smallest positive half-integer k such that qk − 1 is an integer divisible by
�, while Theorem 6.3 shows that cA,q is in fact the smallest positive rational number k

such that qk − 1 is an integer divisible by �. Thus the cryptographic exponent cA,q is a
finer invariant than the embedding degree (which is the smallest positive integer k such
that qk − 1 is divisible by �). For examples that show that the embedding degree can
be very far from a good measure of cryptographic security in the case of ordinary (i.e.,
nonsupersingular) elliptic curves, see Sect. 4 of [25].

Theorem 6.1 (Theorem 8 of [38]). Suppose that A is an elementary supersingular
Abelian variety over Fq , � is a prime number, � divides |A(Fq)|, and � � 2cA,q . Then

cA,qN =
{

k ∈ 1

2
N : qk − 1 is an integer divisible by �

}

.

Proof. By Theorem 4.6, � divides Φ2cA,q
(
√

q) if q is a square, and � divides ΦcA,q
(q)

if q is not a square. By Lemma 5.1, cA,q is the smallest positive half-integer k such that
qk − 1 is an integer divisible by �. �

Remark 6.2. Suppose that A is a g-dimensional elementary supersingular Abelian va-
riety over Fq . Lemma 4.7(iv) shows that if � > 2g + 1, then � � 2cA,q . Thus Theo-
rem 6.1’s constraint that � � 2cA,q only rules out some (small) primes � ≤ 2g + 1, and
for cryptography we are only interested in large primes �.

Retain the notation fA and GA from Theorem 2.7(iii).

Theorem 6.3. Suppose that A is an elementary supersingular Abelian variety of di-
mension g over Fq , q = pn, � is a prime divisor of |A(Fq)|, � �= p, and s is the multi-
plicative order of p mod �. If q is a square, assume that � > (1 + p)ng/(2fA). If q is not
a square, assume that � > (1 + √

p)2ng/(3fA) and � > 7. Then ps = qcA,q , so Fq
cA,q is

the smallest extension of Fp whose multiplicative group has a subgroup of order �.

Proof. Write c for cA,q . The goal is to prove that nc is the order of p modulo �. By
Lemma 5.1, it suffices to show that � divides Φnc(p) and � � nc.
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First, suppose that n is even (i.e., q is a square). We first show that � � nc. Since
ϕ(2c) = deg(GA) = 2g/fA, we have

� > (1 + p)ng/(2fA) = (1 + p)nϕ(2c)/4 ≥ 3nϕ(2c)/4. (6.1)

Thus � > 3n/4 ≥ n/2. By our conditions, � > 2. Since n is even, it follows that
� � n. If � | 2c, then since � > 2 and n ≥ 2, (6.1) implies � > 3ϕ(2c)/2 ≥ 3(�−1)/2 ≥ �,
a contradiction, so � � nc.

Continue to assume that n is even. By Theorem 4.6, � divides Φ2c(p
n/2). By

Lemma 5.2, Φ2c(p
n/2) = ∏

d| n
2

(d,2c)=1

Φnc
d
(p), so � divides Φnc

d
(p) for some divisor d

of n/2 that is relatively prime to 2c. By our hypotheses, Lemma 4.7(i, ii), and the fact
that ϕ(ab) ≤ ϕ(a)b for all a, b ∈ N, we have

(1+p)ng/(2fA) < � ≤ ∣
∣Φnc

d
(p)

∣
∣ ≤ (1+p)ϕ(cn/d) ≤ (1+p)ϕ(2c)n/(2d) = (1+p)ng/(dfA).

Thus d = 1, i.e., � divides Φnc(p) as desired.
Now suppose that n is odd (i.e., q is not a square). We first show that � � nc. We have

� >
(
1 + √

p
)2ng/(3fA) = (

1 + √
p

)ndeg(GA)/3 ≥ (
1 + √

p
)nϕ(c)/3 ≥ (1.34)nϕ(c) (6.2)

by Lemma 4.7. If � | n, then (6.2) implies � > (1.34)n ≥ (1.34)� > �, the last inequality
holding for all � ≥ 7. This contradiction shows that � � n. If � | c, then (6.2) implies � >

(1.34)ϕ(c) ≥ (1.34)�−1 > �, the last inequality holding for all � ≥ 10. This contradiction
shows that � � c.

Let ω be a q-Weil number for A, and let H = Gal(Q(ω)/Q). By Theorem 2.8(i), �

divides

GA(1) =
∏

σ∈H

(1 − ωσ ) =
∏

σ∈H

∏

νn=ωσ

(1 − ν).

Then there exist σ ∈ H and ν ∈ C such that νn = ωσ and � divides
∏

τ∈G(1 − ντ ) ∈ Z,
where G := Gal(Q(ν)/Q). Replacing ω by ωσ if necessary, we may assume that σ = 1.
Write ω = √

qζm with ζm a primitive mth root of unity. Then for some d , we can write
ν = √

pζd with a primitive d th root of unity ζd such that ζ n
d = ζm. Then m divides d

(since ζ d
m = ζ nd

d = 1), which divides nm (since (ζd)nm = ζm
m = 1). Let t = d/m ∈ Z.

Then t divides n. Since n is odd, so is t . Since ζ t
d is a primitive mth root of unity, there

is a δ ∈ Gal(Q/Q) such that ζ t
d = ζ δ

m. Thus,

νt = √
p

t
ζ t
d = √

p
t
ζ δ
m = ±ωδ/p(n−t)/2 ∈ Q(ω),

so [Q(ν) : Q(ω)] ≤ t . Since [Q(ω) : Q] = deg(GA) = 2g/fA, we have

(
1 + √

p
)2ng/(3fA)

< � ≤
∣
∣
∣
∣

∏

τ∈G

(
1 − ντ

)
∣
∣
∣
∣ ≤ (

1 + √
p

)[Q(ν):Q] ≤ (
1 + √

p
)2tg/fA.
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Thus t > n/3. Since n is odd and divisible by t , we must have t = n, i.e., d = mn. Thus,
� divides

∣
∣
∣
∣

∏

τ∈G

(
1 − ντ

)
∣
∣
∣
∣ =

∣
∣
∣
∣

∏

τ∈G

(
1 − (√

pζmn

)τ )
∣
∣
∣
∣ =

∣
∣
∣
∣

∏

τ∈G

(√
p − ζmn

)τ

∣
∣
∣
∣,

which divides

∏

τ∈G

(
p − ζ 2

mn

)τ =
∏

γ∈Gal(Q(ζ 2
mn)/Q)

(
p − (

ζ 2
mn

)γ )[Q(ν):Q(ζ 2
mn)] = Φnc(p)[Q(ν):Q(ζ 2

mn)],

since ζ 2
mn is a primitive nc-th root of unity. Thus � divides Φnc(p), as desired. �

Definition 6.4. Suppose that V is a connected commutative algebraic group over a
finite field K . Let C(V,K) denote the smallest extension F of K such that every sub-
group of V (K) of prime order embeds in F×.

In other words, C(V,K) is the smallest extension F of K such that any attack on the
discrete logarithm problem in F× gives an attack on the discrete logarithm problem in
all subgroups of prime order in V (K).

Corollary 6.5. Suppose that A is an elementary supersingular Abelian variety over
Fq , and |A(Fq)| has a prime divisor that does not divide 2cA,q . If cA,q ∈ Z, then
C(A,Fq) = Fq

cA,q . If cA,q /∈ Z, then C(A,Fq) = Fq · Fq
cA,q , a degree 2 extension of

Fq
cA,q . In particular, if q is prime, then C(A,Fq) = Fq

cA,q .

Proof. Let M denote the compositum of Fq and Fq
cA,q . Then M = Fq

cA,q if and only
if cA,q ∈ Z. By Theorem 4.6, C(A,Fq) ⊆ M . Under our hypotheses, by Theorem 6.1
we have Fq

cA,q ⊆ C(A,Fq). Since Fq ⊆ C(A,Fq), we have C(A,Fq) = M . �

The following example shows that the conclusions of Theorems 6.1 and 6.3 are false
if the conditions on � are dropped (with � = 2).

Example 6.6. (See Sect. 4 of [25] for related examples for ordinary elliptic curves.)
Suppose that p = 2t − 1 > 3 is a Mersenne prime. Let E be any supersingular elliptic
curve over Fp . Since p > 3, we have FE,p(x) = x2 + p = (x + √−p)(x − √−p),
cE,p = 2, |E(Fp)| = p + 1 = 2t , FE,p2(x) = (x + p)2, cE,p2 = 1, and |E(Fp2)| =
(p + 1)2 = 22t . Thus, every subgroup of E(Fp) and of E(Fp2) of prime order has
order 2, so embeds in F

×
p .

Remark 6.7. Example 6.6 shows that Fq
cA,q can be larger than the smallest extension

F of Fp such that every subgroup of A(Fq) of prime order embeds in F×, since F = Fp

but Fp
cE,p = Fp2 = F

(p2)
c
E,p2 in Example 6.6.
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7. The Possible Cryptographic Exponents

Next we determine exactly which security parameters can occur for simple supersin-
gular Abelian varieties. Since cryptographic security is based on cyclic subgroups, for
purposes of cryptography, it suffices to consider simple Abelian varieties. Let

Wn = {
k ∈ N : ϕ(k) = n

}
.

Note that Wn is finite, and we have W1 = {1,2}, Wn = ∅ if n is odd and n > 1,

W2 = {3,4,6}, W4 = {5,8,10,12}, W6 = {7,9,14,18},
W8 = {15,16,20,24,30}, W10 = {11,22}, W12 = {13,21,26,28,36,42}.
Let k′ denote the largest odd divisor of a natural number k. Throughout this section,

p is prime and q = pn. Define

Xp =
{ {k ∈ N : 4 � k and 2 has odd order in (Z/k′

Z)×} if p = 2,

{k ∈ N : p � k and has odd order in (Z/kZ)×} if p is odd;

Vp =
⎧
⎨

⎩

{k ∈ N : k ≡ 4 (mod 8)} if p = 2,

{k ∈ N : p | k and k ≡ 2 (mod 4)} if p ≡ 3 (mod 4),
{k ∈ N : p | k and k is odd} if p ≡ 1 (mod 4);

Kg(p) =
⎧
⎨

⎩

(W2g ∩ Vp) ∪ (Wg − Vp) if g > 2,

(W4 ∩ Vp) ∪ (W2 − Vp) ∪ {1} if g = 2,

(W2 ∩ Vp) ∪ (W1 − Vp − {1}) if g = 1,

so K1(2) = {2,4}, K1(3) = {2,6}, and K1(p) = {2} if p > 3.
The next result can be shown to follow from Proposition 3.3 of [54]. Recall that fA

was defined in Theorem 2.7(iii) and by Theorem 2.8(ii) is 1 or 2 if A is simple.

Proposition 7.1 ([54]). Suppose that A is a simple supersingular Abelian variety of
dimension g over Fq .

(i) If q is a square, then fA = 2 if and only if 2cA,q ∈ Xp .
(ii) If q is not a square, then fA = 2 if and only if cA,q = 1 and g = 2.

Theorem 7.2 (Theorem 11 of [38]). Suppose that g,n ∈ N, n is even, and p is prime.
Then c = m

2 occurs as the cryptographic exponent of a simple supersingular Abelian
variety of dimension g over Fpn if and only if m ∈ (Wg ∩ Xp) ∪ (W2g − Xp).

Proof. If ζ is a primitive mth root of unity, then
√

pnζ corresponds under Honda–
Tate theory (see Theorem 2.7) to a simple supersingular Abelian variety A over Fpn of
dimension d = fA deg(GA)/2 = fAϕ(m)/2, with cA,pn = m/2. By Proposition 7.1(i),
d = g if and only if m ∈ (Wg ∩ Xp) ∪ (W2g − Xp). �

Theorem 7.3 (Theorem 12 of [38]). Suppose that g,n ∈ N, n is odd, and p is prime.
Then an integer c occurs as the cryptographic exponent of a simple supersingular
Abelian variety of dimension g over Fpn if and only if c ∈ Kg(p).
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Proof. Let q = pn. If ω = √
qζ is a supersingular q-Weil number, then it corresponds

under Honda–Tate theory to a simple supersingular Abelian variety A over Fq of di-
mension

d = fA

[
Q(ω) : Q

]
/2 = fA

[
Q(ω) : Q

(
ω2)]ϕ(cA,q)/2, (7.1)

by Lemma 4.7(i, iii). Let c = cA,q . It follows from Lemma 2.6 of [54] that Q(ω) =
Q(ω2) if and only if c ∈ Vp . It now follows from Proposition 7.1(ii) and (7.1) that
d = ϕ(c)/2 if c ∈ Vp and that d = ϕ(c) if c /∈ Vp and either g �= 2 or c �= 1. So if
c �= 1, then d = g if and only if c ∈ (W2g ∩ Vp) ∪ (Wg − Vp). If c = 1 and d = 1, then
FA(x) = x2 − q , so |A(Fq)| = 1 − q < 0, a contradiction. Thus c = 1 (i.e., ω = ±√

q)
if and only if d = 2. �

For any given g and q , it is easy to work out from Theorems 7.2 and 7.3 exactly
which values can occur as cryptographic exponents cA,q for g-dimensional simple su-
persingular Abelian varieties A over Fq and to compute the values in Table 1.

Remark 7.4. The case g = 1 recovers well-known results on elliptic curves. Suppose
that A is an elliptic curve over Fq . If q is not a square, then cA,q = 2 if p > 3; if p = 3,
then exactly 2 and 6 occur; and if p = 2, then exactly 2 and 4 occur. If q is a square,
then cA,q = m/2 with m ∈ {1,2,3,4,6}, where m = 1 and 2 occur for all (square) q ,
and for m ∈ {3,4,6}, m/2 occurs if and only if p �≡ 1 (mod m).

Corollaries 7.5–7.9 below give the results when n is even and 2 ≤ g ≤ 6, while Corol-
lary 7.10 gives the results when n is odd and 2 ≤ g ≤ 6.

Corollary 7.5 (Corollary 13 of [38]). If n is even and p is prime, then the only possible
cryptographic exponents cA,pn for simple supersingular Abelian surfaces A over Fpn

are the numbers of the form m
2 with m ∈ {3,4,5,6,8,10,12}. For m ∈ {3,4,6}, m

2
occurs as a cA,pn if and only if p ≡ 1 (mod m), and for m ∈ {5,8,10,12}, m

2 occurs as
a cA,pn if and only if p �≡ 1 (mod m).

Corollary 7.6. If n is even and p is prime, then the only possible cryptographic ex-
ponents cA,pn for simple 3-dimensional supersingular Abelian varieties A over Fpn are
the numbers of the form m

2 with m ∈ {7,9,14,18}. For m ∈ {7,14}, m
2 occurs as a cA,pn

if and only if p �≡ 1,2,4 (mod 7), and for m ∈ {9,18}, m
2 occurs as a cA,pn if and only

if p �≡ 1 (mod 3).

Corollary 7.7 (Corollary 13 of [38]). If n is even and p is prime, then the only pos-
sible cryptographic exponents cA,pn for simple 4-dimensional supersingular Abelian
varieties A over Fpn are the numbers of the form m

2 with

m ∈ {5,8,10,12,15,16,20,24,30}.
For m ∈ {5,8,10,12}, m

2 occurs as a cA,pn if and only if p ≡ 1 (mod m), and for
m ∈ {15,16,20,24,30}, m

2 occurs as a cA,pn if and only if p �≡ 1 (mod m).
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Corollary 7.8. If n is even and p is prime, then the only possible cryptographic ex-
ponents cA,pn for simple 5-dimensional supersingular Abelian varieties A over Fpn are
5.5 and 11. For m ∈ {11,22}, m

2 occurs if and only if p �≡ 1,3,4,5,9 (mod 11).

Corollary 7.9. If n is even and p is prime, then the only possible cryptographic expo-
nents cA,pn for simple 6-dimensional supersingular Abelian varieties A over Fpn are the
numbers of the form m

2 with m ∈ {7,9,13,14,18,21,26,28,36,42}. For m ∈ {7,14},
m
2 occurs as a cA,pn if and only if p ≡ 1,2,4 (mod 7). For m ∈ {9,18}, m

2 occurs if and
only if p ≡ 1 (mod 3). For m ∈ {13,26}, m

2 occurs if and only if p �≡ 1,3,9 (mod 13).
For m ∈ {21,42}, m

2 occurs if and only if p �≡ 1,4,16 (mod 21). The value 14 occurs as
a cA,pn if and only if p �≡ 1,9,25 (mod 28), and 18 occurs if and only if p �≡ 1,13,25
(mod 36).

The following result was given in Corollary 14 of [38] when 2 ≤ g ≤ 5.

Corollary 7.10. If n is odd and p is prime, then the exact sets of cryptographic ex-
ponents cA,pn that occur for simple supersingular Abelian varieties A of dimension g

over Fpn with 2 ≤ g ≤ 6 are given below.

(i) Suppose g = 2.
(a) cA,pn ∈ {1,3,4,6} if p ≥ 7;
(b) cA,pn ∈ {1,3,4,5,6} if p = 5;
(c) cA,pn ∈ {1,3,4} if p = 3;
(d) cA,pn ∈ {1,3,6,12} if p = 2.

(ii) Suppose g = 3.
(a) There does not exist such an A if p �= 3,7;
(b) cA,pn = 14 if p = 7;
(c) cA,pn = 18 if p = 3.

(iii) Suppose g = 4.
(a) cA,pn ∈ {5,8,10,12} if p ≥ 7;
(b) cA,pn ∈ {8,10,12,15} if p = 5;
(c) cA,pn ∈ {5,8,10,12,30} if p = 3;
(d) cA,pn ∈ {5,8,10,20} if p = 2.

(iv) Suppose g = 5.
(a) There does not exist such an A if p �= 11;
(b) cA,pn = 22 if p = 11.

(v) Suppose g = 6.
(a) cA,pn ∈ {7,9,14,18} if p = 5 or p = 11 or p ≥ 17;
(b) cA,pn ∈ {7,9,13,14,18} if p = 13;
(c) cA,pn ∈ {7,9,18,42} if p = 7;
(d) cA,pn ∈ {7,9,14,42} if p = 3;
(e) cA,pn ∈ {7,9,14,18,28,36} if p = 2.

Corollary 7.11 (Corollary 15 of [38]). Suppose that n,g ∈ N, n and g are odd, g > 1,
and p is a prime.
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(i) If p �≡ 3 (mod 4), then there does not exist a simple supersingular Abelian variety
of dimension g over Fpn .

(ii) If p ≡ 3 (mod 4), and there exists a simple supersingular Abelian variety of
dimension g over Fpn , then g = pb−1(p − 1)/2 for some natural number b.

Proof. Suppose that there is a simple supersingular Abelian variety A of dimension g

over Fpn . Since g > 1 is odd, we conclude from Theorem 7.3 that ϕ(cA,pn) = 2g ≡ 2
(mod 4) and p | cA,pn . This is only possible if cA,pn = pb or 2pb, and p ≡ 3 (mod 4). �

Our results show that when the dimension g is 6, then the highest security parameter
is 7, and this can be attained if and only if p = 3 or 7 and q is not a square.

In dimension 4, the highest security parameter is 30/4 = 7.5, and this is attained if
and only if p = 3 and q is not a square. This surpasses the elliptic curve case, where the
highest security parameter is 6. In fact, Corollaries 7.7 and 7.10(iii) show that dimension
4 surpasses dimension 1 over every finite field.

Over every finite field of nonsquare order and characteristic �= 3, supersingular
Abelian surfaces surpass supersingular elliptic curves.

In dimensions 2 and 3, the highest security parameter is 6, which ties the elliptic
curve case. The supersingular Abelian surfaces with security parameter 6 are in char-
acteristic 2, while supersingular elliptic curves with security parameter 6 occur only
in characteristic 3; there may be efficiency advantages in using Abelian surfaces over
binary fields, rather than elliptic curves over ternary fields.

8. Primitive Subgroups

In this section, L/K is a cyclic extension of degree r and V is a connected commutative
algebraic group over K . In this paper, we are interested in the case where V is an
Abelian variety (usually an elliptic curve) over a finite field. In [39,41], we consider the
case where V is the multiplicative group Gm.

The Weil restriction of scalars ResL/KV is a commutative algebraic group over K of
dimension r dim(V ) such that

(ResL/KV )(K) ∼= V (L). (8.1)

See, for example, Sect. 1.3 of [52] for the definition and properties of the Weil restriction
of scalars. For now, write V ’s group operation multiplicatively.

Definition 8.1. Define the primitive subgroup VL/K of ResL/KV to be

VL/K := ker

[

ResL/KV
⊕NL/F→

⊕

K⊆F�L

ResF/KV

]

,

where NL/F : ResL/KV → ResF/KV is the natural map that induces the usual norm
maps

NL/F : V (L) → V (F), x 
→
∏

σ∈Gal(L/F)

σ (x).
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Notation 8.2. When K = Fq , write Vr (or Vr,q if necessary) for VFqr /Fq
.

This is the meaning of the notation Er and Er , including E3 and E5 that we use below.
The variety VL/K is the variety VL of [32], and NL/F is the map RL/F,V of Re-

mark 5.11 of [32]. The primitive subgroup VL/K is a commutative algebraic group over
K of dimension ϕ(r)dimV , and VL/K(K) consists of all elements of V (L) whose norm
down to V (F) is the identity for every intermediate field k ⊆ F � L (see Theorems 5.5
and 5.8 of [32]). Note that VK/K = V . There is an isogeny defined over K (see [13] or
Theorem 5.2 of [32]):

ResL/KV ∼
⊕

K⊆F⊆L

VF/K = V × · · · × VL/K. (8.2)

By (8.2) and (8.1), studying V (L) can be reduced to studying VF/K(K) for all interme-
diate fields F .

Now suppose that E is an Abelian variety over K with identity OE and write the
group law additively as usual. Then the norm maps above are called trace maps. We
have TrL/K(Q) = ∑

σ∈Gal(L/K) σ (Q) and

EL/K(K) ∼= {
Q ∈ E (L) : TrL/F (Q) = OE for every k ⊆ F � L

}
. (8.3)

If r is prime, then

EL/K(K) ∼= {
Q ∈ E (L) : TrL/K(Q) = OE

}
(8.4)

and is the trace zero subgroup of E (L) (see also Sect. 3.2 of [18] and [30]). When E is
an elliptic curve, Er was studied in [37,53].

9. Boosting the Security Parameter

In this section we use primitive subgroups to boost the security parameter of supersin-
gular elliptic curves or, more generally, supersingular Abelian varieties, by a factor of
r/ϕ(r). It follows from Theorem 9.2 that if E is an elementary supersingular Abelian
variety over Fq , gcd(r,4qcE ,q ) = 1, and the primitive subgroup Er (Fq) ⊆ E (Fqr )

has a point of prime order � � 2cE ,q , then Er (Fq) is as cryptographically secure as
E (Fqr ) against the known subexponential attacks on the discrete logarithm problem
in (Fq · Fq

rcE,q )×.
Recall the notation fA and GA from Theorem 2.7(iii) (so fA = 1 exactly when the

characteristic polynomial of Frobenius is irreducible). Theorem 9.1 and Corollary 9.4
below are variations on Theorems 24 and 17 of [38], respectively.

Theorem 9.1 (Theorem 5.9 of [32]). Suppose that r ∈ N, Z is the set of primitive r th
roots of unity, E is an Abelian variety over Fq , and FE (x) = ∏2g

i=1(x − ηi) with ηi ∈ Q̄.

Then Er is an Abelian variety over Fq , and FEr
(x) = ∏

ζ∈Z
∏2g

i=1(x − ηiζ ).

Theorem 9.2. Suppose that E is an elementary supersingular Abelian variety over Fq .
Fix r ∈ N such that gcd(r,2qcE ,q ) = 1. Then:
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(i) Er is an elementary supersingular Abelian variety over Fq of dimension
ϕ(r)dim(E );

(ii) writing GE (x) = ∏s
i=1(x − ηi), letting Z denote the set of primitive r th roots

of unity, and letting Hr(x) := ∏
ζ∈Z

∏s
i=1(x − ηiζ ), then GEr

(x) = Hr(x) and

FEr
(x) = Hr(x)fE ;

(iii) cEr ,q = rcE ,q ;
(iv) α(Er , q) = r

ϕ(r)
α(E , q);

(v) if fE = 1, then Er is simple over Fq ;
(vi) If r �= 2, and Er (Fq) has a point of prime order � � 2cE ,q , then C(Er ,Fq) =

C(E ,Fqr ).

Proof. By Theorem 5.5 of [32], Er is isomorphic over Fqr to E ϕ(r), so is a supersin-
gular Abelian variety of dimension ϕ(r)dim(E ). We have FE (x) = GE (x)fE . By Theo-
rem 9.1, FEr

(x) = Hr(x)fE . The splitting field KG of GE over Q is unramified outside
2qcE ,q , while Q(ζr ) is unramified outside r . Since gcd(r,2qcE ,q ) = 1, it follows that
KG and Q(ζr ) are disjoint over Q. Since Gal(KG/Q) acts transitively on the roots of
the irreducible polynomial GE and Gal(Q(ζr )/Q) acts transitively on Z , it follows that
Gal(KG(ζr)/Q) acts transitively on the roots of Hr . Thus, Hr(x) is irreducible over Q,
so GEr

(x) = Hr(x), giving (ii). By Theorem 2.7(iii), Er is elementary over Fq , and we
have (i). Definitions 4.1 and 4.5 give (iii, iv). If fE = 1, then FEr

is irreducible over Q,
so Er is simple over Fq , giving (v).

By Lemma 4.4 we have cE ,q = cE ,qr , so by (iii) we have cEr ,q = rcE ,q = rcE ,qr .
By Corollary 6.5, if Er (Fq) has a point of prime order � � 2cE ,q , then C(E ,Fqr ) is
Fq

rcE,q = Fq
cEr ,q if cE ,qr (=cE ,q ) ∈ Z and is F

q
2cEr ,q otherwise, while C(Er ,Fq) is

Fq
cEr ,q if cEr ,q ∈ Z and is F

q
2cEr ,q otherwise. If r �= 2, then cE ,q ∈ Z if and only if

cEr ,q ∈ Z by (iii). Now (vi) follows. �

Remark 9.3. If E is a supersingular elliptic curve over Fq , then fE �= 1 if and only if
fE = 2, q is a square, and GE(x) = x + √

q or x − √
q , in which case cE,q = 1/2 or 1,

so the embedding degree is 1.

Corollary 9.4. Suppose that E is a supersingular elliptic curve over Fq . Fix a prime
number r that does not divide 2pcE,q , where p = char(Fq). Then:

(i) Er is an elementary supersingular Abelian variety over Fq of dimension r − 1,
and Er(Fq) is the trace zero subgroup of E(Fqr );

(ii) ResFqr /Fq
E is isogenous over Fq to E × Er ;

(iii) cEr ,q = rcE,q ;
(iv) α(Er, q) = r

r−1α(E,q);
(v) Er is simple over Fq , except when all the following hold:

(a) q is a square,
(b) GE(x) = x ± √

q ,
(c) p has even order in (Z/rZ)×.
When (a), (b), and (c) hold, then cE,q = 1

2 or 1, and Er is isogenous over Fq

to A2, where A is a simple Abelian variety over Fq and α(A,q) = 2cE,q r

r−1 ∈
{ r
r−1 , 2r

r−1 }.
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Proof. Parts (i–iv) follow from Theorem 9.2, (8.2), and (8.4). For (v), by Theo-
rem 9.2(v) it suffices to consider the case fE �= 1 (and r > 2). By Remark 9.3 and
Theorem 9.1, fE = 2, q is a square, and GEr (x) = ∏

(x + ζ
j
r
√

q) or
∏

(x − ζ
j
r
√

q),
products with j running over (Z/rZ)×. By Theorem 2.7, there is a simple supersingu-
lar Abelian variety A such that GEr (x) = GA(x). By Proposition 3.3 of [54] and our
assumptions, fA = 2 if and only if p has odd order in (Z/rZ)× (and fA = 1 otherwise).
If fA = 1, then FEr = G2

Er
= FA2 , so Er is isogenous over Fq to A2 by Theorem 2.6.

If fA = 2, then FEr = FA, so by Theorem 2.6, Er is simple over Fq . �

10. A Method of Compression and Decompression

We present a method for compressing and decompressing points in trace zero subgroups
of elliptic curves (which was given in [38], with additional details in [40,46]). Note
that the methods of this section hold for general elliptic curves, without the restriction
that the curves be supersingular. Our compression/decompression algorithm is practical
when r = 3 or 5. A compression/decompression algorithm was given in Sect. 3.3 of [37]
in the case where r = 3 and q = p is a prime congruent to 4 or 7 (mod 9) (an English
translation was given on p. 18 of [53]); we thank a referee for pointing this out to us.

10.1. The General Method; r Odd

Suppose that

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (10.1)

is an elliptic curve over a finite field Fq , and r is an odd positive integer. Let

A0 = {
Q ∈ E(Fqr ) : TrFqr /Fq

(Q) = OE

}
,

the trace zero subgroup of E(Fqr ). When r is prime, then A0 is the primitive subgroup
Er defined in Definition 8.1.

Write Fqr = Fq [z]/f (z)Fq [z] with f (z) ∈ Fq [z] irreducible and of degree r .
Compression Algorithm: The input is a point P = (s, t) ∈ A0 − O . The output is an
element of F

r−1
q that is a compression of P .

(i) Write s = ∑r−1
i=0 siz

i with si ∈ Fq , i.e., write s with respect to the basis
{1, z, . . . , zr−1} for Fqr over Fq .

(ii) Output (s1, . . . , sr−1) ∈ F
r−1
q , i.e., drop t and the first coordinate s0 of s.

Decompression Algorithm: The input is (s1, . . . , sr−1) ∈ F
r−1
q . The output is a point

P = (s, t) ∈ E(Fqr ) such that s = ∑r−1
i=0 siz

i for some s0 ∈ Fq .

(i) Compute the (monic) characteristic polynomial Q(X) of the linear transforma-
tion on Fqr given by multiplication by

∑r−1
i=1 siz

i .
(ii) With the Q(X) computed in (i), set

Q(X − S) =
(

X(r−3)/2 +
(r−5)/2∑

i=0

βiX
i

)2
(
X3 + a2X

2 + a4X + a6
)
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+
(

X(r−3)/2 +
(r−5)/2∑

i=0

βiX
i

)(
(r−1)/2∑

i=0

αiX
i

)

(a1X + a3)

−
(

(r−1)/2∑

i=0

αiX
i

)2

(10.2)

with r unknowns S,α0, . . . , α(r−1)/2, β0, . . . , β(r−5)/2. Then equate coefficients
of like powers of X in (10.2) to obtain r equations in the r unknowns, and solve
that system of equations. The finite set of solutions for S includes s0. We thus
obtain a finite list of candidates for s.

(iii) Use (10.1) to solve for t (discarding any candidate s0’s that do not produce a
t ∈ Fq ).

The compression algorithm is clearly efficient, since it just consists of dropping t and
one coordinate of s. We found a way to make decompression practical when r = 3 or
5, the two cases most relevant for cryptographic applications. We demonstrate this in
Sects. 10.3–10.5 below.

To be sure of recovering P , rather than a different point in E(Fqr ), the compressor
can augment the compressed point (s1, . . . , sr−1) by some extra bits that allow the de-
compressor to determine which solution of the system of equations to choose to obtain
s0 (and which of two possibilities to choose for t). However, this makes compression
less efficient, since the compressor must determine all the solutions of the system.

10.2. Explanation of the Method

We now explain where (10.2) comes from. Let X and Y denote the coordinate functions
on the elliptic curve E. Since TrFqr /Fq

(P ) = OE , there is a function F (X,Y ) on E

with simple zeros at the points σ i(P ) for 0 ≤ i ≤ r − 1, a pole of order r at OE , and
no other zeros or poles. Writing P = (s, t), then the function g(X) := Q(X − s0) =∏r−1

i=0 (X − σ i(s)), where σ is a generator of Gal(Fqr /Fq), can be viewed as a function
on E with zeros at ±σ i(P ) for 0 ≤ i ≤ r − 1, a pole of order 2r at OE , and no other
zeros or poles. Thus,

g(X) = γ F (X,Y )F̃ (X,Y ), (10.3)

where F̃ is F composed with multiplication by −1 on E, and γ ∈ F
×
q . We can write

F (X,Y ) = h1(X) + h2(X)Y

with h1(X),h2(X) ∈ Fq [X]. We have −(x, y) = (x,−y − a1x − a3) in E, so

F̃ (X,Y ) = h1(X) − h2(X)(Y + a1X + a3)

and

F (X,Y )F̃ (X,Y ) = h1(X)2 − h1(X)h2(X)(a1X + a3)

− h2(X)2(X3 + a2X
2 + a4X + a6

)
. (10.4)
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Since X has a double pole at OE and Y has a triple pole at OE , it follows that deg(h2) =
(r − 3)/2 and deg(h1) ≤ (r − 1)/2. (Note that this is all valid when r = 2 with h2(X) =
0 and h1(X) = X − s; see Sect. 10.5 when r is twice an odd number.) Write

h1(X) =
(r−1)/2∑

i=0

αiX
i, h2(X) = X(r−3)/2 +

(r−5)/2∑

i=0

βiX
i (10.5)

with the αi ’s and βi ’s in Fq . Now combine (10.3), (10.4), and (10.5) (and note that γ

must be −1) to obtain (10.2).

10.3. The Case r = 3

Suppose that r = 3 and the characteristic of Fq is not 3. We give an efficient de-
compression algorithm. Under our assumptions, we can take a2 = 0 in (10.1) and can
take the irreducible polynomial defining the degree 3 extension Fq3 to be of the form
f (z) = z3 + r1z + r0 with ri ∈ Fq . Then the characteristic polynomial of multiplication
by s1z + s2z

2 is

Q(X) = X3 + 2s2r1X
2 + (

3s1s2r0 + s2
1r1 + s2

2r2
1

)
X + s3

1r0 − s3
2r2

0 + s1s
2
2r0r1.

The difference of the two sides of (10.2) is now

(
3S − α2

1 + a1α1 − 2s2r1
)
X2

+ (
α0(a1 − 2α1) + a3α1 + 3S2 − 3s1s2r0 − s2

1r1 + 4Ss2r1 − s2
2r2

1 + a4
)
X

+ a6 + S3 + a3α0 − α2
0 − s3

1r0 + 3Ss1s2r0

+ s3
2r2

0 + Ss2
1r1 − 2S2s2r1 − s1s

2
2r0r1 + Ss2

2r2
1 . (10.6)

Setting the coefficient of the quadratic term of (10.6) equal to 0 and solving for S gives

S = (
α2

1 − a1α1 + 2s2r1
)
/3.

Substituting into (10.6), setting the coefficient of the linear term equal to 0, and solving
for α0 gives

α0 = (
3
(
a4 + a3α1 − 3s1s2r0 − s2

1r1
) − a2

1α2
1 + 2a1α

3
1 − α4

1 + s2
2r2

1

)/(
3(2α1 − a1)

)
.

Substituting into (10.6) and setting the constant term equal to 0 gives a degree 8 poly-
nomial in Fq [α1], which can be rewritten as m(α2

1 − a1α1) with

m(w) = w4 + a2
1w3 + 3

(
3
(
a1a3 + 2a4 + 6s1s2r0 + 2s2

1r1
) − 2s2

2r2
1

)
w2

+ (
27

(
a2

3 + a2
1s1s2r0 + 4

(
a6 − s3

1r0 + s3
2r2

0 + s1s
2
2r0r1

))

+ 3r1
(
3a2

1s2
1 + 24s2

1s2r1 − a2
1s2

2r1
) + 8s3

2r3
1

)
w

+ 27
(
a2

1a6 − a1a3a4 − a2
4 − a2

1s3
1r0 + a2

1s3
2r2

0 + a1a3s
2
1r1 + a2

1s1s
2
2r0r1
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− s4
1r2

1 + 2a4s
2
1r1 + 3a1a3s1s2r0 + 6a4s1s2r0

− 9s2
1s2

2r2
0 − 6s3

1s2r0r1 + 2s1s
3
2r0r

2
1

)

+ 18
(
a2

1s2
1s2r

2
1 − a4s

2
2r2

1 + s2
1s2

2r3
1

) + 2a2
1s3

2r3
1 − 9a1a3s

2
2r2

1 − 3s4
2r4

1 .

Compute the roots of the polynomial m(w). Let s0 = S = (R + 2s2r1)/3, where R is a
root of m(w).

The compressor can transmit three extra bits so that the decompressor can determine
the decompressed point with no ambiguity (two to determine which root of the degree
4 polynomial m to choose, and one to determine t).

10.3.1. r = 3, Characteristic 2

When r = 3 and q = 2n with n not divisible by 3, we may take r0 = r1 = 1. If further
a1 = 0 in (10.1), then decompression becomes easier if the compression algorithm drops
s1 or s2, rather than s0. In that case, setting the coefficient of the quadratic term of (10.6)
equal to 0 yields the equation s0 = α2

1 . Solving for α1 amounts to taking a square root.
Using the linear term of (10.6), one obtains

s2
1 + s1s2 + s2

2 + s2
0 + a3α1 + a4 = 0,

a quadratic polynomial in s1 (or s2). So the decompression algorithm reduces to taking
one square root in F2n and solving one quadratic polynomial over F2n . Taking square
roots in a field of characteristic 2 is just a single exponentiation, and solving a quadratic
equation is not much harder.

10.3.2. r = 3, Characteristic ≥ 5

When the characteristic of Fq is at least 5, we may take a model for E with a1 = a2 =
a3 = 0. Then S = (R + 2s2r1)/3, where R satisfies

R4 + R2(18a4 + 54s1s2r0 + 18s2
1r1 − 6s2

2r2
1

)

+ R
(
108

(
a6 − s3

1r0 + s3
2r2

0 + s1s
2
2r0r1

) + 8
(
9s2

1s2r
2
1 + s3

2r3
1

))

+ 27
(
2s1s

3
2r0r

2
1 − a2

4 + 6a4s1s2r0 − 9s2
1s2

2r2
0 + 2a4s

2
1r1 − 6s3

1s2r0r1 − s4
1r2

1

)

+ 18s2
2

(
s2

1r3
1 − a4r

2
1

) − 3s4
2r4

1 = 0.

If q ≡ 1 (mod 3), we can take r1 = 0, and then R is a root of

R4 + (18a4 + 54s1s2r0)R
2 + 108

(
a6 − s3

1r0 + s3
2r2

0

)
R + 27

(
6a4s1s2r0 − 9s2

1s2
2r2

0 − a2
4

)
.

When a1 = a2 = a3 = 0, an equation for E3 in A
3 over Fq(μ) where μ is a primitive

cube root of unity was given in [17], (4.16) of [37], Sect. 3.2 of [18], and Sect. 2.4.1 of
[12], namely

(
3x2

0 + 3μx1x2 + a4
)2 = 12x0

(
x3

0 + μx3
1 + μ2x3

2 + a4x0 + a6
)
.

Naumann [37,53] gave a compression/decompression algorithm in the case where r = 3
and q = p is an odd prime congruent to 4 or 7 (mod 9).
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10.4. r = 5, Characteristic 3

Let q = 3n with gcd(n,30) = 1. We will make the decompression algorithm efficient
for the elliptic curve y2 = x3 − x − 1 over Fq . (A similar computation can be done for
y2 = x3 −x +1. Both these curves have security parameter 6, which is maximal among
all supersingular elliptic curves over all finite fields.)

Write Fq5 = Fq [z]/f (z)Fq [z] with f (z) = z5 − z + 1. Define b0, . . . , b4 ∈ Fq [S] by

Q(X − S) = X5 + ∑4
i=0 biX

i , where

Q(X) = X5 − s4X
4 + (

s2
2 − s1s3 − s2s3 − s1s4

)
X3 + · · ·

is the characteristic polynomial of multiplication by
∑4

i=1 siz
i on Fq5 . Write

X5 +
4∑

i=0

biX
i = (

X + β0
)2(

X3 − X − 1
) − (

α2X
2 + α1X + α0

)2
.

Taking the difference of the two sides gives
(
α2

2 + β0 + b4
)
X4 + (

1 − α1α2 − β2
0 + b3

)
X3

+ (
α2

1 − α0α2 − β0 + b2 + 1
)
X2 + (

β2
0 − β0 − α0α1 + b1

)
X + α2

0 + β2
0 + b0.

Setting the coefficient of the degree four term equal to 0 and solving for β0 gives

β0 = −α2
2 − b4.

Setting the coefficient of the cubic term equal to 0 and solving for α1 gives

α1 = (
1 − α4

2 + α2
2b4 − b2

4 + b3
)
/α2.

Setting the coefficient of the quadratic term equal to 0 and solving for α0 gives

α0 = α8
2 + α6

2b4 + b4
4 + b2

4(1 + b3) + (1 + b3)2 + α4
2(b3 − 1) + α2

2(1 + b3
4 − b4b3 + b2)

α3
2

.

Setting the constant (respectively, coefficient of the linear) term equal to 0 gives poly-
nomials in α2

2 , so replace α2
2 with a new variable, w. The resulting equations are, re-

spectively, p1(w) = 0 and p2(w) = 0, where

p1(w) = w8 − b4w
7 + (

1 + b2
4 − b3

)
w6 + (

b4 − b3
4 − b2

)
w5 + (

b4 − b2
4 + b4

4 − b3

− b4b2
)
w4 + (

1 − b4 + b2
4 − b5

4 − b3 + b3
4b3 + b2 − b3b2 + b0

)
w3

+ (−1 + b2
4 − b3

4 + b4
4 + b6

4 + b3 + b4b3 − b2
3 − b3

3 − b2 − b3
4b2 + b4b3b2

+ b2
2

)
w2 + (−1 − b2

4 − b3
4 − b4

4 − b5
4 − b7

4 + b3 + b4b3 − b2
4b3 − b3

4b3 − b2
3

− b4b
2
3 + b4b

3
3 − b2 − b2

4b2 − b4
4b2 + b3b2 − b2

4b3b2 − b2
3b2

)
w

+ 1 − b2
4 − b6

4 + b8
4 + b3 − b6

4b3 + b3
3 − b2

4b
3
3 + b4

3,
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p2(w) = w6 − w4 + (−1 − b4 − b3
4 + b2

)
w3 + (−1 + b2

4 − b3 − b4b2 + b1
)
w2

+ (−1 − b4 + b2
4 + b3

4 − b3 − b4b3 − b2 + b2
4b2 − b3b2

)
w − 1 + b6

4 − b3
3.

Taking the resultant of p1 and p2 eliminates the variable w and gives a (degree 27)
polynomial h(S) ∈ Fq [S] that has s0 as a root. The polynomial h(S) is of the form
H(S3 − S) for a certain degree 9 polynomial H(S) ∈ Fq [S] (this follows from the fact
that (x, y) 
→ (x + 1, y) is an automorphism of y2 = x3 − x − 1, of order 3), and this
simplifies finding the roots of h. Transmitting 6 extra bits allows one to recover s0 and
t exactly, with no ambiguity; 5 bits determine which root to choose (of at most 27), and
one bit determines the sign of the y-coordinate t .

Remark 10.1. One could express p1 and p2 as polynomials in w and the bi ’s (or si ’s)
and compute the resultant with the bi ’s (or si ’s) viewed as variables. The computation
of the resultant would need to be done only once, but the resultant polynomial computed
this way is so large that evaluating it each time on particular bi ’s or si ’s takes longer
than computing the resultant anew each time with particular values for the bi ’s or si ’s.

10.4.1. An Explicit Example

Consider the case E : y2 = x3 − x − 1, q = 319, and r = 5. Then Fq = F3[η]/(η19 −
η2 + 1), F35 = F3[z]/(z5 − z + 1), and Fq5 = F3[z, η]/(z5 − z + 1, η19 − η2 + 1).

Suppose that the compressor’s output is (s1, s2, s3, s4) ∈ F
4
q , where

s1 = η18 + η17 − η16 − η13 − η10 + η9 + η7 + η6 + η5 + η4 + η2 + η − 1,

s2 = η17 + η16 − η13 − η12 − η11 − η8 + η7 − η5 + η4 + η2,

s3 = −η17 + η16 − η15 + η14 + η13 + η12 − η10 + η7 − η4 + η − 1,

s4 = −η18 − η16 − η14 − η13 + η12 + η11 − η10 − η9 + η8 + η7 + η6 + η5 + η4

− η3 + η2 + η + 1.

Applying the algorithm above, one computes that the resultant of p1(w) and p2(w)

is h(S) = H(S3 − S), where H(t) is the product:
(
η18 + η15 − η13 + η12 + η11 − η10 − η9 − η8 + η6 + η5 + η4 − η + 1

)

×(
t − η17 − η14 + η13 − η12 − η11 + η10 + η9 − η7 − η6 + η5 − η4 − η3 − η2)

×(
t + η18 + η17 + η16 + η15 + η13 − η12 + η11 + η10 − η9 + η7 + η5 − η4

− η3 + η + 1
)(

t2 + (
2η18 + η17 − η16 − η15 − η14 + η13 − η12

+ η11 + η10 − η9 − η8 − η6 − η5 − η4)t

+ η18 + η17 − η16 + η15 + η13 − η11 + η10 + η9 + η7 + η5 − η2 + 1)

×(
t5 + (

η17 − η15 − η14 − η12 − η11 + η9 − η7 + η6 − η5 + η4 − η3 − η2 + 1
)
t4

+ (
η18 + η17 + η16 + η15 − η14 + η8 − η7 − η3 + η2 + η + 1

)
t3
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+ (
2η18 − η16 − η15 + η12 − η10 + η9 − η8 + η6 + η5 − η4 + η − 1

)
t2

+ (
2η16 − η15 − η13 + η11 + η10 − η9 + η8 − η6 − η5 − η4 + η3 + η2 − η + 1

)
t

− η17 + η16 + η15 − η14 + η13 + η11 + η10 + η9 + η8 + η7 − η6 + η3 − η2 − η
)
.

Let ρ1 and ρ2 be the two roots of H(t) in Fq (corresponding to the two linear factors
above, in the same order). Then S3 − S − ρ1 is irreducible in Fq [S], but S3 − S − ρ2 =
(S − δ)(S − δ + 1)(S − δ − 1), where

δ = η18 + η17 + η15 − η14 + η12 + η11 + η10 − η8 + η7 − η6 − η5 − η4.

All three of δ, δ + 1, and δ − 1 give s0’s such that
∑4

i=0 siz
i is the x-coordinate of a

point in the trace zero subgroup of E(F395).

Remark 10.2. On a Macintosh desktop computer with a Dual 2.5 GHz PowerPC G5
processor running OS 10.4.7, using the computational algebraic number theory software
package KASH3 [29] to compute the resultant and find its roots, using y2 = x3 − x − 1
decompression takes about 300 ms when q = 319 and takes about 700 ms when q = 343

(these values of q are good parameters in the sense that they are in a cryptographically
useful range and the order of the trace zero subgroup is divisible by a large prime). This
could be sped up by writing a dedicated program.

10.5. The Case r = 2m with m Odd

Suppose that E is an elliptic curve over a field K , and F is a quadratic extension of K .
Let E′ denote the quadratic twist of E corresponding to F/K . Then EF/K is isomorphic
to E′ over K (see Example 1.5(ii) of [32]), and ResF/KE is isogenous over K to E ×E′
by (8.2). Note that in this (r = 2) case σ(P ) = −P ; since the x-coordinates of points in
the trace zero subgroup EF/K(K) ⊂ E(F) lie in K , they are already compressed.

More generally, suppose that M/K is a cyclic extension of odd degree m, and let
L = FM . Then L/K is a cyclic extension of (even) degree r = 2m. By Proposition 5.10
of [32], EL/K

∼= (EF/K)M/K
∼= (E′)M/K over K . Thus, to study the primitive subgroup

EL/K we are reduced to studying the primitive subgroup (E′)M/K .

11. Shortening Cryptographic Transmissions

We explain how to use the results of this paper to shorten transmission sizes in pairing-
based cryptography. (See also [38] and Sect. 4 of [40].) We illustrate this concretely in
the case of short signatures.

11.1. Shortening Transmissions Using Abelian Varieties

Pairing-based cryptography can be performed using Abelian varieties and a Weil or Tate
pairing on the �-torsion, with � not the characteristic of the field, if the Abelian variety
has a polarization whose degree is prime to �. The pairings can be efficiently computed
for supersingular elliptic curves and for Jacobians of supersingular hyperelliptic curves
(and Jacobians of nonsupersingular curves of low embedding degree). Our “optimal”
Abelian varieties in Sect. 12 give good supersingular Abelian varieties to use.
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11.2. Shortening Transmissions Using Primitive Subgroups

Theorem 9.4 shows that MOV security can be boosted by a factor of r/ϕ(r) by going
from a supersingular elliptic curve E over Fq to a primitive subgroup Er over Fq . One
could view Er as an Abelian variety of dimension ϕ(r) and do pairing-based cryptogra-
phy for that Abelian variety (if one can compute the pairings). A better way, just using
elliptic curve arithmetic and pairings, is to view Er(Fq) as a subgroup of E(Fqr ), use
the arithmetic in E(Fqr ), and use our (de)compression algorithm in Sect. 10 to shorten
cryptographic transmissions for pairing-based cryptography by a factor of 4/5 (when
r = 5) or 2/3 (when r = 3), while preserving MOV security.

11.3. RS Compression of BLS Signatures

We first recall the Boneh–Lynn–Shacham (BLS) signature scheme [6]. Let E : y2 =
f (x) be a supersingular elliptic curve over Fq , and let P ∈ E(Fq) be a point of large
prime order �. Let c denote the cryptographic exponent cE,q defined in Definition 4.5.
Let e: 〈P 〉 × 〈P 〉 → F

×
qc be a pairing that satisfies e(P,P ) �= 1 and e(aP,bP ) =

e(P,P )ab for every a, b ∈ Z. One can use a modified Weil or Tate pairing for e. The
public information is q , E, P , �, e, and a cryptographic hash function H : {0,1}∗ → 〈P 〉.
Alice’s private key is a randomly chosen integer a in the range 1 ≤ a ≤ �, and her pub-
lic key is PA = aP . To sign a message M ∈ {0,1}∗, Alice computes PM = H(M) and
aPM = (s, t) ∈ 〈P 〉. Alice’s signature is s ∈ Fq (and an optional additional bit to recover
the sign of t). To verify the signature, Bob computes t = √

f (s) ∈ Fq , sets Q = (s, t),
and checks that e(P,Q) = e(PA,PM) (and also checks e(P,Q) = e(PA,PM)−1 if the
additional bit was not sent). In [7], Boneh, Lynn, and Shacham suggest using MNT
elliptic curves [34] in place of supersingular elliptic curves. MNT curves are ordinary
elliptic curves of embedding degree 3, 4, or 6.

In the Rubin–Silverberg (RS) modification of the BLS signature scheme, the signer
compresses the signature using the algorithm in Sect. 10, and the verifier decompresses
the signature before verifying. Take q and supersingular E as above, except that if q

is a square take E so that
√

q is not a q-Weil number for E (it suffices to take E with
embedding degree > 1). Let p = char(Fq), let r be a prime that does not divide 2pcE,q ,
and let P be a point of large prime order � in the trace zero subgroup of E(Fqr ) (in
practice, this will mean taking P ∈ E(Fqr ) of sufficiently large prime order). Take a
pairing e and a hash function H as above, where now c := cE,q = cE,qr . Alice’s private
and public keys are as in the BLS scheme. To sign M , as before, Alice computes PM =
H(M) and aPM . Alice’s signature is the compression of aPM given by the algorithm
in Sect. 10. To verify the signature, Bob uses the decompression algorithm of Sect. 10
to produce the finite set of possible decompressions {Qi} ⊂ E(Fqr ). Bob verifies that
e(P,Qi) = e(PA,PM) for some i (if additional bits are sent, Bob need only check this
for one i, but the signer then needs to perform extra work to compute the additional
bits).

The RS modification produces signatures that are r−1
r

as large as the corresponding
BLS signatures. By Corollary 9.4, any attack on the RS modification of the BLS signa-
ture scheme corresponding to P ∈ Er(Fq) ⊂ E(Fqr ) gives an attack on the security of
the BLS signature scheme corresponding to P . In both cases, the security relies on the
difficulty of the Elliptic Curve Diffie–Hellman Problem in the subgroup generated by
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the point P . Compared with BLS, RS signing is no more work than BLS signing, and
RS verification requires an additional reconstruction step to recover s; for applications
with a powerful verifier, this is not a problem.

11.4. New Composite Order Bilinear Groups

Recently, composite order bilinear groups have been used to solve important problems
including partial homomorphic encryption [8], noninteractive zero-knowledge proofs
[24], searching encrypted data [5], efficient group signatures [10], and fully collusion-
resistant traitor tracing [9]. Supersingular elliptic curves have been the only secure in-
stantiations of composite order bilinear groups (Sect. 2.1 of [8]), namely, Boneh et al.
fix an RSA modulus n, take the smallest positive integer m such that mn − 1 is a prime
� ≡ 2 (mod 3), and use the n-torsion points on E : y2 = x3 + 1, a supersingular elliptic
curve over F� with � + 1 = mn points and with cE,� = α(E,�) = 2.

The following algorithm gives a new method for constructing composite order bilin-
ear groups. It makes use of the Abelian varieties E3 and E5, for which Sect. 10 gives
efficient (de)compression algorithms, and for which one can rely on elliptic curve arith-
metic without needing knowledge of higher-dimensional varieties.

Let p and q be primes ≡ 1 (mod 6), and let n = pq . Take an integer that has order
6 modulo p and an integer that has order 6 modulo q and use the Chinese Remainder
Theorem to obtain an integer z ≡ 2 (mod 3) that has order 6 modulo both p and q . Take
the integer m of smallest absolute value such that z + 3nm is a prime � (by Dirichlet’s
Theorem, there are infinitely many primes of the form z + 3nt). Then E : y2 = x3 + 1
is a supersingular elliptic curve over F� with � + 1 points and FE(x) = x2 + �. By The-

orem 9.1, FE3(x) = x4 − �x2 + �2 = �2Φ6(
x2

�
). Thus cE3,� = 6, α(E3, �) = 3, and

|E3(F�)| = �2 − � + 1 = Φ6(�), which is divisible by n since � has order 6 mod-
ulo n. Similarly, if p and q are primes ≡ 1 (mod 10), n = pq , and � is a prime
≡ 2 (mod 3) that has order 10 modulo p and q , then |E5(F�)| is divisible by n,
cE5,� = 10, and α(E5, �) = 2.5. In this way, E3 and E5 give new composite order bi-
linear groups, whose orders are RSA moduli n. However, for fixed RSA security, while
the MOV security per bit improves on the construction in [8] by a factor of 3

2 (resp., 5
4 ),

one needs twice (resp., four times) as many bits, so RSA security per bit is worse. Thus,
the construction in [8] seems to be the best available option.

12. Supersingular Abelian Varieties to Use in Pairing-Based Cryptography

12.1. Optimality

We consider a supersingular Abelian variety over a finite field to be “optimal” if it has
the highest security among Abelian varieties of that dimension over the same field.

Definition 12.1 (Definition 16 of [38]). An optimal supersingular Abelian variety over
Fq is a simple supersingular Abelian variety A over Fq such that cA,q ≥ cB,q for every
simple supersingular Abelian variety B over Fq of the same dimension as A.

Optimal supersingular elliptic curves are well known. For example, over Fpn with
n odd, the elliptic curves y2 = x3 + ax are supersingular and optimal (with cE,p =
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2) if 3 < p ≡ 3 (mod 4) and 0 �= a ∈ Fp , the curves y2 = x3 + b are supersingular
and optimal (with cE,p = 2) if 2 < p ≡ 2 (mod 3) and 0 �= b ∈ Fp , the curves y2 +
y = x3 + x + 1 and y2 + y = x3 + x are supersingular and optimal (with cE,q = 4) if
p = 2, and y2 = x3 − x ± 1 are supersingular and optimal (with cE,q = 6) if p = 3 and
gcd(n,6) = 1.

Thanks to Table 1, over Fpn with n odd, to obtain higher MOV security per bit than
for supersingular elliptic curves one can use supersingular Abelian surfaces when p = 2
or p > 7, and supersingular Abelian four-folds when p = 3 or 5 (in fact for all p, but
surfaces do at least as well when p �= 3,5). We construct optimal examples below (as
we did in Sects. 5.2 and 5.1 of [38]).

When p = 7, one could use the supersingular Abelian three-fold that is the Jacobian
J of the curve y2 = x8 +x4 +5x3 +6x2 +x +2 over F7n (when gcd(n,14) = 1), which
was shown in [20] to have embedding degree 14, and thus α(J,7n) = 14

3 . By Table 1
this is optimal and improves MOV security by a factor of 2 1

3 over supersingular elliptic
curves in characteristic 7.

When q is a square, to obtain higher MOV security one could use Abelian four-folds.
One can either use the g = 4 part of Example 12.3 below, or take the Abelian four-fold
E5 for an elliptic curve E with cE,q = 3 (by Corollary 9.4, if p �= 5, then cE5,q = 15
and α(E5, q) = 15

4 = 3.75).

12.2. Optimal Supersingular Surfaces

When p > 3, start with an optimal supersingular elliptic curve E over Fp (so cE,p = 2).
By Corollary 9.2, the Abelian surface E3 over Fpn has α(E3,p

n) = 3 for all odd n and
thus by Table 1 is optimal.

When gcd(n,6) = 1, the Jacobian of the curve y2 + y = x5 + x3 over F2n was given
in Galbraith’s paper [20] and has cA,q = 12 and α(A,q) = 6, so is an optimal supersin-
gular Abelian surface over F2n .

When n is odd and q = 2n, there are exactly 2 isogeny classes of elliptic curves
E over Fq with cE,q = α(E,q) = 4, namely those of C+ : y2 + y = x3 + x + 1
and C− : y2 + y = x3 + x. Applying Corollary 9.4 with these curves and r = 3 pro-
duces two Abelian surfaces C±

3 over F2n , with α(C±
3 , q) = 6, cC±

3 ,q = 12, Weil number

±√
2ne2πi/24, and

FC±
3
(x) = x4 ∓ 2

n+1
2 x3 + 2nx2 ∓ 2

3n+1
2 x + 22n.

By Corollary 9.4(ii) (or directly from the definition), cC±
3 ,q = 12 and α(C±

3 , q) = 6.

Using the characteristic polynomials to compute |C±
3 (F2n)|, sample values of prime

n for which |C+
3 (F3n)| is of a size suitable for cryptographic applications and has a

large prime factor are n = 109, 113, and 127, for which the largest prime divisor � of
|C+

3 (F3n)| has �log2(�)	 = 189, 173, and 207, respectively. For C−
3 , take n = 103, 113,

and 139, for which �log2(�)	 = 193, 193, and 201, respectively. In each case, when used
in the RS modification of BLS signatures as in Sect. 11.3, the signature length is 2n,
�log2(�)	 measures the discrete log security, and 12n = log2(q

cA,q ) measures the MOV
security.
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12.3. Optimal Supersingular Four-Folds

Suppose that gcd(n,6) = 1, let q = 3n, and let E± be y2 = x3 −x ±1. These two curves
give the two isogeny classes of elliptic curves over Fq with cE,q = 6. Let ( 3

n
) denote the

Jacobi symbol, which is +1 if n ≡ ±1 (mod 12) and is −1 if n ≡ ±5 (mod 12). Then

FE±,q (x) = x2 ±
(

3

n

)

3
n+1

2 x + 3n,
∣
∣E±(Fq)

∣
∣ = 3n + 1 ±

(
3

n

)

3
n+1

2 ,

FE±
5 ,q (x) = x10 ∓ ( 3

n
)3

5n+1
2 x5 + 35n

x2 ± ( 3
n
)3

n+1
2 x + 3n

,
∣
∣E±

5 (Fq)
∣
∣ = 35n + 1 ∓ ( 3

n
)3

5n+1
2

3n + 1 ± ( 3
n
)3

n+1
2

.

Either directly, or applying Corollary 9.4(iii) to E± over Fq with r = 5, gives cE±
5 ,q =

30 and α(E±
5 , q) = 5

4α(E±, q) = 7.5. Sample values of prime n for which |E+
5 (Fq)| is

of a size suitable for cryptographic applications and has a large prime factor are n = 43,
47, 73, and 79; if � is the largest prime divisor of |E+

5 (Fq)|, then �log2(�)	 = 166,
260, 458, and 485, respectively. For E−

5 , take n = 41, 43, 59, 61, and 113, for which
�log2(�)	 = 157, 265, 223, 344, and 697, respectively. In each case, when used in the
RS modification of BLS signatures as in Sect. 11.3, the signature length is 4 log2(q),
�log2(�)	 measures the discrete log security, and log2(q

cA,q ) = log2(3
30n) measures the

MOV security.
When q = 2n with n odd, Corollary 9.2 with the elliptic curves C± of Sect. 12.2 and

r = 5 implies that α(C±
5 , q) = 5, so the Abelian four-folds C±

5 are optimal over Fq .
By [16], the Jacobians J of y2 = x5 − x ± 1 are supersingular Abelian surfaces over

F5 with cJ,5 = 5. When q = 5n with gcd(n,10) = 1, Theorem 9.4 with r = 3 implies
that cJ3,q = 15 and α(J3, q) = 15/4 = 3.75, so the Abelian four-folds J3 are optimal
over Fq .

12.4. Optimal Jacobians when q Is a Square

In the next result, we take superelliptic curves C1 (in fact, Fermat quotients) over Fq

defined by polynomials of degree n, whose Jacobian varieties A1 have cryptographic
exponent 1 over Fq2 , and twist them by characters of Gal(F̄q/Fq2) of order n to pro-
duce curves over Fq2 whose Jacobian varieties are simple ϕ(n)/2-dimensional Abelian
varieties of cryptographic exponent n. They have the advantage of occurring in arbitrar-
ily large characteristic. We obtain optimal Jacobian varieties over finite fields of square
size.

See [15] for supersingular Jacobians J of curves of genus p−1
2 with cJ,p2 = p

2 .

Theorem 12.2 (Theorem 20 of [38]). Suppose that a, b,n ∈ N have no common divi-
sor greater than 1, n is odd, and

n + 2 − (
gcd(n, a) + gcd(n, b) + gcd(n, a + b)

) = ϕ(n).

Let q be a prime power congruent to −1 (mod n). For γ ∈ F
×
q2 , let Cγ be the curve

yn = γ xa(1 − x)b
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over Fq2 and write Aγ for its Jacobian variety. Then:

(i) dim(Aγ ) = ϕ(n)
2 ,

(ii) Aγ is supersingular,
(iii) cA1,q

2 = 1,
(iv) if in addition γ generates F

×
q2 modulo nth powers, then Aγ is simple, cAγ ,q2 = n,

Aγ (Fq2) is cyclic, and |Aγ (Fq2)| = Φ2n(q).

Proof. The dimension g of Aγ is the genus of Cγ . From the formula for the genus
of C±1 given on p. 55 of [11] and the fact that the genus of Cγ is independent of γ it
follows that g = ϕ(n)/2. Let F = Fq2 .

Since q ≡ −1 (mod n), Theorem 20.15 of [45] shows that the Frobenius endomor-
phism of A1 over F is multiplication by −q . In particular, the characteristic polynomial
of Frobenius of A1 over F is (x + q)2g . By Theorem 2.5(v), A1 is supersingular. By
Theorem 2.7(iii), A1 is elementary over F . By definition, cA1,q

2 = 1. Since every Aγ is
isomorphic to A1 over the algebraic closure F̄ , every Aγ is supersingular.

The endomorphism ring EndF̄ (Aγ ) contains the group of nth roots of unity μn in
F̄ , where ξ ∈ μn acts on Cγ by sending (x, y) to (x, ξy). Fix an nth root δ of γ . Then

δq2
is also an nth root of γ . Let ζ = γ (q2−1)/n = δq2−1. Then ζ n = 1, so we can view

ζ ∈ μn ⊂ EndF̄ (Aγ ). We have the commutative diagram

C1

φ1

λ

C1

λ′

C

φγ

Cγ

where φ1 and φγ are the q2-power maps (x, y) 
→ (xq2
, yq2

) of C1 and Cγ , respec-

tively, and λ,λ′ : C1 → Cγ are the isomorphisms (x, y) 
→ (x, δy), (x, y) 
→ (x, δq2
y).

Writing [φγ ], [λ′], etc. for the induced maps on A1 and Aγ , we noted above that
[φ1] = −q , and so the Frobenius endomorphism of Aγ is [φγ ] = [λ′ ◦ φ1 ◦ λ−1] =
[λ−1] ◦ [φ1] ◦ [λ′] = [λ−1] ◦ (−q) ◦ [λ′] = −q ◦ [λ′ ◦ λ−1] = −q ◦ [ζ ].

Suppose that γ generates F× modulo nth powers. Then ζ is a primitive nth root
of unity, and since n is odd, −ζ is a primitive (2n)th root of unity. The charac-
teristic polynomial of −[ζ ] on Aγ is divisible by Φ2n(x) and has the same degree
2g = ϕ(n) = ϕ(2n), so they are equal. Thus FAγ ,q2(x) = ∏

ξ (x − ξq), product over

primitive (2n)th roots of unity ξ , which is qϕ(2n)Φ2n(x/q). Since Φ2n(x) is irreducible,
so is FAγ ,q2(x). Therefore, Aγ is simple, and cAγ ,q2 = n. By Theorem 2.8(i), Aγ (F ) is

cyclic and |Aγ (F )| = qϕ(2n)Φ2n(1/q) = Φ2n(q). �
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Example 12.3 (Example 21 of [38]). Suppose that (g,n, a, b) is one of the following
4-tuples:

g n a b

3 9 3 1
4 15 5 3
6 21 7 3
9 27 9 1

10 33 11 3
�−1

2 � α β

where in the last row � is a prime, 1 ≤ α,β ≤ � − 1, and α + β �= �. Let q be a prime
power congruent to −1 (mod n), F = Fq2 , and γ a generator of F× modulo nth powers.
Let C be the curve yn = γ xa(1−x)b and A its Jacobian variety. Then by Theorem 12.2,
A is simple and supersingular, genus(C) = dim(A) = g, cA,q2 = n, A(F) is cyclic of
order Φ2n(q), and 2n is the smallest integer k such that |A(F)| divides qk − 1. In the
table, if g = 3,4,6,9,10, or if g > 3 and g is a prime of the form (� − 1)/2, then 2n is
the largest element of W2g , so A is optimal by Theorem 7.2. Optimal examples over F

with g = 1 and 5 are obtained by taking � = 3 and 11 in the last row, and nonoptimal
examples with g = 2 and 3 by taking � = 5 and 7 in the last row.

13. Security

For pairing-based cryptography, the security comes from both the Abelian variety dis-
crete log security and the MOV security. Theorem 6.3 shows that the MOV security
comes from Fq

cA,q . Allowing cA,q to take half-integer values when q is a square means
that cA,q correctly captures the MOV security of supersingular Abelian varieties, un-
like the embedding degree, which is 2cA,q when cA,q /∈ Z (and is cA,q otherwise). Joux
and Lercier [28] recently examined the security of the discrete log problem in F

×
qn for

“moderate” q . They point out that their variant of the function field sieve should be
taken into account when computing MOV security for Abelian varieties in low charac-
teristic, such as when char(Fq) = 3 and cA,q = 30 or 6, and when char(Fq) = 2 and
cA,q = 12, especially when q = 2n with n composite.

Gaudry (Theorem 1 of [21]) has a probabilistic attack on the discrete log problem
in A(Fq), for A a g-dimensional Abelian variety, with runtime O(q2−2/g) up to loga-
rithmic factors, and with the constant depending (badly) on g. His method is based on
index calculus. Viewing the trace zero subgroup E5 as a 4-dimensional Abelian variety
over Fq , Gaudry’s attack on E5(Fq) runs in time O(q3/2) up to log factors, with a large
constant. Asymptotically, this is better than Pollard Rho’s O(

√
qg) = O(q2) (though

the crossover point with Pollard Rho has not been determined). Applied to the trace
zero subgroup E3, viewed as an Abelian surface over Fq , Gaudry’s attack is O(q) up to
log factors, which is no better than Pollard Rho.

By (8.1) and (8.2), solving the discrete log problem in the primitive subgroup Er(Fq)

essentially solves the discrete log problem in E(Fqr ).
A referee has alerted us to a new preprint of Diem and Scholten [14] that gives an

attack on the discrete logarithm problem for trace zero subgroups of nonsupersingular
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Jacobians of hyperelliptic curves of genus 2, that can be viewed as a variant of the Weil
descent attack [22]. Further work is needed to determine whether this has implications
for primitive subgroups associated to supersingular elliptic curves or Abelian varieties.

14. Conclusion

We define the cryptographic exponent and security parameter for elementary supersin-
gular Abelian varieties over finite fields and relate them to the cryptographic security
and the embedding degree. We determine exactly what values can occur. We give a
compression algorithm that compresses points on the trace zero subgroup of E(Fqr ) by
a factor of r/(r − 1), for which we can make decompression efficient when r = 3 or 5.
We construct optimal supersingular Abelian varieties to use in pairing-based cryptog-
raphy. We use our results on primitive subgroups, our compression algorithm, and our
constructions to shorten pairing-based cryptography transmissions and keys in the su-
persingular case. We give a generalization to Abelian varieties of an elliptic curve result
of Balasubramanian and Koblitz.
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