
J. Cryptol. (2010) 23: 373–401
DOI: 10.1007/s00145-010-9059-9

Secure Computation of the Median
(and Other Elements of Specified Ranks)

Gagan Aggarwal∗

Google Research, Mountain View, CA, USA

gagan@cs.stanford.edu

Nina Mishra†

Search Labs, Microsoft Research, Mountain View, CA, USA

ninam@microsoft.com

Benny Pinkas‡

Department of Computer Science, University of Haifa, Haifa, Israel

benny@pinkas.net

Communicated by Dwork.

Received 23 January 2007 and revised 29 December 2009

Online publication 5 February 2010

Abstract. We consider the problem of securely computing the kth-ranked element

of the union of two or more large, confidential data sets. This is a fundamental question

motivated by many practical contexts. For example, two competitive companies may

wish to compute the median salary of their combined employee populations without

revealing to each other the exact salaries of their employees. While protocols do exist

for computing the kth-ranked element, they require time that is at least linear in the sum

of the sizes of their combined inputs. This paper investigates two-party and multi-party

protocols for both the semi-honest and malicious cases. In the two-party setting, we

prove that the problem can be solved in a number of rounds that is logarithmic in k,

where each round requires communication and computation cost that is linear in b,

the number of bits needed to describe each element of the input data. In the multi-

party setting, we prove that the number of rounds is linear in b, where each round

has overhead proportional to b multiplied by the number of parties. The multi-party

protocol can be used in the two-party case. The overhead introduced by our protocols

closely match the communication complexity lower bound. Our protocols can handle

a malicious adversary via simple consistency checks.

Key words. Secure function evaluation, Secure multi-party computation, kth-ranked

element, Median, Semi-honest adversary, Malicious adversary

© International Association for Cryptologic Research 2010

mailto:gagan@cs.stanford.edu
mailto:ninam@microsoft.com
mailto:benny@pinkas.net

374 G. Aggarwal, N. Mishra and B. Pinkas

1. Introduction

For an ordered set S ⊂ F, the kth-ranked element is the value x ∈ S that is ranked k when
the set S is sorted in increasing order. Of particular interest is the median, which is the
element with rank p = �|S|/2�. Given two parties A and B with data sets DA,DB ⊂ F,
respectively, we consider the problem of privately computing the kth-ranked element of
DA ∪ DB . We also consider this problem in the multi-party case.

Secure computation of the kth-ranked element is a fundamental, primitive operation
with many potential applications. Of particular interest are those settings where the indi-
vidual data sets are very large, contain proprietary information, yet where the kth-ranked
element is of mutual interest. For example, consider two health insurance companies
wishing to compute the median life expectancy of their insured smokers. In such a set-
ting, both the number of insured smokers as well as their life expectancies are private
information, but the median life expectancy is of combined mutual interest. Another
example is the annual Taulbee survey which collects salary and demographic data for
faculty in computer science and computer engineering departments in North America.
Typically, academic departments report only a small number of statistics like the min-
imum, maximum, average and median salary for assistant, associate and full professor
positions. The Taulbee survey is thus able to publish only limited aggregate information.
A privacy-preserving, multi-party solution for the kth-ranked element would enable uni-
versities to quickly compute the median salary without trusting individual salaries to
Taulbee. Such a protocol would also facilitate computation of histograms [14,19,29] in
a privacy-preserving manner.

1.1. Prior Work

The problem we discuss is referred to as Secure Function Evaluation (SFE) in the cryp-
tography literature. It involves several parties with private inputs that wish to compute
a function of their joint inputs, and require that the process of computing the function
does not reveal to an adversarial party (or a coalition of such parties) any information
that cannot be computed using the input of the adversary and the output of the function.

There exist well known solutions for secure computation of any function (see,
e.g., [16,33]). The general method employed by these solutions is to construct a combi-
natorial circuit that computes the required function, and then run a distributed protocol
that securely evaluates the circuit.1 The communication overhead of these generic pro-
tocols is linear in the size of the circuit. The computation involves (at the least) running
an oblivious transfer protocol for every input gate, or for every gate of the circuit, de-
pending on the implementation. Let M be the size of the domain F from which the data

∗ G. Aggarwal’s work done at HP Labs and Stanford University, and supported in part by a Stanford
Graduate Fellowship, NSF Grant ITR-0331640 and NSF Grant EIA-0137761.

† N. Mishra’s work partially done at HP Labs and the University of Virginia. Research supported in part
by NSF grant EIA-013776.

‡ Most of this work was done while B. Pinkas was at HP Labs. Research supported in part by the Israel
Science Foundation (grant number 860/06).

1 The interested reader can find a detailed description of these protocols in the references above. Alterna-
tively, descriptions of the two-party protocols are available at, e.g., [15,24], and descriptions of the multi-party
protocols can be found, for example, in [3,13,15].

Secure Computation of the Median (and Other Elements of Specified Ranks) 375

sets DA and DB are drawn, and let n = |DA|+ |DB | be the total number of the input el-
ements. Then, the kth-ranked element can be computed via a circuit of size Ω(n logM)

(since reading the input requires at least n logM gates), which implies that for large val-
ues of n, the overhead of a secure protocol that is constructed by generic constructions
is too large.

In another generic construction, Naor and Nissim [27] show that any two-party pro-
tocol can be translated into a secure computation protocol. The effect is that a protocol
with communication complexity of c bits is transformed to a secure protocol that per-
forms c invocations of oblivious transfer (or SPIR) from a data set of length 2c. Since
there is a protocol, due to Karchmer, for computing the median with logn communi-
cation [21], the implication is that the size of the data set for the OT/SPIR invocations
is polynomial in n, and the communication is logn times that of the OT/SPIR proto-
col. If the protocol uses SPIR based on the PIR protocol of Cachin et al. [6], it obtains
polylogarithmic communication overhead. The drawback of the protocol, in addition to
hidden constants, is that it requires application of a public-key operation to each item in
the data set, i.e., a number of times that is polynomial in n.

1.2. Results

The results in [16,33] and [27] are quite powerful in that they enable general trans-
formations from known algorithms to secure algorithms. Our interest, however, is to
determine how efficiently a specific function, namely the kth-ranked element, can be
computed. We are motivated by applications where the total number of data points (or
values) owned by the parties (n) is very large, and thus even a linear communication and
computation overhead might be prohibitive. (Even taking results on extending oblivi-
ous transfers [18] into account, the overhead is Ω(n)). Thus, we describe protocols with
sublinear communication and computation overhead. Specifically, in the two-party case,
we reduce the computation of the kth-ranked element to O(log k) secure comparisons of
(logM)-bit inputs,2 where logM is the number of bits needed to describe the elements
in the sets DA,DB . We also show how to obtain security against malicious adversaries.

In the multi-party case, we reduce the computation of the kth-ranked element to
O(logM) simple secure computations that involve additions and a comparison of
(logM)-bit long numbers. This protocol, too, can be made to be secure even if all but
a single party are malicious adversaries. Interestingly, the multi-party solution can be
applied to the two-party scenario if it uses secure two-party protocols as primitives. The
multi-party protocol can even be applied directly to inputs that contain duplicate items,
whereas the two-party protocol requires inputs comprising of distinct inputs.

The advantage of our two-party solution is that the number of rounds is logarithmic in
the number of input items, whereas the number of rounds of the multi-party solution is
logarithmic in the size of the domain of possible input values. We note that the commu-
nication complexity lower bound for computing the median is min{logn, logM} [21]
whereas our result entails a communication cost of O(logn · logM) for a secure com-
putation.

2 If the two parties possess inputs x and y, a secure comparison reveals 0 if x ≥ y and 1 otherwise, and
nothing more, if the usual cryptographic assumptions hold.

376 G. Aggarwal, N. Mishra and B. Pinkas

1.3. Techniques

The protocols given here are modifications of well-known algorithms in the communi-
cation complexity literature [21,30]. Our contribution is the modifications and proofs of
security that result in privacy-preserving solutions, for both semi-honest and malicious
adversaries. For the semi-honest case, our proofs introduce a binary search simulation
technique where we demonstrate that a sequence of binary search decisions can be sim-
ulated from the final output of the protocol. (This technique was later used by other
researchers, see, e.g., [1].)

In the two-party case, the algorithm from the communication complexity literature
requires that each party repeatedly determine whose median is larger. Based on this in-
formation, each party eliminates half of its input values and repeats the computation of
whose median is larger on the remainder of its input values. Our binary search simula-
tion proof demonstrates that this sequence of answers can be determined from the final
median of the combined data sets.

In the multi-party setting, a binary search is performed over a range of input values
[a, b]. Each party reports the number of values it possesses below and above the mid-
point value a+b

2 . Based on the answers provided by all the parties, the range is cut in
half. Our binary search simulation proof demonstrates that this sequence of decisions
of how to cut the interval in half can be simulated from the output, i.e., from the final
median of the combined data sets.

For the malicious case, our proofs are surprisingly simple. We describe consistency
tests that suffice for weeding out a malicious adversary. (This technique was later used
by other researchers, see, e.g., [31] Sect. 4.) In the two-party case, the consistency
test ensures that the median value repeatedly reported is appropriately lower and up-
per bounded by previous median values reported. If this consistency check is satisfied
then we prove that there exists an input the party could have provided to a trusted third
party in the ideal model.

In the multi-party case, the test confirms that the number of values repeatedly reported
to be less than or greater than a value is consistent with answers the party has reported
to be less than and greater than midpoint values of previous intervals. If this consistency
check is satisfied, then we prove that there exists an input the party could have provided
to a third party.

1.4. Efficient Secure Computation via Reduction and Composition

We take the same approach as that of previous solutions for secure computation of large
inputs (e.g., [9,11,24]), and reduce this task to many invocations of secure computation
of simpler functions of small inputs (but unlike these constructions, we also design pro-
tocols that are secure against malicious adversaries). That is, we describe a protocol for
computing the kth-ranked value that uses oracle queries to a few simple functionalities
and is secure if these functionalities are computed by a trusted oracle. A composition
theorem (see [7,8] and discussions below) shows that if the oracle queries are replaced
by secure protocols, then the resulting combined protocol is also secure. The result of
the reduction is a distributed protocol whose overhead is sublinear in the size of the
inputs and is actually feasible even for very large inputs. We also note that the protocol
computes the exact value of the kth-ranked item, rather than computing an approxima-
tion as in [11].

Secure Computation of the Median (and Other Elements of Specified Ranks) 377

1.5. Overview

The rest of the paper is organized as follows. In Sect. 2, we give standard definitions
of semi-honest vs. malicious adversaries and security via the real and ideal model. In
Sect. 3, a protocol for efficient, two-party computation of the kth-ranked element is
given. Finally, in Sect. 4, a multi-party protocol is described for computing the kth-
ranked element.

2. Preliminaries

Our security definitions are based on a comparison to an ideal setting where there is a
trusted third party (TTP), each party provides its private input to the TTP and the TTP
outputs the appropriate function of the combined data. In reality, since no such ideal
setting exists, we describe a real model, where parties can only communicate with each
other. The communication is said to be secure if the parties learn no more than they
would have in the ideal setting with a TTP. The security definitions that we use, for
both the two-party and the multi-party scenarios, are based on [7,15]. For a detailed
discussion of security definitions, we refer the reader to [7,15].

We begin by defining an adversary for both the semi-honest and malicious case. Next,
we formally define security for the two-party and multi-party setting. Finally, we de-
scribe a composition theorem that we will invoke in many of our proofs.

2.1. Semi-Honest vs. Malicious Adversary

In order to prove that our protocols are secure, it is important that we define what our
adversaries can and cannot do. We consider two typical kinds of adversaries studied in
the literature: semi-honest and malicious.

A semi-honest adversary is an adversary that follows the instructions defined by the
protocol. It might try, however, to use the information that it learns during the execution
in order to make deductions about the inputs of the other parties. Despite this behavior,
the goal is to ensure that such an adversary following the protocol still cannot learn more
than it would have had it communicated its input to a trusted third party and received
the final output.

A malicious adversary can be viewed as a fixed, but arbitrary program that controls a
subset of parties by dictating their behavior during the execution of the protocol. A ma-
licious adversary may not follow the rules of the protocol. There are, however, several
things that a malicious adversary can do that we cannot hope to avoid: (1) it can refuse
to participate in the protocol, (2) it can substitute an arbitrary value for its input, and
(3) it can abort the protocol prematurely. Regarding (1) and (3), other parties may be
able to detect that one of their peers is not participating in the protocol, and in many
scenarios these parties can then take measures against the corrupt party (this is differ-
ent than other types of malicious activity which are not easily detected). This property
might deter parties from behaving in this way. Regarding (3), which affects the fairness
of the protocol, there is no perfect solution for this issue and existing solutions are quite
complex. Following [7,15] we do not consider solutions for the fairness of the protocol.
Regarding (2), a malicious adversary could anyway provide a substituted value to the
TTP—thus since our security goal is to be as private as a TTP, security will be equivalent
to the idealized setting.

378 G. Aggarwal, N. Mishra and B. Pinkas

2.2. Security in the Two-Party Case

In the security definitions that follow, corrupt parties can choose to give an arbitrary in-
put to the trusted party, and to terminate the protocol prematurely, even at a stage where
they have received their output and the other parties have not. We limit the definitions to
the case where all parties compute the same function f . To simplify the definitions we
do not explicitly handle auxiliary inputs (which are covered by the definitions in [7,15]).

Prior to defining security, we define some terms and notation that will be useful later.
We say that a function q is negligible if for every c > 0 and for all sufficiently large
n, q(n) < 1/nc. Two sequences of distributions {Cn}n∈N and {Dn}n∈N are said to be
computationally indistinguishable if for any probabilistic polynomial time (PPT) al-
gorithm A, |Pr(A(Cn) = 1) − Pr(A(Dn) = 1)| is negligible in n. We use the notation
IDEALA,B(X,Y) = (φ,ρ) to mean that two parties A and B , possessing inputs X and Y ,
respectively, receive outputs φ and ρ, respectively.

Definition 1 (The Ideal Model, Two-Party Case). A strategy for party A in the ideal
model is a pair of PPT (probabilistic polynomial time) algorithms, AI (X, r) that uses
the input X and a sequence of coin flips r to generate an input that A sends to the
trusted party, and AO(X, r,Z) which takes as an additional input the value Z that A

receives from the TTP, and outputs A’s final output. If A is honest then AI (X, r) =
X and AO(X, r,Z) = Z. A strategy for party B is similarly defined using functions
BI (Y, r) and BO(Y, r,Z).

The definition is limited to the case where at least one of the parties is honest. We call
an adversary that corrupts only one of the parties an admissible adversary. The joint
execution of A and B in the ideal model, denoted IDEALA,B(X,Y), is defined to be

• If B is honest,
– IDEALA,B(X,Y) equals (AO(X, r, f (X′, Y)), f (X′, Y)), where X′ = AI (X, r)

(in the case that A did not abort the protocol),
– or, IDEALA,B(X,Y) equals (AO(X, r, f (X′, Y)),−), where X′ = AI (X, r) (if

A terminated the protocol prematurely).
• Similarly, if A is honest

– IDEALA,B(X,Y) equals (f (X,Y ′),BO(Y, r, f (X,Y ′))), where Y ′ = BI (Y, r)

(in the case that B did not abort the protocol),
– or, IDEALA,B(X,Y) equals (−,BO(Y, r, f (X,Y ′))), where Y ′ = BI (Y, r) (if B

terminated the protocol prematurely).

In the real execution, a malicious party could follow any strategy that can be imple-
mented by a PPT algorithm. The strategy is an algorithm mapping a partial execution
history to the next message sent by the party in the protocol.

Definition 2 (The Real Model, Two-Party Case, Semi-Honest & Malicious). Let f

be as in Definition 1, and Π be a two-party protocol for computing f . Let (A′,B ′)
be a pair of PPT algorithms representing the parties’ strategies. This pair is admissible
w.r.t. Π if at least one of (A′,B ′) is the strategy specified by Π for the corresponding
party. In the semi-honest case, the other party could have an arbitrary output function.

Secure Computation of the Median (and Other Elements of Specified Ranks) 379

In the malicious case, the other party can behave arbitrarily throughout that protocol,
including changing its input or sending messages inconsistent with Π .

The joint execution of Π in the real model, denoted REALΠ,A′,B ′(X,Y) is defined as
the output pair resulting from the interaction between A′(X) and B ′(Y).

The definition of security states that an execution of a secure real model protocol
under any admissible adversary can be simulated by an admissible adversary in the
ideal model.

Definition 3 (Security, Two-Party Case, Semi-Honest & Malicious). Let f and Π be
as in Definition 2. Protocol Π securely computes f if for every PPT pair (A′,B ′) that is
admissible in the real model (of Definition 2) there is a PPT pair (A,B) that is admissi-
ble in the ideal model (of Definition 1), such that REALΠ,A′,B ′(X,Y) is computationally
indistinguishable from IDEALA,B(X,Y).

We note that in the semi-honest case the security definition given here is identical to
a definition which is based on simulation (which we have not explicitly described; see
definition and equivalence theorem in [15]). Thus, it is sufficient to show that party A

(and similarly party B), given its own input and output, can simulate the execution of
the protocol. In other words, it is sufficient to show that given its input and output alone,
party A can generate a string whose distribution is similar to the distribution of the
messages exchanged during the protocol. Intuitively, this shows that everything that A

learns in the protocol it can compute just as well from its input and from the function
computed by the protocol. Therefore, the execution of the protocol reveals nothing but
its desired output. We use this simulation based definition to prove below the security
of our protocol in the semi-honest setting.

2.3. Security in the Multi-Party Case

We now provide security definitions for the multi-party case. Assume that there are n

parties. We denote by J the set of parties under the control of the malicious adversary.
Note that J is not known to all parties. We have that J = {j1, . . . , jt } ⊆ {1, . . . , n} and
J̄ = {1, . . . , n}\J and (x1, . . . , xn)J = (xj1 , . . . , xjt). fJ (x̄) is defined to be a vector
with |J | entries, all of which are equal to f (x̄).

Similar to the two-party case, a strategy for the adversary A in the ideal model is a pair
of PPT algorithms: AI (x̄J , J, r) that uses the input of all corrupt parties, their identities
and a sequence of coin flips r to generate the input that the corrupt parties send to the
trusted party, and AO(x̄J , J, r, fJ) which takes as an additional input the output fJ ,
namely the outputs that the corrupt parties receive from the TTP, and generates the final
outputs of the corrupt parties.

Definition 4 (The Ideal Model, Multi-Party Case). An adversary is represented by a
set J of players that it controls, and a probabilistic polynomial time strategy A for con-
trolling these players. The strategy is limited to controlling the input that the members
of J provide to the trusted party, the modifications that they may apply to the output they
receive from it, and to deciding whether to abort the protocol. We assume that Party 1 is

380 G. Aggarwal, N. Mishra and B. Pinkas

the first to receive the output from the trusted party, and therefore if the adversary con-
trols this party it can learn the output while preventing legitimate parties from learning
it.

Denote the input as x̄ = (x1, . . . , xn). The execution in the ideal model, denoted
IDEALf,J,A(x̄), is defined to be

• If Party 1 is honest (1 /∈ J),

IDEALf,J,A(x̄) = (
fJ̄ (x̄′),AO

(
x̄J , J, r, fJ (x̄′)

))

where r is the randomness used by the adversary, and x̄′ = (x′
1, . . . , x

′
n) such that

x′
j = xj for j /∈ J , and x̄′

J = AI (x̄J , J, r). Namely, the adversary can change the
input of the parties it controls from x̄J to x̄′

J = AI (x̄J , J, r). The trusted party then
computes the output f (x̄′), and the adversary can change the output of the parties
it controls to AO(x̄J , J, r, fJ (x̄′)).

• If Party 1 is controlled by the adversary (1 ∈ J) then

IDEALf,J,A(x̄) = (⊥|J̄ |,AO

(
x̄J , J, r, fJ (x̄′)

))

if the adversary decides to abort the protocol after Party 1 receives its output, or, if
it decides to continue with the protocol

IDEALf,J,A(x̄) = (
fJ̄ (x̄′),AO

(
x̄J , J, r, fJ (x̄′)

))
.

Definition 5 (The Real Model, Multi-Party Case, Semi-Honest & Malicious). Let f

be as in Definition 4, Π be an n-party protocol for computing f , and (J,A) define
the operation of the adversary. In the semi-honest case, A could define arbitrary input
and output functions for the parties in J . In the malicious case, A can define arbitrary
behavior for the parties in J throughout the protocol.

The joint execution of Π under (J,A) in the real model, denoted REALΠ,J,A(x̄), is
defined as the output sequence resulting from the interaction between the n parties.

Definition 6 (Security, Multi-Party Case, Semi-Honest & Malicious). Let f and Π

be as in Definition 5. Protocol Π securely computes f if for every PPT adversary
A in the real model (of Definition 5) there is a PPT algorithm B in the ideal model
(of Definition 4), such that for every J ⊆ {1, . . . ,m}, REALΠ,J,A(x̄) is computationally
indistinguishable from IDEALf,J,B(x̄).

We note that as in the two-party case, security in the semi-honest setting is equivalent
to security according to a simulation based definition, see [15] for details.

2.4. A Composition Theorem

Our protocols implement the computation of the kth-ranked element by running many
invocations of secure computation of simpler functionalities. The security of these con-
structions is proved using the secure composition theorem of Canetti [7,15] (which
builds upon the previous work of [2,16,17,26]). Loosely speaking, the theorem enables

Secure Computation of the Median (and Other Elements of Specified Ranks) 381

us to construct protocols in a hybrid model where a protocol for a function F uses a
trusted party which securely computes simpler functionalities f1, . . . , f�. The secure
composition theorem states that if we consider security in terms of comparing the real
computation to the ideal model, then we can take a protocol which is secure in the
hybrid model, replace the calls it makes to the trusted party by calls to secure proto-
cols computing f1, . . . , f�, and obtain a protocol which is secure. We state the theorem
below for the case of multi-party protocols (the two-party case is identical).

Theorem 1 (Secure Composition, Based on Corollary 7 of [7]). Let t < n and let
f1, . . . , f� be n-party functions. Let π be an n-party protocol (operating in the hybrid
mode) which makes calls to a trusted party computing f1, . . . , f� and is secure (in the
sense of Definition 6) against adversaries which control up to t parties. Let ρ1, . . . , ρ�

be n-party protocols for computing f1, . . . , f�, respectively, which are secure against
adversaries which control up to t parties. If πρ1,...,ρ� is a protocol in which the calls to
the trusted party for computing fi (1 ≤ i ≤ �) are replaced by an execution of ρi , then
πρ1,...,ρ� is secure against adversaries that control up to t parties.

3. Two-Party Computation of the kth Element

This section describes protocols for secure two-party computation of the kth-ranked el-
ement of the union of two data sets. The protocols are based on the observation that a
natural algorithm for computing the kth-ranked element discloses very little information
that cannot be computed from the value of the kth-ranked element itself. Some modifi-
cation to that protocol can further limit the information that is leaked by the execution,
to be equal to the information that can be computed from the output alone.

To simplify the description of the basic, insecure protocol, we describe it for the case
of two parties, A and B , each having an input of size n/2, that wish to compute the value
of the median, i.e., (n/2)th-ranked element, of the union of their two inputs sorted in
increasing order of their values. This protocol is a modification of the algorithm given
in [21,30] and is depicted in Figs. 1 and 2.3

Assume for simplicity that all input values are different. The protocol operates in
rounds. In each round, each party computes the median value of his or her remaining
input, and then the two parties compare their two median values. If A’s median value
is smaller than B’s then A adjusts her input by removing the values which are less than
or equal to her median, and B removes from his input items which are greater than
his median. Otherwise, A removes her items which are greater than her median and B

removes his items which are less than or equal to his median. The protocol continues
until the remaining input sets are of length 1 (thus the number of rounds is logarithmic
in the number of input items). The protocol is correct since when A’s median is smaller
than B’s median, each of the items that A removes is smaller than A’s median, which is
smaller than at least n/4 inputs of A and n/4 inputs of B . Therefore the removed item

3 Another variant of the algorithm that is presented there, and is due to Karchmer, reduces the communi-

cation overhead to O(logn) bits (instead of O(log2 n)). Our protocols do not use this improvement. In any
case, the communication associated with the secure computation overshadows the communication overhead
of the basic protocol.

382 G. Aggarwal, N. Mishra and B. Pinkas

Fig. 1. A two-party protocol for computing the median.

Fig. 2. An illustration of the protocol of Fig. 1 for the case where each party has 16 input elements. Time
proceeds vertically.

cannot be the median. Also, the protocol removes n/4 items which are smaller than the
median and n/4 which are greater than it, and therefore the median of the new data is
the same as that of the original input. Other cases follow similarly.

Suppose now that the comparison is done privately, i.e., the parties only learn which
party’s median value is greater, and do not learn any other information about each
other’s median value. We show below that in this case the protocol is secure. Intuitively,
this is true because each party can deduce the result of the comparison from the value
of the overall median and its own input. For example, if party A knows the median
value of her input and the median of the union of the two inputs, and observes that her
median is smaller than the median of the union, then she can deduce that her median
value is smaller than that of B. This means that given the final output of the protocol,
both parties can simulate the results of the comparisons. Consequently, we have a re-

Secure Computation of the Median (and Other Elements of Specified Ranks) 383

duction from the problem of securely computing the median of the union to the problem
of securely computing comparisons.

Secure Comparison The main cryptographic primitive that is used by the protocol is
a two-party protocol for secure comparison. The protocol involves two parties, where
party A has an input x and party B has an input y. The output is 0 if x ≥ y and 1 oth-
erwise. The protocol (which essentially computes a solution to Yao’s millionaires prob-
lem) can be implemented by encoding the comparison function as a binary circuit which
compares the bits encoding the two inputs, and applying to it Yao’s protocol for secure
two-party computation. For � bit inputs, the overhead of the semi-honest version of this
secure protocol is � oblivious transfers, which are implemented using O(�) modular ex-
ponentiations, and O(�) applications of a pseudo-random function. The communication
is O(�) times the length of the security parameter. In the malicious behavior case, we
require a more complex comparison protocol that needs to perform additional checks
and pass a state from one secure computation to the next. That protocol, described in
detail in Sect. 3.1, can be achieved using a generic compiler described in [15,16], or by
a compiler which is based on the cut-and-choose methodology [25].

More efficient, non-interactive comparison protocols also exist. For example, Fischlin
describes a protocol which uses O(�λ) modular multiplications and has error probabil-
ity 2−λ [12], and additional results [4,22,23] that remove the dependency on the er-
ror parameter λ. (There are other specialized protocols for this problem. In particular,
Cachin suggested a protocol that ensures fairness given a semi-trusted third party [5].)

3.1. A Protocol for Semi-Honest and Malicious Parties

We next describe a protocol that finds the kth-ranked element in the union of two data
sets and is secure against semi-honest parties. The computation of the median is a spe-
cific case where k is set to be the sum of the two inputs divided by two. The protocol
reduces the general problem of computing the kth-ranked element of arbitrary size in-
puts, to the problem of computing the median of two inputs of equal size, which is also
a power of 2. To simplify the exposition, we assume that all the inputs are distinct. This
issue is further discussed later.

Security Against a Malicious Adversary The protocol for the semi-honest case can be
amended to be secure against malicious adversaries. The main change is that the proto-
col must now verify that the parties provide consistent inputs to the different invocations
of the secure computation of the comparisons. For example, if party A gave an input of
value 100 to a secure comparison computation, and the result was that A must delete
all its input items which are smaller than 100, then A cannot provide an input which
is smaller than 100 to any subsequent comparison. We provide a proof that given this
enforcement, the protocol is secure against malicious behavior. For this protocol, we do
not force the input elements to be integers. However, if such an enforcement is required
(e.g., if the input consists of rounded salary data), then the protocol for the malicious
case must also verify that there is room for sufficiently many distinct integers between
the reported values of different elements of the input. This is made more precise later.

In protocol FIND-RANKED-ELEMENT that we describe here, we also specify the
additional functionality that is required in order to ensure security against malicious

384 G. Aggarwal, N. Mishra and B. Pinkas

parties. Then in Sect. 3.4 we describe how to implement this functionality, and prove
that given this functionality, the protocol is secure against malicious adversaries. Of
course, to obtain a protocol which is secure only against semi-honest adversaries, one
should ignore the additional highlighted steps that provide security in the malicious
case.

Protocol 1 FIND-RANKED-ELEMENT

Input: DA known only to A, and DB known only to B . Public parameter k (for now,
we assume that the numerical value of the rank of the element is known). All items
in DA ∪ DB are distinct.

Output: The kth-ranked element in DA ∪ DB .
1: Party A (resp., B) initializes SA (resp., SB) to be the sorted sequence of its k small-

est elements in DA (resp., DB).
2: If |SA| < k then Party A pads (k − |SA|) values of “+∞” to its sequence SA. Party

B does the same: if |SB | < k then it pads (k −|SB |) values of “+∞” to its sequence
SB .

3: Let 2j be the smallest power of 2 greater than or equal to k. Party A pre-pads SA

with (2j − k) values of “-∞” and Party B pads SB with (2j − k) values of “+∞”.
(The result is two input sets of size 2j each, whose median is the kth-ranked element
in DA ∪ DB .)
[In the malicious case: The protocol sets bounds lA = lB = −∞ and uA =
uB = ∞.]

4: for i = (j − 1), . . . ,0 do
5: A computes the (2i)th element of SA, denoted mA, and B computes the (2i)th

element of SB , mB . (I.e., they compute the respective medians of their sets.)
6: A and B engage in a secure computation that outputs 0 if mA ≥ mB , and 1 if

mA < mB .
[In the malicious case: The secure computation first checks that lA < mA <

uA and lB < mB < uB . If these conditions are not satisfied, then the protocol
is aborted. Otherwise, if mA ≥ mB , the protocol sets uA = mA and lB = mB .
Otherwise it updates lA to mA and uB to mB . Note that the lower and upper
bounds are not revealed to either party.]

7: If mA < mB , then A removes all elements ranked 2i or less from SA, while
B removes all elements ranked greater than 2i from SB . On the other hand, if
mA ≥ mB , then A removes all elements ranked higher than 2i from SA, while B

removes all elements ranked 2i or lower from SB .
8: end for
9: (By now, both SA and SB are of size 1.) Party A and B output the result of a secure

computation which computes the smaller of the two remaining elements.
[In the malicious case: The secure computation checks that the inputs given in this
step are consistent with the inputs given earlier. Specifically, for any item other than
item 2j of the original set of A (resp., B), this means that the value must be equal
to uA (resp., uB). For the item ranked 2j in the original set of party A (resp., B), it
is verified that its value is greater than lA (resp., lB).]

Secure Computation of the Median (and Other Elements of Specified Ranks) 385

Overhead The total number of rounds of communication is log(2k), since the value j

is less than log 2k and the number of rounds of communication is (j +1). In each round,
the protocol performs at most one secure comparison of (logM)-bit integers. A cir-
cuit for performing the comparison has O(logM) gates and logM inputs. The over-
head of a protocol for computing this circuit, secure against semi-honest adversaries,
is logM oblivious transfers (which translate into O(logM) public key operations, such
as exponentiations), O(logM) symmetric operations, and communication of O(logM)

bits times a security parameter. A protocol secure against malicious adversaries can be
run with O(logM) public key operations and communication dominated by sending
O(s2 logM) commitments (where s is a statistical security parameter), using the proto-
col in [25], or with O(logM) public key operations, and communication of O(logM)

group elements, albeit with much larger constants, based on the protocol of [20]. Thus
the total communication cost is O(logM · logk) times a security parameter, and the
total computational overhead is O(logM · logk) exponentiations.

Padding The protocol requires the parties to pad their inputs with the values “+∞”
and “−∞”. In the malicious case, we must take into account a malicious party that
might replace some of its original inputs with, e.g., the “+∞” value, or add a wrong
number of these values. To handle this case we define “+∞” and “−∞” to be the max-
imum and minimum values of the input domain, respectively. As a result, any padded
input corresponds to a legitimate input that a malicious party could have sent to the
trusted party, where both inputs affect the execution identically.

Proof of Correctness

Regardless of security issues, we first have to show that the protocol indeed computes
the kth-ranked item. We need to show that (a) The preprocessing performed in Steps
1–3 does not eliminate the kth-ranked value and (b) The (2i+1)st value of Si

A ∪ Si
B

is the kth-ranked value in DA ∪ DB for each i = j − 1, . . . ,0 (where Si
A,Si

B are the
sorted sequences maintained by parties A, B , respectively, during round i). These two
properties are shown in Lemma 1.

Lemma 1. Let DA and DB be data sets held by party A and B , respectively. In
Protocol FIND-RANKED-ELEMENT, the (2i+1)st-ranked element of SA ∪ SB in round
i of Step 4 (i.e., the median) is equal to the kth-ranked element in DA ∪ DB , for
i = (j − 1), . . . ,0.

Proof. Note that in the preprocessing (Step 1) we do not eliminate the kth-ranked
element since the kth-ranked element cannot appear in position (k + 1) or higher in
the sorted version of DA or DB . Step 2 ensures that both sequences have size exactly
k without affecting the kth-ranked element (since padding is performed at the end of
the sequences). And, Step 3 not only ensures that the length of both sequences is a
power of 2, but also pads SA and SB so that the (2j)th element of the union of the two
sequences is the kth-ranked element of DA ∪ DB . This establishes the Lemma for the
case where i = (j − 1).

The remaining cases of i follow by induction. We have essentially transformed the
original problem to that of computing the median between two sets of equal size 2i+1.

386 G. Aggarwal, N. Mishra and B. Pinkas

Note that neither party actually removes the median of SA ∪ SB : if mA < mB then there
are 2 · 2i points in SA and SB that are larger than mA and 2 · 2i points in SA and SB

that are smaller than mB , thus no point in SA that is less than or equal to mA can be
the median, nor can any point in SB greater than mB . A similar argument follows in the
case that mA > mB . Furthermore, the modifications made to SA and SB maintain the
median of SA ∪ SB since at each iteration, an equal number of elements are removed
from above and below the median (exactly half of the points of each party are removed).
The lemma follows. �

3.2. Security for the Semi-Honest Case

In the semi-honest case, the security definition which compares the ideal model to the
real execution is identical to the definition which is based on simulation (which we
have not explicitly described; see definition and equivalence theorem in [15]). Thus, it
is sufficient to show that, assuming that the number of elements held by each party is
public information, party A (and similarly party B), given its own input and the value of
the kth-ranked element, can simulate the execution of the protocol in the hybrid model,
where the comparisons are done by a trusted party (the proof follows by the composition
theorem). In other words, party A can generate an output whose distribution is similar
to the distribution of the messages exchanged in the protocol. We describe the proof in
detail for the case of party A simulating the execution. Let x be the kth-ranked element
which the protocol is supposed to find. Then, party A simulates the protocol using the
procedure described in Algorithm 2.

Algorithm 2 SIMULATE-FIND-RANK

Input: DA and x known to A. Public parameter k. All items in DA ∪ DB are distinct.
Output: Simulation of running the protocol for finding the kth-ranked element in DA ∪

DB .
1: Party A initializes SA to be the sorted sequence of its k smallest elements in DA.
2: If |SA| < k then Party A pads (k − |SA|) values of “+∞” to its sequence SA.
3: Let 2j be the smallest power of 2 larger than k. Party A pre-pads SA with (2j − k)

values of “−∞”.
4: for i = (j − 1), . . . ,0 : do
5: A computes the (2i)th element of SA, mA.
6: If mA < x, then the secure computation is made to output 1, i.e., mA < mB , else

it outputs 0.
7: If mA < x, then A removes all elements ranked 2i or less from SA. On the other

hand, if x ≤ mA, then A removes all elements ranked higher than 2i from SA.
8: end for
9: The final secure computation outputs 1 if mA < x and 0 otherwise (in this case

mA = x is the median).

Lemma 2. The transcript generated by Algorithm SIMULATE-FIND-RANK is the
same as the transcript generated by Protocol FIND-RANKED-ELEMENT. In addition,
the state information that Party A has after each iteration of Step 4, namely (SA, k),

Secure Computation of the Median (and Other Elements of Specified Ranks) 387

correctly reflects the state of Protocol FIND-RANKED-ELEMENT after the same itera-
tion.

Proof. We prove the lemma by induction on the number of iterations. Assume that
the lemma is true at the beginning of an iteration of Step 4, i.e., Algorithm SIMULATE-
FIND-RANK has been correctly simulating Protocol FIND-RANKED-ELEMENT and its
state correctly reflects the state of Protocol FIND-RANKED-ELEMENT at the beginning
of the iteration. We show that mA < x if and only if mA < mB . If mA < x then the
number of points in Si

A smaller than x is at least 2i . If by way of contradiction mB ≤ mA,
then mB < x, implying that the number of points in Si

B smaller than x is at least 2i .
Thus the total number of points in Si

A ∪ Si
B smaller than x would be at least 2i+1,

contradicting that x is the median. So, mA < mB . On the other hand, if mA < mB , and
by way of contradiction, mA ≥ x, then x ≤ mA < mB . Thus the number of points in
Si

B greater than x is strictly more than 2i . Also, at least 2i points in Si
A are greater

than x. Thus, the number of points in Si
A ∪ Si

B greater than x is strictly more than 2i+1,
again contradicting that x is the median. So, mA < x. Thus, the secure computations in
Step 4 of Algorithm Simulate-Find-Rank return the same outputs as in Protocol FIND-
RANKED-ELEMENT. �

Theorem 2. Protocol FIND-RANKED-ELEMENT securely computes the kth-ranked
element of the union of inputs of A and B , for the case of semi-honest adversaries,
assuming all inputs of A and B are distinct.

Proof. The proof follows from Theorem 1 (composition theorem in the hybrid model),
Lemmas 1 and 2. �

3.3. Variants

Protocol FIND-RANKED-ELEMENT preserves privacy as long as no two input elements
are identical (this restriction must be met for each party’s input, and also for the union
of the two inputs). The reason for this restriction is that the execution of the protocol
reveals to each party the exact number of elements in the other party’s input which are
smaller than the kth item of the union of the two inputs. If all elements are distinct then
given the kth-ranked value, each party can compute the number of elements in its own
input that are smaller than it, and therefore each party can also compute the number of
such elements in the other party’s input. This information is sufficient for simulating
the execution of the protocol. However, if the input contains identical elements then
given the kth-ranked value, it is impossible to compute the exact number of elements in
the other party’s input which are smaller than it, thus preventing one from simulating
the protocol. (For example, if several items in A’s input are equal to the kth-ranked
element then the protocol could have ended with a comparison involving any one of
them. Therefore, A does not know which of the possible executions took place.)

Handling Duplicate Items In order to apply Protocol FIND-RANKED-ELEMENT to
inputs that might contain identical elements, the inputs are first transformed to contain
only distinct elements. This can be done, for example, in the following way: Let the

388 G. Aggarwal, N. Mishra and B. Pinkas

total number of elements in each party’s input be n. Add �logn� + 1 bits to every input
element, in the least significant positions. For every element in A’s input let these bits be
a “0” followed by the rank of the element in a sorted list of A’s input values. Apply the
same procedure to B’s inputs using a “1” instead of a “0”. Denote the resulting values as
the “distinct representations” of the original values. Now run the original protocol using
the new inputs, the distinct representations. The parties learn the kth-ranked element
of the new list, which we denote as kth

d . It is the distinct representation of the kth-
ranked element of the original values (which we denote as kth

o). The protocol is privacy-
preserving with regard to the new inputs (which are all distinct). Also, note that the
output of the protocol, kth

d , can be computed by A from kth
o and from knowledge of the

number of items in B’s input which are smaller than the kth
o value (a similar statement

holds for B as well). This property can be verified by observing that if A is given kth
o ,

as well as the number of elements in B’s input which are smaller than this value, it can
simulate the operation of the new protocol with the transformed input elements.

We also note that protocol FIND-RANKED-ELEMENT-MULTIPARTY presented in
Sect. 4 can securely compute the kth-ranked item even if the inputs contain duplicate
elements, and can be applied to the two-party case (although with logM rounds, instead
of logk, where M is the size of the input space).

Hiding the Size of the Inputs Consider the case where the two parties wish to hide from
each other the size of their inputs. Note that if the value k is public then the protocol that
we described indeed hides the sizes of the inputs, since each party transforms its input
to one of size k. This solution is insufficient, though, if k discloses information about
the input sizes. For example, if the protocol computes the median, then k is equal to half
the sum of the sizes of the two inputs. We next show how two parties can compute the
value of the element with rank �φn�, where 0 < φ < 1 without revealing “too much”
about the size of the inputs. More precisely, let φ = φn/φd , where both φn and φd are
integers. Then our protocol requires each party to reveal the remainder left when the
size of its input is divided by φd . We note that for small values of φd , such a revelation
is usually acceptable even in cases where the two parties want to hide the size of their
respective data sets from each other.

Let U , a multiple of φd , be a public upper bound on the number of elements held
by each party. In the protocol, the two parties pad their inputs with roughly φ(2U −
|SA|− |SB |) elements with value −∞ and roughly (1 −φ)(2U −|SA|− |SB |) elements
with value +∞, and then the parties run a secure computation of the (2φU)th-ranked
element of the new inputs, using the protocol described above. The exact number of
elements added by each of the parties depends on the remainder left on dividing |SA|
and |SB | by φd as described next.

If both |SA| and |SB | are divisible by φd , then party A pads its input with φ(U −|SA|)
elements with value −∞, and (1 − φ)(U − |SA|) elements with value +∞; similarly,
party B pads its input with φ(U −|SB |) elements with value −∞, and (1−φ)(U −|SB |)
elements with value +∞. The union of the two inputs now contains 2U elements, where
the (2φU)th-ranked element is the (φn)th-ranked element of the original inputs.

Otherwise, let rA = φd −(|SA| mod φd) and let rB = φd −(|SB | mod φd). The parties
share the values of rA and rB with each other. First, party A adds φ(U − (|SA| + rA))

elements with value −∞ and (1 − φ)(U − (|SA| + rA)) elements with value +∞;

Secure Computation of the Median (and Other Elements of Specified Ranks) 389

similarly, party B adds φ(U − (|SB | + rB)) elements with value −∞ and (1 − φ)(U −
(|SB | + rB)) elements with value +∞. At this point, party A has U − rA elements and
party B has U − rB elements. Next, assume without loss of generality that rA ≥ rB
(otherwise, interchange the role of A and B in the following). If φ ≤ 0.5 then party A

adds �φ(rA + rB)� ≤ rA more elements with value −∞ and adds rA − �φ(rA + rB)�
more elements with value +∞, while party B adds rB more elements with value +∞.
Thus, the element with rank �φn� in the original inputs becomes the (2φU)th-ranked
element of the new inputs. If φ > 0.5, then party A adds �(1 − φ)(rA + rB)� ≤ rA
more elements with value ∞ and adds rA − �(1 − φ)(rA + rB)� more elements with
value −∞, while party B adds rB more elements with value −∞. Again, the union
of the two inputs now contains 2U elements, where the (2φU)th-ranked element is the
(φn)th-ranked element of the original inputs.

Let us now analyze the operation of this modified protocol in the case of malicious
adversaries. First, in the case that both |SA| and |SB | are divisible by φd , each party
must independently pad its input with “+∞” and “−∞” values. Recall that these values
correspond to the maximum and minimum values in the input domain, respectively. The
proof of security against malicious adversaries, given in Theorem 3 of Sect. 3.4, shows
that a corrupt party’s behavior in the real execution corresponds to its operation in the
ideal protocol using some legitimate input. In the modified protocol which hides the size
of the inputs, this means that the real execution corresponds to some padded input. This
padded value corresponds to one or more legitimate original inputs (generated from the
padded input by removing the right fraction of “+∞” and “−∞” values). These original
inputs could have been sent to the trusted party in the ideal model, and resulted in the
same effect as the actual execution in the real model. The situation is more complicated
if either |SA| or |SB | is not divisible by φd . In that case, the parties exchange their rA and
rB values, and have to pad their inputs based on these values. It might be, however, that
the padded inputs in the ideal scenario, as are defined in the proof of Theorem 3, do not
correspond to these rA and rB values. For example, suppose that party B reports a value
rB such that 0 < rB < rA, and it also holds that φ ≤ 0.5. We still might find out that
B’s padded input in the ideal model contains no “+∞” values, although the protocol
adds such values to the padded version of B’s input. We therefore conclude that if |SA|
and |SB | are both divisible by φd then the modified protocol is secure against malicious
adversaries, whereas otherwise it is not, unless additional measures are taken to verify
that the parties perform the padding according to the protocol.

3.4. Security for the Malicious Case

We assume that the comparison protocol is secure against malicious parties in the sense
of Definition 3. We then show that although a malicious party can choose its input
values adaptively during the execution of the protocol, it could as well have constructed
an input a priori and given it to a trusted third party to get the same output. In other
words, although the adversary can define the values of its input points depending on
which points need to be compared in our protocol, this does not give the adversary
any more power. The proof shows that the functionality provided by protocol Find-
Ranked-Element provides the required security. Then, we show how to implement this
functionality efficiently.

390 G. Aggarwal, N. Mishra and B. Pinkas

Theorem 3. Protocol FIND-RANKED-ELEMENT securely computes the kth-ranked
element of the union of inputs of A and B , for the case of a malicious adversary.

Proof. Following Definition 3, the proof shows that for every adversary A′ in the real
model there is an adversary A′′ in the ideal model, such that the outputs generated by A′
and A′′ are computationally indistinguishable. Based on the composition theorem, we
can consider only protocols in the hybrid model where we assume that the comparisons
are done securely by a trusted party.

The operation of A′ in the protocol can be visualized as a binary tree. An example
when each party has eight input values is given in Fig. 3. The root of the tree is the input
of A′ to the first comparison performed in the protocol. The left child of the root is its
input to the second comparison if the answer to the first comparison is “yes”, and the
right child is its input to the second comparison if the first answer is “no”. The tree is
constructed recursively following this structure, where every node corresponds to the
input provided by A′ to a comparison done at Step 6. The leaves of the tree correspond
to the input provided by A′ to the secure computation of Step 9 of the protocol. Note
that there is a unique leaf corresponding to each possible outcome of the sequence of
comparisons of Step 6 (one such path to a leaf is highlighted in Fig. 3).

The operation of A′ in an actual execution follows a path from the root to a node of
this tree. In order to construct a computationally indistinguishable adversary A′′ in the
ideal model, we assume that the random input used by A′ is fixed and known to A′′. We
also limit ourselves to adversaries A′ that provide inputs that correspond to the bounds
lA,uA maintained by the protocol (otherwise the protocol aborts as in early termination,
and since this can be achieved by providing invalid input in the ideal model, the theorem
is proved). The adversary A′′ needs to give an input to the trusted party in the ideal
model such that it can generate a transcript that is computationally indistinguishable
from A′. Since we work in the hybrid model, A′’s transcript includes only the inputs
and outputs of the secure computations of Step 6 and 9 of the protocol and the final
output of the protocol.

Fig. 3. A depiction of the operation of A′ in the proof of Theorem 3.

Secure Computation of the Median (and Other Elements of Specified Ranks) 391

We describe here a procedure which determines the input that A′′ needs to give to the
trusted party. The procedure has to learn the entire input of A′. Recall that when running
this procedure we do not have access to A′’s input and can learn about it only by running
it. So we run A′, providing it with the output of the comparisons. We can also store the
state of A′ at a certain point of its execution, and later on restore that state (“rewind” A′)
and continue the execution from the restored state. We go over all execution paths by
stopping and rewinding the operation. Namely, we run A′, obtain its input, mA, to the
first comparison, and provide it with the answer that mA ≥ mB in the first comparison.
We obtain the input of A′ to the second comparison, provide it again with an answer
that mA ≥ mB , and so on. After simulating in this way all j comparisons, we obtain the
input that A′ provides to the comparison of Step 9. We then rewind A′ to the beginning
of the last comparison, and in this time we provide it with an answer that mA < mB . In
a similar manner we go over all execution paths of the protocol, which can be viewed as
a tree of depth j + 1 (j comparisons of Step 6 and the final comparison of Step 9 which
corresponds to the leaves of the tree). The traversal of this tree is possible in polynomial
time since its depth is j = logk. Note that each of the internal nodes corresponds to a
comparison involving a different location in the sorted list that A′ is supposed to have
as its input. Associate with each node the value that A′ provides to the corresponding
comparison.

Observe the following facts:

• For any three internal nodes L,A,R where L and R are the left and right children
of A, the bounds checked by the protocol enforce that the value of L is smaller than
that of A, which is smaller than that of R. Furthermore, an inorder traversal of the
internal nodes of the tree results in a list of distinct values appearing in ascending
order.

• When the computation reaches a leaf (Step 9), A′ provides a single value to a
comparison. For the rightmost leaf, the value is larger than any value seen till
now, while for each of the remaining leaves, the value is the same as the value on
the lowermost internal node of the path from the root to the leaf, for which the
comparison result was that mA ≥ mB (this property is enforced by the protocol by
checking that the value input by A′ to Step 9 is the same as uA).

• Each item in the input of A′ is used in at most a single internal node, and exactly a
single leaf of the tree.

Consequently, the values associated with the leaves are sorted, and agree with all the
values that A′ provides to comparisons in the protocol. We can therefore use these values
as the input of A′′ to the trusted third party in the ideal model. When A′′ receives the
output from the trusted party, it simulates the route that the execution takes in the tree,
and performs any additional operation that A′ might apply to its view in the protocol. �

Note that the proof assumes that the inputs are arbitrary Real numbers. If, on the other
hand, there is some restriction on the form of the inputs, the protocol must verify that
A′ provides values which are consistent with this restriction. For example, if the inputs
must be integer numbers then the protocol must verify that the distance between the
reported median and the bounds is at least half the number of items in the party’s input
(otherwise the input items cannot be distinct). Namely, Step 6 must check lA + 2i <

mA ≤ uA − 2i and lB + 2i < mB ≤ uB − 2i .

392 G. Aggarwal, N. Mishra and B. Pinkas

3.4.1. Implementing the Functionality of the Malicious Case Protocol, and Relation to
Reactive Computation

The protocol for the malicious case runs in consecutive steps, which use the results of
the first i comparisons in order to impose bounds on the possible inputs to the following
comparison. This type of protocol is similar to the notion of reactive computation [8,10,
28]4 and can be securely implemented using secure protocols for reactive computation.
The computation of the kth ranked element does not require, however, a reactive compu-
tation, since the parties know their entire inputs at the onset of the protocol. The protocol
described in our work consists of several steps, each of which requires the parties to en-
ter additional inputs, but this structure is merely used in order to improve efficiency. If
we did not care about efficiency, we could have computed the kth ranked element using
a single run of a protocol (say, based on Yao’s generic protocol and running in O(1)

rounds) to which each party provides its k inputs.
One way of implementing our protocol is to use full pledged reactive computation,

consisting of several steps, where each step operates based on input from the parties
and state information that is delivered from the previous step. This scenario, as well as
appropriate security definitions and constructions, was described in [8,10]. (But, unlike
the definitions of [8,10] we are only interested in a simpler synchronous environment
with secure channels and assume that in each step all parties provide an input.) We also
describe in Appendix 4.1 a simple modification of Yao’s two-party protocol that can be
used to implement the protocol.

4. Multi-Party Computation of the kth Ranked Element

We now describe a protocol, Protocol 3, that outputs the value of the kth-ranked element
of the union of multiple private data sets. For this protocol we assume that the elements
of the sets are integer-valued, but they need not be distinct. Let [α,β] be the (publicly-
known) range of input values, and let M = β − α + 1. The protocol runs a series of
rounds in which it (1) suggests a value for the kth-ranked element, (2) performs a secure
computation to which each party reports the number of its inputs which are smaller than
this suggested value, adds these numbers and compares the result to k, and (3) updates
the guess. The number of rounds of the protocol is logarithmic in M .

Malicious Adversaries We describe a protocol which is secure against semi-honest
adversaries. Again, the protocol can be amended to be secure against malicious adver-
saries by verifying that the parties are providing it with consistent inputs. We specify in
the protocol the additional functionality that should be implemented in order to provide
security against malicious adversaries.

4 Reactive computation consists of steps in which parties provide inputs and receive outputs. Each step
generates a state which is used by the following step. The input that a party provides at step i can depend on
the outputs that it received in previous steps. General constructions for reactive computation were discussed
in [8,10]. In particular, they enable parties to abort the protocol at arbitrary stages.

Secure Computation of the Median (and Other Elements of Specified Ranks) 393

Protocol 3 FIND-RANKED-ELEMENT-MULTIPARTY

Input: Party Pi , 1 ≤ i ≤ s, has data set Di . The sizes of the data sets are public, as is
the value k. Finally, the range of possible input values [α,β] is also public.

Output: The kth-ranked element in D1 ∪ · · · ∪ Ds .
1: Each party ranks its elements in ascending order. Initialize the current range [a, b]

to [α,β] and set n = ∑ |Di |.
[In the malicious case: Set for each party i bounds L(i) = 0, G(i) = 0. These
values are used to bound the inputs that party i reports in the protocol. L(i) reflects
the number of inputs of party i strictly smaller than the current range, while G(i)

reflects the number of inputs of party i strictly greater than the current range.]
2: repeat
3: Set m = �(a + b)/2� and output it.
4: Each party computes the number of elements in its data set that are strictly

smaller than m, and the number of elements strictly greater than m. Let l(i) and
g(i) be these values for party i, respectively.

5: The parties engage in the following secure computation:
[In the malicious case: Verify for every party i that l(i) + g(i) ≤ |Di |, l(i) ≥
L(i), and g(i) ≥ G(i). In addition, if m = α, then we check that l(i) = 0; if
m = β , we verify that g(i) = 0.]
In both the semi-honest and malicious cases:

• If
∑

l(i) ≤ k − 1 and
∑

g(i) ≤ n − k then “done”. (This means that m is
the kth-ranked item.)

• If
∑

l(i) ≥ k then set b = m − 1. (This means that the kth-ranked element
is smaller than m.)
[In the malicious case: Set G(i) = |Di | − l(i). Note that as the right end-
point of the range decreases, G(i) is non-decreasing. This can be seen by
noting that |Di | − l(i) ≥ g(i), which is enforced to be at least as much as
the previous value of G(i). (Since the left end-point of the range remains
the same, L(i) remains unchanged.)]

• If
∑

g(i) ≥ n − k + 1 then set a = m + 1. (This means that the kth-ranked
element is larger than m.)
[In the malicious case: Set L(i) = |Di | − g(i).]

6: until “done”

Correctness The correctness of this algorithm follows from observing that if m is the
kth-ranked element then the first condition that is checked, namely whether

∑
l(i) ≤

k − 1 and
∑

g(i) ≤ n − k, is met and the output of the algorithm is defined to be m.
Otherwise, the kth-ranked element is in the reduced range that the algorithm retains for
its next iteration.

Overhead The number of rounds is logM . Each round requires a secure multi-party
computation that computes two summations and performs two comparisons. A circuit
computing the sum of s logM-bit numbers is of size O(s logM), while a comparison
can be computed using O(logM) gates. Therefore, the size of the circuit used in each

394 G. Aggarwal, N. Mishra and B. Pinkas

round is O(s logM), and this is also the number of its input bits. The secure evalua-
tion can be implemented, for example, using generic protocols for secure multi-party
computation, such as the protocols of [3,13,16]. In the malicious adversary case, the
computation can be implemented using the constructions of [8,10] for a secure compu-
tation of a reactive system (alternatively, the system can use a protocol similar to the
one we describe in Appendix 4.1 for the two-party case).

4.1. Security

Theorem 4. Protocol FIND-RANKED-ELEMENT-MULTIPARTY securely computes
the kth-ranked element of D1 ∪ · · · ∪ Ds , for the case of a semi-honest adversary.

Proof. The proof is based on the composition theorem which shows that it is sufficient
to consider the hybrid model where the multi-party computation in step 5 is done by a
trusted party. We show that in this case the protocol is secure against an adversary that
controls up to s − 1 of the parties. (If we implement the multi-party computation of
Step 5 by a protocol which is secure against an adversary that controls up to t parties,
e.g., using [3,13,16], it follows from the composition theorem that the resulting protocol
is secure against an adversary which controls up to t parties.)

Consider an adversary operating in the hybrid model and controlling a subset of the
players. The output it can assign to these players is a function of the output of the
protocol (i.e., the kth ranked element), and of the results of the comparisons done in
Step 5 of the protocol. We show that there is an equivalent adversary B operating in
the ideal model, that only receives the kth ranked element, and can compute the results
of the comparisons done in Step 5 of the protocol. Therefore, B can also compute the
output computed by A.

Indeed, knowing the range [a, b] that is used at the beginning of a round, B can
compute the target value m used in that round. If m is the same as the output, B can
conclude that the protocol must have ended in this round with m as the output (if the real
execution did not output m at this stage, m would have been removed from the range
and could not have been output). Otherwise, it simply updates the range to that side of
m which contains the output, and outputs the corresponding answer to the comparison
done in Step 5 (if the real execution had not done the same, the kth ranked element
would have gone out of the active range and could not have been the output). Along
with the knowledge of the initial range, this shows that B can simulate the execution of
the protocol and compute the answers of the comparisons done in Step 5. �

Theorem 5. Protocol FIND-RANKED-ELEMENT-MULTIPARTY securely computes
the kth-ranked element of D1 ∪· · ·∪Ds , in the presence of a malicious adversary which
controls all but one of the parties.

Proof. The proof in this case, too, is based on the composition theorem, which shows
that it is sufficient to consider the hybrid model where the multi-party computation in

Secure Computation of the Median (and Other Elements of Specified Ranks) 395

step 5 is done by a trusted party. The secure implementation of this computation can be
done using the constructions of [8,10] for a secure computation of a reactive system.5

The proof shows that for every adversary that corrupts up to s − 1 parties in the com-
putation in the hybrid model, there is an adversary which corrupts these parties in the
ideal model, and which results in a communication transcript which is indistinguishable
from that of the former adversary. We limit the analysis to adversaries that provide in-
puts that agree with all the boundary checks in the algorithm (otherwise the protocol
aborts, and this outcome is legitimate in the ideal model). Moreover, we assume that the
result of the computation of Step 5 is first given to Party 1, and therefore both model an
adversary which controls this party can learn the output of the function and abort before
the legitimate players learn it.

The proof shows how to examine the operation of the adversary in the hybrid model
and generate input for the adversary in the ideal model, which it then gives to the trusted
party. Given the output of the trusted party it is then easy to simulate the operation of
the protocol, as described in the proof of Theorem 4.

Imagine a tree of size M with each node in the tree corresponding to a guess m

(in the protocol) for the value of the median. The root corresponds to the initial guess
m = m0 = �(β − α)/2� with the initial range being [α,β]. Its left child corresponds to
the next guess for m if the first guess is incorrect and the median is discovered to be
smaller than m0 and is in the range [a, b], with a = α and b = m0 − 1. Similarly, the
right child corresponds to the next guess for m if the median is discovered to be larger
than m0, and is in the range [m0 + 1, β]. The entire tree is constructed recursively in
this manner. The leaves are associated with ranges containing a single integer. Note that
each integer in the interval [α,β] is associated with the single node in the tree at which
the guess m is set to the value of this integer. We will overload m and use it to refer to
this node as well.

Fix the random values (coin flips) used by the adversary in its operation. Run the
adversary, with rewinding, checking the values that are given by each of the parties it
controls to each of the comparisons. (In the following analysis, we examine the values
given by a single party, party i, controlled by the adversary, but the same analysis can
be applied to any subset of parties.) Consider a node u associated with the guess u.
Then, the two values lu(i) and gu(i) that party i provides to the comparison executed at
node u are supposed to be the number of items in the input of party i which are smaller
than and larger than u, respectively. Also, let us denote by eu(i) = |Di | − lu(i) − gu(i)

the number of items that are specified by the adversary to be equal to u. Note that the
values lu(i), gu(i) are reported by party i during the execution of the protocol, while the
value eu(i) is implied by the former values. We first show how we can run and rewind
the adversary to learn all the eu(i) values. We then show that the adversary’s behavior
is completely consistent with the interpretation that eu(i) is the number of items with
value u. Then this set can be used by the adversary in the ideal model as an input to the
trusted third party and the output used to produce a computationally indistinguishable
transcript.

5 The basic idea of these constructions is that the parties run a secure computation of each step using, e.g.,
the protocol of [3]. The output contains encrypted and authenticated shares of the current state, which are then
input to the computation of the following step, and checked by it.

396 G. Aggarwal, N. Mishra and B. Pinkas

In order to learn about the adversary, we examine the adversary’s behavior for the
root node, then for the two children of the root, and continue layer by layer in the tree.
Our first goal is to show that for every node α ≤ u < β the reported values by party i

satisfy the condition eu(i) = lu+1(i) − lu(i). Therefore it is possible to extract the eu(i)

values from the lu(i) values used in the protocol execution.
The boundary checks ensure that the following properties hold for any three nodes

L,A,R that appear in this order in an inorder traversal of the tree (i.e., where L appears
in the subtree rooted by the left descendant of A, and R appears in the subtree rooted
by A’s right descendant):

• When executing Step 5 with respect to node A, if it is decided to set b = m − 1,
namely move to the left subtree, then it is verified that G(i) = |Di | − lA(i). In the
following steps of the protocol the value of G(i) is never increased. Then, when
node L is examined, the protocol verifies (in Step 5) that gL(i) ≥ G(i). Therefore
it holds that gL(i) ≥ |Di | − lA(i), i.e., that |Di | − gL(i) ≤ lA(i). Equivalently this
means that lL(i) + eL(i) ≤ lA(i), namely that the number of elements reported by
i to be equal to the value L or smaller than it is not greater than the number of
elements reported by i to be smaller than A.

• In a symmetric way, the protocol ensures that gR(i)+ eR(i) ≤ gA(i). Since |Di | =
lA(i) + eA(i) + gA(i) = lR(i) + eR(i) + gR(i), this inequality implies that lA(i) +
eA(i) ≤ lR(i).

• The previous two observations, lL(i) + eL(i) ≤ lA(i), and lA(i) + eA(i) ≤ lR(i),
enforce that for any two nodes u and v with u < v it holds that lu(i)+ eu(i) ≤ lv(i)

(this holds since for every pair u,v we can represent these nodes as u = L, and
v = A or v = R). In particular, it holds for every u ∈ [α,β − 1] that lu(i)+ eu(i) ≤
lu+1(i). Summing over these inequalities gives

∑β
u=α eu(i) ≤ lβ(i)+eβ(i)− lα(i).

• Since lα(i) = 0 and gβ(i) = 0 (enforced by our checks), it holds that
∑β

u=α eu(i) ≤
lβ(i) + eβ(i) + gβ(i) − lα(i) = Di .

• A symmetric analysis shows that for every u ∈ [α + 1, β] it holds that gu(i) +
eu(i) ≥ gu−1(i). Summing over these inequalities and applying the same analysis
as before we get that

∑β
u=α eu(i) ≥ Di .

• Combining the two inequalities above results in
∑β

u=α eu(i) = Di . Thus, all the
inequalities must be satisfied with equality, implying eu(i) = lu+1(i)− lu(i) for all
α ≤ u < β .

As for the time it takes to rewind the operation of the adversary in order to learn all
eu(i) values, this time is linear in β −α, the size of the range. The time can be improved
to O(|Di |), the size of the input of party i, by observing that we are only interested in
nodes u for which lu(i) �= lu+1(i). Therefore, when examining the tree and observing,
for instance, that the l(i) value provided for the left child of a node is equal to the l(i)

value of the node (i.e., l�α+(u−α)/2�(i) = lu(i)), we do not have to explore any nodes in
the range [�α + (u − α)/2�, u].

To complete the proof we note that the result of this examination defines the input that
the corrupt party i provides to the trusted party in the ideal model. More specifically,
we set the input to contain eu(i) items of value u, for every u ∈ [α,β]. The trusted party
computes the kth value and returns it to us. This value defines the path that real execution
of the protocol takes in the tree defined above. Therefore, it is possible to simulate the

Secure Computation of the Median (and Other Elements of Specified Ranks) 397

answers that party i receives in each step of the execution the protocol (say, using the
same algorithms as in the protocol). Since in the protocol itself the values provided by
each party depend only on the results of previous comparisons (i.e., path in the tree),
the output of the trusted party is the same as in the protocol. �

Acknowledgements

We thank Yehuda Lindell and Kobbi Nissim for stimulating discussions on this work.

Appendix: Implementing Reactive Computation in the Two-Party Case

We show here the main components of a simple implementation of protocol Find-
Ranked-Element for the malicious adversary case. Alternatively, the protocol could use
the generic constructions of reactive computation provided in [8,10].

The protocol is implemented by evaluating the following circuit, using Yao’s con-
struction of a secure two-party computation for the malicious case adversary [16,25,32,
33].

• The circuit is composed of two stages.
– The first stage has j layers (assuming that Step 4 of protocol Find-Ranked-

Element is run j times). It has 2j inputs mA,1,mB,1, . . . ,mA,j ,mB,j (each
logM bits long) and j single bit outputs out1, . . . , outj . (This stage corresponds
to Step 4 of the protocol).

– The second stage has four additional logM bit inputs. It has one logM bit out-
put. It is used for implementing Step 5 of the protocol.

• The circuit has internal variables lA,i , lB,i , uA,i , uB,i for layer i, 1 ≤ i ≤ j , corre-
sponding to the variables that are used in the protocol. These variables are used to
transfer the state from layer to layer. The variables with index i = 1 are initialized
as in the protocol.

• Each layer in the first stage corresponds to an application of Step 4 of the protocol,
i.e., it receives inputs mA,i,mB,i , and checks that both are within the corresponding
bounds with parameter i. If the comparison is fine, it compares mA,i to mB,i and
outputs the result as outi . In addition, the internal variables of layer i + 1 are
updated based on those of layer i and on the result of the comparison, as defined
in the protocol. Figure 4 depicts a single such layer of the circuit. (Note that the
output bit outi depends only on inputs mA,�,mB,� for � ≤ i. Therefore, the parties
can provide this input to the execution of layer i.)

Overhead: Each layer computes four comparisons in order to check that the
inputs are in the required range, a single comparison between mA,i and mB,i , and
four additional comparisons in order to set the correct values for the bounds sent to
the next layer. Each comparison is computed by a number of gates which is linear
in the lengths of its inputs.

• The final layer implements the operation defined in Step 5 of the protocol, which
is composed of a constant number of comparisons. Note that according to the pro-
tocol this layer must first apply the following test to A’s input: if all previous
comparisons yielded the result that mA < mB (in which case uA = ∞) then A’s

398 G. Aggarwal, N. Mishra and B. Pinkas

Fig. 4. A single stage of the circuit.

input must be greater than the last value of lA. Otherwise, A’s input must be equal
to the last value of uA. A similar test is applied to B’s input.

The circuit is evaluated using Yao’s protocol for secure two-party computation, secure
against malicious parties [16,25,32,33]. Namely, one party (the circuit constructor) as-
signs garbled values to the wires, and the other party (the circuit evaluator) computes
the circuit. The latter party uses oblivious transfer in order to learn the garbled values
of its input wires.

The parties gradually provide the inputs to the layers. They first provide inputs
mA,1,mB,1 to the first layer, observe its output and based on it provide the inputs
mA,2,mB,2 to the second layer. Similarly, the parties must observe the output of the
ith layer before providing the input to layer i + 1.

Claim 1. The circuit securely implements the functionality defined by Protocol FIND-
RANKED-ELEMENT.

Proof. The claim is proved by comparing the protocol to a protocol which is run in
the hybrid model of [7], and observing that the two are equivalent. The latter protocol
computes the function securely, based the composition theorem.

Let G1 be a game in which the parties implement a secure two-party evaluation of
the circuit described above. Let G2 be a game in which each layer of the circuit is
computed separately, where circuit Ci computes layer i, and the parties themselves
communicate the “state” information from layer to layer while ensuring the confiden-
tiality and authenticity of this information. This is done by Ci outputting shares of the
state information, which are encrypted and authenticated by the secure computation of
circuit Ci and are verified and decrypted by the secure computation of circuit Ci+1.
In more detail, the state information that is generated by layer i includes the values of
lA,i+1, lB,i+1, uA,i+1 and uB,i+1. It must be input to the computation of layer i + 1,
without revealing it to any of the parties, and while ensuring that none of the parties
changes it. This is done using simple encryption and authentication as follows:

• Denote the state information output from layer i as si = 〈lA,i+1, lB,i+1, uA,i+1,

uB,i+1〉, or s for short. The circuit chooses two random values sA, sB such that
s = sA ⊕ sB .6 The output learned by A contains sA, while B’s output contains sB .

6 The circuit must therefore generate random output. This can be implemented by requiring each party
to provide a random input to the circuit, and letting the circuit compute the exclusive-or of these inputs. If

Secure Computation of the Median (and Other Elements of Specified Ranks) 399

• The circuit chooses two random values αA,βA and computes the value rB = αA ·
sB + βA mod p, where p is a large prime. It provides αA,βA as part of A’s output,
and rB as part of B’s output.

Similarly, the circuit chooses two random values αB,βB and computes the value
rA = αB · sA + βB mod p. It provides αB,βB as part of B’s output, and rA as part
of A’s output.

• The input for the circuit Ci+1 computing layer i + 1 contains mA,i+1, sA, rA,αA,

βA from party A, and mB,i+1, sB, rB,αB,βB from party B . The circuit first verifies
that rB = αA · sB + βA mod p and that rA = αB · sA + βB mod p. If any of these
checks fails then it aborts the computation. Otherwise it computes s = sA ⊕ sB and
continues the computation as before.

It can be verified that in G2, for every layer i, (1) none of the parties learns any infor-
mation about the state s, and (2) if any of the parties tries to change the state that is
transferred from layer i to layer i + 1, the protocol aborts with probability 1 − 1/p.

To show that G1 and G2 are indistinguishable, let us refine the distinction between
the two games, and define game Gi

1 as one in which the last i layers are imple-
mented as in G2, while the remaining layers as implemented as in G1. G0

1 is there-

fore equal to G1, while G
j+1
i is equal to G2. For any i, the computation of the two

games Gi+1
1 and Gi

1 can only differ if one of the parties corrupts the state informa-
tion passed between the two steps. This, however, happens with probability of at most
1/p for every state information. Therefore, assuming that 1/p is negligible, a hybrid
argument shows that for every adversary attacking G2 there is an adversary attacking
G1 which can generate an indistinguishable transcript with all but negligible probabil-
ity.

We define G3 as a game in which each of the secure computations of G2 (i.e., com-
putation of a circuit Ci) is replaced by a computation by a trusted third party, as in the
hybrid model of [7]. By the composition lemma of [7]. This implementation surely se-
curely implements the functionality defined by the protocol. The composition theorem
states that if we replace the trusted party of game G3 with secure protocols for comput-
ing each layer, then the composition of these protocols is secure. Namely, this means
that the computation in G2 is secure and consequently that G1 is secure. �

References

[1] M. Atallah, M. Blanton, K. Frikken, J. Li, Efficient correlated action selection, in Financial Cryptogra-
phy (2006), pp. 296–310

[2] D. Beaver, Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority.
J. Cryptol. 4(2), 75–122 (1991)

[3] D. Beaver, S. Micali, P. Rogaway, The round complexity of secure protocols. In Proceedings of the
Twenty-Second Annual ACM Symposium on the Theory of Computing (1990), pp. 503–513

we do not want the parties to provide a random input which is as long as the randomness required by the
circuit computation, the parties can be asked to input a random seed (say, a 128-bit long random string), and
the circuit can then compute the exclusive-or of these seeds, and use the result as a seed to a pseudo-random
number generator.

400 G. Aggarwal, N. Mishra and B. Pinkas

[4] I. Blake, V. Kolesnikov, Strong conditional oblivious transfer and computing on intervals, in 10th In-
ternational Conference on the Theory and Application of Cryptology and Information Security ASI-
ACRYPT (2004), pp. 515–529

[5] C. Cachin, Efficient private bidding and auctions with an oblivious third party, in Proc. 6th ACM Con-
ference on Computer and Communications Security (1999), pp. 120–127

[6] C. Cachin, S. Micali, M. Stadler, Computationally private information retrieval with polylogarithmic
communication, in Advances in Cryptology: EUROCRYPT ’99 (1999), pp. 402–414

[7] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202
(2000)

[8] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in Proceed-
ings of the 42nd Annual Symposium on Foundations of Computer Science (2001), pp. 136–145

[9] R. Canetti, Y. Ishai, R. Kumar, M. Reiter, R. Rubinfeld, R. Wright, Selective private function evaluation
with applications to private statistics, in Proceedings of Twentieth ACM Symposium on Principles of
Distributed Computing (2001), pp. 293–304

[10] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two party computation, in 34th
ACM Symposium on the Theory of Computing (2002), pp. 494–503

[11] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, R. Wright, Secure multiparty computation
of approximations, in Proceedings of 28th International Colloquium on Automata, Languages and Pro-
gramming (2001), pp. 927–938

[12] M. Fischlin, A cost-effective pay-per-multiplication comparison method for millionaires, in RSA Secu-
rity 2001 Cryptographer’s Track, vol. 2020 (2001), pp. 457–471

[13] M. Franklin, M. Yung, Communication complexity of secure computation, in Proceedings of the Twenty-
Fourth Annual ACM Symposium on the Theory of Computing (1992), pp. 699–710

[14] P. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate histograms, in Proc.
23rd Int. Conf. Very Large Data Bases (1997), pp. 466–475

[15] O. Goldreich, Foundations of Cryptography: vol. 2, Basic Applications (Cambridge University Press,
Cambridge, 2004)

[16] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or A completeness theorem for
protocols with honest majority, in Proceedings of the 19th Annual Symposium on Theory of Computing,
May 1987, pp. 218–229

[17] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, in
Proceedings of Advances in Cryptology (1991), pp. 77–93

[18] Y. Ishai, K. Nissim, J. Kilian, E. Petrank, Extending oblivious transfers efficiently, in 23rd Annual
International Cryptology Conference (2003), pp. 145–161

[19] H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, T. Suel, Optimal histograms with
quality guarantees, in Proc. 24th Int. Conf. Very Large Data Bases (1998), pp. 275–286

[20] S. Jarecki, V. Shmatikov, Efficient two-party secure computation on committed inputs, in EUROCRYPT
’07 (Springer, Berlin, 2007), pp. 97–114

[21] E. Kushilevitz, N. Nisan, Communication Complexity (Cambridge University Press, Cambridge, 1997)
[22] S. Laur, H. Lipmaa, Additive conditional disclosure of secrets and applications. Cryptology ePrint

Archive, Report 2005/378, 2005
[23] H. Lin, W. Tzeng, An efficient solution to the millionaires’ problem based on homomorphic encryption,

in Third International Conference Applied Cryptography and Network Security (2005), pp. 456–466
[24] Y. Lindell, B. Pinkas, Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)
[25] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence of mali-

cious adversaries, in EUROCRYPT ’07 (Springer, Berlin, 2007), pp. 52–78
[26] S. Micali, P. Rogaway, Secure computation, in Proceedings of Advances in Cryptology (1991), pp. 392–

404
[27] M. Naor, K. Nissim, Communication preserving protocols for secure function evaluation, in Proceed-

ings of the 33rd Annual ACM Symposium on Theory of Computing (2001), pp. 590–599
[28] B. Pfitzmann, M. Waidner, Composition and integrity preservation of secure reactive systems, in ACM

Conference on Computer and Communications Security (2000), pp. 245–254
[29] V. Poosala, V. Ganti, Y. Ioannidis, Approximate query answering using histograms. IEEE Data Eng.

Bull. 22(4), 5–14 (1999)
[30] M. Rodeh, Finding the median distributively. J. Comput. Syst. Sci. 24(2), 162–166 (1982)

Secure Computation of the Median (and Other Elements of Specified Ranks) 401

[31] L. von Ahn, N. Hopper, J. Langford, Covert two-party computation, in Proceedings of the Thirty-Seventh
Annual Acm Symposium on Theory of Computing (2005), pp. 513–522

[32] A. Yao, Protocols for secure computations, in Proceedings of the 23rd Symposium on Foundations of
Computer Science (1982), pp. 160–164

[33] A. Yao, How to generate and exchange secrets, in Proceedings of the 27th Symposium on Foundations
of Computer Science (1986), pp. 162–167

	Secure Computation of the Median (and Other Elements of Specified Ranks)
	Abstract
	Introduction
	Prior Work
	Results
	Techniques
	Efficient Secure Computation via Reduction and Composition
	Overview

	Preliminaries
	Semi-Honest vs. Malicious Adversary
	Security in the Two-Party Case
	Security in the Multi-Party Case
	A Composition Theorem

	Two-Party Computation of the kth Element
	Secure Comparison
	A Protocol for Semi-Honest and Malicious Parties
	Security Against a Malicious Adversary
	Overhead
	Padding
	Proof of Correctness

	Security for the Semi-Honest Case
	Variants
	Handling Duplicate Items
	Hiding the Size of the Inputs

	Security for the Malicious Case
	Implementing the Functionality of the Malicious Case Protocol, and Relation to Reactive Computation

	Multi-Party Computation of the kth Ranked Element
	Malicious Adversaries
	Correctness
	Overhead
	Security

	Acknowledgements
	Appendix: Implementing Reactive Computation in the Two-Party Case
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

