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Abstract. String commitment schemes are similar to the well-studied bit commitment
schemes in cryptography with the difference that the committing party, say Alice, is sup-
posed to commit a long string instead of a single bit to another party, say Bob. Similar
to bit commitment schemes, such schemes are supposed to be binding, i.e., Alice cannot
change her choice after committing, and concealing, i.e., Bob cannot find Alice’s com-
mitted string before Alice reveals it. Ideal commitment schemes are known to be impos-
sible. Even if some degree of cheating is allowed, Buhrman et al. (quant-ph/0504078,
Nov. 2007)1 have recently shown that there are some binding-concealing trade-offs that
any quantum string commitment scheme (QSC) must follow. They showed trade-offs
both in the scenario of single execution of the protocol and in the asymptotic regime of
sufficiently large number of parallel executions of the protocol.

We present here new trade-offs in the scenario of single execution of a QSC pro-
tocol. Our trade-offs also immediately imply the trade-off shown by Buhrman et al.
in the asymptotic regime. We show our results by making a central use of an im-
portant information theoretic tool called the substate theorem due to Jain et al. (Pro-
ceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 429–438, 2002). Our techniques are quite different from that of Buhrman
et al. (quant-ph/0504078, Nov. 2007) and may be of independent interest.

Key words. String commitment, Quantum channels, Observational divergence, Rel-
ative entropy, Substate theorem.

1. Introduction

Commitment schemes are powerful cryptographic primitives. In a bit commitment
scheme Alice, the committee is supposed to commit a bit b ∈ {0,1} to Bob in such a
way that after the commit phase she cannot change her choice of the committed bit.
This is referred to as the binding property. Also at this stage Bob should not be able

1 A short version of this paper appeared previously in [1].
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to figure out what the committed bit is. This is referred to as the concealing property.
Later in the reveal phase Alice is supposed to reveal the bit b and convince Bob that this
was indeed the bit which she committed earlier. Bit commitment schemes have been
very well studied in both the classical and quantum models, since the existence of such
schemes imply several interesting results in cryptography. It has been shown that bit
commitment schemes imply the existence of quantum oblivious transfer [18], which in
turn provides a way to do any two-party secure computation [13]. They are also useful
in constructing zero knowledge proofs [5] and imply another very useful cryptographic
primitive called secure coin tossing [3]. But unfortunately strong negative results are
known about them in case Alice and Bob are assumed to possess arbitrary computation
power and information theoretic security is required. In this paper, we are concerned
with this setting of information theoretic security with unbounded computational re-
sources with cheating parties. Classically bit commitment schemes are known to be
impossible. In the quantum setting several schemes were proposed, but later several
impossibility results were shown [4,14–16]. Negative results were also shown for ap-
proximate implementations of bit commitment schemes [4,17] in which trade-offs were
shown for cheating probabilities of Alice and Bob, referred to as binding-concealing
trade-offs. Interestingly however Kent [12] has exhibited that bit-commitment can be
achieved using relativistic constraints. However we point out that in this work we do
not keep considerations of relativity into picture, and our setting is nonrelativistic.

Now suppose that instead of wanting to commit a bit b ∈ {0,1}, Alice wants to com-
mit an entire string x ∈ {0,1}n. One way to do this might be to commit all the bits
of x separately. Binding-concealing trade-offs of such schemes will be limited by the
binding-concealing trade-offs allowable for bit commitment schemes. But is it conceiv-
able that there might exist cleverer schemes which allow for better binding and conceal-
ing properties? This question was originally raised by Kent [11]. Let us first begin by
formally defining a quantum string commitment protocol. Our definition is similar to
the one considered by Buhrman et al. [2]

Definition 1 (Quantum string commitment). Let P = {px : x ∈ {0,1}n} be a probabil-
ity distribution, and let B be a measure of information (we define several measures of
information later). A (n, a, b) − B − QSC protocol for P is a quantum communication
protocol [15,18] between Alice and Bob. Alice gets an input x ∈ {0,1}n (chosen accord-
ing to the distribution P ), which is supposed to be the string to be committed. The
starting joint state of the qubits of Alice and Bob is some pure state. There are no inter-
mediate measurements during the protocol, and Bob has a final checking POVM mea-
surement {My |y ∈ {0,1}n} ∪ {I − ∑

y My} (please see Sect. 2 for definition of POVM)
to determine the value of the committed string by Alice or to detect her cheating. The
protocol runs in two phases called the commit phase followed by the reveal phase. The
following properties need to be satisfied.

1. (Correctness) Let Alice and Bob act honestly. Let ρx be the state of Bob’s qubits
at the end of the reveal phase of the protocol when Alice gets input x. Then
∀x, y TrMyρx = 1 iff x = y and 0 otherwise.

2. (Concealing) Let Alice act honestly and Bob be possibly cheating. Let σx be the
state of Bob’s qubits after the commit phase when Alice gets input x. Then the B
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information of the ensemble E = {px,σx} is at most b. In particular this is also
true for both Alice and Bob acting honestly.

3. (Binding) Let Bob act honestly and Alice be possibly cheating. Let c ∈ {0,1}n be a
string in a special cheating register C with Alice that she keeps independent of the
rest of the registers till the end of the commit phase. Let ρ′

c be the state of Bob’s
qubits at the end of the reveal phase when Alice has c in the cheating register. Let

p̃c
def= TrMcρ

′
c. Then for all input strings x,

∑

c∈{0,1}n
pcp̃c ≤ 2a−n.

The idea behind the above definition is as follows. At the end of the reveal phase of an
honest run of the protocol, Bob figures out x from ρx by performing the POVM measure-
ment {Mx} ∪ {I − ∑

x Mx}. He accepts the committed string to be x iff Mx succeeds,
and this happens with probability TrMxρx . He declares Alice cheating if I − ∑

x Mx

succeeds. Thus due to the first condition, at the end of an honest run of the protocol,
Bob accepts the committed string to be exactly the input string of Alice with probabil-
ity 1. The second condition above takes care of the concealing property stating that the
amount of B information about x that a possibly cheating Bob gets is bounded by b.
In bit-commitment protocols, the concealing property was quantified in terms of the
probability with which Bob can guess Alice’s bit. Buhrman et al. [2] in fact do consider
Bob’s probability of guessing Alice’s input string as quantifying the concealing property.
However in the proof of their trade-off result, they consider a related notion of informa-
tion as a quantification of the concealing property. In this paper, we use various notions
of information to quantify the concealing property of the protocol. The third condition
guarantees the binding property. It makes sure that if a cheating Alice wants to postpone
committing or wants to change her choice at the end of the commit phase, then she can-
not succeed in making an honest Bob accept her new choice with good probability, for
a lot of different strings of her choice.

A few points regarding the above definition are important to note. We assume that the
combined state of Alice and Bob at the beginning of the protocol is a pure state. Given
this assumption, it can be assumed without loss of generality (due to the arguments
of [15,18]) that it remains a pure state till the end of the protocol (in an honest run).
This is because Alice and Bob need not apply any intermediate measurements, before
Bob applies the final checking POVM at the end of the protocol. Our impossibility result
makes a critical use of this fact and fails to hold if the starting combined state is not a
pure state. However, there are no restrictions on the starting pure state shared between
Alice and Bob, it could even be an entangled state between them. The impossibility result
in [2] has also been shown under this assumption. This assumption has also been made
in showing impossibility results for bit-commitment schemes [14–16]. The main reason
why these arguments do not work, both for bit commitment and string commitment
schemes, if the combined state is not a pure state is that the Local Transition Theorem
(Theorem 8 mentioned later) fails to hold for mixed states. It is conceivable that, and
will be interesting to see if better QSC schemes exist when Alice and Bob are forced (by
some third party say) to start in some mixed state. Please look at [4] for extension of
impossibility results for bit-commitment to a very large class of protocols.
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1.1. Measures of Information

As we will see later, the notion of information used in the above definition is very
important, and therefore let us briefly define various notions of information that we will
be concerned with in this paper. The following notion of information, referred to as the
quantum mutual information or the Holevo-χ information, is one of the most commonly
used.

Definition 2 (Holevo-χ information). Given a quantum state ρ, the von-Neumann

entropy of ρ is defined as S(ρ)
def= −Trρ log2 ρ. Given quantum states ρ and σ , the

Kullback–Leibler divergence or relative entropy between them is defined as S(ρ‖σ)
def=

Trρ(log2 ρ − log2 σ). Given an ensemble E = {px,ρx}, let ρ
def= ∑

x pxρx , then its
Holevo-χ information is defined as

χ(E)
def=

∑

x

px

(
S(ρ) − S(ρx)

) =
∑

x

pxS(ρx‖ρ).

The following notion captures the amount of information that can be made available
to the real world through measurements on the quantum encoding of a classical random
variable.

Definition 3 (Accessible information). Let E = {px,ρx} be an ensemble, and let X

be a classical random variable such that Pr(X = x)
def= px . Let YM, correlated with X,

be the classical random variable that represents the result of a POVM measurement M
performed on E . The accessible information Iacc(E) of the ensemble E is then defined
to be

Iacc(E)
def= max

M
I
(
X : YM)

. (1)

As mentioned before, Buhrman et al. used Bob’s probability of guessing Alice’s input
string as the measure of concealment of the protocol. However, in the proofs of their
impossibility result, they used the following notion of information.

Definition 4 (ξ information [2]). The ξ information of an ensemble E = {px,ρx} is
defined as

ξ(E)
def= n + log2

∑

x

Tr
(
pxρ

−1/2ρx

)2
,

where ρ = ∑
x pxρx .

Let qx be the probability that Bob correctly guesses Alice’s input string x (with Alice
honest) before the start of the reveal phase. [2] showed that any (n, a, b)−QSC protocol
with

∑
x∈{0,1}n qx ≤ 2balso is an (n, a, b)−ξ −QSC protocol. Hence their impossibility

results for (n, a, b) − ξ − QSC protocols implied the same impossibility results for
(n, a, b) − QSC protocols with

∑
x∈{0,1}n qx ≤ 2b .
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In this paper, we also consider a notion of divergence information. It is based on the
following notion of distance between two quantum states considered by Jain, Radhakr-
ishnan, and Sen [9].

Definition 5 (Observational divergence [9]). Let ρ and σ be two quantum states. The
observational divergence between them, denoted D(ρ‖σ), is defined as

D(ρ‖σ)
def= max

M:POVM element
TrMρ log2

TrMρ

TrMσ
.

The definition of divergence information of an ensemble is similar to the Holevo-χ
information except the notion of distance between quantum states used is now observa-
tional divergence instead of relative entropy.

Definition 6 (Divergence information). Let E = {px,ρx} be an ensemble, and let ρ
def=∑

x pxρx . Its divergence information is defined by

D(E)
def=

∑

x

pxD(ρx‖ρ).

1.2. Previous Results

The impossibility of a strong string commitment protocol, in which both a and b are
required to be 0, is immediately implied by the impossibility of strong bit-commitment
protocols. The question of a trade-off between a and b was studied by Buhrman et al.
They studied this trade-off both in the scenario of single execution of the protocol and
also in the asymptotic regime with several parallel executions of the protocol. In the
scenario of single execution of the protocol, they showed the following result.

Theorem 1 [2]. For single execution of the protocol of an (n, a, b)-ξ -QSC, a + b +
5 log2 5 − 4 ≥ n.

This then (as argued before) implied similar trade-off for an (n, a, b)-QSC with∑
x∈{0,1}n qx ≤ 2b (where qx is the probability that Bob correctly guesses Alice’s in-

put string x, with Alice honest, before the start of the reveal phase). In the asymptotic
regime, they showed the following result in terms of the Holevo-χ information.

Theorem 2 [2]. Let Π be an (n,∗, b) − χ − QSC scheme. Let Πm represent m

parallel executions of Π . Let am represent the binding parameter of Πm, and let

a
def= limm→∞ am

m
. Then, a + b ≥ n.

There are two reasons why Theorem 2 may appear stronger than Theorem 1. The first
one is that there is no additive constant, and the other is that, for many ensembles E ,
χ(E) ≤ ξ(E), as we show in Appendix A. In fact, as we also show in Appendix A, there
exists ensembles E for which ξ(E) is exponentially (in n) larger than χ(E).
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Along with these impossibility results, Buhrman et al. interestingly also showed that
if the measure of information considered is the accessible information, the above trade-
offs no longer hold. For example, there exists a QSC scheme where a = 4 log2 n+O(1)

and b = 4 when measure of information is the accessible information. This therefore
asserts that the choice of measure of information is crucial to (im)possibility. Previously
Kent [11] also exhibited trade-offs for some schemes on Alice’s probability of cheating
and the amount of accessible information that Bob gets about the committed string.
However he did not allow Alice to be arbitrarily cheating, in particular Alice could not
have started with a superposition of strings in the input register. Therefore the schemes
that he considered were truly not QSCs as we have defined them.

1.3. Our Results

We show the following binding-concealing trade-off for QSCs.

Theorem 3. For single execution of the protocol of an (n, a, b) −D − QSC scheme,

a + b + 8
√

b + 1 + 16 ≥ n.

It was shown by Jain, Radhakrishnan, and Sen [9] that for any two states ρ and σ ,
D(ρ‖σ) ≤ S(ρ‖σ) + 1, which implies by Definitions 2 and 6 that, for any ensemble
E,D(E) ≤ χ(E) + 1. This immediately gives us the following impossibility result in
terms of Holevo-χ information.

Theorem 4. For single execution of the protocol of an (n, a, b) − χ − QSC scheme,

a + b + 8
√

b + 2 + 17 ≥ n.

We also consider the notion of maximum possible divergence information (similar
to the notion of maximum possible Holevo-χ information considered by Jain [8]) of

an encoding E : x → ρx . For a probability distribution μ
def= {px} over {0,1}n, let the

ensemble Eμ(E)
def= {px,ρx}. Let ρμ

def= ∑
x pxρx .

Definition 7 (Maximum possible divergence information). Maximum possible diver-

gence information of an encoding E : x → ρx is defined as D̃(E)
def= maxμ D(Eμ(E)).

We show the following theorem which states that if the maximum possible divergence
information in the qubits of Bob at the end of the commit phase is small, then Alice
can actually cheat with good probability for any string x ∈ {0,1}n and not just on the
average.

Theorem 5. For a QSC scheme, let σx be as in Definition 1 when Alice and Bob act
honestly in the commit phase. If for the encoding E : x → σx, D̃(E) ≤ b, then for all
strings c ∈ {0,1}n,

p̃c ≥ 2−(b+8
√

b+1+16),
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where p̃c (as in Definition 1) represents the probability of successfully revealing string
c (in the cheating string) by cheating Alice.

Again using the fact that, for all ensembles, D(ρ‖σ) ≤ S(ρ‖σ) + 1, we immediately
get the following theorem in terms of maximum possible Holevo-χ information χ̃ (E)

(which is similar to maximum possible divergence information and obtained by just
replacing divergence with relative entropy).

Theorem 6. For a QSC scheme, let σx be as in Definition 1 when Alice and Bob act
honestly in the commit phase. If for the encoding E : x → σx, χ̃(E) ≤ b, then for all
strings c ∈ {0,1}n,

p̃c ≥ 2−(b+8
√

b+2+17),

where p̃c (as in Definition 1) represents the probability of successfully revealing string c

(in the cheating string) by cheating Alice.

Now let us now discuss some aspects of our results.

1. In Theorem 4, the trade-off between a and b is similar (up to lower order terms
of b) to the one shown by Buhrman et al. [2] as in Theorem 1. However the
fact that b in Theorem 4 represents the Holevo-χ information instead of the
ξ -information (as in Theorem 1) makes it significantly stronger in certain cases

as follows. We show in Appendix A that for any ensemble E def= {2−n, ρx}, where

for all x, ρx commutes with ρ
def= ∑

x 2−nρx , we have ξ(E) ≥ χ(E). In fact, as we
also show in Appendix A, there exists ensembles E for which ξ(E) is exponen-
tially (in n) larger than χ(E). Theorem 4 therefore becomes much stronger than
Theorem 1 for ensembles where ξ(E) � χ(E).

2. As mentioned before, Jain et al. [9] have shown that for any ensemble E,D(E) ≤
χ(E) + 1. However recently, Jain et al. [10] have shown that there exist ensem-
bles E such that χ(E) � D(E) (χ(E) = Ω(log2 n · D(E)) for some ensembles E
supported on {0,1}n). For ensembles where this holds, Theorem 3 becomes much
stronger than Theorem 4.

3. As we show in Sect. 3, our one shot result, Theorem 4, immediately implies the
asymptotic result, Theorem 2 of Buhrman et al.

4. No counterparts of Theorems 5 and 6 were shown by Buhrman et al. and are
therefore completely new.

5. If b is large, then the cheating attack (that we present) of Alice would succeed with
low probability (like 2−b). However, as we show in a remark in Sect. 3, in case
Alice’s cheating attack succeeds with low probability, she would still be able to
‘reverse’ her cheating operations and reveal, with a high probability, at least some
x′ ∈ {0,1}n to Bob. That is, with a high probability, Alice will be able to prevent
herself from being detected cheating by Bob.

6. It is easily seen that up to lower order terms in b, the above trade-offs are achieved
by trivial protocols. For Theorem 3 above, consider the following protocol. Alice
in the concealing phase sends the first b bits of the n-bit string x. In this case,
Bob gets to know b bits of divergence information about x. In the reveal phase, a
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cheating Alice can now reveal any of the 2n−b strings x (consistent with the first
b bits being the ones sent) with probability 1. Hence a = log2 2n−b = n − b. For
Theorem 5 above, let Alice send one of the 2b strings s ∈ {0,1}b uniformly to Bob
representing the first b bits of x. The condition of Theorem 5 is satisfied. Now if,
in the reveal phase, she wants to commit any x, she can do so with probability 2−b

(in the event that the sent s is consistent with x).

In the next section, we state some quantum information theoretic facts that will be
useful in the proofs of the impossibility results that we present in Sect. 3.

2. Preliminaries

All logarithms in this paper are taken with base 2 unless otherwise specified. Let H,K
be finite-dimensional Hilbert spaces. For a linear operator A, let |A| = √

A†A and let
TrA denote the trace of A. Given a state ρ ∈H and a pure state |φ〉 ∈ H⊗K, we call |φ〉
a purification of ρ iff TrK|φ〉〈φ| = ρ. A positive operator-valued measurement (POVM)

element M is a positive semi-definite operator such that I − M also is positive semi-
definite, where I is the identity operator. A POVM is defined as follows.

Definition 8 (POVM). An m-valued POVM measurement M on a Hilbert space H
is a set of operators {Mi, i ∈ [m]} on H such that ∀i,Mi is positive semi-definite and∑

i∈[m] Mi = I , where I is the identity operator on H. A classical random variable

YM representing the result of the measurement M on a state ρ is an m-valued random

variable such that ∀i ∈ [m],Pr[YM = i] def= TrMiρ.

The following fact easily follows from the definition of von-Neumann entropy.

Lemma 1. Let ρ1 and ρ2 be quantum states. Then S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2).

We make a central use the following information-theoretic result called the substate
theorem due to Jain et al. [9].

Theorem 7 (Substate theorem, [9]). Let H and K be two finite-dimensional Hilbert
spaces with dim(K) ≥ dim(H). Let C

2 denote the two-dimensional complex Hilbert
space. Let σ and τ be density matrices in H such that D(σ‖τ) < ∞. Let |σ 〉 be a
purification of σ in H ⊗ K. Then, for r > 1, there exist pure states |φ〉, |θ〉 ∈ H ⊗
K, and |τ 〉 ∈ H ⊗ K ⊗ C

2, depending on r , such that |τ 〉 is a purification of τ and
Tr||σ 〉〈σ | − |φ〉〈φ|| ≤ 2√

r
, where

|τ 〉 def=
√

r − 1

r2rk
|φ〉|1〉 +

√

1 − r − 1

r2rk
|θ〉|0〉

and k
def= D(σ‖τ) + 6

√
D(σ‖τ) + 1 + 4.
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Remarks.

1. In the above theorem, if the last qubit in |τ 〉 is measured in the computational
basis, then the probability of obtaining 1 is (1 − 1/r)2−rk .

2. Later in the proof below, we will let σ
def= ρc, τ

def= ρB , and |σ 〉 def= |φc〉, which will
be explained later.

The following theorem is implicit in [7,14–16] although not explicitly called by the
same name.

Theorem 8 (Local transition theorem). Let ρ be a quantum state in K. Let |φ1〉 and
|φ2〉 be two purifications of ρ in H⊗K. Then there is a local unitary transformation U

acting on H such that (U ⊗ I )|φ1〉 = |φ2〉.

We will also need the following theorem, which follows from arguments similar to
those in Jain [8] for a similar theorem about relative entropy.

Theorem 9. Let X be a finite set. Let E : x → ρx be an encoding. If D̃(E) ≤ b, then

there exists a distribution μ
def= {qx} on X such that

∀x ∈ X, D(ρx‖ρ) ≤ b,

where ρ
def= ∑

x qxρx .

The following theorem is shown by Helstrom [6].

Theorem 10. Given two quantum states ρ and σ , the probability of identifying the
correct state is at most 1

2 + Tr|ρ−σ |
4 , or in other words the probability of distinguishing

them is at most Tr|ρ−σ |
2 .

3. Proofs of Impossibility

Proof of Theorem 3. Let us consider a QSC scheme, and let Alice get input x. After
an honest run of the commit phase, let |φx〉 be the combined state of Alice and Bob, and
let ρx be the state of Bob’s qubits. Let E = {px,ρx}. From the concealing property of
the QSC it follows that D(E) ≤ b. Let c be the string in the cheating register C of Alice.
Consider a cheating run of the protocol by Alice in which she starts with the superposi-
tion

∑
x

√
px |x〉 in the input register and proceeds with the rest of the commit phase as

before in the honest protocol. Let Bob be honest all throughout our arguments. Since the
input is classical and Alice can make its copy, we can assume without loss of generality
that the operations of Alice in the honest run are such that they do not disturb the input
register. Let |ψ〉 be the combined state of Alice and Bob in this cheating run at the end
of the commit phase. Let A and B correspond to Alice and Bob’s systems, respectively.
Now it can be seen that in the cheating run, at the end of the commit phase, the qubits

of Bob are in the state ρB
def= TrA|ψ〉〈ψ | = ∑

x pxρx . Let r > 1 to be chosen later.
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Let us now invoke the substate theorem (Theorem 7) by putting σ
def= ρc, |σ 〉 def= |φc〉,

τ
def= ρB , and r

def= r . Let |ψc〉 def= |τ 〉 be obtained from Theorem 7 such that the ex-
tra single qubit register C

2 is also with Alice. Since TrA|ψc〉〈ψc| = TrA|ψ〉〈ψ | = ρB ,
by Local transition theorem (Theorem 8) there exists a unitary transformation Ac act-
ing just on Alice’s system A such that (Ac ⊗ IB)|ψ〉 = |ψc〉, where IB is the iden-
tity transformation on Bob’s system. Now the cheating Alice (who’s intention is to re-
veal string c) applies the transformation Ac to |ψ〉 and then continues with the rest

of the reveal phase as in the honest run. Let |φ′
c〉 def= |φ〉 be obtained from Theo-

rem 7 and hence, Tr||φc〉〈φc| − |φ′
c〉〈φ′

c|| ≤ 2/
√

r . Now it can be seen that when Bob
makes the final checking POVM, the probability of success p̃c for Alice is at least
(1 − 1/r)2−rkc (1 − 1/

√
r), where kc = D(ρc‖ρB) + 6

√
D(ρc‖ρB) + 1 + 4. One way

to see this is to imagine that Alice first measures the single qubit register C
2 and then

proceeds with the rest of the reveal phase. Now imagine that she obtains one on this
measurement, which by Theorem 7 has probability (1 − 1/r)2−rkc . Also once she ob-
tains one, the combined joint state of Alice and Bob is |φ′

c〉 whose trace distance with
|φc〉 is at most 2/

√
r . Since the trace distance is preserved by unitary operations and

is only smaller for subsystems and since after this Alice follows the rest of the reveal
phase honestly, we can conclude the following: the final state resulting with Bob will
have the trace distance at most 2/

√
r with the state with him at the end of a com-

pletely honest run of the protocol in which Alice starts with c in the input register.
Hence it follows from Theorem 10 that Bob will accept at the end with probability
at least 1 − 1/

√
r , since he was accepting with probability 1 in the complete hon-

est run of the protocol. Hence the overall cheating probability p̃c of Alice is at least
(1 − 1/r)2−rkc (1 − 1/

√
r).

Although here we have imagined Alice doing an intermediate measurement on the
single qubit register C

2, it is not necessary, and she will have the same cheating prob-
ability when she proceeds with the rest of the honest protocol after just applying the
cheating transformation Ac , since the final qubits of Bob will be in the same state in
either case. Now,

2a−n ≥
∑

c

pcp̃c

≥ (1 − 1/r)
(
1 − 1/

√
r
)
(∑

c

pc2−r(D(ρc‖ρB)+6
√

D(ρc‖ρB)+1+4)

)

≥ (1 − 1/r)
(
1 − 1/

√
r
)
2
∑

c −rpc(D(ρc‖ρB)+6
√

D(ρc‖ρB)+1+4)

≥ (1 − 1/r)
(
1 − 1/

√
r
)
2−r(b+6

√
b+1+4).

The first inequality comes from the definition of a in Definition 1. The third inequality
comes from the convexity of the exponential function, and the fourth inequality comes
from definition of b in Definition 1, Definition 6, and the concavity of the square root
function.
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Now for b > 15, we let r = 1 + 1
b

and, therefore,

(1 − 1/r)
(
1 − 1/

√
r
)
2−r(b+6

√
b+1+4) ≥ 0.5

(b + 1)2
2−(b+6

√
b+1+7)

≥ 2−(b+8
√

b+1+8).

For b ≤ 15, we let r = 1 + 1/15 and, therefore,

(1 − 1/r)
(
1 − 1/

√
r
)
2−r(b+6

√
b+1+4) ≥ 2−(b+6

√
b+1+16).

Therefore, we always get 2a−n ≥ 2−(b+8
√

b+1+16), which finally implies

a + b + 8
√

b + 1 + 16 ≥ n. �

Proof of Theorem 2. Let bm represent the concealing parameter for Πm. It is easy
to verify from Lemma 1, the definition of Holevo-χ information, and Definition 2 that
b = bm/m. Then Theorem 4 applied to Πm implies

⇒ am + bm + 8
√

bm + 2 + 17 ≥ mn

⇒ lim
m→∞

1

m

(
am + bm + 8

√
bm + 2 + 17

) ≥ n

⇒ a + b ≥ n. �

Proof of Theorem 5. Let μ = {λx} be the distribution on {0,1}n obtained from
Theorem 9. Consider the cheating strategy of Alice in which she puts the superpo-
sition

∑
x

√
λx |x〉 in the register where she keeps the commit string. Let c be the

string in the cheating register of Alice. Now by arguments as above, the probability
of success p̃c for Alice is at least (1 − 1/

√
r)(1 − 1/r)2−rkc , where kc, ρc, ρ being

as before. Since for all c,D(ρc‖ρ) ≤ b, this implies (by setting r appropriately) that
∀c, p̃c ≥ 2−(b+8

√
b+1+16). �

Remark. Let us now see how, with a good probability overall, Alice will be able to
prevent herself from being detected cheating by Bob. Let Alice have c in the cheating
register. Let rc be the probability of getting one on performing the two-outcome mea-
surement (obtained from Theorem 7) after the commit phase as in the cheating strategy
described above in the proof of Theorem 3. In case she gets one, she proceeds with the
cheating strategy. In case she gets zero, she tries to rollback so that she can successfully
reveal at least some string to Bob. For this, she does the following.

1. She applies the transformation A
†
c (the inverse of Ac).

2. She measures the input register in the computational basis and say she obtains x′.
3. She proceeds with the rest of the reveal phase as if her actual input was x′.

Assume that Alice obtains zero on performing the two-outcome measurement as in
the cheating strategy described above, which happens with probability 1 − rc . Now it
can be verified that the trace distance between |ψc〉〈ψc| and the combined state of Alice
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and Bob after obtaining zero on performing the measurement is at most 2rc . Since A
†
c

is unitary, this implies that the combined state of Alice and Bob after applying A
†
c and

|ψ〉〈ψ | will be at most 2rc. Now we can argue as before that Alice can reveal some string
successfully to Bob with probability at least 1 − rc . Therefore overall, the probability
that Alice will be able to reveal some string is at least rc + (1 − rc)

2 ≥ 1 − rc . Now since
typically rc is quite small (like 2−b), 1 − rc is quite close to 1.
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Appendix A. Separations for ξ(E) and χ(E)

Let E def= {1/2n, ρx} be an ensemble with x ∈ {0,1}n. Let ρ
def= ∑

x 2−nρx . Lets assume
that for all x, ρx commutes with ρ as is the case in classical ensembles. We show that
in this case ξ(E) ≥ χ(E). Consider

ξ(E) = n + log
∑

x

Tr
(
2−nρ−1/2ρx

)2

= log
∑

x

2−nTr
(
ρ−1/2ρx

)2

≥ 2−n
∑

x

log Tr
(
ρ−1/2ρx

)2 (from concavity of log function)

= 2−n
∑

x

log Tr
(
ρxρ

−1ρx

)
(since ρx and ρ commute)

≥ 2−n
∑

x

Trρx log
(
ρxρ

−1) (since log TrBA ≥ TrA logB

for quantum states A,B)

= 2−n
∑

x

Trρx(logρx − logρ) (since ρx and ρ commute)

= χ(E).

Next we show that there exist classical ensembles for which ξ(E) could be expo-
nentially larger than χ(E). Consider the ensemble of classical distributions {2−n,Px}
for x ∈ {0,1}n. Here each Px has support on {0,1}n. Let ε ∈ (0,1) be a constant.
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Let Px(x) = 2− εn
2 , and let the other values for Px(y), y �= x be the same. Let P

def=∑
x 2−nPx . It is easy to verify that in this case P is the uniform distribution on {0,1}n.

Now,

ξ(E) = n + log
∑

x

Tr
(
2−2nP −1P 2

x

)

= −n + log
∑

x

Tr
(
P −1P 2

x

)

≥ −n + log
∑

x

2n(1−ε)
(
since for all x, TrP −1P 2

x ≥ 2n(1−ε)

and since log is monotonic
)

= −n + log 2n(2−ε) = n(1 − ε)

Also we note that for all x, TrPx(logPx − logP) ≤ 2− εn
2 · n · (1 − ε/2), and hence

χ(E) = 2−n
∑

x

TrPx(logPx − logP) ≤ 2−n
∑

x

2− εn
2 · n · (1 − ε/2)

= 2− εn
2 · n · (1 − ε/2)

Therefore, by letting ε to be a constant very close to 0 we can let ξ(E) to be very close
to n, whereas χ(E) would still be exponentially small in n.
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