
J. Cryptol. (2011) 24: 24–41
DOI: 10.1007/s00145-010-9057-y

An L(1/3) Discrete Logarithm Algorithm for Low Degree
Curves∗

Andreas Enge
INRIA, CNRS, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France

andreas.enge@math.u-bordeaux.fr

Pierrick Gaudry and Emmanuel Thomé
INRIA, CNRS, Nancy Université, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy, France

pierrick.gaudry@loria.fr; emmanuel.thome@loria.fr

Communicated by Tatsuaki Okamoto

Received 14 May 2009 and revised 22 December 2009
Online publication 10 February 2010

Abstract. We present an algorithm for solving the discrete logarithm problem in
Jacobians of families of plane curves whose degrees in X and Y are low with respect
to their genera. The finite base fields Fq are arbitrary, but their sizes should not grow
too fast compared to the genus. For such families, the group structure and discrete
logarithms can be computed in subexponential time of Lqg (1/3,O(1)). The runtime
bounds rely on heuristics similar to the ones used in the number field sieve or the
function field sieve.

Key words. Algebraic curve, Discrete logarithm, Subexponentiality.

1. Introduction

The discrete logarithm problem (DLP) is the keystone for the security of cryptosystems
based on elliptic curves and on Jacobian groups of more general algebraic curves. While
to date, elliptic curves provide a very broad range of groups for which no algorithm im-
proves over the generic ones for attacking the DLP, the same does not hold for higher
genus curves. A variety of algorithms exists to tackle the DLP on Jacobians of curves,
depending on whether the problem is being considered with the field size or the genus
growing to infinity, or possibly both. For a general overview on algorithms for the DLP,
see the survey [12]. The outcome is that for implementing cryptographic primitives,
curves of genus 3 and higher have clear practical disadvantages over curves of genus 2
and elliptic curves. Yet, studying the DLP on these curves is important in particular
because of the Weil descent strategy, which reduces the DLP on elliptic curves over ex-
tension fields to the DLP in the Jacobian of a curve of higher genus. Therefore, besides

∗ This paper was solicited by the Editors-in-Chief as one of the best papers from Eurocrypt 2007, based
on the recommendation of the program committee.

© International Association for Cryptologic Research 2010

mailto:andreas.enge@math.u-bordeaux.fr
mailto:pierrick.gaudry@loria.fr
mailto:emmanuel.thome@loria.fr

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 25

the better understanding of the general picture that one may obtain by studying large
genus curves, an algorithm for solving the DLP in the large genus case may eventually
become a threat for some elliptic curve cryptosystems.

The following is a general strategy for solving the DLP in groups enjoying in partic-
ular a suitable notion of size (for more details on an appropriate model, see [13]). A first
phase consists in collecting relations involving elements of a chosen factor base, which
is a subset of the group under consideration formed by elements of relatively small size.
Thereafter, the logarithms of these elements are deduced by linear algebra. Depending
on the exact algorithm employed, the output of this computation either gives the log-
arithm of a chosen set of group elements, or in more advanced algorithms, the ability
to compute the logarithms of arbitrary elements at a relatively low cost. The resulting
complexity is usually of subexponential nature, namely of the form

LN(α, c) = ec(logN)α(log logN)1−α

for α ∈ (0,1) and c > 0, where N is the group size.
Quite early on, it appeared that this approach could be adapted to a family of hy-

perelliptic curves over a fixed base field Fq and of genus g growing to infinity. In this
case the algorithm from [2] solves the DLP in subexponential time Lqg (1/2,O(1)).
This complexity is heuristic. It is established under the assumption that a given family
of polynomials behaves similarly to random polynomials of the same degree. Later on,
rigorous results for smoothness of divisors have led to proofs of the subexponential run-
ning time, and the algorithm has been generalised to further classes of curves [7,11,13,
15,19,24]. These results imply that given a family of algebraic curves of growing genus
g over a base field Fq with logq bounded by some polynomial in g, solving the DLP is
possible in proven subexponential time Lqg (1/2,O(1)).

We briefly mention, at the opposite end of the spectrum, the DLP on a family of
curves of fixed genus over a base field Fq with q growing to infinity. In this case, anal-
ogous algorithms have a complexity which is exponential in logq [9,10,16]. This case
is not studied here.

Subexponential algorithms are known in other common contexts, namely integer fac-
torisation and computation of discrete logarithms in finite fields. Proven algorithms of
complexity L(1/2) exist; however, the most efficient algorithms for these problems are
the number field sieve [4,17] and the function field sieve [1] and their derivatives, which
achieve a heuristic complexity of L(1/3). For a long time, it has been an open problem
to decide whether such a complexity can be achieved for solving the discrete logarithm
problem in Jacobian groups of algebraic curves.

We answer this question positively for a relatively large class of curves and present
a probabilistic algorithm of heuristic subexponential complexity Lqg (1/3,O(1)) for
solving the discrete logarithm problem in Jacobians of curves of genus g over fi-
nite fields Fq . Here, we consider families of curves Ci (X,Y) of genus gi over finite
fields Fqi

. We require gi ≥ (logqi)
2, and the degrees in X and Y must stay within the

non-empty interval with end points ≈ gα
i and ≈ g1−α

i , where 1/3 ≤ α ≤ 2/3. Our con-
straint on the curve equation is the key for producing principal divisors of small degree,
in a manner analogous to the function field sieve. The computation of individual log-
arithms, once the relation collection and linear algebra steps have been completed, is
performed using a special-Q descent strategy.

26 A. Enge, P. Gaudry, and E. Thomé

A previous related result appeared in [14]; however, this earlier version has been con-
siderably improved. First, the class of curves to which our algorithm applies has been
expanded. Furthermore, the computation of discrete logarithms no longer has complex-
ity L(1/3 + ε, o(1)), but rather L(1/3,O(1)). This raises the question of determining
explicitly the constant represented by O(1). Assuming the family of curves satisfies
degX Ci · degY Ci ≤ κgi , the exact complexity of our algorithm is L(1/3, (64κ/9)1/3),
which is a familiar complexity in the context of the number field sieve. We mention that
subsequently to [14], Diem has presented at the 10th Workshop on Elliptic Curve Cryp-
tography (ECC 2006) an algorithm based on similar ideas [8]; he argued that computing
discrete logarithms for non-singular plane curves can be solved in L(1/3, (64/9)1/3 +ε)

for any ε > 0. We show that the same complexity is also achieved using a slight modi-
fication of our algorithm and that it is valid for a class of curves strictly including those
handled by Diem’s algorithm.

The article is organised as follows. Section 2 gives an informal presentation of the
algorithm. Section 3 provides the necessary tools for the precise statement and analysis
of the algorithm, which is given in Sects. 4 and 5. Some corner and special cases are
studied in Sect. 6.

2. Main Idea

2.1. Relation Collection

Before describing our algorithm with all its technical details on the most general class of
curves, we sketch in this section the main idea yielding a complexity of Lqg (1/3,O(1))

for a restricted class of curves. We provide a simplified analysis by hand waving; Sect. 3
is devoted to a more precise description of the heuristics used and of the smoothness
properties needed for the analysis.

Let Fq be a fixed finite field. We consider a family of Cnd curves over Fq , that is,
curves of the form

C : Yn + Xd + f (X,Y)

without affine singularities such that gcd(n, d) = 1 and any monomial XiY j occurring
in f satisfies ni + dj < nd (see [23]). Such a curve has genus g = (n−1)(d−1)

2 ; we
assume that g tends to infinity, and that n ≈ gα and d ≈ g1−α for some α ∈ [1

3 , 2
3] (we

use the symbol ≈, meaning “about the same size” with no precise definition). The non-
singular model of a Cnd curve has a unique point at infinity, which is Fq -rational; so
there is a natural bijection between degree zero divisors and affine divisors, and in the
following, we shall only be concerned with effective affine divisors. Choose as factor
base F the about Lqg (1/3,O(1)) prime divisors of smallest degree, that is, of degree
bounded by some B ∈ N with B ≈ logq Lqg (1/3,O(1)).

To obtain relations, consider functions ϕ(X,Y) ∈ Fq [X,Y] such that

k = degY ϕ ≈ gα−1/3 and δ = degX ϕ ≈ g2/3−α.

Whenever the affine part div(ϕ) of the divisor of ϕ is smooth with respect to the factor
base, it yields a relation, and we have to estimate the probability of this event.

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 27

Let N be the norm of the function field extension Fq(C) = Fq(X)[Y]/(Y n + Xd +
f (X,Y)) relative to Fq(X). For a given function ϕ on the curve, if divϕ contains only
places of inertia degree 1, then divϕ is B-smooth if and only if the norm of ϕ is. We
have

degX N(ϕ) = deg ResY

(
ϕ(X,Y),Y n + Xd + f (X,Y)

)
,

≤ degX ϕ degY C + degY ϕ degX C = nδ + kd ≈ g2/3.

Heuristically, we assume that the norm behaves like a random polynomial of de-
gree about g2/3. Then it is B-smooth with probability 1/Lqg (1/3,O(1)). (This
is the same theorem as the one stating that a random polynomial of degree g is
logq Lqg (1/2,O(1))-smooth with probability 1/Lqg (1/2,O(1)), cf., for instance, The-
orem 2.1 of [3].) Equivalently, we may assume heuristically that div(ϕ) behaves like a
random effective divisor of the same degree degX N(ϕ). Then the standard results on
arithmetic semigroups (cf. Sect. 3) yield again that div(ϕ) is smooth with probability
1/Lqg (1/3,O(1)).

So the expected time for obtaining |F |=Lqg (1/3,O(1)) relations is Lqg (1/3,O(1)).
With the same complexity, one can solve a linear system and obtain the discrete loga-
rithms of the elements of F . If the group structure was not known in advance, it is also
possible to deduce it from a Smith normal form computation, which lies again in the
same complexity class.

It remains to show that the search space is sufficiently large to yield the required
Lqg (1/3,O(1)) relations, or otherwise said, that the number of candidates for ϕ is at
least Lqg (1/3,O(1)). The number of ϕ is about

qkδ ≈ qg1/3
< e(g1/3(logq)1/3)(log(g logq))2/3 = Lqg

(
1/3,O(1)

)
.

The previous inequality in the place of the desired equality shows that a more rigorous
analysis requires a careful handling of the logq factors in the exponent; in particular, k

or δ has to be slightly increased. Moreover, the constant exponent in the subexponential
function needs to be taken into account.

2.2. Individual Logarithms

After Sect. 2.1, the discrete logarithms of the elements of the factor base F are known.
Now, to solve a general discrete logarithm problem, we need to be able to rewrite any
element in terms of elements of F . The classical tool for doing so is the special-Q
descent strategy as introduced by Coppersmith [6].

The input is a place Q = div(u(X),Y − v(X)), for which the discrete logarithm is
sought. While not all elements can be written in that form, most of them can; so without
loss of generality, by randomising the input, we may assume the special form. The
degree of Q is degu ≤ g, and degv < degu.

One step of the special-Q descent rewrites a place of degree ≈ g1/3+τ for some
τ ∈ [0,2/3] as a sum of places of degrees bounded by g1/3+τ/2. Thus, the place Q of
degree at most g is first rewritten as a sum of places of degrees bounded by g2/3. Each
of them is then rewritten as a sum of places of degrees bounded by g1/2, and so on. We

28 A. Enge, P. Gaudry, and E. Thomé

end up with a tree of places, whose leaves have a degree as close to g1/3 as we wish.
Therefore, pushing the special-Q descent far enough, we can hope to obtain leaves that
are in F , so that the discrete logarithms of all the elements of the tree, including that of
Q, can be deduced.

Let us now sketch how one step of the special-Q descent works in our case: We
consider a place Q = div(u(X),Y − v(X)), with degv < degu ≈ g1/3+τ for some τ ∈
[0,2/3]. The polynomial functions on the curve having a zero at Q and of degree in Y

bounded by k ≈ gα−1/3+τ/2 form an Fq [X]-lattice generated by

(
u(X),Y − v(X),Y 2 − (

v(X)2 mod u(X)
)
, . . . , Y k − (

v(X)k mod u(X)
))

.

We consider Fq [X]-linear combinations of these basis elements that have a small degree
in X: Allowing coefficients in the combination to have a degree up to ≈ g2/3−α+τ/2, the
corresponding functions have a degree in X bounded by ≈ g2/3−α+τ/2. Among the
≈ qg1/3+τ

such functions, we limit ourselves to a sieving space of size about qg1/3
.

The degree of the affine part of the divisor of each function ϕ in the sieving space is
bounded by ndegX ϕ + d degY ϕ ≈ g2/3+τ/2. Since there are about qg1/3

of them, one
can expect to find one whose divisor is ≈ g1/3+τ/2-smooth (apart from the place Q that
is present in the divisor by construction). We have then rewritten Q as a sum of divisors
of degree at most ≈ g1/3+τ/2 in time L(1/3).

In this description, we have been vague with respect to the degree bounds, and it is
necessary to be more accurate, especially when τ is getting close to 0. This motivates
the following section, in which we examine in more detail the smoothness results and
heuristics that are needed for the algorithm.

3. Smoothness

The algorithm presented in this article relies on finding relations as smooth divisors of
random polynomial functions of low degree. As with other algorithms of this kind, for
instance [2], its running time analysis will be heuristic. The main heuristic assumption is
that certain principal divisors are as likely to be smooth as random divisors of the same
degree, for which the desired smoothness probabilities can be proved. In this section, we
collect the needed smoothness results before discussing our heuristics in more detail.

We suppose that all curves are given by absolutely irreducible plane affine models

C : F(X,Y)

with F ∈ Fq [X,Y], where Fq is the exact constant field of the function field of C .
Arithmetic of elements of the Jacobian group of such curves is detailed in [18]. In
particular, operations such as splitting a divisor into a sum of places can be performed
in polynomial time.

Essentially, we are interested in a factor base F consisting of the places of degree
bounded by some parameter μ (a few technical modifications are necessary and will be
discussed later in this section). Then an effective divisor of degree ν is called F -smooth
or μ-smooth if it is composed only of places in F . The probability of μ-smoothness is

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 29

ruled by the usual results on smoothness probabilities in arithmetic semigroups such as
the integers or polynomials over a finite field, cf. [21].

Unfortunately, most results in the literature are stated for a fixed semigroup and give
asymptotics for μ and ν tending to infinity, whereas we need information that is uniform
over an infinite family of curves. Notice, however, the purely combinatorial nature of
the question: How many objects of size up to ν can be built from irreducible blocks of
size up to μ? The answer depends only on the number of building blocks of any given
size, and it turns out that its main term is the same uniformly over all semigroups under
consideration. This can be exploited to prove combinatorially, in the same spirit as for
hyperelliptic curves in [15], the following general result, which is Theorem 13 of [19]:

Theorem 1 (Heß). Let 0 < ε < 1, γ = 3
1−ε

and ν, μ and u = ν
μ

such that
3 logq(14g + 4) ≤ μ ≤ νε and u ≥ 2 log(g + 1). Denote by ψ(ν,μ) the number of
μ-smooth effective divisors of degree ν. Then for μ and ν sufficiently large (with an
explicit bound depending only on ε, but not on q or g),

ψ(ν,μ)

qν
≥ e

−u logu(1+ log logu+γ
logu

) = e−u logu(1+o(1)).

Denote by

L(α, c) = Lqg (α, c) = ec(g logq)α(log(g logq))1−α

for 0 ≤ α ≤ 1 and c > 0 the subexponential function with respect to g logq , and let

M = Mqg = logq(g logq) = log(g logq)

logq
.

The parameter g logq will be the input size for the class of curves we consider; more
intrinsically, this is the logarithmic size of the group in which the discrete logarithm
problem is defined.

Proposition 2. For some 0 < β < α ≤ 1 and c, d > 0, let

ν = ⌊
logq L(α, c)

⌋ = ⌊
cgα M1−α

⌋
and μ = ⌈

logq L(β, d)
⌉ = ⌈

dgβ M1−β
⌉
.

Assume that there is a constant ρ > 1−α
α−β

such that g ≥ (logq)ρ . Then for g sufficiently
large,

ψ(ν,μ)

qν
≥ L

(
α − β,− c

d
(α − β) + o(1)

)
,

where o(1) is a function that is bounded in absolute value by a constant (depending on
α, β , c, d and ρ) times log log(g logq)

log(g logq)
.

Proof. One computes

u = ν

μ
≤ c

d

(
g logq

log(g logq)

)α−β

30 A. Enge, P. Gaudry, and E. Thomé

(the inequality being due only to the rounding of ν and μ),

logu = (α − β) log(g logq)
(
1 + o(1)

)

and
log logu

logu
= o(1),

with both o(1) terms being of the form stipulated in the proposition. Applying Theo-
rem 1 yields the desired result. Its prerequisites are satisfied since

lim sup
logμ

logν
= lim sup

β logg − (1 − β) log logq

α logg − (1 − α) log logq

≤ lim sup
β logg

α logg − 1−α
ρ

logg

= β

α − 1−α
ρ

=: ε′ < 1

because of the definition of ρ; then ε is taken to be any value strictly larger than ε′ and
less than 1. �

The choice of μ shall insure that the factor base size, that is about qμ, becomes
subexponential. But the necessary rounding of μ, which may increase qμ by a factor of
almost q , may result in more than subexponentially many elements in the factor base
when q grows too fast compared to g.

Proposition 3. Let 0 < β < 1 and ρ ≥ 1−β
β

. If g ≥ (logq)ρ , then q = L(β,o(1)) for
g → ∞.

Proof. One computes

q = elogq = e(logq)1−β (logq)β .

Since g ≥ (logq)ρ with ρ ≥ 1−β
β

, one gets (logq)1−β ≤ gβ , so that q ≤ e(g logq)β . Com-

pared to L(β,1), the term (log(g logq))1−β is missing in the exponent; since this term
tends to infinity, the result follows. �

Corollary 4. Let 0 < β < 1, ρ > 1−α
α−β

and ρ ≥ 1−β
β

, and g ≥ (logq)ρ . Then Proposi-
tion 2 remains valid for an arbitrary rounding of μ and ν, and qμ = L(β,d + o(1)).

Proof. Let k be any integer. By Proposition 3,

ν + k = ⌊
logq

(
qkL(α, c)

)⌋ = ⌊
logq L

(
α, c + o(1)

)⌋
,

which shows that ν may be replaced by ν + k in Proposition 2. The same argumentation
holds for μ. �

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 31

We need to deal with a few technicalities related to the potential singularities and the
places at infinity of our curves. To this purpose, we augment the factor base as follows;
this addition of a polynomial number of divisors is negligible compared to the subex-
ponential factor base size. Furthermore, the computational expense incurred by these
additions is also negligible, since the algorithms in [18] have polynomial complexity.

• Add to F all the places corresponding to the resolution of singularities, regardless
of their degrees, whose number is bounded by (d−1)(d−2)

2 with d = degF . The
algorithm can then be described as if the curves were non-singular.

• Add to F the infinite places corresponding to non-singularities, regardless of their
degrees, whose number is bounded by d by Bézout’s theorem. Then a divisor is
F -smooth if and only if its affine part is.

The correctness and the running time analysis of our algorithm depend on two heuris-
tics, that are classical in the context of discrete logarithm computations by collecting
smooth relations. First of all, the smoothness probabilities of Proposition 2 should also
apply to the special way in which we create the relations.

Heuristic 5. Let D of degree ν be the affine part of the divisor of a uniformly ran-
domly chosen polynomial ϕ with imposed bounds on the degrees in X and Y . Then the
probability of D to be F -smooth is asymptotically the same as that of a random effective
affine divisor of degree ν to be μ-smooth. If ϕ is additionally constrained to have a zero
in a special place Q, the same holds for divϕ − Q.

The first part of the heuristic covers the initial relation collection phase as described in
Sect. 2.1, the second part is needed for the special Q-descent of Sect. 2.2 for computing
individual logarithms. They ensure that relations are found sufficiently quickly. Next,
one needs to make sure that the found relations are sufficiently varied to capture the
complete Jacobian group.

Heuristic 6. The probability that the relations found by the algorithm span the full
relation lattice is the same as for random relations.

Here, the full relation lattice designates the lattice L such that the Jacobian group of
C over Fq is isomorphic to the quotient by L of the free Abelian group over the factor
base. Randomness of relations is to be understood as the uniform distribution on the set
of relations with coefficients between 0 and the order of the Jacobian group.

Depending on the choice of F , it is not immediately clear why Heuristic 6 should
hold. For instance, assume that F contains places of inertia degree larger than 1 with
respect to the function field extension Fq(X)[Y]/(C) over Fq(X), that is, places corre-
sponding to ideals (u, v(X,Y)) with u ∈ Fq [X] and degY v > 1. If ϕ is limited to being
linear in Y , then no such place may occur in a relation, so that the relation lattice cannot
have full rank.

In practice, however, inert places should be very rare. This is justified by the obser-
vation that these places have a Dirichlet density of 0: A place of degree μ and inertia
degree f dividing μ corresponds to a closed point on C with X-coordinate in Fqμ/f

and Y -coordinate in Fqμ , of which there are on the order of qμ/f . Clearly, places with

32 A. Enge, P. Gaudry, and E. Thomé

f ≥ 2 are completely negligible. Notice now that the proof of Theorem 1 is entirely
combinatorial and relies on the fact that there are essentially qμ/μ places of degree μ.
As this is still the case when restricting to non-inert places, the proof of the theorem
should carry over. This motivates an a priori artificial restriction of the factor base to
non-inert places.

To summarise, we rely on the validity of Heuristics 5 and 6 for the factor base F of
smoothness parameter μ containing the following places:

• All places corresponding to the resolution of singularities.
• All places at infinity (i.e. places where the function X has a negative valuation).
• The affine non-inert places of degree bounded by μ, or otherwise said, the places

corresponding to prime ideals of the form (u,Y − v) with u ∈ Fq [X] irreducible
of degree at most μ and v ∈ Fq [X] of degree less than degu.

4. Relation Search

For the time being, we assume that all groups we are dealing with are cyclic, of known
order and with a known generator which is part of the factor base. Discrete logarithms
are taken with respect to this generator. We discuss the complications arising when one
of these conditions is not satisfied at the end of Sect. 5.

We are now ready to formulate precisely the algorithm outlined in Sect. 2, together
with its complexity analysis. We start by the relation collection and linear algebra phases
as sketched in Sect. 2.1.

Theorem 7. Let (Ci (X,Y))i∈N be a family of plane curves of genus gi over Fqi
of

degrees ni in Y and di in X. Assume that there are constants κ > 0 and ρ ≥ 2 such that

nidi

gi

≤ κ, (1)

ni

(gi/Mi)1/3
→ ∞,

di

(gi/Mi)1/3
→ ∞ with Mi = log(gi logqi)

logqi

, (2)

gi ≥ (logqi)
ρ. (3)

Let b be defined by

b = 3

√
8κ

9
.

There exists an algorithm that computes a factor base with L
q

gi
i

(1/3, b) elements, to-

gether with the discrete logarithms of all the factor base elements, in an expected run-
ning time of

L
q

gi
i

(
1/3, c + o(1)

)
with c = 3

√
64κ

9

under Heuristics 5 and 6.

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 33

Proof. For the sake of notational clarity, we drop all indices i in the following.
Let ν, δ > 0 be constants to be optimised later. Consider polynomials ϕ(X,Y) ∈

Fq [X,Y], seen as functions on C , of degrees bounded by
ν n

(g/M)1/3 � in Y and

δ κg/n

(g/M)1/3 � in X. Then (2) implies that

degY ϕ ≤ ν
n

(g/M)1/3

(
1 + o(1)

)
and degX ϕ ≤ δ

κg/n

(g/M)1/3

(
1 + o(1)

)
. (4)

The affine part of the divisor of ϕ has a degree bounded by

degX ResY (ϕ, C) ≤ degX ϕ degY C + degY ϕ degX C

≤ (
δκg2/3 M1/3 + νndg−1/3 M1/3) · (1 + o(1)

)

≤ κ
(
δ + ν + o(1)

)
g2/3 M1/3 by (1)

= logq L
(
2/3, κ

(
δ + ν + o(1)

))
.

Let b > 0 be a constant to be optimised later, and choose a smoothness bound of

logq(L(1/3, b))�. Then by (3) and Corollary 4, the factor base size is in L(1/3, b +
o(1)), and by Corollary 4 and Heuristic 5, the smoothness probability of the divisor of
ϕ is at least

L

(
1/3,−κ(ν + δ)

3b
+ o(1)

)
.

The number of different ϕ that satisfy the chosen degree bounds is at least

qκνδg1/3 M2/3 = L(1/3, κνδ).

So the expected number of relations obtained from all these ϕ is bounded below by
L(1/3, κ(νδ − ν+δ

3b
)+o(1)). For the linear algebra to succeed, according to Heuristic 6,

we need the number of relations to exceed the factor base size. To minimise the relation
collection effort, we choose ν and δ such that equality holds, that is,

κνδ − κ(ν + δ)

3b
= b. (5)

On the other hand, we wish to choose the parameters such that the time taken by the
(sparse) linear algebra phase, which is L(1/3,2b + o(1)), is comparable with the time
taken by the relation collection:

κνδ = 2b. (6)

Substituting κνδ from (6) into (5), we obtain

ν + δ = 3b2

κ
.

34 A. Enge, P. Gaudry, and E. Thomé

So the sum and product of ν and δ are known, and ν and δ are the roots of the
quadratic polynomial

X2 − 3b2

κ
X + 2b

κ
.

For the roots to exist as real numbers, the discriminant of the quadratic polynomial must
be non-negative, which is equivalent to

b ≥ 3

√
8κ

9
.

Since we want to minimise the effort, we choose b minimal and reach equality above.
Then

ν = δ =
√

2b

κ
= 3

√
8

3κ
.

The total running time becomes L(1/3, c + o(1)) with

c = 2b = 3

√
64κ

9
. �

5. Computing Discrete Logarithms

We now turn to the precise description and analysis of the special-Q descent strategy
outlined in Sect. 2.2.

Theorem 8. Under the assumptions of Theorem 7, once the relation collection and
linear algebra steps have been completed, the logarithm of any divisor in the Jacobian
group of Ci over Fqi

can be computed in time

L
q

gi
i

(1/3, b + ε) with b = 3

√
8κ

9
and any ε > 0.

Notice that this complexity is well below that of Theorem 7 for the relation collection
and linear algebra phases.

Proof. Without loss of generality, one may assume that the element whose logarithm
is sought is a place of degree bounded by g and of inertia degree 1; cf. the discussion at
the end of Sect. 3.

More precisely, let Q = div(u(X),Y − v(X)) be a place with degv < degu ≤
logq L(1/3 + τ, c) for some c > 0 and 0 ≤ τ ≤ 2/3. The place we start with has τ = 2

3
and c = 1.

We consider the polynomial functions on the curve having a zero at Q, and in partic-
ular the lattice of polynomials ϕ of degree in Y bounded by k with

k =
⌊
σ

n

(g/M)1/3−τ/2

⌋
,

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 35

where σ > 0 is a constant to be determined later. These ϕ form an Fq [X]-lattice gen-
erated by (v0(X),Y − v1(X),Y 2 − v2(X), . . . , Y k − vk(X)) with v0 = u and vi =
vi mod u for i ≥ 1.

Let L(1/3, e + o(1)) be the effort we are willing to expend for one smoothing step,
where e > 0 is a parameter to be optimised later. Then we need a sieving space of the
same size, and are thus looking for L(1/3, e + o(1)) distinct (k + 1)-tuples of polyno-
mials (α0(X),α1(X), . . . , αk(X)) and corresponding functions

ϕ = −α0(X)v0(x) +
k∑

i=1

αi(X)
(
Y i − vi(X)

) =
k∑

i=1

αi(X)Y i −
k∑

i=0

αi(X)vi(X).

At the same time, we wish to minimise the degree of ϕ in X. Recall that the degree of
vi is bounded by D := logq L(1/3 + τ, c). Then for any integer z, linear algebra on the
lattice yields qkz different tuples such that the degrees of the αi and that of

∑
i αivi are

at most D
k

+ z. Choose z so as to obtain a sieving space of size L(1/3, e + o(1)), that
is, solve qkz = L(1/3, e + o(1)), or

z = 1

n
logq L

(
2/3 − τ/2, e/σ + o(1)

)
.

Now the degree of ϕ in X is bounded from above by D
k

+ z with D
k

=
1
2 logq L(2/3 + τ/2, c/σ). Whenever τ is bounded away from zero, the value of z is
thus negligible compared to that of D/k. However, to encompass in a unified treatment
the case where τ approaches zero, we crudely bound −τ/2 by +τ/2 in the expression
for z to obtain

degX ϕ ≤ 1

n
logq L

(
2/3 + τ/2, (c + e)/σ + o(1)

)
.

The degree of the affine part of the divisor of ϕ is again, as in the proof of Theorem 7,
bounded by

degX ϕ degY C + degY ϕ degX C ≤ ndegX ϕ + kd,

≤ logq L
(
2/3 + τ/2, (c + e)/σ + σκ + o(1)

)

since

kd ≤ σ
nd

(g/M)1/3−τ/2

(1)≤ σ
κg

(g/M)1/3−τ/2
= logq L(2/3 + τ/2, σκ).

So out of the L(1/3, e + o(1)) possible ϕ, we expect by Corollary 4 and Heuristic 5
that one is logq L(1/3 + τ/2, c′)-smooth for

c′ = 1

3e

(
(c + e)/σ + σκ

)
.

To minimise this quantity, we let σ = √
(c + e)/κ , so that

c′ = 2
√

κ

3e

√
c + e. (7)

36 A. Enge, P. Gaudry, and E. Thomé

Let us summarise the procedure: Starting with Q of degree g = logq L(1/3+2/3,1),
we use the technique above (with τ0 = 2/3, c0 = 1) to smooth it into places of degree
at most logq L(1/3 + τ1, c1) with τ1 = 1/3 and c1 = 2

√
κ(c0 + e)/3e. Each of these

is then smoothed again into places of degree at most logq L(1/3 + τ2, c2), and so on,
following the formulae

τi = 1

3 · 2i−1
, ci = 2

√
κ

3e

√
ci−1 + e.

After i steps, we get places of degree at most

logq Lqg

(
1

3
+ 1

3 · 2i−1
, ci

)
= logq Lqg

(
1

3
, ci M

1
3·2i−1

)
.

We need to bound the ci . Studying the function f (x) = α
√

x + β yields that the
sequence (ci) converges to a finite limit c∞, obtained by solving c′ = c in (7), so that

c∞ = χ/2
(
χ +

√
χ2 + 4e

)
, where χ = 2

√
κ

3e
.

Fix an arbitrary constant ξ > 0. After a certain number of steps, depending only on e,
κ and ξ , we have ci < c∞ · (1 + ξ). Furthermore, after O(log logg) steps, we can also

bound the expression M
1

3·2i−1 by (1 + ξ).
It follows that for any positive constant ξ , by building a special-Q descent tree of

depth O(log logg), we can smooth elements down to a degree

logq Lqg

(
1

3
, c∞(1 + ξ)

)
.

Each node in the tree has arity bounded by g, so the number of nodes in the tree is in
gO(log logg) = Lqg (1/3, o(1)) and has no influence on the overall complexity. We finally
compute the effort needed to reach c∞ = b. We have 9b3 = 8κ , and we write 9e3 = Eκ ,
with E to be determined. The equation b = c∞ simplifies as:

(
8

E

)1/3

= 2

E

(
1 + √

1 + E
)
.

The latter holds for E = 8, which gives e = b. We therefore conclude that the special-Q
descent finishes within time Lqg (1/3, b + ε) for any fixed ε > 0.

So far, we have remained silent about the exact nature of the o(1) terms. As long as
a fixed number of them is involved, this does not pose any problem. But the number
of smoothing steps and thus ultimately the number of applications of Theorem 1 is not
constant. So at first sight, it is not clear whether the sum of all the o(1) terms is still
in o(1). However, since the depth of the tree is in O(log logg), and since according to
Proposition 2 the o(1) is actually a constant times log log(g logq)

log(g logq)
, the overall function still

tends to 0 and is a o(1). �

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 37

The Non-cyclic Case In general, the Jacobian group need not be cyclic, but may have
up to 2g invariant factors. In this case, we call “discrete logarithm” of an element its
coefficient vector with respect to a basis of the invariant factor decomposition. In other
words, we need to compute a tuple of scalars instead of a single one.

We assume that the group order is still known and start by considering the compara-
tively easy case that we are given two elements P and Q, where Q is a multiple of P ,
and we wish to compute the unknown multiplier, the discrete logarithm of Q to the base
P . Write down the relation matrix exactly as in Theorem 7, and perform two descents as
in Theorem 8 for decomposing P and Q as sums of factor base elements. The right hand
sides of the two decompositions are appended to the relation matrix. An element of the
kernel of this matrix modulo the group order gives the sought relationship between P

and Q. The discrete logarithm can be deduced from it if the coefficient corresponding
to Q is coprime to the group order; using techniques as in [13], this can be guaranteed
to happen with probability approaching 1. The final complexity is then the same as in
Theorem 7.

This approach generalises immediately to the non-cyclic case if an explicit basis {Pi}
of the invariant factors is known together with the exact orders of the basis elements.
Then the discrete logarithm of an element Q as a tuple with respect to the Pi may be
obtained as follows. After decomposing the Pi and Q over the factor base as in Theo-
rem 8, the matrix may be augmented by the right hand sides of all these decompositions.
An element of the kernel yields the sought expression of Q in terms of the Pi as long
as the coefficient corresponding to Q is coprime with the group order. Again, the total
complexity is as in Theorem 7.

We finally show how to obtain the group structure if only the group order is known.
The classical approach is to compute a Smith Normal Form (SNF) of the relation matrix
obtained in Theorem 7, but this is more costly than a sparse kernel computation. Using
the knowledge of the group order and the fact that for divisor class groups of curves
there is a known set of generators of polynomial size, Heß shows in [19, Lemma 50]
how to tweak the SNF computation to keep the same low complexity as before. In our
context, after having computed the relation matrix as in Theorem 7 and a set of genera-
tors of polynomial cardinality r , we apply r times Theorem 8 to obtain a decomposition
of each generator in terms of the factor base elements. The right hand sides of these
decompositions are appended to the matrix. Then some r kernel elements are computed
by sparse linear algebra modulo the group order, yielding relations between the gener-
ators. Using the randomisation techniques of [13], one may ensure that these relations
are uniformly distributed over all kernel elements. It is then easy to compute a Smith
Normal Form (SNF) of this matrix of polynomial size, thus giving an explicit basis for
the group structure. The overall complexity is then again the same as for Theorem 7.

Group Order If the group order is unknown, it may be obtained alongside the invariant
factors from the SNF of the relation matrix of Theorem 7; but computing the SNF,
while still being of complexity L(1/3), would needlessly increase the constant of the
subexponential function.

Instead, one may use the point counting algorithm due to Lauder and Wan [20], which
has a complexity that is polynomial in p, the degree of the finite field extension and the
degree of the curve equation. Notice that by (1), the latter is in O(g). If p is very small

38 A. Enge, P. Gaudry, and E. Thomé

compared to g, for instance, in the extreme case that p is fixed, then Lauder and Wan’s
algorithm has an overall polynomial time complexity. But even in the most general
setting in which Theorem 7 applies, we have q = L(1/3, o(1)) by Corollary 4, so that
computing the group order takes only time L(1/3, o(1)).

In practice, SNF computations may still be faster than Lauder and Wan’s algorithm in
corner cases. It may then be worthwhile to switch to the algorithm of [5] for Cab curves,
which has a quasi-linear complexity in p; or to that of [22] for superelliptic curves,
which has a square-root complexity in p.

6. Limit Cases and Special Classes of Curves

6.1. n Close to (g/M)1/3

In this and the following section, we examine what happens when the hypothesis (2) of
Theorem 7 is not satisfied. First, we consider the case 0 < lim inf ni

(gi/Mi)
1/3 =: λ < ∞

(the symmetric condition for di is handled analogously). To simplify the presentation,
we assume that we have switched to a subsequence that approaches the limit, and drop
again all indices i.

Following the proof of Theorem 7, we see that the degree in Y of ϕ poses problem: It
tends to
νλ�, which is a constant, so that (4) is not valid any more. Define ν∗ =
νλ�

λ
<

ν + 1
λ

; then (4) holds with ν∗ in the place of ν.
We now have to optimise the constant in the subexponential function giving the total

complexity, 2b, subject to (5) and (6), in which all occurrences of ν have been replaced
by ν∗. As with ν we loose one degree of freedom, the solution to the optimisation
problem becomes worse, and we will end up with a higher total complexity. In fact, (5)
and (6) in the two variables b and δ admit a unique solution b, δ > 0, which is easily
computed. The analysis of the individual logarithm computation step is modified along
the same lines, with an increased effort value.

It is interesting to study what happens when λ → 0. This entails ν∗ ∼ 1
λ

→ ∞ (here,
∼ denotes equivalence in the sense that the quotient of the left and the right hand side
tends to 1). The solution to (5) and (6) is uniquely determined by ν∗ and yields in
particular

b ∼
√

κ

3
· 1√

λ
.

Similarly, in the special-Q descent step, we have

degY ϕ = k = σ
n

(g/M)1/3−τ/2
= σλ(g/M)τ/2.

Assuming the worst case scenario, which is τ very close to 0 (corresponding to the end
of the descent), we must ensure that σλ ≥ 1. We thus have to replace the optimal σ

by σ ∗ ∼ 1
λ

. This changes the equation giving c′ as a function of c. For the limit of the
sequence ci to match b, we thus have to adapt the effort value e. We obtain:

e ∼
√

κ

3
· 1√

λ
.

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 39

Given that b and e tend to infinity when λ → 0, we expect that a complexity of L(1/3)

will no longer be achievable using the presented algorithm when n grows more slowly
than (g/M)1/3; this is confirmed by the following analysis.

6.2. n Below (g/M)1/3

When the lower bound for ni has the form λ(g/M)α with α < 1/3, then we have
d = logq L(1 − α,O(1)) at best. This implies that in the algorithm depicted in this
article, both in the relation collection and individual logarithm steps, the best possible
upper bound for the norm of the functions ϕ is degX N(ϕ) ≤ logq L(1 − α,O(1)). We
then obtain an algorithm of complexity

L

(
1 − α

2
, c

)
for some c > 0.

Following exactly the lines of the proofs of Theorems 7 and 8, it is also possible to make
the constant c in the expression above completely explicit.

6.3. Curves with a Low Weighted Degree

Theorem 9. Assume that the family of curves of Theorem 7 satisfies the following
additional constraint: κ = 2, and each monomial XjY k occurring in the equation of C
has nj + dk ≤ nd . For instance, the curves may be Cnd curves.

Then the relation collection and the linear algebra phases are performed in time

Lqg (1/3, c + o(1)) with c = 3
√

64
9 .

Remark. The case of plane non-singular curves of total degree ≈ √
g, which has been

studied by Diem in [8], is included in the theorem. In this case, one has additionally
n ≈ d ≈ √

g and α = 1/2.

Proof. We use the notation of the proof of Theorem 7. Instead of bounding the de-
grees of X and Y in ϕ separately (“taking ϕ from a rectangle”), we take ϕ of bounded
weighted degree (“from a triangle”). The monomials XjY k occurring in ϕ are required
to satisfy nj + dk ≤ λg2/3 M1/3 for some parameter λ replacing ν and δ and to be
optimised later.

Then

degX ResY (ϕ, C) ≤ λg2/3 M1/3 = logq Lqg (2/3, λ),

which yields a smoothness probability of

L

(
1/3,− λ

3b
+ o(1)

)
.

The biggest power of X in ϕ is λg2/3 M1/3

n
, the biggest power of Y is λg2/3 M1/3

d
. The

number of allowed monomials is given by the product of these two quantities divided
by 2, so that the search space has size about

q
λ2g4/3 M2/3

2nd ≥ qλ2g1/3 M2/3/(2κ) = L
(
1/3, λ2/4

)
.

40 A. Enge, P. Gaudry, and E. Thomé

So the expected number of relations becomes L(1/3, λ(3bλ−4)/12b), which should be
the same as the factor base size. Thus, b = λ(3bλ − 4)/(12b). Equating the time spent
in the relation collection and in the linear algebra phase, we get λ2/4 = 2b. These two
equations are solved by

b = 3

√
8

9
and λ = 3

√
64

3

and yield a total complexity of L(1/3, c) with

c = 2b = 3

√
64

9
. �

To conclude, we note that the runtime for computing individual logarithms by special-
Q descent derived in Sect. 5 is still dominated by the improved runtime for relation
collection and linear algebra in this special case. Therefore, while an analogously im-
proved approach to individual logarithms using functions “from a triangle” would work,
it would not have any effect on the total complexity, and we omit its analysis.

Acknowledgement

We thank an anonymous referee for helpful suggestions.

References

[1] L.M. Adleman, M.-D. Huang, Function field sieve methods for discrete logarithms over finite fields. Inf.
Comput. 151(1), 5–16 (1999)

[2] L.M. Adleman, J. DeMarrais, M.-D. Huang, A subexponential algorithm for discrete logarithms over
the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields, in ANTS-I,
ed. by L. Adleman, M.-D. Huang. Lecture Notes in Comput. Sci., vol. 877 (Springer, Berlin, 1994), pp.
28–40

[3] R.L. Bender, C. Pomerance, Rigorous discrete logarithm computations in finite fields via smooth poly-
nomials, in Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of
A.O.L. Atkin, ed. by D.A. Buell, J.T. Teitelbaum. Studies in Advanced Mathematics, vol. 7 (American
Mathematical Society, Providence, 1998), pp. 221–232

[4] J.P. Buhler, A.K. Lenstra, J.M. Pollard, Factoring integers with the number field sieve, in The develop-
ment of the number field sieve, ed. by A.K. Lenstra, H.W. Lenstra Jr. Lecture Notes in Math., vol. 1554
(Springer, Berlin, 1993), pp. 50–94

[5] W. Castryck, H. Hubrechts, F. Vercauteren, Computing zeta functions in families of Cab curves using
deformation, in ANTS-VIII, ed. by A. van der Poorten, A. Stein. Lecture Notes in Comput. Sci., vol.
5011 (Springer, Berlin, 2008), pp. 296–311

[6] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Inf. Theory
IT–30(4), 587–594 (1984)

[7] J.-M. Couveignes, Algebraic groups and discrete logarithm, in Public-key Cryptography and Computa-
tional Number Theory (de Gruyter, Berlin, 2001), pp. 17–27

[8] C. Diem, An index calculus algorithm for non-singular plane curves of high genus (2006).
Talk at ECC 2006 Workshop, slides available at http://www.cacr.math.uwaterloo.ca/conferences/
2006/ecc2006/diem.pdf.

[9] C. Diem, An index calculus algorithm for plane curves of small degree, in ANTS-VII, ed. by F. Heß, S.
Pauli, M. Pohst. Lecture Notes in Comput. Sci., vol. 4076 (Springer, Berlin, 2006), pp. 543–557

http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/diem.pdf
http://www.cacr.math.uwaterloo.ca/conferences/2006/ecc2006/diem.pdf

An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves 41

[10] C. Diem, E. Thomé, Index calculus in class groups of non-hyperelliptic curves of genus three. J. Cryptol.
21, 593–611 (2008)

[11] A. Enge, Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponen-
tial time. Math. Comput. 71, 729–742 (2002)

[12] A. Enge, Discrete logarithms in curves over finite fields, in Finite Fields and Applications, ed. by G.L.
Mullen, D. Panario, I.E. Shparlinski. Contemporary Mathematics, vol. 461 (American Mathematical
Society, Providence, 2008), pp. 119–139

[13] A. Enge, P. Gaudry, A general framework for subexponential discrete logarithm algorithms. Acta Arith.
102, 83–103 (2002)

[14] A. Enge, P. Gaudry, An L(1/3 + ε) algorithm for the discrete logarithm problem for low degree
curves, in Advances in Cryptology—EUROCRYPT 2007, ed. by M. Naor. Lecture Notes in Comput.
Sci., vol. 4515 (Springer, Berlin, 2007), pp. 379–393

[15] A. Enge, A. Stein, Smooth ideals in hyperelliptic function fields. Math. Comput. 71, 1219–1230 (2002)
[16] P. Gaudry, E. Thomé, N. Thériault, C. Diem, A double large prime variation for small genus hyperelliptic

index calculus. Math. Comput. 76, 475–492 (2007)
[17] D.M. Gordon, Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math. 6(1),

124–138 (1993)
[18] F. Heß, Computing Riemann–Roch spaces in algebraic function fields and related topics. J. Symb. Com-

put. 33, 425–445 (2002)
[19] F. Heß, Computing relations in divisor class groups of algebraic curves over finite fields. Preprint (2004)
[20] A.G.B. Lauder, D. Wan, Counting points on varieties over finite fields of small characteristic, in Al-

gorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, ed. by J.P. Buhler, P.
Stevenhagen. Mathematical Sciences Research Institute Publications, vol. 44 (Cambridge University
Press, Cambridge, 2008), pp. 579–612

[21] E. Manstavičius, Semigroup elements free of large prime factors, in New Trends in Probability and
Statistic, ed. by F. Schweiger, E. Manstavičius (1992), pp. 135–153

[22] M. Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, in Proc. 1st In-
ternational Conference on Symbolic Computation and Cryptography (SCC08) (2008)

[23] S. Miura, Linear codes on affine algebraic curves. IEICE Transactions J81-A, 1398–1421 (1998). In
Japanese. English summary by Ryutaroh Matsumoto available at http://www.rmatsumoto.org/cab.pdf

[24] V. Müller, A. Stein, C. Thiel, Computing discrete logarithms in real quadratic congruence function fields
of large genus. Math. Comput. 68(226), 807–822 (1999)

http://www.rmatsumoto.org/cab.pdf

	An L (1/3) Discrete Logarithm Algorithm for Low Degree Curvesthanks
	Abstract
	Introduction
	Main Idea
	Relation Collection
	Individual Logarithms

	Smoothness
	Relation Search
	Computing Discrete Logarithms
	The Non-cyclic Case
	Group Order

	Limit Cases and Special Classes of Curves
	n Close to (g / M)1/3
	n Below (g/M)1/3
	Curves with a Low Weighted Degree

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

