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Abstract. A provably secure countermeasure against first order side-channel at-

tacks was proposed by Nikova et al. (P. Ning, S. Qing, N. Li (eds.) International

conference in information and communications security. Lecture notes in computer

science, vol. 4307, pp. 529–545, Springer, Berlin, 2006). We have implemented the

lightweight block cipher PRESENT using the proposed countermeasure. For this pur-

pose we had to decompose the S-box used in PRESENT and split it into three shares

that fulfill the properties of the scheme presented by Nikova et al. (P. Lee, J. Cheon

(eds.) International conference in information security and cryptology. Lecture notes

in computer science, vol. 5461, pp. 218–234, Springer, Berlin, 2008). Our experi-

mental results on real-world power traces show that this countermeasure provides

additional security. Post-synthesis figures for an ASIC implementation require only

2,300 GE, which makes this implementation suitable for low-cost passive RFID-

tags.
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1. Introduction

1.1. Motivation

Increasingly, everyday items are enhanced to pervasive devices by embedding comput-
ing power, and their interconnection leads to Mark Weiser’s famous vision of ubiqui-
tous computing (ubicomp) [45], which is widely believed to be the next paradigm in
information technology. Pervasiveness requires mass deployment, which in turn im-
plies harsh cost constraints on the used technology. The cost constraints imply in par-
ticular for application-specific integrated circuits (ASICs) that power, energy, and area
requirements must be kept to a minimum. Even Moore’s law needs to be interpreted
contrarily here: rather than doubling of performance, the price for constant computing
power halves each 18 months. This interpretation leads to interesting conclusions, be-
cause many foreseen applications require a minimum amount of computing power, but
at the same time have extremely tight cost constraints (e.g. RFID in tetra packs). As a
consequence, these applications are not realized yet, simply because they do not pay off.
Moore’s law however halves the price for a constant amount of computing power every
18 months, and consequently enables such applications after a certain period of time.
Therefore, a constant or even increasing demand for the cheapest (read lightweight)
solutions can be foreseen.

The mass deployment of pervasive devices promises many benefits such as lower
logistic costs, higher process granularity, optimized supply chains, or location-based
services among others. Besides these benefits, there are also risks inherent in pervasive
computing, since many foreseen applications are security sensitive. With the widespread
presence of embedded computers in such scenarios, security is a striving issue, because
the potential damage of malicious attacks also increases. An aggravating factor is that
pervasive devices are usually not deployed in a controlled but rather in a hostile envi-
ronment, i.e., an adversary has physical access to or control over the devices. This adds
the whole field of physical attacks to the potential attack scenarios. Most notable are
the side-channel attacks, especially simple, differential and correlation power analy-
ses [4,20].

In practice, a complete—i.e., including the analog part—low-cost RFID tag might
have between 1,000 and 10,000 GE1 and for security components only 200–2,000 GE
may be available [15]. A major chip manufacturer only considers side-channel resistant
implementations for its next generation of security RFID-tags, which due to cost con-
straints have to be smaller than 3,000 GE. In this article we will show how to tackle this
challenging task. We provide implementation details for five architectures and assess
their level of side-channel resistance by evaluating real power traces obtained from a
field programmable gate array (FPGA)-based side-channel standard platform.

1.2. Related Work

Though the topic of lightweight and side-channel resistant implementation is a press-
ing issue, only a few results that claim to be lightweight have been published so far.

1 Gate equivalent is a measure for area requirements of integrated circuits (IC). It is derived by dividing
the area of the IC by the area of a two-input NAND gate with the lowest driving strength.
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Karpinskyy et al. present a masked implementation of mCrypton [22] that requires
6,929 GE for a 64 bit key and 7,446 GE for a more adequate 96 bit key [16]. However,
the authors provide no evaluation of the side-channel resistance, which leaves an impor-
tant question open. Regazzoni et al. have proposed an electronic design automatization
(EDA) design flow and evaluation framework for differential power analysis (DPA)-
resistant instruction set extensions for embedded processors in [33]. Though they also
used PRESENT as an exemplary block cipher, they do not focus on lightweight ASIC
implementations. Their proposed flow rather allows the simulation and evaluation of
possible trade-offs for embedded processors in a very early design step. Furthermore,
they use DPA-resistant logic styles, while we focus on algorithmic countermeasures.

1.3. Our Work

First we identify PRESENT [3] as the most suitable lightweight encryption algorithm
and the masking scheme of Nikova et al. [27–29] as the most suitable countermea-
sure for our purposes. Since PRESENT uses an S-box S(x) that is composed of four
quadratic and cubic Boolean functions, but the masking scheme requires only quadratic
Boolean functions, we first had to decompose the S-box into two S-boxes F(x),G(x)

with algebraic degree 2, s.t. S(x) = F(G(x)). moderate, ranging from 2,282 GE for a
moderately secured implementation up to 3,582 GE for a highly secure implementation.
The simulated current consumption for all variants is in the range of single digit µA and
thus well suited for passive RFID implementations. To speed up the search, we apply
a series of tricks and exploit some properties of Boolean functions so that we can de-
crease the search space for all possible decompositions from 288 to 226, which takes a
few minutes on a standard PC. Building on these findings, we describe five lightweight
hardware architectures that allow a smoothly scalable security-cost trade-off. As a result
it turns out that the area requirements are surprisingly moderate, ranging from 2,282 GE
for a moderately secured implementation up to 3,582 GE for a highly secured imple-
mentation. The simulated current consumption for all variants is in the range of single
digit µA and thus well suited for passive RFID implementations. We substantiate our
claims for all profiles by a complete side-channel evaluation based on real-world power
traces that we obtain from a side-channel attack standard evaluation board (SASEBO).
We use a variety of different power models—e.g., Hamming weight (HW) of the S-box
input, HW of the S-box output, and (partial) Hamming distance of the state register—to
show that our most secure proposal is resistant against first order DPA attacks even if an
attacker is capable of measuring 5,000,000 power traces. Furthermore, we use 100,000
measurements to show that if an attacker is not able to profile the device, even our
smallest proposal (2,282 GE) provides first order DPA resistance. Our results are the
first published first order DPA-resistant implementations that come close to the often-
cited 2,000 GE barrier. In practice, however, this barrier is not fixed but rather fuzzy;
hence, our implementations are well suited for low-cost passive RFID-tags.

1.4. Outline

We first give a brief introduction to differential power analysis and countermeasures
in the following section. We point out that, especially for low-power lightweight imple-
mentations, a strong need for DPA countermeasures exists. A general overview of coun-
termeasures follows a more detailed description of the masking scheme presented in [27,
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28], which we use for our experimental evaluation. In Sect. 3 we start with an explana-
tion of why we chose PRESENT as the target algorithm and give a brief description of
it. In the remainder of Sect. 3 we explain how to efficiently decompose the PRESENT
S-box into two S-boxes and share it using six S-boxes. Based on these findings, in
Sect. 4 we propose five different hardware architectures of a serialized PRESENT and
mount DPA attacks on its real-world power traces in Sect. 5. Finally we conclude this
article in Sect. 6.

2. Introduction to DPA

Side-channel cryptanalysis has emerged as a serious threat for smart cards and other
types of pervasive devices performing cryptographic operations. It was demonstrated
in a number of publications that side-channel attacks are an extremely powerful and
practical tool for breaking unprotected (or insufficiently protected) implementations of
cryptosystems. These attacks exploit the fact that the execution of a cryptographic al-
gorithm on a physical device leaks information about sensitive data (e.g., secret keys)
involved in the computations.

2.1. History

Though these attacks were already discovered accidentally in 1943 [40], it took more
than 50 years for the first publication of power analysis attacks to appear in 1999 [20].
Many sources of side-channel information have been discovered in recent years, includ-
ing the timing characteristics of a cryptographic algorithm [19], as well as deliberately
introduced computational faults [1], but most notable are power analysis attacks [20],
which evolved to a unique scientific sub-field with an ever-increasing number of publi-
cations.

In the context of power analysis, contrary to mathematical cryptanalyses which
mostly require pairs of plain- and ciphertexts, knowing either the input or the output
of the cipher would be adequate to mount a key-recovery attack. Measuring and evalu-
ating the power consumption captured from a cryptographic device allows for exploiting
information-dependent leakage and combining with the knowledge about the plaintext
or ciphertext in order to extract the secrets. A simple power analysis (SPA), which relies
on visual inspection of power traces, e.g., measured from an embedded microcontroller
of a smart card, aims at recovering a secret by means of (ideally) a single power trace
while a differential power analysis (DPA) utilizes statistical methods and evaluates sev-
eral power traces belonging to known/chosen different plain- or ciphertexts to recover
the secrets [20]. In a correlation power analysis (CPA), which is a general form of
DPA, measurements are compared to estimations obtained by means of a theoretical
model which fits to the characteristics of the target implementation [4]. A DPA/CPA
requires no knowledge about the concrete implementation of the cipher and can hence
be applied to any unprotected black box implementation.

2.2. Lightweight Implementations and DPA

Power optimization techniques are an important tool for lightweight implementations of
specific pervasive applications. On the one hand they also strengthen implementations
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against side-channel attacks, because they lower the power consumption (the signal),
which decreases the signal-to-noise ratio (SNR). However, on the other hand power
saving techniques also weaken the resistance against side-channel attacks. One conse-
quence of the power minimization goal is that in the optimal case only those parts of the
data path are active that process the relevant information. Furthermore, the width of the
data path, i.e., the amount of bits that are processed at one point in time, is reduced by
serialization. This however implies that the algorithmic noise is reduced to a minimum,
which reduces the amount of required power traces for a successful side-channel at-
tack. Even worse, the serialized architecture allows the adversary a divide-and-conquer
approach, which further reduces the complexity of a side-channel attack. Summariz-
ing, it can be concluded that lightweight implementations greatly enhance the success
probability of a side-channel attack. The practical side-channel attack [7] on KeeLoq
applications [18] impressively underlines this observation.

2.3. Countermeasures

Several schemes have been proposed to protect cryptographic implementations against
power analysis (DPA). A DPA countermeasure aims at preventing a dependency be-
tween the power consumption of a cryptographic device and intermediate values of the
executed algorithm [24]. Hiding and masking are among the most common counter-
measures on either the hardware or the software level. The goal of hiding methods is to
increase the noise factor [47] or to equalize the power consumption values [41] inde-
pendently of the processed data, thereby decreasing the SNR.

Alternative DPA-resistant logic styles, such as SABL [41] and adiabatic logic tech-
niques [17], require a full-custom design flow and cannot be used with semi-custom
design tools. As a consequence it is not possible to evaluate the effectiveness of a coun-
termeasure on an FPGA, but manufacturing of an ASIC is required. This is not only an
expensive but also a time-consuming task. Moreover, those DPA-resistant logic styles
which can be used with semi-custom design tools, e.g., WDDL [42] and MDPL [32],
have strong data-dependent leakage which makes them vulnerable to straightforward
DPA attacks [31,37]. Therefore, we have focused on countermeasures at the algorith-
mic level.

2.4. Masking

Masking countermeasures rely on randomizing key-dependent intermediate values
processed during the execution of the cipher and can be employed on either an algorith-
mic level [30] or a cell level [32]. Masking is in fact a (2,2) secret sharing scheme [2,
35], where both shares of the secret are required to proceed.

Algorithmic masking schemes often are combined with randomizing the order of
the operations, i.e., shuffling [13], when applied on microprocessor-based platforms. In
spite of the increased efforts required by an adversary, e.g., higher order attacks [44] or
sophisticated power models [25], none of the techniques proposed so far can perfectly
counteract a key recovery by means of DPA in practice. In short, currently there exists
no perfect protection against DPA attacks. However, applying appropriate countermea-
sures makes the attacker’s task more difficult and expensive. Chari et al. have shown
in [6] that up to nth order DPA attacks can be prevented by using n masks. Follow-
ing this direction, Nikova et al. extend the idea of masking with more than two shares
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in [27] to prevent those attacks which use sophisticated power models, e.g., counting
the glitches occurring when the inputs of a complex combinational circuit change. They
show that nonlinear functions implemented in such a way achieve provable security
against first order DPA attacks and also resist higher order attacks that are based on
a comparison of mean power consumption. Estimations of a hardware implementa-
tion of these ideas are presented in [28], but until now no real-world implementation
of this scheme has been published. For a detailed description and theoretic founda-
tions of their scheme we refer to their article in this special issue [29]. We chose their
scheme, because it is a promising candidate for our goal of a lightweight and side-
channel resistant implementation. This conclusion has also been drawn in [26], where
an overview of the suitability of DPA countermeasures for lightweight implementations
is provided.

3. Shared Computation of the PRESENT S-box Using Quadratic S-boxes

Our goal is to provide a lightweight and side-channel resistant implementation of a sym-
metric encryption algorithm with a reasonable security level that is suitable for passive
RFID-tags. A glance at the hardware figures from several algorithms (see Table 1) leads
us directly to PRESENT as the most suitable algorithm.

3.1. Algorithmic Description of PRESENT

PRESENT [3] is an aggressively hardware-optimized block cipher that was designed for
ultra-constrained devices, such as passive RFID-tags. It has a block size of 64 bits and
specifies two key lengths: 80 and 128 bits, referred to as PRESENT-80 and PRESENT-
128, respectively. In the following we focus on PRESENT-80, since this is often stated
as an adequate security level for pervasive applications. PRESENT consists of 31 full
rounds and a final key whitening. Each round comprises an XOR with the roundkey,
a substitution layer, and a permutation layer. The substitution layer consists of 16 appli-
cations of the same S-box with the following truth table:

Table 1. Hardware implementation results of selected symmetric encryption algorithms.

Algorithm Key Block Cycles/ Tech. Area
size size block [µm] [GE]

Stream ciphers
Trivium [11] 80 1 1 0.13 2,599
Grain [11] 80 1 1 0.13 1,294

Block ciphers
PRESENT [34] 80 64 547 0.18 1,075
SEA [23] 96 96 93 0.13 3,758
mCrypton [22] 96 64 13 0.13 2,681
ICEBERG [23] 128 64 16 0.13 7,732
HIGHT [14] 128 64 34 0.25 3,048
AES [8] 128 128 1,032 0.35 3,400
AES [12] 128 128 160 0.13 3,100
DESXL [21] 184 64 144 0.18 2,168
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The permutation layer of PRESENT is a bit permutation that moves bit i to bit posi-
tion P(i) according to the following equation:

P(i) =
{

i · 16 mod 63, i ∈ {0, . . . ,62},
63, i = 63.

The key schedule generates a 64 bit roundkey out of the 80 bit key state for every
round. First the user-supplied key is stored in a key register K and represented as
k79k78 · · ·k0. At round i the 64 bit round key Ki = κ63κ62 · · ·κ0 consists of the 64 left-
most bits of the current contents of register K . Thus at round i we have that

Ki = κ63κ62 · · ·κ0 = k79k78 · · ·k16.

After extracting the round key Ki , the key register K = k79k78 · · ·k0 is updated as fol-
lows.

1. [k79k78 · · ·k1k0] = [k18k17 · · ·k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15] ⊕ round_counter

Note that the key schedule uses the same S-box as the data path. Further details of
PRESENT can be found in [3].

3.2. Decomposition of PRESENT S-box into Composition of Two Quadratic S-boxes

Since the PRESENT S-box S(x) has algebraic degree 3, we want to decompose the
PRESENT S-box into a composition of two quadratic S-boxes F(X) and G(X) (refer
to Remark 1 later for the motivation). Each of these quadratic decompositions then has
to be split into three shares to apply the secret sharing countermeasure to the PRESENT
algorithm. Figure 1 depicts our approach graphically

S(X) = F
(
G(X)

)
where S,F,G : GF(2)4 → GF(2)4. (1)

Fig. 1. The original PRESENT S-box S (left) is first decomposed into two S-boxes F and G (center) which
then are split into three shares each (right).
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Write the input and output of G(X) as 4 bit vectors X = (x, y, z,w) and G(X) =
(g3(X), g2(X), g1(X), g0(X)). Each gi : GF(2)4 → GF(2) is a quadratic Boolean
function whose algebraic normal form (ANF) is

gi(x, y, z,w) = a0 + a1x + a2y + a3z + a4w + a12xy + a13xz

+ a14xw + a23yz + a24yw + a34zw.

We do the same likewise for F(X). From the ANF, there are 11 coefficients, each taking
two possible values {0,1}. Therefore, by looking at the eight output bits of F,G, there
are at most (211)8 = 288 possibilities for the decomposition. A straightforward approach
to search through this space for possible decompositions will take too long. We shall
apply a few shortcuts to narrow down the search space.

Observation 1. Since S(X) = F(G(X)) is a bijection, then F(X) and G(X) must
also be bijections.

Thus we can write the decomposition S(X) = F(G(X)) as

S
(
G−1(X)

) = F(X).

Now we just need to search through all possible quadratic functions G(X) and compute
F(X) = S(G−1(X)) to see if it is also a quadratic function. In this way, we cut down
the search space from 288 to (211)4 = 244. This is doable on a workstation but we would
like to cut down the complexity some more.

Note that we can rewrite S(X) = F(G(X)) as S(X) = F ′(G′(X)) where G′(X) =
G(X) + G(0) and F ′(X) = F(X + G(0)). Thus we can assume that G(0) = 0 and get
the other decompositions directly by substituting 15 nonzero values for G(0). Therefore,
we only need to vary the 10 nonconstant coefficients in the ANF and the search space
is reduced to (210)4 = 240.

We can also make use of the following well-known result on the balancedness of
a vectorial Boolean function and each component output function. We say a vectorial
function G : GF(2)n → GF(2)m is balanced if each Y ∈ GF(2)m has exactly 2n−m

preimages.

Proposition 1 [5, Proposition 2]. Let G : GF(2)n → GF(2)m; then G(X) is balanced
if and only if every linear combination of output bits is a balanced Boolean function,
i.e.,

∑
i∈I gi(X) : GF(2)n → GF(2) is balanced for every index set I where G(X) =

(gm−1(X), . . . , g0(X)).

To go through all bijective and quadratic G(X) (and test if S(G−1(X)) is quadratic),
we use a 4-layer nested loop to vary the 4 components gi(X) of G(X), while ensuring
that

∑
i∈I gi(X) is balanced at each step. This allows us to further reduce the search

space from 240 to 226, which can be completed in a few minutes on a PC.
We find 141,120 decompositions S(X) = F(G(X)) with G(0) = 0. By varying G(0)

for 15 nonzero 4 bit vectors in S(X) = F ′(G′(X)) as explained above, we get all 15 ×
141,120 = 2,116,800 possible decompositions of S(X) = F(G(X)). We list in Table 2
one such example.
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Table 2. Look-up tables of the quadratic S-boxes F(X) and G(X) for a decomposition of the PRESENT
S-box S(X) = F(G(X)).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

G[x] 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F
F [x] 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

3.3. Efficient Shared Computation of the Component Functions

For secure implementation of the PRESENT S-box S(X) = F(G(X)) against side-
channel attack, we need to split both the computation of F(X) and G(X) into shares.
For efficiency, we split F,G into 3 input and output shares, which is the minimum num-
ber of shares required to satisfy the following properties for protection against first order
side-channel attacks [28]. We shall explain the properties for F , noting that they must
hold for G as well.

1. Correctness and Noncompleteness [28, Sects. 3.2, 3.3]. We decompose F as fol-
lows:

F(X1 + X2 + X3) = F1(X2,X3) + F2(X1,X3) + F3(X1,X2).

where Xi ∈ GF(2)4 are the 3 input shares and Fi : GF(2)8 → GF(2)4 are the
3 output shares of F . Correctness means the components F1,F2,F3 sum up to the
function F . Noncompleteness means each Fi is independent of the variable Xi .
for G.

2. Uniform [28, Sect. 3.4]. For each unshared input, each shared output value
must be equally likely: if we fix X ∈ GF(2)4, then as we vary through all
(X1,X2,X3) ∈ GF(2)12 with X = X1 + X2 + X3, the output (F1(X2,X3),

F2(X1,X3),F3(X1,X2)) ∈ GF(2)12 is uniformly distributed. Likewise for G(X).
In short,

(X1,X2,X3) �→ (
F1(X2,X3),F2(X1,X3),F3(X1,X2)

)
is a 12 bit permutation.

Write

F(x, y, z,w) = A0 + A1x + A2y + A3z + A4w + A12xy + A13xz

+ A14xw + A23yz + A24yw + A34zw,

where (x, y, z,w) ∈ GF(2)4 and each coefficient Ai ∈ GF(2)4 is a 4 bit vector. We also
denote the input share Xi by the 4 bit vector (xi, yi, zi ,wi) for i = 1,2,3 and expand:

F(X1 + X2 + X3)

= F(x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3,w1 + w2 + w3)

= A0 + A1(x1 + x2 + x3) + A2(y1 + y2 + y3) + A3(z1 + z2 + z3) + · · ·
+ A24(y1 + y2 + y3)(w1 + w2 + w3) + A34(z1 + z2 + z3)(w1 + w2 + w3)

= F1(X2,X3) + F2(X1,X3) + F3(X1,X2),
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and place the monomials in the expansion in different output shares Fi . For monomi-
als involving two indices, it is obvious which Fi to place them in. For example, we
must place monomials y1w2 and z2w1 in F3(X1,X2). For monomials involving just
one index, e.g., x1 or y2w2, we adopt the convention that terms with index 1 (resp. 2, 3)
are placed in F3 (resp. F1, F2). The constant term is placed in F1. For instance, F1 is
defined by

F1(X2,X3) = F1(x2, y2, z2,w2, x3, y3, z3,w3)

= A0 + A1x2 + A2y2 + A3z2 + A4w2 + A12(x2y2 + x2y3 + x3y2)

+ A13(x2z2 + x2z3 + x3z2) + A14(x2w2 + x2w3 + x3w2)

+ A23(y2z2 + y2z3 + y3z2) + A24(y2w2 + y2w3 + y3w2)

+ A34(z2w2 + z2w3 + z3w2).

Remark 1. In the above construction, we see that the expanded quadratic terms can
easily be placed into 3 noncomplete shares. This explains why we had to split S(X)

into quadratic F(X),G(X). In comparison, if we had wanted to split the cubic function
S(X) into 3 shares in the same way, it would not be possible because of the existence
of cubic terms.

It turns out that exactly 3/7 of the 2,116,800 decompositions automatically satisfy the
uniformity condition for both F1,F2,F3 and G1,G2,G3 without the need for correc-
tion terms: thus we have 3/7 × 2,116,800 = 907,200 decompositions of the PRESENT
S-box into quadratic shares which satisfy the correctness, noncompleteness, and unifor-
mity conditions of [28].

Among these, we choose the decomposition that gives the most space-efficient hard-
ware implementation. Note that an XOR takes twice as much resources to implement as
an AND gate. So we shall give a weightage of 1 to each AND and 2 to each XOR gate
in the shares Fi,Gi . Equivalently, we would like to find the pairs (F,G) where

Weighted Sum

= 2 × (Sum of Hamming weight of constant terms of F,G)

+ 6 × (Sum of Hamming weight of linear coefficients of F,G)

+ 27 × (Sum of Hamming weight of quadratic coefficients of F,G),

is minimum. This is because each constant term uses an XOR, which gives a weightage
of 2. Each linear term of F is expanded into 3 linear terms in Fi where 3 XORs give a
weightage of 3 × 2 = 6. Each quadratic term is expanded into 9 quadratic terms in Fi

where 9 XORs and 9 ANDs give a weightage of 9 × 2 + 9 = 27 (likewise for G).
We found 24 optimal decompositions (F,G) with minimum weighted sum 339. They

all satisfy:

– Sum of Hamming weight of constant terms in (F,G) = 3
– Sum of Hamming weight of linear coefficients in (F,G) = 15
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– Sum of Hamming weight of quadratic coefficients in (F,G) = 9

These functions will give a distributed implementation of the PRESENT S-box that is
secure against side-channel analysis and uses a minimal number of gates. One such
example that we used for implementation is given by the functions G(X),F (X) (in
look-up table format) in Table 2. Their algebraic normal forms (ANFs) are given by:

G(x,y, z,w) = (g3, g2, g1, g0),

g3 = y + z + w, g2 = 1 + y + z, g1 = 1 + x + z + yw + zw,

g0 = 1 + w + xy + xz + yz.

F (x, y, z,w) = (f3, f2, f1, f0),

f3 = y + z + w + xw, f2 = x + zw, f1 = y + z + xw,

f0 = z + yw.

Their output shares (F1,F2,F3) and (G1,G2,G3) can be calculated by the formulas in
this section. The ANFs of the six output shares are listed in the Appendix A. In the fol-
lowing sections we will use these output shares to implement five different lightweight
hardware architectures of PRESENT and attack them by DPA.

4. Hardware Architectures

This section is dedicated to the description of the different hardware profiles that we
will attack in the next section. For this purpose we first introduce the design flow used
before we detail the hardware architectures and finally summarize the implementation
results.

4.1. Design Flow

In the last section we decomposed the PRESENT S-box S(x) into two S-boxes F(x)

and G(x) with algebraic degree 2 and split them into three shares (F1,F2,F3) and
(G1,G2,G3) (see the Appendix A for their ANFs). For the hardware implementation
in VHDL, we used the Boolean minimization tool BOOM II [9,10] to obtain their 24
Boolean functions. For functional simulation we used Mentor Graphics ModelSimXE
6.4b, and Synopsys DesignCompiler version A-2007.12-SP1 [38] was used to synthe-
size the designs to the Virtual Silicon (VST) standard cell library UMCL18G212T3,
which is based on the UMC L180 0.18 µm 1P6M logic process and has a typical volt-
age of 1.8 V [43]. We used Synopsys Power Compiler version A-2007.12-SP1 [39] to
estimate the power consumption of our ASIC implementations. For synthesis and for
power estimation we advised the compiler to keep the hierarchy and use a clock fre-
quency of 100 kHz, which is a widely used operating frequency for RFID applications.
Note that the wire load model used, though it is the smallest available for this library,
still simulates the typical wire load of a circuit with a size of around 10,000 GE.

To substantiate our claims on the efficacy of the proposed countermeasures, we de-
cided to implement the ASIC cores on a SASEBO to obtain and evaluate real-world
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power traces. The crypto core FPGA on SASEBO consists of an XC2VP7 Virtex-II Pro
(Package FG456 with speed grade-5) from Xilinx [46]. For design synthesis, implemen-
tation, and configuration of SASEBO we used Xilinx ISE v10.1.03 WebPACK. For the
power measurements on SASEBO we had to modify the finite state machine of the cryp-
tographic core in order to implement a handshaking protocol, because the control FPGA
and the crypto core FPGA have to be synchronized. This modification has no effect on
the power measurements, but results in a more complex finite state machine and intro-
duces some timing overhead. In a typical application scenario the cryptographic core
would be part of an integrated ASIC, hence no such I/O communication is required.
Consequently, in this section we discuss the implementation cost of a cryptographic
core without these I/O overheads.

4.2. Different Countermeasure Profiles for Different Security Levels

To fully exploit the security-cost trade-off inherent in strengthening hardware against
side-channel attacks, we propose five different profiles with different security levels.
These profiles combine none, one, or many of the following countermeasure options:

Option 1: Sharing the data path
Option 2: Sharing the key schedule
Option 3: Randomly permuting the shares

As depicted in the left part of Table 3, profile 1 does not apply any of the counter-
measures. Profile 2 shares the data path and profile 3 additionally permutes the shares.
Profile 4 shares the data path and the key schedule and profile 5 applies all countermea-
sures.

The overall architecture of all variants is depicted in Fig. 2, where we left out further
details such as the finite state machine and control and clock signals for the sake of
clarification. As one can see, the core has two 4 bit wide inputs (data_in, key) and
one 4 bit wide output (data_out) that is gated with an AND gate to prevent leak-
age. The unprotected implementation (profile 1, solid lines) consists of the State and
the Key module, an XOR, a MUX, and a standard (i.e. not decomposed, not shared)
PRESENT S-box. The State module comprises 16 4-bit wide clock-gated registers
with two modes of operation: in serial mode it forwards 4 bits to the next stage, thus
acting like a 4 bit wide shift register, and in parallel mode it performs the permutation
layer of PRESENT within 1 clock cycle. The Key module comprises 20 4-bit wide

Table 3. Post-synthesis implementation results of different architectures of a serialized PRESENT-80. The
power consumption was estimated at 100 KHz and a supply voltage of 1.8 V.

Profile Sharing Rand. Cycles Current Area
Data Key Perm. Total Rel. Total Rel. Total Rel.
[Y/N] [Y/N] [Y/N] [clk] [%] [µA] [%] [GE] [%]

1 N N N 547 100 1.34 100 1,111 100
2 Y N N 547 100 2.86 213 2,282 205
3 Y N Y 547 100 3.10 231 2,417 218
4 Y Y N 578 106 4.23 316 3,322 299
5 Y Y Y 578 106 5.02 375 3,582 322
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clock-gated registers and the serial mode is similar to the one previously described. In
parallel mode the Key module performs the key schedule of PRESENT (61 bit left ro-
tation, substitution of the 4 MSB by the S-box and adding the counter) in one cycle.
One round of PRESENT requires 16 clock cycles to substitute the data state and 1 clock
cycle for the key schedule and the permutation layer. Including the initialization phase,
a total of 31 × (16 + 1) + 20 = 547 clock cycles are required to process one block of
data.

If we make use of the first option (sharing the data path) we obtain profile 2. The
additional hardware requirements for this profile are depicted in Fig. 2 by the dashed
lines. For this profile we need two randomly generated masks (md1 and md2), which
are XORed to the data chunk during initialization. The unmasking step is performed
by simply XORing all three shares yielding the output (data_out). The state of the
masks also needs to be maintained, which leads to two more instantiations of the State
module labeled mask md1 and mask md2. Furthermore, the S-box is now replaced by
a decomposed and shared S-Box module that contains a pipelining stage (see Fig. 1 for
details). Note that in profile 2 the key schedule is not shared, thus it cannot use the shared
S-box. Hence, additionally the standard PRESENT S-box has to be implemented, but
the MUX can be omitted.

Profile 4 shares both the data path and the key schedule, hence it combines option 1
and option 2. In Fig. 2 the additional overhead due to option 2 is denoted by dotted
lines. Similarly to profile 2, during initialization the key is XORed with two randomly
generated masks (mk1 and mk2). Contrary to the data masks, the key masks have to be
removed (by simply XORing them to the data masks) in every round, which leads to
two additional XOR gates. The state of the key masks is stored in two slightly modified
instantiations of the Key module labeled mask mk1 and mask mk2. It suffices to add
the counter once, so in parallel mode mask mk1 and mask mk2 implement one round
of the key schedule without the counter addition. In profile 4 also the key schedule
uses the decomposed and shared S-box, which results in the following area and timing
overhead: three MUXes are required to select the correct input (one for each share); due
to the pipelining stage within the shared S-box, one additional cycle per round (31 in
total) is required to wait for the result of the substitution step of the key schedule.

In order to further strengthen the implementation, we propose to randomly permute
the shares in each round (option 3, dashed and dotted lines in Fig. 2). This countermea-
sure adds noise to the measurements, thus making an attack even harder, at the cost of
additional mask bits per clock cycle. There are six possibilities to permute three inputs,
so three bits are required to select the permutation. In order to make the probability of
a permutation more uniform, we used the encoding of Table A.1 in the Appendix A. If
we permute each of the 4 bits of a data chunk we need 12 randomly generated bits for
one instantiation of the random permutation module. Profile 5 combines data path and
key schedule sharing and permutes all shares in every clock cycle. Therefore 24 ran-
dom bits are required per clock cycle. Profile 3 combines data path sharing and random
permutation, so only 12 random bits are required per clock cycle.

4.3. Performance Figures

Table 3 summarizes the implementation figures of all five profiles. Columns 2 to 4
display if data masking, key masking, or random permutation, respectively, have been
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Table 4. Breakdown of the post-synthesis implementation results of different architectures of a serialized
PRESENT-80. P stands for Profile.

P md1 mk1 Rand. S-box FSM State Key Other Sum Rel.
md2 mk2 Perm. % GE % GE % GE % GE % GE GE %

% GE % GE % GE

1 0 0 0 0 0 0 3 32 13 145 35 389 45 498 4 47 1,111 100
2 34 778 0 0 0 0 17 387 6 146 17 389 22 498 3 75 2,282 205
3 32 778 0 0 5 121 16 387 6 146 16 389 21 498 4 98 2,417 218
4 23 778 29 970 0 0 11 355 5 156 12 389 15 498 5 176 3,322 299
5 22 778 27 970 7 243 10 355 4 155 11 389 14 498 5 194 3,582 322

applied. Then the required clock cycles for processing one block, the average current
consumption in µA, and the area footprint in GE are shown. For these measures we
provide absolute figures and—in order to better highlight the overhead of each combi-
nation of countermeasures—also relative figures. For a detailed breakdown of the area
requirements we refer to Table 4.

Profile 1 is an unprotected serialized PRESENT-80 implementation without any side-
channel attack countermeasures. It has an area footprint of 1,111 GE of which 80%
are required to store the key and the data state. Masking the data path with the secret
sharing countermeasure (profile 2) adds the shared S-box component and two XOR
gates. In addition to this, the mask states have to be stored, which mainly contributes to
the area and power overhead. Adding the random permutation countermeasure leads to
a moderate increment (121 GE) of the area requirements.

Each of profiles 1, 2, and 3 requires 547 clock cycles to process one block of 64 bits.
For initialization 20 clock cycles are required to load the plaintext and key (and both data
masks) into the ASIC. Then each of the 31 rounds requires 16 clock cycles to process
all data chunks by the S-box, and 1 clock cycle for the permutation layer and the key
schedule. It can be clearly seen that neither the sharing of the data path nor the random
permutation of its shares leads to a timing overhead. However, if we also share the key
schedule (as in profiles 4 and 5), one additional cycle per round is required. Therefore,
these architectures require 578 cycles to process one block of 64 bits, which is a very
moderate increment of 6% compared to profiles that do not share the key schedule. Note
that it would also be possible to save this additional clock cycle per round at the cost of
additional hardware resources, e.g., by implementing a second shared S-box. Since the
sum of 578 clock cycles is still moderate for the application scenarios envisioned, we
decided to save area at the cost of 31 additional clock cycles.

The power consumption was estimated at 100 KHz and a supply voltage of 1.8 V.
The unprotected implementation (profile 1) requires 1.34 µA, and these figures increase
up to 5.02 µA for profile 5. All estimated power figures are in the range of µA, thus we
conclude that all implementations are suitable for passive RFID-tags.

5. Experimental Results

In order to practically investigate the resistance of the proposed schemes, they have been
implemented on an FPGA-based platform, and actual power consumption traces have
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been analyzed. In the following subsections first the conditions and specification of the
platform used and the measurement setup are introduced, and then practical results of
different profiles are compared to validate the desired security levels.

5.1. Measurement Setup

Profiles are implemented on a circuit board SASEBO (side-channel attack stan-
dard evaluation board) which is particularly designed for side-channel attack exper-
iments [36]. The profiles are implemented on an xc2vp7 Virtex-II Pro FPGA [46],
i.e., the crypto FPGA of the target SASEBO, and the clock signal is provided by a
1.8432MHz oscillator.2 Power traces are collected using a LeCroy WP715Zi 1.5 GHz
oscilloscope at a sampling rate of 10 GS/s and by means of a differential probe which
captures the voltage drop of a 1� resistor at VDD (3.3V) path.

5.2. Side-Channel Resistance

We first focus on the unprotected version, i.e., profile 1. According to the architecture
presented in Fig. 2, each 4 bit nibble is processed separately at each clock cycle; a nibble
of the state register is XORed by a roundkey part and processed by the S-box block;
then while the state register and the key register are shifted by 4 bits, the S-box result
(a nibble) is replaced by a 4 bit nibble of the state register. Figure 3 shows a measured
trace of profile 1 and indicates which operation takes place at each clock cycle.

In order to find the leakage resources, several DPA attacks have been performed using
different power models, e.g., Hamming weight (HW) of the S-box input, HW of the
S-box output, and (partial) Hamming distance (HD) of the state register. According to
Fig. 4, which shows the attack results on the 8th nibble of the roundkey at the first round

Fig. 3. Measured power traces of profile 1 (top), profile 2 (bottom).

2 This frequency of operation is selected to prevent overlapping power peaks of consecutive clock cycles
and hence to simplify the attacks.
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Fig. 4. DPA results on profile 1 using 10,000 traces estimating HD of a nibble of the state register (top),
HW of the S-box input (middle), and HW of the S-box output (bottom).

of the cipher using 10,000 traces, the leakage of the S-box input is more obvious than
those of other power models. Note that in all attacks the plaintexts are chosen randomly,
and to perform the attack based on the HD of the state register, we gave a favor to the
adversary by knowing the last nibble of the roundkey to estimate the HD.3 Moreover, in
order to have an estimation about the number of required traces, Fig. 5 shows the attack
result over the number of traces for the best point of the first two attacks presented in
Fig. 5.

In order to check the resistance of profile 2, the same attacks have been performed
on 100,000 traces of the corresponding implementation. A measured trace is presented
in Fig. 3. None of the power models leads to recovering (a part of) the secret key, e.g.,
Fig. 6 shows the attack results estimating HD of the state register and HW of the S-box
input. Like previous attacks, both target revealing the 8th roundkey nibble.

As expected, since in profile 2 (supposing a fixed key) the key register holds the same
values at the first round for all encryptions, and HD of the key register is fixed while
rotating the key nibbles, one can profile the leakage of the key register and reduce the
key entropy. To verify this we have measured and got an average of 100,000 traces of
profile 2 separately for three different keys4: (i) all (00)h leading to HD of zero, (ii) all

3 Indeed, this assumption is quite realistic since to attack the first nibble of the roundkey all values of the
state register are known (as plaintext), and the other roundkey nibbles can be attacked one after another.

4 As before, the plaintexts and masks have been selected randomly.



Side-Channel Resistant Crypto for Less than 2,300 GE 339

Fig. 5. DPA results over the number of traces for HD model on time instant of 4.6 µs (top) and HW model
(S-box input) on time instant of 4.14 µs (bottom).

Fig. 6. DPA results on profile 2 using 100,000 traces estimating (top) HD of a nibble of the state register,
(bottom) HW of the S-box input.

(f0)h which causes HD to be maximum, i.e., 80, and (iii) (56789abcdef012345678)h
which makes HD to equal 40. Figure 7(a) presents a part of these mean traces. Obvi-
ously, they are sorted based on HD of the key register. Supposing that the adversary
can detect HD of the key register, although the entropy loss would be very low, it can
restrict the key space for the cases where the estimated HD is very low (say close to 0)
or very high (close to 80). To overcome this vulnerability, profile 4 is proposed, where
the key register is masked as well, and it is expected that profiling the target device by
means of HD of the key register would not be possible. The same scenario is repeated
on the same number of traces of profile 4. As Fig. 7(b) shows, the mean traces are very
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Fig. 7. Means of power traces of (a) profile 2, (b) profile 4.

Fig. 8. DPA results on profile 4 estimating HW of the S-box input (a) using 2,000,000 traces, (b) over the
number of traces on time instant of 4.6 µs.

Fig. 9. DPA results on profile 5 estimating HW of the S-box input (a) using 5,000,000 traces, (b) over the
number of traces on time instant of 4.6 µs.

close to one another, and profiling based on HD of the key register would not help in
this regard.

In order to investigate the strength of profile 4 to resist DPA attacks, we have mea-
sured 2,000,000 traces and performed the former attacks. Figure 8(a) shows the attack
result estimating HW of the S-box input when processing the 8th nibble at the first
round. Obviously at some points, e.g., 4.6 µs, the correlation coefficient for the correct
hypothesis is distinguishable among the others. As Fig. 8(b) represents the attack result
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on a time instant of 4.6 µs, around 1,000,000 measurements are required to detect the
correct hypothesis.

To avoid such leakage, profile 5, which makes use of random permutation in addition
to key and data sharing, is proposed. To evaluate the efficacy of this profile in compari-
son to other profiles, 5,000,000 traces are collected and the same attacks are performed.
According to Fig. 9, which shows the attack results, the leakage of profile 4 is prevented,
and the correct hypothesis is not distinguishable.

6. Conclusions

Attacker models for the upcoming age of ubiquitous computing have to extend classi-
cal attacker models and also take physical attacks into account, while implementations
of cryptographic algorithms face fierce area and power constraints. Given a cost-driven
deployment, Moore’s law does not relax this situation, but further increases the demand
for lightweight solutions. Unfortunately, nearly all side-channel countermeasures intro-
duce power and area overhead which are proportional to the values of the unprotected
implementation. Therefore, the relative difference of two protected cryptographic algo-
rithms stays the same, but the absolute difference increases by the factor of the counter-
measure overhead. This fact prohibits the implementation of a wide range of proposed
countermeasures and also narrows down possible cipher candidates. In this article we
have selected PRESENT as the encryption algorithm and a recently proposed secret-
sharing-based masking scheme in combination with random permutation of the share
inputs. In order to apply the masking scheme to PRESENT, we had to decompose the
S-box S(x) into two S-boxes F(x),G(x) of algebraic degree 2 and split them into three
shares each (F1,F2,F3 and G1,G2,G3). We have defined four different profiles that
combine a subset of these countermeasures (plus an unprotected version), thus yielding
different levels of side-channel resistance. Their absolute area footprints—ranging from
2,282 GE to 3,582 GE—are surprisingly moderate, while the timing overhead is either
6% or none at all. According to practical side-channel investigations, masking the state
register by means of two shares prevents the straightforward DPA attacks. However,
since the key register is not protected, profiling the leakage of the key register may help
on key space restriction. Masking the key register prevents such a leakage, but cannot
protect against those attacks which make use of around 1,000,000 traces. However, the
perfect resistance against first order attacks (at least using 5,000,000 measurements) is
achieved by combining data masking, key masking, and random data and key permuta-
tions.
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Appendix A

Listed below are the algebraic normal forms (ANFs) of the six output shares G1, G2,
G3, F1, F2, F3 described in Sect. 3

G1(x2, y2, z2,w2, x3, y3, z3,w3) = (g13, g12, g11, g10),

g13 = y2 + z2 + w2, g12 = 1 + y2 + z2,

g11 = 1 + x2 + z2 + y2w2 + y2w3 + y3w2 + z2w2 + z2w3 + z3w2,

g10 = 1 + w2 + x2y2 + x2y3 + x3y2 + x2z2 + x2z3 + x3z2 + y2z2 + y2z3 + y3z2;
G2(x1, y1, z1,w1, x3, y3, z3,w3) = (g23, g22, g21, g20),

g23 = y3 + z3 + w3, g22 = y3 + z3,

g21 = x3 + z3 + y3w3 + y1w3 + y3w1 + z3w3 + z1w3 + z3w1,

g20 = w3 + x3y3 + x1y3 + x3y1 + x3z3 + x1z3 + x3z1 + y3z3 + y1z3 + y3z1;
G3(x1, y1, z1,w1, x2, y2, z2,w2) = (g33, g32, g31, g30),

g33 = y1 + z1 + w1, g32 = y1 + z1,

g31 = x1 + z1 + y1w1 + y1w2 + y2w1 + z1w1 + z1w2 + z2w1,

g30 = w1 + x1y1 + x1y2 + x2y1 + x1z1 + x1z2 + x2z1 + y1z1 + y1z2 + y2z1;
F1(x2, y2, z2,w2, x3, y3, z3,w3) = (f13, f12, f11, f10),

f13 = y2 + z2 + w2 + x2w2 + x2w3 + x3w2, f12 = x2 + z2w2 + z2w3 + z3w2,

f11 = y2 + z2 + x2w2 + x2w3 + x3w2, f10 = z2 + y2w2 + y2w3 + y3w2;
F2(x1, y1, z1,w1, x3, y3, z3,w3) = (f23, f22, f21, f20),

f23 = y3 + z3 + w3 + x3w3 + x1w3 + x3w1, f22 = x3 + z3w3 + z1w3 + z3w1,

f21 = y3 + z3 + x3w3 + x1w3 + x3w1, f20 = z3 + y3w3 + y1w3 + y3w1;
F3(x1, y1, z1,w1, x2, y2, z2,w2) = (f33, f32, f31, f30),

f33 = y1 + z1 + w1 + x1w1 + x1w2 + x2w1, f32 = x1 + z1w1 + z1w2 + z2w1,

f31 = y1 + z1 + x1w1 + x1w2 + x2w1, f30 = z1 + y1w1 + y1w2 + y2w1.

Table A.1. Encoding of the random permutation. The input (A, B, C) is permuted to the output in the second
column according to the value of SEL.

SEL Output

000 (A, B, C)
001 (A, C, B)
010 (B, A, C)
011 (B, C, A)
100 (C, A, B)
101 (C, B, A)
110 (B, C, A)
111 (C, A, B)
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