
J. Cryptol. (2010) 23: 422–456
DOI: 10.1007/s00145-008-9034-x

Efficient Protocols for Set Intersection and Pattern
Matching with Security Against Malicious and Covert

Adversaries

Carmit Hazay and Yehuda Lindell
Dept. of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

harelc@cs.biu.ac.il; lindell@cs.biu.ac.il

Communicated by Hugo Krawczyk

Received 21 February 2008 and revised 20 October 2008
Online publication 18 November 2008

Abstract. In this paper, we construct efficient secure protocols for set intersection
and pattern matching. Our protocols for secure computing the set intersection function-
ality are based on secure pseudorandom function evaluations, in contrast to previous
protocols that are based on polynomials. In addition to the above, we also use secure
pseudorandom function evaluation in order to achieve secure pattern matching. In this
case, we utilize specific properties of the Naor–Reingold pseudorandom function in
order to achieve high efficiency.

Our results are presented in two adversary models. Our protocol for secure pattern
matching and one of our protocols for set intersection achieve security against mali-
cious adversaries under a relaxed definition where one corruption case is simulatable
and, for the other, only privacy (formalized through indistinguishability) is guaranteed.
We also present a protocol for set intersection that is fully simulatable in the model of
covert adversaries. Loosely speaking, this means that a malicious adversary can cheat
but will then be caught with good probability.

Key words. Oblivious pseudorandom function, Pattern matching and set intersection.

1. Introduction

In the setting of secure two-party computation, two parties wish to jointly compute some
function of their private inputs while preserving a number of security properties. In par-
ticular, the parties wish to ensure that nothing is revealed beyond the output (privacy),
that the output is computed according to the specified function (correctness) and more.
The standard definition today (cf. [6] following [5,14,21]) formalizes security by com-
paring a real protocol execution to an “ideal execution,” where an incorruptible trusted
party helps the parties to compute the function. Specifically, in the ideal world, the par-
ties just send their inputs over perfectly secure communication lines to the trusted party,

An extended abstract of this paper appeared in TCC 2008. The research was supported by an Eshkol
scholarship and Infrastructures grant from the Israel Ministry of Science and Technology.

© International Association for Cryptologic Research 2008

mailto:harelc@cs.biu.ac.il
mailto:lindell@cs.biu.ac.il

Efficient Protocols for Set Intersection and Pattern Matching 423

who computes the function honestly and sends the output to the parties. A real protocol
in which parties interact arbitrarily is said to be secure if any adversarial attack on a
real protocol can essentially be carried out also in the ideal world; of course, in the ideal
world, the adversary can do almost nothing, and this guarantees that the same is true also
in the real world. This definition of security is often called simulation-based because se-
curity is demonstrated by showing that a real protocol execution can be “simulated” in
the ideal world.

This setting has been widely studied, and it has been shown that any efficient
two-party functionality can be securely computed [12,13,25]. These feasibility results
demonstrate a wide applicability of secure computation, in principle. However, they fall
short of what is needed in implementations because they are far from efficient enough to
be used in practice (with a few exceptions). This is not surprising because the results are
general and do not utilize any special properties of the specific problem being solved.
The focus of this paper is the development of efficient protocols for specific problems
of interest. Constructing such protocols is crucial if secure computation is ever to be
used in practice.

Relaxed Notions of Security Recently, the field of data mining has shown great interest
in secure computation for the purpose of “privacy-preserving data mining” [20].1 How-
ever, most of the protocols that have been constructed with this aim in mind are only
secure in the presence of semi-honest adversaries who follow the protocol specification
(but may try to examine the messages they receive to learn more than they should).
Unfortunately, in many cases, this level of security is not sufficient. Rather, adversar-
ial parties are willing to behave maliciously—meaning that they may divert arbitrarily
from the protocol specification—in their aim to cheat. It seems that it is hard to obtain
highly efficient protocols that are secure in the presence of malicious adversaries under
the standard simulation-based definitions, and two decades after the foundational feasi-
bility results of [13] we know very few nontrivial secure computation problems that can
be solved with high efficiency in this model. In this paper, we consider two different
relaxations in order to achieve higher efficiency:

• One-sided simulatability: According to this notion of security, full simulation is
provided for one of the corruption cases, while only privacy (via computational
indistinguishability) is guaranteed for the other corruption case. This notion of se-
curity is useful when considering functionalities for which only one party receives
output. In this case, privacy is guaranteed when the party not receiving output is
corrupted (and this is formalized by saying that the party cannot distinguish be-
tween different inputs used by the other party), whereas full simulation via the
ideal/real paradigm is guaranteed when the party receiving output is corrupted.
This notion of security has been considered in the past; see [9,23] for example.

• Security in the presence of covert adversaries: This notion of security provides the
following guarantee. A malicious adversary may be able to cheat (e.g., learn the

1 There are two main directions of research in privacy-preserving data mining. One area considers the
problem of constructing secure protocols for distributed data mining, where security is in the sense of secure
multiparty computation. The other area focuses on data privacy and uses techniques such as data perturba-
tion [3], and is not related to our work here.

424 C. Hazay and Y. Lindell

other party’s private input). However, if it follows such a strategy, it is guaranteed
to be caught with probability at least ε, where ε is called the “deterrence factor”
(in this paper, we use ε = 1/2). This definition is formalized within the ideal/real
simulation paradigm and so has all the advantages offered by it. This definition
was recently introduced in [2].

We stress that both notions are relaxations and are not necessarily sufficient for all ap-
plications. For example, security in the presence of covert adversaries would not suffice
when the computation relates to highly sensitive data or when there are no repercussions
to a party being caught cheating. However, it is highly suitable in the case that parties
may suffer penalties if caught cheating (in addition, a potentially useful connection to
the rational adversary model was pointed out by [16]). Likewise, the guarantee of pri-
vacy alone (as in one-sided simulatability for one of the corruption cases) is sometimes
not sufficient. For example, the properties of independence of inputs and correctness
are not achieved, and they are sometimes needed. In order to see this, consider secure
protocols for elections and auctions. Correctness is clearly crucial in elections to ensure
that the candidate with the most votes is elected, and independence of inputs is needed
in auctions in order to prevent an adversary from always winning by giving a bid that is
only $1 higher than the other bids. Despite the above, in many cases, such relaxations
are acceptable. Furthermore, using these relaxations, we are able to construct protocols
that are much more efficient than anything known that achieves full security in the pres-
ence of malicious adversaries, where security is formalized via the ideal/real simulation
paradigm.

Secure Set Intersection The bulk of this paper is focused on solving the set intersec-
tion problem. In this problem, two parties with private sets wish to learn the intersection
of their sets without revealing anything else. There are many cases where such a com-
putation is useful. For example, two health insurance companies may wish to ensure
that no one has taken out the same insurance with both of them (if this is forbidden),
or the government may wish to ensure that no one receiving social welfare is currently
employed and paying income tax. By running secure protocols for these tasks, sensitive
information about law-abiding citizens is not unnecessarily compromised.

We present two protocols for this task. The first achieves security in the presence
of malicious adversaries with one-sided simulatability, while the second is secure in
the presence of covert adversaries. Both protocols take a novel approach. Specifically,
instead of using protocols for secure polynomial evaluation [22], our protocols are based
on running secure subprotocols for pseudorandom function evaluation. In addition, we
use only standard assumptions (e.g., the decisional Diffie–Hellman assumption) and do
not resort to random oracles.

In order to get a feel of how our protocol works, we sketch the general idea underlying
it. The parties run many executions of a protocol for securely computing a pseudoran-
dom function, where one party inputs the key to the pseudorandom function, and the
other inputs the elements of its set. Denoting the pseudorandom function by F , the in-
put of party P1 by X, and the input of party P2 by Y , we have that at the end of this stage
party P2 holds the set {Fk(y)}y∈Y while P1 has learned nothing. Then, P1 just needs to
locally compute the set {Fk(x)}x∈X and send it to P2. By comparing which elements

Efficient Protocols for Set Intersection and Pattern Matching 425

appear in both sets, P2 can learn the intersection (but nothing more). This is a com-
pletely different approach to that taken until now that has defined polynomials based
on the sets and used secure polynomial evaluations to learn the intersection. We stress
that the “polynomial approach” has only been used successfully to achieve security in
the presence of semi-honest adversaries [10,17], or together with random oracles when
malicious adversaries are considered [10]. (We exclude the use of techniques that use
general zero-knowledge proofs because these are not efficient.) We additionally note
that the usage of polynomials requires O(|X|× |Y |) exponentiations without the ability
to reduce it. Whereas in our case, the number of exponentiations depends linearly on the
length of the inputs and the complexity of the oblivious PRF evaluation, which yields a
construction with an improved efficiency.

Our protocols deal with the two-party set intersection problem. The multiparty set
intersection problem is also of interest. We remark that our protocol does not seem to
naturally extend to the multiparty setting.

Secure Pattern Matching In addition to the above, we present an efficient secure pro-
tocol for solving the basic problem of pattern matching [4,18]. In this problem, one
party holds a text T and the other a pattern p. The aim for the party holding the pattern
is to learn all the locations of the pattern in the text (and there may be many), while the
other learns nothing about the pattern. As with our protocols for secure set intersection,
the use of secure pseudorandom function evaluation lies at the heart of our solution.
However, here we also utilize specific properties of the Naor–Reingold pseudorandom
function [24], enabling us to obtain a simple protocol that is significantly more efficient
than that obtained by running known general protocols. Our protocol is secure in the
presence of malicious adversaries with one-sided simulatability and is the first to ad-
dress this specific problem. Our protocol does not extend to security in the presence of
covert adversaries; see discussion at the end of Sect. 4.

Related Work The problem of secure set intersection was studied in [10], who pre-
sented protocols for both the semi-honest and malicious cases. However, their protocol
for the case of malicious adversaries assumes a random oracle. This problem was also
studied in [17], whose main focus was the semi-honest model; their protocols for the
malicious case use multiple zero-knowledge proofs for proving correct behavior and as
such are not very efficient. As we have mentioned, both of the above works use oblivious
polynomial evaluation as the basic building block in their solutions.

2. Definitions and Tools

2.1. Definitions

We denote the security parameter by n. A function μ(·) is negligible in n (or just neg-
ligible) if for every polynomial p(·), there exists a value N such that for all n > N , it
holds that μ(n) < 1

p(n)
. Let X = {X(a,n)}n∈N,a∈{0,1}∗ and Y = {Y(a,n)}n∈N,a∈{0,1}∗

be distribution ensembles. Then, we say that X and Y are computationally indistinguish-

able, denoted X
c≡ Y , if for every nonuniform distinguisher D, there exists a negligible

426 C. Hazay and Y. Lindell

function μ(·) such that for every a ∈ {0,1}∗,
∣
∣Pr

[

D
(

X(a,n)
) = 1

] − Pr
[

D
(

Y(a,n)
) = 1

]∣
∣ < μ(n).

We adopt the convention whereby a machine is said to run in polynomial-time if its
number of steps is polynomial in its security parameter alone. We use the shorthand
PPT to denote probabilistic polynomial-time. Two basic building blocks that we utilize
in our constructions are ensembles of pseudorandom functions, denoted by FPRF, and
ensembles of pseudorandom permutations, denoted by FPRP, as defined in [11]. We
also denote the ensemble of truly random functions by HFunc and the ensemble of truly
random permutations by HPerm.

2.1.1. Security in the Presence of Malicious Adversaries

In this section, we briefly present the standard definition for secure multiparty compu-
tation and refer to [12, Chap. 7] for more details and motivating discussion.

Two-Party Computation A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗,
where f = (f1, f2). That is, for every pair of inputs (x, y), the output-vector is a
random variable (f1(x, y), f2(x, y) ranging over pairs of strings where P1 receives
f1(x, y) and P2 receives f2(x, y). We sometimes denote such a functionality by
(x, y) �→ (f1(x, y), f2(x, y)). Thus, for example, the oblivious transfer functionality
is denoted by ((x0, x1), σ) �→ (λ, xσ), where (x0, x1) is the first party’s input, σ is the
second party’s input, and λ denotes the empty string (meaning that the first party has no
output).

Adversarial Behavior Loosely speaking, the aim of a secure multiparty protocol is to
protect honest parties against dishonest behavior by other parties. In this section, we
outline the definition for malicious adversaries who control some subset of the parties
and may instruct them to arbitrarily deviate from the specified protocol. We also con-
sider static corruptions, meaning that the set of corrupted parties is fixed at the onset.

Security of Protocols (Informal) The security of a protocol is analyzed by comparing
what an adversary can do in a real protocol execution to what it can do in an ideal sce-
nario that is secure by definition. This is formalized by considering an ideal computation
involving an incorruptible trusted third party to whom the parties send their inputs. The
trusted party computes the functionality on the inputs and returns to each party its re-
spective output. Loosely speaking, a protocol is secure if any adversary interacting in
the real protocol (where no trusted third party exists) can do no more harm than if it
was involved in the above-described ideal computation. One technical detail that arises
when considering the setting of no honest majority is that it is impossible to achieve
fairness or guaranteed output delivery [7]. That is, it is possible for the adversary to pre-
vent the honest party from receiving outputs. Furthermore, it may even be possible for
the adversary to receive output, while the honest party does not. We consider malicious
adversaries and static corruptions in this paper.

Efficient Protocols for Set Intersection and Pattern Matching 427

Execution in the Ideal Model In an ideal execution, the parties send their inputs to
the trusted party who computes the output. An honest party just sends the input that it
received, whereas a corrupted party can replace its input with any other value of the
same length. Since we do not consider fairness, the trusted party first sends the output
of the corrupted parties to the adversary, and the adversary then decides whether the
honest parties receive their (correct) outputs or an abort symbol ⊥. Let f be a two-party
functionality, where f = (f1, f2), let A be a nonuniform probabilistic polynomial-time
machine, and let I ⊆ [2] be the set of corrupted parties (either P1 is corrupted, or P2 is
corrupted, or neither). Then, the ideal execution of f on inputs (x, y), auxiliary input z

to A and security parameter n, denoted IDEALf,A(z),I (x, y,n), is defined as the output
pair of the honest party and the adversary A from the above ideal execution.

Execution in the Real Model In the real model, there is no trusted third party, and the
parties interact directly. The adversary A sends all messages in place of the corrupted
party and may follow an arbitrary polynomial-time strategy. In contrast, the honest par-
ties follow the instructions of the specified protocol π .

Let f be as above, and let π be a two-party protocol for computing f . Furthermore,
let A be a nonuniform probabilistic polynomial-time machine, and let I be the set of
corrupted parties. Then, the real execution of π on inputs (x, y), auxiliary input z to
A and security parameter n, denoted by REALπ,A(z),I (x, y,n), is defined as the output
vector of the honest parties and the adversary A from the real execution of π .

Security as Emulation of a Real Execution in the Ideal Model Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that adversaries in
the ideal model are able to simulate executions of the real-model protocol.

Definition 2.1. Let f and π be as above. Protocol π is said to securely compute f

with abort in the presence of malicious adversaries if for every nonuniform probabilistic
polynomial-time adversary A for the real model, there exists a nonuniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [2],

{

IDEALf,S(z),I (x, y,n)
}

x,y,z∈{0,1}∗,n∈IN
c≡ {

REALπ,A(z),I (x, y,n)
}

x,y,z∈{0,1}∗,n∈IN,

where |x| = |y|.

2.1.2. One-Sided Simulation for Two-Party Protocols

Two of our protocols achieve a level of security that we call one-sided simulation. In
these protocols, P2 receives output, while P1 should learn nothing. In one-sided simu-
lation, full simulation is possible when P2 is corrupted. However, when P1 is corrupted,
we only guarantee privacy, meaning that it learns nothing whatsoever about P2’s input
(this is straightforward to formalize because P1 receives no output). This is a relaxed
level of security and does not achieve everything we want; for example, independence
of inputs and correctness are not guaranteed. Nevertheless, for this level of security, we

428 C. Hazay and Y. Lindell

are able to construct highly efficient protocols that are secure in the presence of mali-
cious adversaries. This notion of security has been considered in the past; see [23] for
example. Formally, let REALπ,A(z),i (x, y,n) denote the output of the honest party and
the adversary A (controlling party Pi) after a real execution of protocol π , where P1
has input x, P2 has input y, A has auxiliary input z, and the security parameter is n. Let
IDEALf,S(z),i (x, y,n) be the analogous distribution in an ideal execution with a trusted
party who computes f for the parties. Finally, let VIEWA

π,A(z),i
(x, y,n) denote the view

of the adversary after a real execution of π as above. Then, we have the following defi-
nition.

Definition 2.2. Let f be a functionality where only P2 receives output. We say that a
protocol π securely computes f with one-sided simulation if the following holds:

1. For every nonuniform PPT adversary A controlling P2 in the real model, there
exists a nonuniform PPT adversary S for the ideal model such that

{

REALπ,A(z),2(x, y,n)
}

x,y,z∈{0,1}∗,n∈N

c≡ {

IDEALf,S(z),2(x, y,n)
}

x,y,z∈{0,1}∗,n∈N
,

where |x| = |y|.
2. For every nonuniform PPT adversary A controlling P1 and every polynomial p(·),

{

VIEWA
π,A(z),1(x, y,n)

}

x,y,y′,z∈{0,1}∗,n∈N

c≡ {

VIEWA
π,A(z),1

(

x, y′, n
)}

x,y,y′,z∈{0,1}∗,n∈N
, (1)

where |x| = |y| = |y′|.

Note that the ensembles in (1) are indexed by two different inputs y and y′ for P2.
The requirement is that A cannot distinguish between the cases that P2 used the first
input y or the second input y′.

2.1.3. Security in the Presence of Covert Adversaries

Here we consider an adversary that may deviate from the protocol specification in an
attempt to cheat and as such is malicious. However, if it follows a strategy which enables
it to achieve something that is not possible in the ideal model (like learning the honest
party’s input), then its cheating is guaranteed to be detected by the honest party with
probability at least ε, where ε is a deterrent parameter. This definition is formalized
in three ways in [2]; we consider their strongest definition here. In this definition, the
ideal model is modified so that the adversary may send a special cheat message to the
trusted party. In such a case, the trusted party tosses coins so that with probability ε the
adversary is caught and a message corrupted is sent to the honest party (indicating that
the other party attempted to cheat). However, with probability 1 − ε, the ideal-model
adversary is allowed to cheat, and so the trusted party sends it the honest party’s full
input and also allows it to set the output of the honest party. The output distribution
of an execution of this modified ideal model for a given ε and parameters as above is
denoted by IDEALSCε

f,S(z),i
(x, y,n). In more details, the ideal execution with ε proceeds

as follows:

Efficient Protocols for Set Intersection and Pattern Matching 429

Inputs: P1 receives input x, and P2 receives input y, where |x| = |y|. The adversary
receives an auxiliary-input z.

Send inputs to trusted party: The honest party sends its received input to the trusted
party, and the corrupted party, controlled by A, may either send its received input or
send some other input of the same length. Denote the pair of inputs sent to the trusted
party by (w1,w2).

Abort options: If a corrupted party Pi sends wi = aborti to the trusted party as its
input, then the trusted party sends aborti to the honest party and halts. If a corrupted
party Pi sends wi = corruptedi to the trusted party as its input, then the trusted party
sends corruptedi to the honest party and halts.

Attempted cheat option: If a corrupted party Pi sends wi = cheati to the trusted party
as its input, then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to A and the honest party.
2. With probability 1−ε, the trusted party sends undetected to the adversary along

with the honest party’s input. Following this, the adversary sends the trusted
party an output value z of its choice for the honest party. Then, the trusted party
sends z to the honest party as its output.

The ideal execution then ends at this point.
If no wi equals aborti , corruptedi , or cheati , the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w1,w2),
f2(w1,w2)) and sends A the output of the corrupted party (i.e., for I = {i}, the
trusted party sends A the value fi(w1,w2)).

Trusted party answers the honest party: After receiving its output, the adversary
sends either aborti for some i ∈ I or continue to the trusted party. If the trusted party
receives continue, then it sends fj (w1,w2) to the honest party Pj (j
= i). Otherwise,
if it receives aborti , it sends aborti to the honest party.

Outputs: The honest party always outputs the message it obtained from the trusted
party. The corrupted party outputs nothing. The adversary A outputs any arbitrary
(probabilistic polynomial-time computable) function of the initial input xi to the cor-
rupted party, the auxiliary input z, and the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal
model is denoted by IDEALSCε

f,S(z),I
(x, y,n). We define:

Definition 2.3. Let f , π , and ε be as above. Protocol π is said to securely com-
pute f in the presence of covert adversaries with ε-deterrent if for every nonuniform
probabilistic polynomial-time adversary A for the real model, there exists a nonuni-
form probabilistic polynomial-time adversary S for the ideal model such that for every
I ⊆ [2],
{

IDEALSCε
f,S(z),I (x, y,n)

}

x,y,z,∈{0,1}∗,n∈IN
c≡ {

REALπ,A(z),I (x, y,n)
}

x,y,z,∈{0,1}∗,n∈IN,

where |x| = |y|.

430 C. Hazay and Y. Lindell

The Two Notions of Security We remark that one-sided simulatability and security
in the presence of covert adversaries are incomparable notions. On the one hand, the
guarantees provided by security under one-sided simulation cannot be breached, even
by a malicious adversary. This is not the case for security in the presence of covert
adversaries where it is possible for a malicious adversary to successfully cheat. On the
other hand, the formalization of security for covert adversaries is such that any deviation
from what can be achieved in the ideal model is considered cheating (and so will result
in the adversary being caught with probability ε). This is not the case for one-sided
simulatability, where party P1 may cause P2 to receive an output that is not correctly
computed without ever being caught.

2.1.4. Sequential Composition

Sequential composition theorems for secure computation are important for two rea-
sons. First, they constitute a security goal within themselves. Second, they are useful
tools that help in writing proofs of security. The basic idea behind these composition
theorems is that it is possible to design a protocol that uses an ideal functionality as
a subroutine and then analyze the security of the protocol when a trusted party com-
putes this functionality. For example, assume that a protocol is constructed that uses
the secure computation of some functionality as a subroutine. Then, first we construct a
protocol for the functionality in question and prove its security. Next, we prove the se-
curity of the larger protocol that uses the functionality as a subroutine in a model where
the parties have access to a trusted party computing the functionality. The composition
theorem then states that when the “ideal calls” to the trusted party for the functionality
are replaced by real executions of a secure protocol computing this functionality, the
protocol remains secure.

The Hybrid Model The aforementioned composition theorems are formalized by con-
sidering a hybrid model where parties both interact with each other (as in the real model)
and use trusted help (as in the ideal model). Specifically, the parties run a protocol π

that contains “ideal calls” to a trusted party computing some functionalities f1, . . . , fm.
These ideal calls are just instructions to send an input to the trusted party. Upon re-
ceiving the output back from the trusted party, the protocol π continues. We stress that
honest parties do not send messages in π between the time that they send input to the
trusted party and the time that they receive back output (this is because we consider se-
quential composition here). Of course, the trusted party may be used a number of times
throughout the π -execution. However, each time is independent (i.e., the trusted party
does not maintain any state between these calls). We call the regular messages of π that
are sent amongst the parties standard messages and the messages that are sent between
parties and the trusted party ideal messages.

Let f1, . . . , fm be probabilistic polynomial-time functionalities, and let π be a two-
party protocol that uses ideal calls to a trusted party computing f1, . . . , fm. Furthermore,
let A be a nonuniform probabilistic polynomial-time machine, and let I be the set of
corrupted parties. Then, the f1, . . . , fm-hybrid execution of π on inputs (x, y), auxiliary
input z to A, and security parameter n, denoted by HYBRID

f1,...,fm

π,A(z),I
(x, y,n), is defined

as the output vector of the honest parties and the adversary A from the hybrid execution
of π with a trusted party computing f1, . . . , fm.

Efficient Protocols for Set Intersection and Pattern Matching 431

Sequential Modular Composition Let f1, . . . , fm and π be as above, and let ρ1, . . . , ρm

be protocols. Consider the real protocol πρ1,...,ρm that is defined as follows. All standard
messages of π are unchanged. When a party Pi is instructed to send an ideal message
αi to the trusted party to compute functionality fj , it begins a real execution of ρj

with input αi instead. When this execution of ρj concludes with output βi , party Pi

continues with π as if βi was the output received by the trusted party (i.e., as if it were
running in the f1, . . . , fm-hybrid model). Then, the composition theorem of [6] states
that if ρj securely computes fj for every j ∈ {1, . . . ,m}, then the output distribution of
a protocol π in a hybrid execution with f1, . . . , fm is computationally indistinguishable
from the output distribution of the real protocol πρ1,...,ρm . This holds for security in
the presence of malicious adversaries [6], one-sided simulation when considering the
corruption case that has a simulator (an easy corollary from [6]), and security in the
presence of covert adversaries (see [2]). We refer the reader to [2] and [6] for formal
statements of the composition theorem.

2.2. Tools

In this section, we consider two basic tools used in our constructions, oblivious transfer
and oblivious pseudorandom function, for which we present the construction of Naor–
Reingold [24] that uses oblivious transfer.

2.2.1. Oblivious Transfer

We use oblivious transfer in order to achieve secure pseudorandom function evaluation
(see below), which in turn is used for our set intersection protocols. Our protocols can
use any oblivious transfer subprotocol that achieves the appropriate level of security
(one-sided simulatability, covert or full security in the presence of malicious adver-
saries). For example, we can use the construction of [15] that is fully simulatable and
achieves Definition 2.1. This construction is based on the protocols of [1,23] and only
requires 26 exponentiations per execution.

Batched Oblivious Transfers We remark that our protocols actually need to run multi-
ple oblivious transfers in parallel. For the sake of this, we define the batched oblivious
transfer functionality with m executions, denoted by F m

OT, as follows:

((

x0
1 , x1

1

)

, . . . ,
(

x0
m,x1

m

)

, (i1, . . . , im)
) → (

λ,
(

x
i1
1 , . . . , xim

m

))

.

A fully simulatable protocol that securely computes F m
OT in the presence of malicious

adversaries can be found in [15]. The protocol runs in a constant number of rounds, re-
quires 14m+14 exponentiations for all m executions, and is of comparative complexity
to [1] (with the advantage of full simulatability). When considering covert adversaries,
we can use the batched oblivious transfer construction from [2] that requires on average
four exponentiations per transfer.

2.2.2. Oblivious Pseudorandom Function Evaluation

Let (IPRF,FPRF) be an ensemble of pseudorandom functions, where IPRF is a proba-
bilistic polynomial-time algorithm that generates keys (or more exactly, that samples a

432 C. Hazay and Y. Lindell

function from the ensemble). The task of oblivious pseudorandom function evaluation
with FPRF is that of securely computing the functionality FPRF defined by

(k, x) �→ (

λ,FPRF(k, x)
)

, (2)

where k ← IPRF(1n) and x ∈ {0,1}n.2 We will use the Naor–Reingold [24] pseudo-
random function ensemble FPRF (with some minor modifications). For every n, the
function’s key is the tuple k = (p, q, ga0, a1, . . . , an), where p is a prime, q is an n-bit
prime divisor of p − 1, g ∈ Z∗

p is of order q , and a0, a1, . . . , an ∈R Z∗
q . (This is slightly

different from the description in [24] but makes no difference to the pseudorandomness
of the ensemble.) The function itself is defined by

FPRF(k, x) = ga0·∏n
i=1 a

xi
i mod p.

We remark that this function is not pseudorandom in the classic sense of it being in-
distinguishable from a random function whose range is composed of all strings of a
given length. Rather, it is indistinguishable from a random function whose range is the
group generated by g as defined above. This suffices for our purposes. A protocol for
oblivious pseudorandom function evaluation of this function was presented in [9] and
involves the parties running an oblivious transfer execution for every bit of the input x.
For the sake of completeness, we provide a formal description and analysis, explicitly
dealing with security in the presence of malicious adversaries (with simulation), secu-
rity in the presence of covert adversaries, and one-sided simulation. As we will see, the
only difference between the different levels of security is the security of the oblivious
transfer protocol used. The protocol follows.

Protocol πPRF

• Inputs: The input of P1 is k = (p, q, ga0, a1, . . . , an), and the input of P2 is a value
x of length n.

• Auxiliary inputs: Both parties have the security parameter 1n and are given the
primes p and q .

• The protocol:

1. P1 chooses n random values r1, . . . , rn ∈R Z∗
q .

2. The parties engage in a 1-out-2 multi-oblivious transfer protocol πm
OT (with

m = n executions). In the ith iteration, P1 inputs yi
0 = ri and yi

1 = ri ·ai (with
multiplication in Z∗

q), and P2 enters the bit σi = xi where x = x1, . . . , xn. If
the output of any of the oblivious transfers is ⊥, then both parties output ⊥
and halt. Otherwise:

3. P2’s output from the n executions is a series of values y1
x1

, . . . , yn
xn

. If any
value yi

xi
is not in Z∗

q , then P2 redefines it to equal 1.

4. P1 computes g̃ = g
a0·∏n

i=1
1
ri and sends it to P2.

2 If k is not a “valid” key in the range of IPRF(1n), then we allow the function to take any arbitrary value.
This simplifies our presentation.

Efficient Protocols for Set Intersection and Pattern Matching 433

5. P2 aborts if the order of g̃ is different than q . Otherwise, P2 computes y =
g̃

∏n
i=1 yi

xi and outputs y.

Before proceeding, note that if P1 and P2 follow the instructions of the protocol, then
the output of P2 is:

y = g̃
∏n

i=1 yi
xi = g

a0·∏n
i=1

yi
xi
ri = ga0·∏n

i=1 a
xi
i = FPRF(k, x),

where the second last equality is due to the fact that for xi = 0, it holds that a
xi

i = 1 and
yi
xi

/ri = yi
0/ri = 1, and for xi = 1, it holds that a

xi

i = ai and yi
xi

/ri = yi
1/ri = ai . We

now prove security:

Proposition 2.4. Assume that πm
OT securely computes the multi-oblivious transfer func-

tionality in the presence of malicious adversaries and that the DDH assumption holds
in the subgroup generated by g. Then πPRF securely computes FPRF in the presence of
malicious adversaries.

Proof. We separately analyze the case that P1 is corrupted and the case that P2 is
corrupted. We prove the proposition in the hybrid model where a trusted party is used
to compute the oblivious transfers; see Sect. 2.1.4.

P1 is Corrupted Let A be an adversary controlling P1. We construct a simulator S as
follows. S receives A’s inputs for all the n iterations of the oblivious transfers (recall
that our analysis is in the hybrid model). Let yi0 and yi1 denote the inputs that A handed
S in the ith iteration. In addition, S receives from A the message g̃. In case A does
not send a valid message (where S conducts the same check as the honest P2 does), S
simulates P2 aborting and sends ⊥ to the trusted party. Otherwise, S checks the validity
of all the yi

0 and yi
1 values and modifies them to 1 if necessary (as would an honest P2).

S defines g0 = g̃. Then, for every i = 1, . . . , n, S defines

ai = yi
1

yi
0

and gi = (gi−1)
yi

0 .

S defines the key used by A to be k = (p, q, gn, a1, . . . , an) and sends it to FPRF. This
completes the description of S . It is immediate that the view of A is identical in a real
and simulated execution because it receives no messages in a hybrid execution where
the oblivious transfers are run by a trusted party. It thus remains to show that the output
received by P2 in a real execution is the same as in the ideal model. In order to see this,
first note that S and P2 replace any invalid yi

0 or yi
1 values in the same way. Next, note

that for any x ∈ {0,1}n,

FPRF(k, x) = g

∏n
i=1 a

xi
i

n = g̃
∏n

i=1 yi
0·a

xi
i = g̃

∏n
i=1 yi

0/(y
i
0)

xi ·(yi
1)

xi
,

where the first equality is by the definition of the key by S , the second equality is by

the fact that gn = g̃
∏n

i=1 yi
0 , and the third equality is by the fact that ai = yi

1/y
i
0. Notice

434 C. Hazay and Y. Lindell

now that if xi = 0, we have that yi
0/(y

i
0)

xi · (yi
1)

xi = yi
0, whereas if xi = 1, we have that

yi
0/(y

i
0)

xi · (yi
1)

xi = yi
1. Thus,

∏n
i=1 yi

0/(y
i
0)

xi · (yi
1)

xi = ∏n
i=1 yi

xi
, exactly as computed

by P2 in a real execution. That is, the computation of FPRF(k, x) as carried out by the
trusted party using the key supplied by S is the same as that obtained by P2 in a real
execution. This completes the case that P1 is corrupted.

P2 is Corrupted In this case, S learns the full input x of A controlling P2 (through
the oblivious transfer inputs). In each oblivious transfer, S hands A a random value
ri ∈R Z∗

q . After all of the oblivious transfers have concluded, S sends x to FPRF and

receives back a value y = FPRF(k, x). S then sets g̃ = y

∏n
i=1

1
ri and sends it to A. This

completes the simulation.
We claim that the view of A in an execution of πPRF with P1 (using a trusted party

for the oblivious transfers) is identical to its view in an ideal execution with S . This
is true because all of the ri values are distributed identically to the messages sent in a
real execution (note that ri and ri · ai have the same distribution). In particular, giving g̃

and all the ri values, it is easy to define a valid random PRF key. Furthermore, in a real

execution, it holds that g̃
∏n

i=1 yi
xi = ga0

∏n
i=1 a

xi
i = y, where the xi values are those used

by P2 in the oblivious transfers. Likewise, in the simulation, it holds that

g̃
∏n

i=1 yi
xi = (

y

∏n
i=1

1
ri

)
∏n

i=1 ri = y = ga0
∏n

i=1 a
xi
i ,

where the first equality is due to the fact that the simulator sets each yi value received
by A to ri , and the last equality is by the fact that y is computed correctly by the trusted
party. Thus, the joint distribution over the values received by A and g̃ in the hybrid and
ideal executions are exactly the same. Formally,

{

IDEALFPRF,S(z),2(X,Y,n)
} ≡ {

HYBRIDOT
πPRF,A(z),2(X,Y,n)

}

,

and the proof is concluded. �

Security with One-Sided Simulation and in the Presence of Covert Adversaries Almost
identical proofs yield the following proposition:

Proposition 2.5. Assume that the DDH assumption holds in the subgroup generated
by g, and assume that πm

OT securely computes the multi-oblivious transfer functionality
in the presence of covert adversaries with deterrent ε (resp., is secure under one-sided
simulation). Then πPRF securely computes FPRF in the presence of covert adversaries
with deterrent ε (resp., is secure under one-sided simulation).

Multi-Execution Protocol We remark that if the oblivious transfers that are used can be
run simultaneously (or batched), as with the simultaneous oblivious transfer of [2,15],
then we can run many executions of πPRF simultaneously. This is of great importance
for efficiency. Using the oblivious transfer of [2], we have that for x ∈ {0,1}	, the cost
of securely computing FPRF in the presence of covert adversaries is essentially 4	 expo-
nentiations, and using the oblivious transfer of [15], we have 14	 + 14 exponentiations.

Efficient Protocols for Set Intersection and Pattern Matching 435

3. Secure Set-Intersection

In this section, we present our main result. We show how to securely compute the two-
party set-intersection functionality F∩, where each party enters a set of values from
some predetermined domain. If the input sets are legal, i.e., they are made up of distinct
values, then the functionality sends the intersection of these inputs to P2 and nothing
to P1. Otherwise P2 is given ⊥. Let X and Y denote the respective input sets of P1

and P2, and let the domain of elements be {0,1}p(n) for some known polynomial p(n).
We assume that p(n) = ω(logn); this is needed for proving security and can always be
achieved by padding the elements if necessary. Functionality F∩ is defined by

(X,Y) �→
{

(λ,X ∩ Y) if X,Y ⊆ {0,1}p(n) and are legal sets,
(λ,⊥) otherwise.

We present two protocols in this section: the first achieves one-sided simulatability in
the presence of malicious adversaries, and the second achieves security in the presence
of covert adversaries with deterrent ε = 1/2.

3.1. Secure Set-Intersection with One-Sided Simulatability

The basic idea behind this protocol was described in the introduction. We therefore
proceed directly to the protocol, which uses a subprotocol πPRF that securely computes
FPRF with one-sided simulatability (functionality FPRF was defined in (2) above).

Protocol π INT

• Inputs: The input of P1 is X, where X ⊆ {0,1}p(n) contains m1 items, and the
input of P2 is Y , where Y ⊆ {0,1}p(n) contains m2 items.

• Auxiliary inputs: Both parties have the security parameter 1n and the polynomial
p bounding the lengths of all elements in X and Y . In addition, P1 is given m2 (the
size of Y), and P2 is given m1 (the size of X).

• The protocol:

1. Party P1 chooses a key k ← IPRF(1p(n)) for the pseudorandom function.
Then, the parties run m2 parallel executions of πPRF. P1 enters the key k

chosen above in all of the executions, whereas P2 enters a different value
y ∈ Y in each execution. The output of P2 from these executions is the set
U = {(FPRF(k, y))}y∈Y .

2. P1 sends P2 the set V = {FPRF(k, x)}x∈X in a randomly permuted order,
where k is the same key P1 used in Protocol πPRF in the previous step.

3. P2 outputs all y’s for which FPRF(k, y) ∈ V . That is, for every y, let fy be
the output of P2 from πPRF when it used input y. Then, P2 outputs the set
{y | fy ∈ V }.

Theorem 3.1. Assume that πPRF securely computes FPRF with one-sided simulation.
Then πINT securely computes F∩ with one-sided simulation.

436 C. Hazay and Y. Lindell

Proof. In the case that P1 is corrupted, we need only show that P1 learns nothing
about P2’s inputs. This follows from the fact that the only messages that P1 receives are
in the executions of πPRF, which also reveals nothing about P2’s input to P1. The formal
proof of this follows from a standard hybrid argument, where the ability to break the
security of a single execution is reduced to the ability to break the security of multiple
executions.

More formally, assume by contradiction that there exist a probabilistic polynomial-
time adversary A, a probabilistic polynomial-time distinguisher D, and infinitely many
input sets X, Y = {y1, . . . , ym2}, and Y ′ = {y′

1, . . . , y
′
m2

} (subjected to the length con-
straints) such that D distinguishes between the views of A when running πINT with P2
who has input Y and when running πINT with P2 who has input Y ′. Then we show that
there exists an adversary A′ and infinitely many pairs of inputs y, y′ such that the view
of A when running πPRF with P2 who has input y can be distinguished from the view
of A when running πPRF with P2 who has input y′. Let Hi denote the view of A such
that the first i elements in the input of P2 are y1, . . . , yi and the last m2 − i elements are
y′
i+1, . . . , y

′
m2

. Using a standard hybrid argument, there exists an index i such that the
distributions Hi and Hi+1 are distinguishable. Then we construct an adversary APRF
that controls P1 and runs against an external P2, such that P2’s input is either yi+1 or
y′
i+1, and a distinguisher DPRF that breaks the security of a single execution of πPRF.

Fix Y,Y ′, and X. Then on input 1n and auxiliary input Y,Y ′, z,X, and i, APRF does the
following: it invokes A on input 1n,X, and auxiliary input z and plays the role of the
honest P2 for all but execution i + 1 of the oblivious PRF evaluation. That is, APRF in-
ternally runs P2 for all but the (i +1)th execution: for j ≤ i, it uses yj and for j > i +1,
it uses y′

j , whereas for the (i + 1)th execution, APRF forwards all the messages between
A and the external P2, and outputs whatever A does (note that the PRF executions are
independent from P2’s viewpoint). Finally, DPRF invokes D on the output of APRF and
returns its output. Clearly, if the external P2 uses input yi+1, the view of A is distributed
as in Hi+1, whereas if it uses y′

i , then this yields a distribution identical to Hi . Thus, the
non-negligible distinguishing gap of D can be reduced to breaking the privacy property
of πPRF.

P2 is Corrupted We now proceed to the case that P2 is corrupted; here we must
present a simulator but can also rely on the fact that the πPRF subprotocol is simu-
latable. Thus, we can analyze the security of πINT in a hybrid model where a trusted
party computes FPRF for the parties. In this model, P1 and P2 just send their inputs to
πPRF to the trusted party. Thus, the simulator S for A who controls P2 receives A’s in-
puts Y = {y1, . . . , ym2} to the pseudorandom function evaluations. S chooses a unique
random value ζi for each distinct yi , hands it to A as its output in the ith evaluation,
and records the pair (yi, ζi). S then sends Y to the trusted party computing F∩ and
receives back a subset of the values (this is the output X ∩ Y); let t be the number of
values in the subset. S completes X ∩Y with a set R of m1 − t random values of length
p(n) each, computes the set V from this set as an honest P1 would, and hands it to A.3

Finally, S outputs whatever A outputs. Note that the difference between the hybrid and

3 Since p(n) is superlogarithmic, the probability that any of the random values sent by S are in P1’s input
set is negligible.

Efficient Protocols for Set Intersection and Pattern Matching 437

the simulated executions is due to the fact that S provides random values rather than
pseudorandom ones (this is equivalent to saying that S computes ζi = HFunc(yi) for
every i). In addition, the set R that represents X − (X ∩ Y) is random as well. We
complete the proof through the following series of games;

Game H1: We begin by modifying S so that it uses an oracle OHFunc instead of com-
puting the function HFunc. That is, S sends its oracle the sets Y and R. By the definition
of HFunc, this is exactly the same distribution as generated by S above.

Game H2: We now modify S so that it uses the real input X of P1. The resulting
distribution is identical because the oracle computes a truly random function and all
inputs are distinct in both cases.

Game H3: Next, we replace the oracle OHFunc with an oracle OFPRF computing FPRF.
Clearly, the resulting distributions in both games are computationally indistinguishable.
This can be proven via a reduction to the pseudorandomness of the function FPRF.

Informally, let DPRF denote a distinguisher who attempts to distinguish FPRF from
HFunc. Then DPRF, playing the roles of P1 as S above, invokes its oracle on the sets Y

and R. Now, any distinguisher for the distributions of games H2 and H3 can be utilized
by DPRF to distinguish between FPRF and HFunc.

Game H4: Finally, S computes the pseudorandom function instead of using an oracle.
Again, this makes no difference whatsoever for the output distribution.

Noting that the last game is exactly the distribution generated in a hybrid execu-
tion, we have that the hybrid and ideal executions are computationally indistinguishable,
completing the proof. �

Efficiency Note first that since πPRF can be run in parallel and has only a constant
number of rounds, protocol πINT also has only a constant number of rounds. Next, the
number of exponentiations is O(m2 · p(n) + m1). This is due to the fact that each lo-
cal computation of the Naor–Reingold pseudorandom function can be carried out with
just one modular exponentiation and n modular multiplications (which are equivalent
to another exponentiation). Thus, computing the set V requires O(m1) exponentiations.
In addition, for inputs of length p(n), Protocol πPRF consists of running p(n) oblivi-
ous transfers (each requiring O(1) exponentiations). Thus, m2 such executions require
O(m2 · p(n)) exponentiations. We remark that since p(n) is the size of the input ele-
ments, it is typically quite small (e.g., the size of an SSN). Thus, m2 · p(n) + m1 will
typically be much smaller than m1 · m2. (Recall that we do need to assume that p(n)

is large enough so that a randomly chosen string does not intersect with any of the sets
except with very small probability. However, this can still be quite small.)

We remark that our protocol is much more efficient than that of [17] (although they
achieve full simulatability). This is due to the fact that, in their protocol, every party Pi

is required to execute O(m1 · m2) zero-knowledge proofs of knowledge and a similar
number of asymmetric computations. (Many of these proofs can be made efficient but
not all. In particular, their protocol is only secure as long as the players prove that they
do not send the all-zero polynomial. However, no efficient protocol for proving this is
known.)

438 C. Hazay and Y. Lindell

3.2. Secure Set-Intersection in the Presence of Covert Adversaries

In this section, we present a protocol for securely computing the two-party set-
intersection functionality in the presence of covert adversaries. Our protocol is based
on the high-level idea demonstrated in protocol πINT (achieving one-sided simulation
for malicious adversaries). In order to motivate this protocol, we explain why πINT can-
not be simulated in the case that P1 is corrupted. The problem arises from the fact
that P1 may use different keys in the different evaluations of πPRF and in the com-
putation of V . In such a case, the simulator cannot construct a set of values X that
corresponds with P1’s behavior. Another problem that arises is that if P1 can choose the
key k by itself, then it can make it so that for some distinct values y and y′, it holds that
FPRF(k, y) = FPRF(k, y′). This enables P1 to effectively make its set X larger, affecting
the size of the intersection. Needless to say, this strategy cannot be carried out in the
ideal model. Thus, the main objective of the additional steps in our protocol below is to
ensure that P1 uses the same randomly chosen k in all of the πPRF evaluations as well as
in the construction V . This is achieved in the following ways. First, the parties run two
series of executions of the πPRF protocol, where in one execution, real values are used,
and in the other, dummy values are used. Party P2 then checks that P1 used the same
key in all of dummy executions. This check is carried out by having P1 and P2 gener-
ate the randomness that P1 should use in these subprotocols by coin tossing (where P1

receives coins, and P2 receives a commitment to those coins). Then, P1 simply reveals
the coins used in the dummy series, and P2 can fully verify its behavior. Second, P1 and
P2 first apply a pseudorandom permutation to their inputs and then a pseudorandom
function. Then, P1 sends two sets V0 and V1 and opens one of them to P2 in order to
prove that it was constructed by applying the pseudorandom function with the same key
as used in the dummy evaluations (this means that if P1 attempts to cheat by construct-
ing V0 or V1 incorrectly, it will be caught with probability 1/2). The reason that the
pseudorandom permutation is first applied is to hide P1’s values from P2 when one of
the sets V0,V1 is “opened.” The difficulty in implementing this idea is to devise a way
that P2 can compute the intersection and check all of the above, without revealing more
about P1’s input than allowed. Technically, this is achieved by having V0 equal the set
of values FPRF(k0,FPRP(s0, x)) and having V1 equal the values FPRF(k1,FPRP(s1, x)).
Then, P2 learns either (k0, s1) or (k1, s0). In this way, it cannot derive any information
from the sets (it only knows one of the keys). However, it is enough to check P1’s be-
havior. We remark that security in the case that P2 is corrupted is of the same level as
the subprotocols used for oblivious transfer, coin tossing, and pseudorandom function
evaluation (i.e., full security if the subprotocols are fully secure in the presence of ma-
licious adversaries and covert in the case that they are secure in the presence of covert
adversaries).

We stress that only P2 receives output in our protocol. In order to have P1 also receive
output, we cannot have P2 just send the values in the intersection. This is due to the fact
that P2 can omit values from the intersection that it sends back to P1. (Note that it is
not so difficult to have P2 prove that every value returned to P1 is in the intersection.
However, it seems much harder to prevent P2 from omitting values.)

A high-level overview of the protocol appears in Fig. 1, and the full description (start-
ing with the tools that we use) follows below.

Efficient Protocols for Set Intersection and Pattern Matching 439

Fig. 1. A high-level diagram of our protocol

Tools: Our protocol uses the following primitives and subprotocols:

• An efficiently computable and invertible pseudorandom permutation with sam-
pling algorithm IPRP; see [11, Chap. 2]. We denote a sampled key by s and the
computation of the permutation with key s and input x by FPRP(s, x).

• A pseudorandom function with sampling algorithm IPRF. We denote a sampled key
by k and the computation of the function with key k and input x by FPRF(k, x).

• A perfectly-binding commitment scheme com; we denote by com(x; r) the com-
mitment to a string x using random coins r .

• An oblivious transfer protocol that is secure in the presence of covert adver-
saries with deterrent ε = 1/2 and can be run in parallel. An efficient protocol that
achieves this was presented in [2]. We denote this protocol by πOT.

• An efficient coin-tossing protocol, denoted by πCT, that is secure in the presence of
covert adversaries with deterrent ε = 1/2. The exact functionality we need is not
plain coin-tossing but rather (1n,1n) �→ ((ρ, r), com(ρ; r)), where ρ ∈R {0,1}n,
and r is random and of sufficient length for committing to ρ. Such a protocol
can be constructed by an instantiation of the generic coin-tossing protocol that
appears in [19], with commitments based on El-Gamal encryption [8]. The instan-
tiation of El-Gamal enables highly efficient zero-knowledge proofs of knowledge

440 C. Hazay and Y. Lindell

with soundness 1/2 for the discrete logarithm and Diffie–Hellman tuple languages
(which suffice for achieving security in the covert model with deterrent ε = 1/2).

In particular, in [19] the committer first sends a commitment c = com(s1; r1)

for s1 ∈R {0,1}n, and then the parties engage in a zero-knowledge argument of
knowledge in which P1 proves it knows s1. Next, P2 chooses s2 ∈R {0,1}n and
sends it to P1. Then P1 outputs s1, s2 and r1, and P2 outputs c and s2. For the
particular instantiation of El-Gamal, recall that its public-key is 〈p,q,g, gα〉 and
the corresponding private-key is 〈p,q,g,α〉. Thus, a proof of knowledge of the
committed value s1 can be easily achieved if the committer proves the knowledge
of α, since then the committed value can be decrypted.

We stress that it suffices to generate a short random value (i.e., one random group
element) and then to use a pseudorandom generator to extend it.

• A protocol πPRF for computing FPRF, as defined in (2), that is secure in the pres-
ence of covert adversaries with ε = 1/2; see Sect. 2.2.

We are now ready to present our protocol.

Protocol π∩
• Inputs: The input of P1 is X, where X ⊆ {0,1}p(n), contains m1 items, and the

input of P2 is Y , where Y ⊆ {0,1}p(n), contains m2 items.
• Auxiliary inputs: Both parties have the security parameter 1n and the polynomial

p bounding the lengths of all elements in X and Y . In addition, P1 is given m2 (the
size of Y) and P2 is given m1 (the size of X).

• The protocol:

1. Oblivious transfer (secure in the presence of covert adversaries):
(a) Party P1 chooses a pair of keys s0, s1 ← IPRP(1p(n)) for a PRP.
(b) Party P2 chooses a random bit α ∈R {0,1}.
(c) P1 and P2 execute the oblivious transfer protocol πOT. P1 inputs the keys

s0 and s1 and plays the sender, and P2 inputs α and plays the receiver. If
one of the parties receives corrupti or aborti as output, it outputs it and
halts. Otherwise, P2 receives sα .

2. P1 computes CPRP0 = {com(FPRP(s0, x))}x∈X , CPRP1 = {com(FPRP(s1,

x))}x∈X and sends CPRP0 and CPRP1 to P2.
3. The parties run two executions of the coin-tossing protocol πCT computing

(1q(n),1q(n)) → ((ρ, r), com(ρ; r)) that is secure for covert adversaries with
ε = 1/2. The parties input 1q(n), where q(n) is the number of random bits
needed to both choose a key k ← IPRF(1p(n)) and run m2 executions of the
PRF protocol (see below). Party P1 receives for output (ρ0, r0) and (ρ1, r1),
and P2 receives cρ0 = com(ρ0; r0) and cρ1 = com(ρ1; r1), where ρ0, ρ1 are
each of length q(n).

4. Run oblivious PRF evaluations:
(a) The parties run m2 executions of the oblivious PRF evaluation proto-

col πPRF in parallel, in which P1 inputs the same randomly chosen key
k0 ← IPRF(1p(n)) in each execution, and P2 enters the elements of the set
T0 = {FPRP(s0, y)}y∈Y (if α = 0) and m2 random values of size p(n) (if
α = 1). Let U0 be the set of outputs received by P2 in these executions.

Efficient Protocols for Set Intersection and Pattern Matching 441

The randomness used by P1 in all of the executions (and for choosing the
key k0) is the string ρ0 from the coin-tossing above.

(b) The parties run another m2 executions of πPRF in parallel, in which P1
inputs the same randomly chosen key k1 ← IPRF(1p(n)) each time, and
P2 enters m2 random values of size p(n) (if α = 0) and the elements of
the set T1 = {FPRP(s1, y)}y∈Y (if α = 1). Let U1 be the set of outputs
received by P2 in these executions. The randomness used by P1 in all
of the executions (and for choosing the key k1) is the string ρ1 from the
coin-tossing above.

5. P1 computes and sends P2 the sets of values V0 = {FPRF(k0,FPRP(s0, x))}x∈X

and V1 = {FPRF(k1,FPRP(s1, x))}x∈X , in randomly permuted order.
6. Run checks:

(a) If either |V0| or |V1| are smaller than m1 or not distinct, P2 outputs
corrupted1; otherwise, it sends P1 the key sα .

(b) If P2 sends s such that s /∈ {s0, s1}, then P1 halts. Otherwise, P1 sets α

such that s = sα . Then, P1 sends P2 the decommitments for all values in
the set CPRP1−α

and the decommitment of cρ1−α
.

(c) Let W1−α denote the decommitted values in CPRP1−α
and ρ1−α the de-

committed values in of cρ1−α
. First, P2 checks that the responses of P1

to its messages in the m2 executions of the PRF evaluations in which it
input random strings are exactly the responses of an honest P1 using ran-
dom coins ρ1−α to generate k1−α and run the subprotocols. Furthermore,
P2 checks that V1−α = {FPRF(k1−α,w)}w∈W1−α

using k1−α as above. In
case the above does not hold, P2 outputs corrupted1. Otherwise, let fy

be the output received by P2 from the PRF evaluation in which it input
FPRP(sα, y). Party P2 outputs the set {y | fy ∈ Vα}.

We now prove the security of the protocol:

Theorem 3.2. Assume that πOT,πCT,πPRF are secure in the presence of covert adver-
saries with deterrent ε = 1

2 , that com is a perfectly-binding commitment scheme, and
that FPRF and FPRP are pseudorandom function and permutation families, respectively.
Then Protocol π∩ securely computes the set-intersection functionality F∩ in the pres-
ence of covert adversaries with ε = 1

2 .

Proof. We will separately consider the case that both parties are honest, the case that
P1 is corrupted, and the case that P2 is corrupted. A joint simulator can be constructed
on the basis of these cases. We present the proof in a hybrid model in which a trusted
party is used to compute the oblivious transfer and coin-tossing computations. We de-
note these functions by FOT and FCT. Since the last step of the protocol involves P2
checking the actual messages sent by P1 in the PRF evaluations, we cannot replace the
PRF evaluations with ideal executions invoking a trusted party. We do, however, use the
simulator SPRF that is assumed to exist for this protocol (we assume that the PRF evalu-
ation protocols are all run simultaneously, and so SPRF can simulate them all together).

No Corruptions Assume that both parties are honest (i.e., I = φ). Note that in the
ideal calls to FOT and FCT, the adversary sees nothing when no party is corrupted. The

442 C. Hazay and Y. Lindell

PRF evaluations can be simulated by running SPRF for the case of no corrupted parties
(and so we ignore these from here on). Thus, prior to the last step of checks, the only
messages that remain to be simulated are the commitment sets CPRP0 and CPRP1 and
the sets of pseudorandom values V0 and V1, sent by P1 to P2. Then, in the last step,
P2 sends a random string sα to P1, and P1 replies with decommitments to CPRP1−α

and
the decommitment of cρ1−α

. However, CPRP1−α
is a set of values obtained by applying a

pseudorandom permutation keyed by an unknown s1−α . A straightforward reduction to
the pseudorandom function and permutation shows that a view generated by S by just
sending random values (from the appropriate range) instead of pseudorandom ones,
yields a view that is indistinguishable from a real one. This is standard, and so details
are omitted. (We remark that the simulator S is given the sizes of the sets as auxiliary
input and so can carry out the simulation.)

The above relates to A’s view of the transcript as generated by S versus a real exe-
cution. However, we also need to show that the outputs of the honest parties are indis-
tinguishable in a real and ideal execution; that is, we need to prove correctness. Now,
for every ζ ∈ X ∩ Y , both honest parties obtain the same value FPRF(kα, (FPRP(sα, ζ)),
and so P2 records ζ as part of its output. Thus, the output of P2 in a real execution
includes at least every value in the intersection. It remains to show that it does not in-
clude any additional values. This can occur if there exist x ∈ X and y ∈ Y for which
x
= y but FPRF(kα, (FPRP(sα, x)) = FPRF(kα, (FPRP(sα, y)). However, since sα and kα

are uniformly chosen, the probability that any two fixed values x and y collide in this
way is negligible (this follows from the fact that such a collision occurs with a random
function with negligible probability). Since there are a polynomial number of pairs of
values overall, it follows that P2 outputs y /∈ X ∩ Y with at most negligible probability.

Party P1 is Corrupted Let A be an adversary controlling party P1, we informally
describe a simulator S as follows. At the beginning of the simulation, S learns the
adversary’s inputs s0 and s1 to the oblivious transfer execution, which are used as keys
for the PRP. The knowledge of this pair enables the simulator to learn both (W0, k0) and
(W1, k1) by rewinding A in Step 6 of the protocol. This in turn enables the simulator
to extract A’s inputs by computing {F−1

PRP(sα,w)}w∈Wα ; note that FPRP is efficiently
invertible. We note that if the adversary aborts without responding correctly to any of
the queries in Step 6, then the honest P2 aborts in the real execution, and so the simulator
just sends ⊥ to the trusted party. In contrast, if the adversary responds to only one query
correctly, then the simulator aborts with probability half exactly as in a real execution.
Formally,

1. S receives X and z and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the sender

and receives the input that A sends to the trusted party computing FOT:
(a) If this input is abort1 or corrupted1, then S sends abort1 or corrupted1 (respec-

tively) to the trusted party computing F∩, simulates P2 aborting, and halts
(outputting whatever A outputs).

(b) If the input is cheat1, then S sends cheat1 to its trusted party computing F∩.
If it receives back corrupted1, then it hands A the message corrupted1 as if it
received it from the trusted party, simulates P2 aborting, and halts (outputting
whatever A outputs). If it receives back undetected (and the input set Y of

Efficient Protocols for Set Intersection and Pattern Matching 443

the honest P2), then S proceeds as follows. First, it hands A the message
undetected together with a random α that A expects to receive (as P2’s input
to πOT). Next, it uses the input Y of P2 that it obtained in order to perfectly
emulate P2 in the rest of the execution. That is, it runs P2’s honest strategy
with input Y while interacting with A playing P1 for the rest of the execution.
Let Z be the output for P2 that it receives. S sends Z to the trusted party com-
puting F∩ (for P2’s output) and outputs whatever A outputs. The simulation
ends here in this case.

(c) If the input is a pair of keys s0, s1, S proceeds with the simulation below.4

3. S receives from A two sets of commitments CPRP0 and CPRP1 .
4. S receives from A its input for FCT. In case it equals abort1, corrupted1, or cheat1,

then S behaves exactly as above in the OT execution. Otherwise, S chooses ran-
dom (ρ0, r0) and (ρ1, r1) of the appropriate length and hands them to A.

5. S runs the simulator SPRF guaranteed to exist for the protocol πPRF (by the as-
sumption that it is secure) on the residual A at this point (i.e., S defines an adver-
sary A′ that is just A with the messages sent until now hardwired into it). If SPRF
wishes to send abort1, corrupted1, or cheat1 in any of the executions, then S acts
exactly as above. Otherwise, S proceeds. Let t be the transcript of messages sent
by A in the simulated view of πPRF as generated by SPRF (we define the residual
A so that it outputs this transcript, and so this is also what is output by SPRF).

6. S receives from A two sets of computed values V0 and V1. If they are not of
size m1 or not distinct, S sends corrupted1 to the trusted party computing F∩,
simulates P2 aborting, and halts (outputting whatever A outputs).

7. Otherwise, S hands A the key s0 and receives back A’s decommitments of CPRP1

and cρ1 . S then rewinds A, hands it s1, and receives back its decommitments of
CPRP0 and cρ0 . Simulator S runs the same checks as an honest P2 would run (note
that the checks regarding the behavior of A in the PRF evaluations can be run even
though S used SPRF because the check just involves verifying the responses of P1
to the messages that it received in these executions.) We have two cases:
(a) Case 1—all of the checks carried out by S in both rewindings pass: Let k0 and

k1 denote the keys that an honest P1 would have used in the PRF evaluations
when its coins are ρ0 and ρ1, respectively (where ρb is the value committed to
in cρb

). Then, S chooses a random bit α ∈R {0,1} and sends the trusted party
computing F∩ the set {F−1

PRP(sα,w)}w∈Wα (recall that we assume that FPRP
can be efficiently invertible).

(b) Case 2—there exists a bit α ∈ {0,1} so that the checks when S sent s1−α

failed: Simulator S sends cheat1 to the trusted party computing F∩. If it re-
ceives back corrupted1 then it rewinds A and sends it s1−α again. If it receives
back undetected, then it rewinds A and sends it sα . Then, it runs the last step
of the protocol exactly as P2 would, using P2’s real input. (We note that in a
real execution, P2 uses its input in the FPRF evaluations. However, S received
all of the keys used by A in these executions from what SPRF intended to send
to the trusted party computing FPRF in its simulation. Thus, S can compute
the outputs that P2 would have received even if A used different keys in the

4 We assume a mapping from any string to a valid key for the pseudorandom permutation.

444 C. Hazay and Y. Lindell

different executions.) S then sends the trusted party computing F∩ whatever
P2 would output in the ideal model.

8. S outputs whatever A outputs and halts.

Let ε = 1
2 . We prove that

{

IDEALSCε
F∩,S(z),1(X,Y,n)

} c≡ {

HYBRID
OT,CT

π∩,A(z),1(X,Y,n)
}

,

where the ensembles are indexed by X ⊆ {0,1}p(n) of size m1, Y ⊆ {0,1}p(n) of size
m2, z ∈ {0,1}∗, and n ∈ IN. Recall that in the above {FOT, FCT}-hybrid model, the view
of P1 includes its output from FCT, the messages sent during the πPRF executions, and
the value sα that P2 sends after receiving V0 and V1. Thus the only difference between
the hybrid and ideal executions is within the πPRF executions. This is due to the fact that
S invokes SPRF, whereas in a hybrid execution, a real πPRF execution is run between P1
and P2. Clearly, the views of A in these executions are computationally indistinguish-
able because A receives no output (playing the role of P1), and so the security of πPRF
implies that A cannot distinguish between a real execution with P2 using real inputs
and a simulation with SPRF with no input at all. The more interesting challenge is thus
to prove that the joint output distributions of P2 and these views are computationally
indistinguishable.

We consider three different cases that occur with almost the same probability in both
executions, due to the indistinguishable views. In the first case, A’s input to FOT or
FCT is either corrupted1, abort1, or cheat1. Let bad1 denote this event. Now, since S
forwards corrupted1 and abort1 to the trusted party computing F∩, P2 outputs these
messages with the exact same probability in both executions. As for cheat1, whenever
A sends this message during the above executions, if S receives back corrupted1, then
the simulation immediately halts. Furthermore, if it receives back undetected, then the
simulator also receives the real input Y of P2 from the trusted party computing F∩ and
is able to complete the execution emulating the honest P2 (note that the messages until
this point of the execution are independent of P2’s input, and so S can conclude the
execution consistently with the input set Y). At the end of this execution (using P2’s
real input Y), S obtains the output that P2 would obtain in a real execution with A and
sends it to the trusted party computing F∩ to be P2’s output in the ideal model. Thus,
the output distributions are identical. That is,

{

IDEALSCε
F∩,S(z),1(X,Y,n)

∣
∣ bad1

} ≡ {

HYBRID
{OT,CT}
π,A(z),1(X,Y,n)

∣
∣ bad1

}

.

In the second case, A provides valid inputs for FOT and FCT, yet there exists an α ∈ {0,1}
for which A does not provide a valid response in Step 6 of the protocol; denote this
event by bad2. Now, if P2 sent α to FOT, then A cannot deviate from the protocol
within the πPRF executions on T1−α without definitely getting caught by P2 (and the
simulator). This holds because all of the parameters for these computations are already
set without A having the ability to change them (i.e., A must use the coins ρ1−α to
choose the key k1−α and run all of the πPRF evaluations that use this key). Then, after
sending sα to P1, party P2 is given ρ1−α and is able to recompute the entire transcript
of the PRF evaluations in order to compare it against the actual messages it received
during its interaction with A. Thus, in both the hybrid and ideal executions, P2 outputs

Efficient Protocols for Set Intersection and Pattern Matching 445

corrupted1 with probability at least 1
2 . In particular, if A provides two invalid responses,

it is always caught, and P2 always outputs corrupted1 (recall that in the ideal execution,
S sends corrupted1 to the trusted party computing F∩). Whereas, if A provides exactly
one valid response, then P2 outputs corrupted1 with probability 1

2 . Furthermore, when
it does not output corrupted1, simulator S concludes the simulation with P2’s real input
(note that although these inputs are already used earlier in πPRF, since S knows the
values k0, k1 and s0, s1, it can conclude the simulation even when receiving P2’s inputs
later). Thus, the only difference is that in the real protocol, the πPRF executions are run
with P2’s inputs whereas in the simulation SPRF is used. By the security of πPRF we
have

{

IDEALSCε
F∩,S(z),1(X,Y,n)

∣
∣ bad2

} c≡ {

HYBRID
OT,CT

π,A(z),1(X,Y,n)
∣
∣ bad2

}

.

The last case we need to consider is when neither bad1 nor bad2 occur; denote this event
by ¬bad. In this case, the simulator does not have access to Y and needs to fully extract
A’s input. Let k0 and k1 be the keys that A used in all of the πPRF executions, and let s0
and s1 be the values that A input to the oblivious transfer. Then we have the following
claim:

Claim 3.3. Let Xα = {F−1
PRP(sα,w)}w∈Wα and consider the event ¬bad, where nei-

ther bad1 nor bad2 occur. Then, for every α ∈ {0,1} and set Y ⊆ {0,1}p(n), it holds
that ζ ∈ Xα ∩ Y if and only if FPRF(kα,FPRP(sα, ζ)) ∈ Vα ∩ Uα , except with negligible
probability.

Proof. If ζ ∈ Xα ∩ Y , then FPRF(kα,FPRP(sα, ζ)) ∈ Vα ∩ Uα . This is due to the fact
that A uses the same key kα for the PRF evaluation that defines Uα and for comput-
ing Vα . In particular, we consider here the case where A provides valid responses for
both α = 0 and α = 1, combined with the fact that it can be verified that A indeed used
kα for computing Uα . This implies that if FPRF(kα,FPRP(sα, ζ)) /∈ Vα ∩Uα , then it must
be that there exists α ∈ {0,1} for which A cannot provide a valid response in Step 6,
and this is a contradiction.

As for the other direction, assume that FPRF(kα,FPRP(sα, ζ)) ∈ Vα ∩ Uα . Then
a problem can arise if there exist y ∈ Y and x ∈ X such that x
= y and yet
FPRF(kα,FPRP(sα, x)) = FPRF(kα,FPRP(sα, y)). If A could choose X after kα is known,
then it could indeed cause such an event to happen. However, notice that A is commit-
ted to its inputs (in CPRP0 and CPRP1) before kα is chosen in the coin tossing. Thus,
the probability that such a “collision” occurs, where the probability is taken over the
choice of kα and the sets X and Y are already fixed, is negligible (or else FPRF can
be distinguished from random). More formally, assume that there exists an infinite se-
ries of input sets Y , and a PPT adversary A such that the probability that there exists a
value x ∈ X where FPRF(kα,FPRP(sα, x)) ∈ Vα ∩ Uα yet x /∈ X ∩ Y is non-negligible.
Then we construct a distinguisher DPRF that distinguishes FPRF from a truly random
function HFunc given an oracle O that computes one of these functions. Fix Y and let
(Y, z) denote DPRF’s auxiliary input. Then DPRF(1n) invokes A on (1n, z) and plays
the honest P2(1n,Y) until the point where A opens its input commitments CPRPα into
the values F = (f1, . . . , fM1) at Step 6 (note that A opens these commitments always

446 C. Hazay and Y. Lindell

since we consider the case where A is not caught cheating). Then DPRF sends its oracle
the sets {{FPRP(sα, y)}y∈Y and F and outputs 1 if and only if there exists a collision be-
tween the sets (i.e., a pair of distinct values u ∈ {{FPRP(sα, y)}y∈Y and v ∈ F for which
O(u) = O(v)). Note that if O is a truly random function, then the probability that DPRF
outputs 1 is negligible. On the other hand, if O computes FPRF, then by our assumption
the probability that DPRF outputs 1 is non-negligible. This holds because the question
of whether or not there is a collision depends only on the committed set provided by A
(that defines F), the value sα , and the honest party’s input Y . All of this is fixed before
kα is chosen (via the coin tossing), and so the probability of a collision depends only
on the choice of the key kα . Since this key is uniformly chosen, a collision occurs in
the oracle with the same probability that it occurs in the hybrid model (with a trusted
party computing the coin tossing functionality).5 Thus, we have that DPRF distinguishes
between FPRF and a random function with non-negligible probability, in contradiction
to the security of FPRF. �

This implies that the output received by P2 in the hybrid and ideal executions is the
same (except with negligible probability). Combining this with the fact that the view of
A is clearly indistinguishable in both executions, we have

{

IDEALSCε
F∩,S(z),1(X,Y,n)

∣
∣ ¬bad

} c≡ {

HYBRID
OT,CT

π,A(z),1(X,Y,n)
∣
∣ ¬bad

}

.

Combining the above three cases and noting that the events bad1 and bad2 happen with
probability that is negligibly close in the hybrid and ideal executions, we have that the
output distributions are computationally indistinguishable, as required.

Party P2 is Corrupted Let A be an adversary controlling party P2. Intuitively, the sim-
ulator S works as follows. First, it learns A’s input α to the oblivious transfer execution
which enables S to know in which of the PRF evaluations A uses its real inputs. Thus,
S defines A’s inputs to π∩ to be its inputs to the αth series of oblivious PRF evaluations.
In addition to the above, S ’s knowledge of α enables it to prepare replies to the checks
in Step 6 that A would expect to receive from an honest P1. Details follow:

1. S receives Y and z and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the receiver.

S receives the input that A sends to the trusted party computing FOT:
(a) If this input is abort2 or corrupted2, then S sends abort2 or corrupted2 (respec-

tively) to the trusted party computing F∩, simulates P1 aborting, and halts
(outputting whatever A outputs).

(b) If the input is cheat2, then S sends cheat2 to the trusted party computing
F∩. If it receives back corrupted2, then it hands A the message corrupted2 as
if it received it from the trusted party, simulates P1 aborting, and halts (out-
putting whatever A outputs). If it receives back undetected (together with the
input X of the honest P1), then it proceeds as follows. First, at this point,

5 The proof here relies crucially on the fact that A commits to the values CPRP0 ,CPRP1 before the keys
k0, k1 for the pseudorandom functions are determined, and furthermore that these keys are uniformly chosen
via coin tossing and not determined by P1.

Efficient Protocols for Set Intersection and Pattern Matching 447

A expects to receive a pair (s0, s1) and A gives it a pair of random keys
s0, s1 ← IPRP(1p(n)). Next, it uses the input X of P1 that it obtained in order
to perfectly emulate P1 in the rest of the execution. S then sends the output
that P1 receives from this execution with A to the trusted party computing F∩
to be the output of the honest party P1 in the ideal execution. The simulation
ends here in this case.

(c) If the input equals a bit α, then S samples a key sα ← IPRP(1p(n)) as the
honest P1 does and hands it to A emulating FOT’s answer. In addition, S
samples a second key s1−α ← IPRP(1p(n)) as above and keeps it for later.

3. S sends A two sets of m2 commitments CPRP0 and CPRP1 to distinct random
values of length p(n).

4. S receives from A its input for FCT. In case it equals abort2, corrupted2, or cheat2,
S behaves exactly as above in the OT execution. Otherwise, S chooses random
(ρ0, r0) and (ρ1, r1) of the appropriate length and hands cρ0 = com(ρ0; r0) and
cρ1 = com(ρ1; r1) to A.

5. S simulates the PRF evaluations as follows. If α = 0 (where α is A’s input to
the oblivious transfer), then S runs the simulator SPRF on the residual A for the
first m2 executions and follows the honest P1’s instructions using random coins
ρ1 for the second m2 executions (where the “first” and “second” sets are as in the
order described in the protocol). In contrast, if α = 1, then S follows the honest
P1’s instructions using random coins ρ0 for the first m2 executions and runs the
simulator SPRF on the residual A for the second m2 executions.

In the m2 executions simulated by SPRF, simulator S receives the input that
SPRF wishes to send to the trusted party computing FPRF as its input in the PRF

executions:
(a) If any of these inputs is abort2, corrupted2, or cheat2, then S behaves exactly

as above in the OT execution.
(b) Else, let T ′ denote the set of m2 elements (with length bounded by p(n))

that SPRF wishes to send as A’s inputs to πPRF. Then, S hands SPRF the set
{FPRF(kα, t)}t∈T ′ as its output from the trusted party computing FPRF, where
kα ← IPRF(1p(n)) is a randomly generated key. In addition, S defines the set
Y ′ = {F−1

PRP(sα, t)}t∈T ′ . (If Y ′ is not exactly of size m2, then S adds m2 − |Y ′|
random elements of size p(n); recall that p(n) = ω(logn), and so random
values are in the intersection with only negligible probability.)

6. S sends the trusted party computing F∩ the set Y ′ that it recorded and receives
back for output the set Z (note Z = X ∩ Y ′). Then it chooses m2 − |Z| distinct
random elements and adds them to Z. Finally, S computes and sends A the sets
Vα = {FPRF(kα,FPRP(sα, ζ))}ζ∈Z and V1−α = {FPRF(k1−α,w)}com(w)∈CPRP1−α

.
We remark that the elements of Vα are randomly permuted before being sent.

7. S receives from A the value sα and responds with the decommitments of CPRP1−α

and the decommitment of cρ1−α
. In case A did not send sα , S halts. (Note that

there is a possibility that A will send s1−α instead of sα , which would not cause
P1 to halt in a real execution. However, in the hybrid model, s1−α only appears in
CPRP1−α

and in V1−α , from which s1−α cannot be determined except with negligi-
ble probability; this follows from an easy reduction to the security of the pseudo-
random permutation.)

448 C. Hazay and Y. Lindell

8. S outputs whatever A outputs.

Let ε = 1
2 . We prove that

{

IDEALSCε
F∩,S(z),2(X,Y,n)

}

n∈N

c≡ {

HYBRID
OT,CT

π∩,A(z),2(X,Y,n)
}

n∈N
,

where the ensembles are indexed by X ⊆ {0,1}p(n) of size m1, Y ⊆ {0,1}p(n) of size
m2, z ∈ {0,1}∗, and n ∈ IN.

Note first that the simulation differs from a real execution with respect to how the
sets CPRFα and Vα are generated, and with respect to the decommitments of CPRF1−α

(recall that in the real execution, P1 uses its input X for these computations, whereas
the simulator does not know X). Nevertheless, the views cannot be distinguished due
to the hiding property of FPRF, FPRP, and com. As in the previous analysis, we begin
with the case where A sends abort2, cheat2, or corrupted2 to FOT or FCT. Due to the
similarity to the case where P1 is corrupted, we omit the details here. Let bad denote the
event that A sends abort2, corrupted2, or cheat2. Then relying on the above discussion,
it holds that

{

IDEALSCε
F∩,S(z),2(X,Y,n)

∣
∣ bad

} ≡ {

HYBRID
OT,CT

π,A(z),2(X,Y,n)
∣
∣ bad

}

.

Next, we analyze the security in case A provides valid inputs to FOT and FCT, and
prove through a series of games that the output distributions are computationally indis-
tinguishable. In game Hi , we denote the simulator by Si .

Game H1: In the first game, the simulator S1 has access to an oracle OFPRP for com-
puting FPRP and, instead of computing FPRP using s1−α , it queries the oracle. In con-
trast, the computation using sα remains the same. Recall that S1 does not make any
use of the actual key s1−α at any stage of the protocol, and so an oracle can easily be
used. We stress that the execution in this game still involves a trusted party that com-
putes F∩. Now, for every X ⊆ {0,1}p(n) of size m1, Y ⊆ {0,1}p(n) of size m2, and every
z ∈ {0,1}∗, let

{

H1S(z)(X,Y,n)
}

n∈N

denote the output distribution of S in this game. Clearly the output distribution of the
current and original simulation are identical.

Game H2: In this game, we define S2 who is the same as S1 except that it uses an
oracle OHPerm computing a truly random permutation instead of OFPRP , while the rest
of the execution is as above. Then for every X ⊆ {0,1}p(n) of size m1, Y ⊆ {0,1}p(n) of
size m2, and every z ∈ {0,1}∗, let

{

H2S(z)(X,Y,n)
}

n∈N

denote the output distribution of A in this game. We prove the following:

Claim 3.4. {H1S(z)(X,Y,n)}n∈N
c≡ {H2S(z)(X,Y,n)}n∈N .

Efficient Protocols for Set Intersection and Pattern Matching 449

Proof. The proof follows from the security of FPRP. Namely, we show that a distin-
guisher that distinguishes the above distributions can be translated into a distinguisher
for FPRP. Assume that there exist an adversary A, a distinguisher D, and infinitely
many inputs (1n,X) and (1n,Y) such that D distinguishes A’s output in the above
games whenever the inputs are (1n,X) and (1n,Y). Then a distinguisher DPRP with
oracle access to either OFPRP or OHPerm , and an auxiliary input (X,Y, z) is constructed
in the following way (note that DPRP is given X in order for it to be able to compute
X ∩ Ỹ , where Ỹ is the input of A as extracted by the simulator). On input 1n, DPRP
invokes A(1n,Y, z) and plays the roles of the simulator and the trusted party computing
F∩. However, whenever DPRP is required to carry out a computation using s1−α , it for-
wards the evaluated values to its oracle instead and continues with the oracle’s answer.
Clearly, if DPRP’s oracle computes OFPRP , then the execution is identical to the exe-
cution in game H1, whereas if the oracle computes OHPerm , then it is identical to H2.
Thus, DPRP distinguishes between FPRP and HPerm with the same probability that D

distinguishes between H1 and H2. �

Game H3: The next game is identical to the previous one except that the simulator S3
knows the real input X of P1 but uses it only for the computation of V1−α and CPRP1−α

.
Since the oracle is a truly random permutation, the distribution here is identical (note
that X is a set, and thus all items are distinct). Note that S3 still uses a trusted party that
computes F∩.

Game H4: In this game, the simulator S4, that is still given access to a trusted party
computing F∩, is given an oracle OFPRF for computing FPRF (with a random key),
which it uses instead of computing FPRF using kα . Note that the simulator (invoking
SPRF) extracts A’s input to the αth set of oblivious PRF evaluations and merely forwards
these values to its oracle. It additionally forwards A the oracle’s responses on the set
{FPRP(sα, ζ)}ζ∈Z in Step 6 (recall that the simulator knows sα). In both H3 and H4, the
distribution generated by the pseudorandom function is identical. The only difference
is that in H3, the coins used to generate kα are committed to in cρα , whereas in H4, the
oracle uses a random key that is independent of those coins. The fact that these games
are indistinguishable therefore follows from the hiding property of the commitment
scheme. Note that the executions using k1−α remain the same.

Game H5: Next, we replace OFPRF with a truly random function OHFunc . Using a
similar reduction as above, we have that the output distribution of A in this current
game is computationally indistinguishable from its output distribution of the previous
game.

Game H6: In this game, the simulator S6 computes the commitments in CPRPα using
the real input set X of P1 instead of using random values. Since these commitments are
never opened, the indistinguishability of this game to the previous one follows from the
hiding property of the commitments.

Game H7: In this game, the simulator S6 queries its PRF oracle on the real input set
X of P1 in order to construct Vα . That is, S uses X instead of constructing Vα using the

450 C. Hazay and Y. Lindell

output received by the trusted party computing F∩ and adding random values (thus, in
H5, the simulator uses distinct random values to complete the set ZT , while here it uses
X \X∩Y). Note that the only difference from the previous game is regarding the values
in Vα that are not included in X ∩ Y ; see Step 6 of the simulation. Now, since OHFunc
is a truly random function, we achieve the same output distribution in both games.

Game H8: Here we modify OHPerm back into OFPRP . This replacement affects the
PRP computation for the (1 − α)th set of PRP evaluations. Using a similar reduction as
above, we have that H7 and H8 are computationally indistinguishable.

Game H9: In this game, we modify OHFunc back into OFPRF . This replacement affects
the αth set of PRF evaluations.

Game H10: Finally, we let the simulator S10 to perfectly emulate the role of P1. In
particular, S10 carries out the PRF and PRP computations by itself and uses kα as gener-
ated by ρα committed to in cρα . This does not affect the outputs of these functions, but
as above a reduction to the hiding property of the commitment cρα is needed because
now the coins used to generate the key kα are committed to in cρα .

We summarize the steps of the proof in the following table:

Game Change from previous game Indistinguishability argument

H1 PRF using s1−α replaced with OFPRP Identical to simulation
H2 Replace OFPRP with OHPerm Pseudorandomness of FPRP
H3 Computation of V1−α and CPRP1−α

uses Identical to H3 because truly
real input X of P1 and not random values random permutation is used

H4 Replace FPRF(kα, ·) with OFPRF Based on hiding property of
using a random key commitment cρα = com(ρα; rα)

H5 Replace OFPRF with OHFunc Pseudorandomness of FPRF
H6 Use real input X for CPRPα Hiding property of commitments
H7 Use real input X for Vα Identical because HFunc is random
H8 Replace OHPerm with OFPRP As in H2
H9 Replace OHFunc with OFPRF As in H5
H10 Replace OFPRF using random key Hiding property of commitment

with FPRF using kα cρα to ρα (used to generate kα)

Noting again that H1 is identical to the simulation by S and that H10 is identical
to the real execution, we conclude that the ideal simulation by S is computationally
indistinguishable from a real execution in the hybrid model, completing the proof. �

Efficiency We analyze the complexity of protocol π∩. We first count the number of
asymmetric operations; in particular, modular exponentiations. Note that each invoca-
tion of πPRF with inputs of length p(n) requires 4p(n) + 1 exponentiations, because
every invocation of the covert oblivious transfer requires at most 4 such computations,
and πPRF runs an oblivious transfer for every bit of P2’s input (one additional exponenti-
ation is used for obtaining the final result). Given that there are 2m2 executions of πPRF,
we have that the number of exponentiations is approximately 8m2 · (p(n)+1)+m1. As

Efficient Protocols for Set Intersection and Pattern Matching 451

we have already mentioned, p(n) is expected to be quite small in most cases. We note
that our protocol is completely modular meaning that any protocol πPRF for any pseudo-
random function FPRF can be used. Thus, the development of a more efficient protocol
πPRF will automatically result in our protocol also being more efficient. In terms of
round efficiency, π∩ has a constant number of rounds due to the round efficiency of πOT

in the covert model and the fact that all these executions can be run in parallel.

4. Secure Pattern Matching

The basic problem of pattern matching is the following one: given a text T of length N

(for simplicity, we assume that N is a power of 2) and a pattern p of length m, find all
the locations in the text where pattern p appears in the text. Stated differently, for every
i = 1, . . . ,N − m + 1, let Ti be the substring of length m that begins at the ith position
in T . Then, the basic problem of pattern matching is to return the set {i | Ti = p}. This
problem has been intensively studied and can be solved optimally in time that is linear
in size of the text [4,18].

In this section, we address the question of how to securely compute the above basic
pattern matching functionality. The functionality, denoted by FPM, is defined by

((T ,m),p) �→
{

(λ, {i | Ti = p}) if |p| ≤ m,

(λ, {i | Ti = p1 . . . pm}) otherwise,

where Ti is defined as above, T and p are binary strings, and pi is the ith bit in p. Note
that P1 who holds the text learns nothing about the pattern held by P2, and the only
thing that P2 learns about the text held by P1 is the locations where its pattern appears.

Although similar questions have been considered in the past (e.g., keyword
search [9]), to the best of our knowledge, this is the first work considering the basic
problem of pattern matching as described above. The main difference between keyword
search and the problem that we consider here is that in keyword search, each keyword
is assumed to appear only once. However, here the text is viewed as a stream, and a
pattern can appear multiple times. Furthermore, the strings Ti, Ti+1, . . . are dependent
on each other (e.g., adjacent Ti ’s only differ in their first and last characters). Thus, it is
not possible to apply a pseudorandom function to each Ti and use a protocol to securely
compute FPRP on p as in the case of keyword search. Thus, it seems that finding a
secure simulation-based solution for this problem is harder.

We present a protocol for securely computing FPM in the presence of malicious ad-
versaries with one-sided simulatability. The basic idea behind our protocol is for P1 and
P2 to run a single execution of πPRF for securely computing a pseudorandom function
with one-sided simulatability; let f = FPRF(k,p) be the output received by P2. Then,
P1 locally computes the pseudorandom function on Ti for every i and sends the results
{FPRF(k, Ti)} to P2. Party P2 can then find all the matches by just seeing where f ap-
pears in the series sent by P1. Unfortunately, within itself, this is insufficient because P2
can then detect repetitions within T . That is, if Ti = Tj , then P2 will learn this because
this implies that FPRF(k, Ti) = FPRF(k, Tj). However, if Ti
= p, this should not be re-
vealed. We therefore include the index i of the subtext Ti in the computation and have P1
send the values FPRF(k, Ti‖〈i〉), where 〈i〉 denotes the binary representation of i. This

452 C. Hazay and Y. Lindell

in turn generates another problem because now it is not possible for P2 to see where p

appears given only FPRF(k,p); this is solved by having P2 obtain FPRF(k,p‖〈i〉) for
every i. Although this means that P2 obtains n different outputs of FPRF (because there
are n different indices i), we utilize specific properties of the Naor–Reingold pseudo-
random function and the protocol πPRF for computing it (see Sect. 2.2.2), in order to
have P2 obtain all of these values while running only a single execution of πPRF. We
therefore consider a modified version of πPRF for computing the Naor–Reingold func-
tion such that P2’s output is the set {FPRF(k,p‖〈i〉)}N−m+1

i=1 , rather than just the single
value FPRF(k,p). The corresponding functionality, denoted by FMPRF, is defined by

((

k,1N
)

,p
) �→ (

λ,
{

FPRF
(

k,p‖〈i〉)}N−m+1
i=1

)

.

This modification can be achieved as follows. P1 is given a PRF key k = (p, q, ga0 , a1,

. . . , am+logN) with m + logN . Recall that in πPRF, the last message received by P2 is

g̃ = g
a0·∏n

i=1
1
ri . Then instead of this P1 computes and sends the set

{(

i, gi = g̃
∏logN

j=1 a
〈i〉j
m+j

)}N−m+1
i=1 ,

where 〈i〉j denotes the j th bit in 〈i〉. Finally, P2 completes its run as in the original
execution of πPRF but relative to every element from the above set, yielding the set
{fi = FPRF(k,p||〈i〉)}N−m+1

i=1 . Formally,

Protocol πMPRF

• Inputs: The input of P1 is k = (p, q, ga0 , a1, . . . , an+logN) and a value 1N , and
the input of P2 is a value x of length n.

• Auxiliary inputs: Both parties have the security parameter 1n and are given the
primes p and q .

• The protocol:

1. P1 chooses n random values r1, . . . , rn ∈R Z∗
q .

2. The parties engage in a 1-out-2 multi-oblivious transfer protocol πm
OT (with

m = n executions). In the ith iteration, P1 inputs yi
0 = ri and yi

1 = ri ·ai (with
multiplication in Z∗

q), and P2 enters the bit σi = xi where x = x1, . . . , xn. If
the output of any of the oblivious transfers is ⊥, then both parties output ⊥
and halt. Otherwise:

3. P2’s output from the n executions is a series of values y1
x1

, . . . , yn
xn

. If any
value yi

xi
is not in Z∗

q , then P2 redefines it to equal 1.

4. P1 sets g̃ = g
a0·∏n

i=1
1
ri and sends P2 the set

{(

i, gi = g̃
∏logN

j=1 a
〈i〉j
m+j

)}N−m+1
i=1 .

5. P2 aborts if the order of any gi is different than q . Otherwise, P2 computes
and outputs the set

{(

i, yi = g

∏n
i=1 yi

xi

i

)}N−m+1
i=1 = {(

i,FPRF
(

k,p‖〈i〉))}N−m+1
i=1 .

Efficient Protocols for Set Intersection and Pattern Matching 453

We continue with the security proof of πMPRF. Due to the similarity to the proof of
πPRF, we present a proof sketch only.

Proposition 4.1. Assume that πm
OT securely computes the multi-oblivious transfer func-

tionality with one-sided simulation. Then πMPRF securely computes FMPRF with one-sided
simulation.

Proof of Sketch. Note first that the only changes in πMPRF are relative to P1 and thus
the security argument for the case that P1 is corrupted is as in the proof of Proposi-
tion 2.4.

As for the case that P2 is corrupted, we present the proof in the πm
OT-hybrid model.

Let A denote the adversary that controls P2, then construct a simulator S as follows. S
receives A’s input x′ for the multi-oblivious transfer execution, sends it to the trusted
party computing FPRF, and receives its answer, the set Z = {zi}N−m+1

i=1 . Then, in each

oblivious transfer, S hands A a random value ri ∈R Z∗
q . Next, S sets z̃i = z

∏n
i=1

1
ri

i for
every zi ∈ Z and sends (i, zi) to A. This completes the simulation.

The proof that A’s view is identical in both the simulated and hybrid executions and
that A returns the same value in both executions is as in the proof of Proposition 2.4.
This is because the only difference between the executions is with respect to the PRF

computation of the set {〈i〉}N−m+1
i=1 . Briefly, all the ri values are distributed identically

to the messages sent in the hybrid execution, and given the set Z and all the ri values, it
is easy to define a valid random PRF key (using the original values of {an+1, . . . , alogN }
that were sent to the trusted party by P1). Therefore, exactly the same proof can be
applied here as well. �

Efficiency Note first that the round efficiency of πMPRF has not been changed with
respect to πPRF and is constant. In addition, the number of exponentiations in the batch
OT is 14n + 14. Thus, the total number of exponentiations is 14n + 14 + 2N (where the
additional 2N exponentiations are required to compute the set of N values).

The Protocol

We are now ready to present our main result for this section.

Protocol πPM

• Inputs: The input of P1 is a binary string T of size N , and the input of P2 is a
binary pattern p of size m.

• Auxiliary Inputs: the security parameter 1n and the input sizes N and m.
• The protocol:

1. Party P1 chooses a key for computing the Naor–Reingold function on inputs
of length m + logN ; denote the key k = (p, q, ga0 , a1, . . . , am+logN).

2. The parties execute πMPRF, where P1 enters the key k, and P2 enters its pattern
p of length m. The output of P2 from this execution is the set {(i, fi)}N−m+1

i=1 .
3. For every i, let ti = FPRF(k, Ti‖〈i〉). Then, P1 sends P2 the set {(i, ti)}N−m+1

i=1 .
4. P2 outputs the set of indices {i} for which fi = ti .

454 C. Hazay and Y. Lindell

Theorem 4.2. Let FPRF denote the Naor–Reingold function and assume that it is
pseudorandom. Furthermore, assume that protocol πPRF securely computes the func-
tionality ((k,1N),p) �→ (λ, {FPRF(k,p‖〈i〉)}N−m+1

i=1) with one-sided simulation. Then
protocol πPM securely computes FPM with one-sided simulation.

Proof. We separately consider the cases that P1 and P2 are corrupted.

Party P1 is Corrupted Since we are only proving one-sided simulatability here, all
we need to show is that P1 learns nothing about P2’s input. Now, due to the fact that
P1’s view only includes messages within πMPRF, by the security of πMPRF with one-sided
simulatability we have that P1 learns nothing about P2’s input p. Beyond that P1 does
not receive any message.

Party P2 is Corrupted The motivation has been discussed above, and we therefore
proceed directly to the proof. We present the proof here in the FMPRF-hybrid model. Let
A denote an adversary controlling P2. Then we construct a simulator S as follows:

1. S receives p and z and invokes A on this input.
2. S receives from A its input p′ as handed to FMPRF, sends it to the trusted party and

receives back the set of text locations I for which there exists a match.
3. S chooses a key k ← IPRF(1m + logN) and sends A the set

{(i,FPRF(k,p′‖〈i〉))}N−m+1
i=1 , as the trusted party that computes FMPRF would.

4. Let k = (p, q, ga0, a1, . . . , am+logN). Then, for every i ∈ 1 ≤ i ≤ N − m + 1, S
continues as follows:

• If i ∈ I , the simulator S defines ti = FPRF(k,p′‖〈i〉).
• Otherwise, S defines ti = FPRF(k, p̂‖〈i〉), where p̂
= p′ is an arbitrary string.

5. S hands A the set {(i, ti)} and outputs whatever A outputs.

Note that the only difference between the real and the simulated executions is in the last
step, where, for every text location i such that Ti
= p′, S defines ti based on a fixed
p̂
= p′ instead of basing it on the substring Ti (which is unknown to the simulator).
Intuitively, this makes no difference by the pseudorandomness of the function. Formally,
we have the following steps:

Game H1: We begin by modifying S so that it uses an oracle OFPRF for computing the

function FPRF. S can use this oracle by handing A the set F = {OFPRF(p′‖〈i〉)}N−m+1
i=0

as its output from the trusted party computing FMPRF. Furthermore, it can define ti =
OFPRF(p′‖〈i〉) if i ∈ I and ti = OFPRF(p̂‖〈i〉) otherwise. By the definition of FPRF,
this is exactly the same distribution as generated by S above. We stress that a trusted
party that computes FPM still involves in this game.

Game H2: Next, we replace OFPRF with an oracle OHFunc computing a truly ran-
dom function. Clearly, the resulting distributions in both games are computationally
indistinguishable. This can be proven via a reduction to the pseudorandomness of the
function FPRF. Informally, let DPRF denote a distinguisher who attempts to distinguish
FPRF from HFunc. Then DPRF, playing the role of S above, invokes its oracle on the

Efficient Protocols for Set Intersection and Pattern Matching 455

sets {pi = p′‖〈i〉}N−m+1
i=0 and {ti}N−m+1

i=0 , where ti = pi when i ∈ I , and ti = p̂‖〈i〉 oth-
erwise (note that the difference is if p′ or p̂ is used). Now, any distinguisher for the
distributions of games H1 and H2 can be utilized by DPRF to distinguish between FPRF
and HFunc.

Game H3: We now modify S so that it computes all of the ti values correctly using
the honest P1’s text T instead of invoking a trusted party. The resulting distribution is
identical because the oracle computes a truly random function and all inputs are distinct
in both cases (the distinction is due to the index i that is concatenated each time).

Game H4: Next, we modify the oracle OHFunc back to an oracle OPRF computing
FPRF. Again, the distributions in games H3 and H4 are computationally indistinguish-
able by a straightforward reduction.

Game H5: Finally, we compute the pseudorandom function instead of using an oracle.
This makes no difference whatsoever for the output distribution.

Noting that the last game is exactly the distribution generated in a hybrid execu-
tion, we have that the hybrid and ideal executions are computationally indistinguishable,
completing the proof. �

Efficiency As for every protocol presented here, πPM has a constant number of rounds.
In addition, the number of exponentiations computed is 14m + 14 + 3N .

One-Sided Versus Full Simulatability Observe that our protocol does not achieve cor-
rectness when P1 is corrupted because P1 may construct the ti values in a way that is
not consistent with any text T . Specifically, for every i, the last m − 1 bits of Ti are
supposed to be the first m−1 bits of Ti+1, but P1 is not forced to construct the values in
this way. Our protocol is therefore not simulatable in this case (even when considering
only covert adversaries), and we do not know how to enforce such behavior efficiently.

References

[1] W. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: how to sell digital goods, in EURO-
CRYPT ’01. LNCS, vol. 2045 (Springer, Berlin, 2001), pp. 110–135

[2] Y. Aumann, Y. Lindell, Security against covert adversaries: efficient protocols for realistic adversaries,
in TCC 2007. LNCS, vol. 4392 (Springer, Berlin, 2007), pp. 137–156

[3] R. Agrawal, R. Srikant, Privacy-preserving data mining, in The 2000 SIGMOD Conference (2000),
pp. 439–450

[4] R.S. Boyer, J.S. Moore, A fast string searching algorithm. Commun. Assoc. Comput. Mach. 20, 762–772
(1977)

[5] D. Beaver, Foundations of secure interactive computing, in CRYPTO’91. LNCS, vol. 576 (Springer,
Berlin, 1991), pp. 377–391

[6] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202
(2000)

[7] R. Cleve, Limits on the security of coin flips when half the processors are faulty, in 18th STOC (1986),
pp. 364–369

[8] T. El-Gamal, A public-key cryptosystem and a signature scheme based on discrete logarithms, in
CRYPTO’84. LNCS, vol. 196 (Springer, Berlin, 1984), pp. 10–18

456 C. Hazay and Y. Lindell

[9] M.J. Freedman, Y. Ishai, B. Pinkas, O. Reingold, Keyword search and oblivious pseudorandom func-
tions, in TCC 2005. LNCS, vol. 3378 (Springer, Berlin, 2005), pp. 303–324

[10] M.J. Freedman, K. Nissim, B. Pinkas, Efficient private matching and set intersection, in EUROCRYPT
2004. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 1–19

[11] O. Goldreich, Basic Tools. Foundations of Cryptography, vol. 1 (Cambridge University Press, Cam-
bridge, 2001)

[12] O. Goldreich, Basic Applications. Foundations of Cryptography, vol. 2 (Cambridge University Press,
Cambridge, 2004)

[13] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game—a completeness theorem for
protocols with honest majority, in 19th STOC (1987), pp 218–229

[14] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, in
CRYPTO’90. LNCS, vol. 537 (Springer, Berlin, 1990), pp. 77–93

[15] C. Hazay, Y. Lindell, Efficient oblivious polynomial evaluation and transfer with simulation-based se-
curity. Manuscript, 2008

[16] J. Katz, Bridging game theory and cryptography: recent results and future directions, in The 5th TCC.
LNCS, vol. 4948 (Springer, Berlin, 2008), pp. 251–272

[17] L. Kissner, D.X. Song, Privacy-preserving set operations, in CRYPTO 2005. LNCS, vol. 3621 (Springer,
Berlin, 2005), pp. 241–257

[18] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings. SIAM J. Comput. 6, 323–350
(1977)

[19] Y. Lindell, Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16(3),
143–184 (2003)

[20] Y. Lindell, B. Pinkas, Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)
[21] S. Micali, P. Rogaway, Secure computation. Unpublished manuscript, 1992. Preliminary version, in

CRYPTO’91. LNCS, vol. 576 (1991), pp. 392–404
[22] M. Naor, B. Pinkas, Oblivious transfer and polynomial evaluation, in 31st STOC (1999), pp. 245–254
[23] M. Naor, B. Pinkas, Efficient oblivious transfer protocols, in 12th SODA (2001), pp. 448–457
[24] M. Naor, O. Reingold, Number-theoretic constructions of efficient pseudo-random functions, in 38th

FOCS (1997), pp. 231–262
[25] A. Yao, How to generate and exchange secrets, in 27th FOCS (1986), pp. 162–167

	Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries
	Abstract
	Introduction
	Relaxed Notions of Security
	Secure Set Intersection
	Secure Pattern Matching
	Related Work

	Definitions and Tools
	Definitions
	Security in the Presence of Malicious Adversaries
	Two-Party Computation
	Adversarial Behavior
	Security of Protocols (Informal)
	Execution in the Ideal Model
	Execution in the Real Model
	Security as Emulation of a Real Execution in the Ideal Model

	One-Sided Simulation for Two-Party Protocols
	Security in the Presence of Covert Adversaries
	The Two Notions of Security

	Sequential Composition
	The Hybrid Model
	Sequential Modular Composition

	Tools
	Oblivious Transfer
	Batched Oblivious Transfers

	Oblivious Pseudorandom Function Evaluation
	Protocol piPRF
	P1 is Corrupted
	P2 is Corrupted
	Security with One-Sided Simulation and in the Presence of Covert Adversaries
	Multi-Execution Protocol

	Secure Set-Intersection
	Secure Set-Intersection with One-Sided Simulatability
	Protocol piINT
	P2 is Corrupted
	Game H1:
	Game H2:
	Game H3:
	Game H4:
	Efficiency

	Secure Set-Intersection in the Presence of Covert Adversaries
	Tools:
	Protocol pi
	No Corruptions
	Party P1 is Corrupted
	Party P2 is Corrupted
	Game H1:
	Game H2:
	Game H3:
	Game H4:
	Game H5:
	Game H6:
	Game H7:
	Game H8:
	Game H9:
	Game H10:
	Efficiency

	Secure Pattern Matching
	Protocol piMPRF
	Efficiency

	The Protocol
	Protocol piPM
	Party P1 is Corrupted
	Party P2 is Corrupted
	Game H1:
	Game H2:
	Game H3:
	Game H4:
	Game H5:
	Efficiency
	One-Sided Versus Full Simulatability

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

