
J. Cryptol. (2014) 27: 358–395
DOI: 10.1007/s00145-013-9147-8

Computationally Secure Pattern Matching in the Presence
of Malicious Adversaries

Carmit Hazay
Department of Engineering, Bar-Ilan University, Ramat-Gan, Israel

carmit.hazay@biu.ac.il

Tomas Toft
Department of Computer Science, Aarhus University, Aarhus, Denmark

ttoft@cs.au.dk

Communicated by Jonathan Katz.

Received 3 July 2012
Online publication 14 March 2013

Abstract. We propose a protocol for the problem of secure two-party pattern match-
ing, where Alice holds a text t ∈ {0,1}∗ of length n, while Bob has a pattern p ∈ {0,1}∗
of length m. The goal is for Bob to (only) learn where his pattern occurs in Alice’s text,
while Alice learns nothing. Private pattern matching is an important problem that has
many applications in the area of DNA search, computational biology and more. Our
construction guarantees full simulation in the presence of malicious, polynomial-time
adversaries (assuming the hardness of DDH assumption) and exhibits computation and
communication costs of O(n + m) group elements in a constant round complexity.
This improves over previous work by Gennaro et al. (Public Key Cryptography, pp.
145–160, 2010) whose solution requires overhead of O(nm) group elements and ex-
ponentiations in O(m) rounds. In addition to the above, we propose a collection of
protocols for important variations of the secure pattern matching problem that are sig-
nificantly more efficient than the current state of art solutions: First, we deal with se-
cure pattern matching with wildcards. In this variant the pattern may contain wildcards
that match both 0 and 1. Our protocol requires O(n + m) communication and O(1)

rounds using O(nm) computation. Then we treat secure approximate pattern match-
ing. In this variant the matches may be approximated, i.e., have Hamming distance less
than some threshold, τ . Our protocol requires O(nτ) communication in O(1) rounds
using O(nm) computation. Third, we have secure pattern matching with hidden pat-
tern length. Here, the length, m, of Bob’s pattern remains a secret. Our protocol requires
O(n + M) communication in O(1) rounds using O(n + M) computation, where M is
an upper bound on m. Finally, we have secure pattern matching with hidden text length.
Finally, in this variant the length, n, of Alice’s text remains a secret. Our protocol re-
quires O(N +m) communication in O(1) rounds using O(N +m) computation, where
N is an upper bound on n.
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1. Introduction

In the setting of secure two-party computation, two parties with private inputs wish to
jointly compute some function of their inputs while preserving certain security proper-
ties like privacy, correctness and more. The standard definition [7,12,21,34] formalizes
security by comparing the execution of such protocol to an “ideal execution” where a
trusted third party computes the function for the parties. Specifically, in the ideal world
the parties just send their inputs over perfectly secure communication lines to a trusted
party, who then computes the function honestly and sends the output to the designated
party. Then, a real protocol is said to be secure if no adversary can do more harm in
a real protocol execution than in an ideal one (where by definition no harm can be
done). This way of defining security is very appealing and has many important advan-
tages; for example, protocols proven secure in this way remain secure under sequential
modular composition [12]. We call this definition simulation-based security because
protocols are proven secure by simulating a real execution while running in the ideal
model.

Secure two-party computation has been extensively studied, and it has been demon-
strated that any polynomial-time two-party computation can be generically compiled
into a secure function evaluation protocol with polynomial complexity [22,23,46].
These results apply in various settings, considering semi-honest and malicious adver-
saries. In the semi-honest setting corrupted parties follow the protocol instructions (but
still try to gain additional private information), whereas, malicious players follow an
arbitrary strategy. However, more often than not, the resulting protocols are inefficient
for practical uses, in part because they are general and so do not utilize any specific
properties of the problem at hand, and hence attention has been given to construct-
ing efficient protocols for specific functions. This approach has proved quite successful
for the semi-honest setting, while the malicious setting typically remained impractical
(a notable exception is [4]).

In this paper we consider the following fundamental search problem: Alice holds a
text t ∈ {0,1}∗ of length n and Bob is given a pattern (i.e., a search word) p ∈ {0,1}∗
of length m, where the sizes of t and p are mutually known. The goal is for Bob to
only learn all the locations in the text that match the pattern, while Alice learns nothing
about the pattern. This problem has been widely studied for decades due to its potential
applications for text retrieval, music retrieval, computational biology, data mining, net-
work security, and many more. The most known application in the context of privacy is
in comparing two DNA strings; the following example is taken from [20]. Consider the
case of a hospital holding a DNA database of all the participants in a research study, and
a researcher wanting to determine the frequency of the occurrence of a specific gene.
This is a classical pattern matching application, which is, however, complicated by pri-
vacy considerations. The hospital may be forbidden from releasing the DNA records to
a third party. Likewise, the researcher may not want to reveal what specific gene he is
working on, nor trust the hospital to perform the search correctly. The importance of
this application is further illustrated in [5].

In an insecure setting this problem can be solved with linear time complexity. Nev-
ertheless, most of the existing solutions do not attempt to achieve any level of security
(if at all); see [2,9,10,31,35,36] for just a few examples. In this work, we focus our at-
tention on the secure computation of the basic pattern matching problem and several
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important variants of it. This paper is an extended version of [26]. The primary new
contribution of this version is the design of special purpose zero-knowledge proofs that
enable to reduce the communication complexity of our protocols for pattern matching
with wildcards and approximate pattern matching discussed below.

1.1. Our Contribution

We present secure solutions for the following problems in the plain model under the
DDH hardness assumption with simulation-based security in the presence of malicious
adversaries. The security proofs of our protocols can be easily extended to the UC
framework [13] as well. Our constructions achieve efficiency that is a significant im-
provement on the current state of the art; see a concrete analysis below. Throughout
this paper we measure computation by the number of exponentiations and the number
of group multiplications (by default we mean the former), and communication by the
number of exchanged group elements within the protocol. In more details:

• SECURE PATTERN MATCHING. We develop an efficient, constant rounds proto-
col for this problem that requires O(n + m) exponentiations and bandwidth of
O(n + m) group elements. Our protocol lays the foundations for other important
variants of pattern matching which are described next.

• SECURE PATTERN MATCHING WITH WILDCARDS. This problem is a known
variant of the classic problem where Bob (who holds the pattern) introduces a
new “don’t care” character to its alphabet, denoted by � (or a wildcard). The goal
is for Bob to learn all the locations in the text that match the pattern, where �

matches any character in the text. This problem has been widely looked at by
researchers with the aim of generalizing the basic searching model to searching
with errors. This variant is known as pattern matching with don’t cares and can
be solved in an insecure setting in O(n + m) time [28]. In this paper, we develop
a protocol that computes this functionality with O(n + m) communication and
O(nm) computation costs. The core idea of our solution is to proceed as in the
above solution with two exceptions: Bob must supply the wildcard positions in
encrypted form, and the substrings of Alice’s text must be modified to ensure that
they will match the pattern at those positions. Ensuring correct behavior requires
further modification of the protocol; see Sect. 4 for the complete description of the
protocol.

• SECURE APPROXIMATE PATTERN MATCHING. In this problem the goal is for
Bob to find the text locations where the Hamming distance of each text sub-
string and the pattern is less than some threshold τ ≤ m. This problem is an
extension of pattern matching with don’t cares due to the fact that Bob is
able to learn all the matches within some error bound instead of learning the
matches for specified error locations. An important application of this prob-
lem is secure face recognition [38]. The best algorithm for solving this prob-
lem in an insecure setting is the solution by Amir et al. [3] which intro-
duces a solution in O(n

√
τ log τ) time. We design a protocol for this prob-

lem with O(nτ) communication and O(nm) computation costs. The main
idea behind our construction is to have the parties securely compute the (en-
crypted) Hamming distance for each text position. See Sect. 5 for further de-
tails.



Computationally Secure Pattern Matching in the Presence of Malicious Adversaries 361

• SECURE PATTERN MATCHING WITH HIDDEN PATTERN/TEXT LENGTH. Finally,
we consider two variants with an additional security requirement of hiding the in-
put lengths using padding of a special character. For public upper bounds on the
lengths, M ≥ m and N ≥ n, the solutions for these problems require O(n + M)

communication and exponentiations, and O(N + m) communication and expo-
nentiations, respectively.

Note that in the semi-honest setting the length of the pattern can be remained
hidden by letting Bob run all the computations locally and then engage with Alice
in a comparison phase. Nevertheless, this task is particularly challenging in the
malicious setting due to correctness issues, and it is not clear how to efficiently en-
hance the security of the semi-honest protocol without leaking anything about m

from the communication. An efficient analogue solution for hiding the text length
is not known—not even for the semi-honest setting. Therefore, using padding is
currently the best alternative that enables to obtain some level of privacy regarding
the pattern/text lengths, even if the padding must be large enough to hide these
lengths.

We point out to a recent work by Chase and Visconti that studies the feasibil-
ity of size-hiding (database) commitments [16], proposes a construction based on
universal arguments. Although this construction is viewed as purely theoretical
and precludes practical implementations it illustrates the difficulty in designing
cryptographic primitives that hide the input length.

1.2. Overview of Our Approach

Our approach for computing private pattern matching follows by having the parties
jointly (and securely) transform their inputs from binary representation into elements
of Zq , which they can later compare. More explicitly, the parties break their inputs
into bits and encrypt each bit separately. Next, they map every m consecutive encryp-
tions of bits into a single encryption. That is, for every m encrypted bits a1, . . . , am

the parties compute the encryption of
∑m

i=1 2i−1ai , relying on the additively homo-
morphism of the encryption scheme. Importantly, the parties exploit the fact that every
two consecutive substrings t̄i , t̄i+1 of the text (starting in positions i and i + 1, respec-
tively) overlap with m − 1 positions. Therefore, computing the encoding of t̄i+1 from
the encoding of t̄i can be obtained by subtracting from the latter the bit ti , dividing the
result by 2 and finally adding 2m−1ti+m. This reduces the problem to comparing two
elements of Z2m (embedded into Zq ). Thus upon computing the encoding, the parties
complete the protocol by comparing the encoding of p against every encoding of a
substring of length m in the text, so that only Bob learns whether there is a much or
not.

1.3. Prior Work

Secure Pattern Matching To the best of our knowledge, the first work that consid-
ered pattern matching in the context of secure computation was [43], which solves pat-
tern matching using a secure version of oblivious automata evaluation for implement-
ing the KMP algorithm [31] in the semi-honest setting. The KMP algorithm is a well
known technique that requires O(n) time complexity and searches for occurrences of
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the pattern within the text by employing the observation that when a mismatch occurs,
the pattern embodies sufficient information to determine where the next match could
begin. The overall costs of [43] are O(nm) exponentiations and bandwidth. Several
followup improvements have been suggested based on this work, e.g., [19,33]. These
works reduce the round complexity and the number of exponentiations but still main-
tain security in the semi-honest setting; we provide a comparison with these works
below.

This problem was also studied by Hazay and Lindell in [24] which used a different ap-
proach of oblivious pseudorandom function (PRF) evaluation. Their protocol achieves
only a weaker notion of security called one-sided simulatability that does not guarantee
full simulation for both corruption cases. A more recent construction that achieves full
simulation in the malicious setting was developed by Gennaro et al. [20]. This work im-
plements the KMP algorithm in the malicious setting using O(m) rounds and O(nm)

exponentiations and bandwidth.
Finally, a recent paper by Katz and Malka [30] presents a secure solution for a

generalized pattern matching problem of text processing. Here the party that holds
the pattern has some additional information y, and its goal is to learn a function of
the text and y with respect to the text locations where the pattern matches. Katz and
Malka show how to use Yao’s garbled circuit approach to obtain a protocol where
the size of the garbled circuit is linear in the number of occurrences of p in t (rather
than linear in its length n). Their costs are dominated by the size of the circuit times
the number of occurrences u (as u circuits are being transferred). They therefore
need to assume some common knowledge of a threshold on the number of occur-
rences.

Variants of Pattern Matching To the best of our knowledge, the first work that ad-
dresses a variant of secure pattern matching is the work by Jarrous and Pinkas [29],
which solves the Hamming distance problem for two equal length strings against semi-
honest adversaries (which is relevant in the context of approximate pattern matching).
The costs of their protocol are inflated by a statistical parameter s for running a subpro-
tocol of the oblivious polynomial evaluation functionality. This implies O(nm) expo-
nentiations and groups elements.

Another work by Vergnaud [45] studies the problems of approximate pattern match-
ing and pattern matching with wildcards in the presence of malicious adversaries by
taking a different approach of Fast Fourier Transform (FFT). The paper implements the
well known technique by Fischer and Paterson [18] in a distributed setting using con-
volutions and FFT, where the inputs are viewed as coefficients of two polynomials for
which their product is computed using FFT (for each text alignment). The paper presents
protocols that exhibit O(n) communication and O(n logm) computational costs in the
semi-honest and malicious settings (but does not provide a complete proof in the mali-
cious setting).

Finally, a very recent paper Baron by et al. [6] studies the problem of pattern match-
ing with wildcards in a more general sense of non-binary alphabet, implementing a
different algorithm based on linear algebra formulation and additive homomorphic en-
cryption. Their protocol requires O(m + n) communication complexity and O(nm)

computational complexity.
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Table 1. Comparisons with semi-honest constructions.

Symmetric Asymmetric Communication

[46] O(nm) O(m)

O(κ) using extended OT
O(nm) symmetric encryptions
O(m) group elements

[19,33] O(nm) O(n)

O(κ) using extended OT
O(nm) symmetric encryptions
O(m) group elements

This work 2n 8n 6n group elements

1.4. Efficiency

Secure Pattern Matching We measure the efficiency of our protocol by comparisons
against generic secure two-party protocols, as well as protocols designed for this spe-
cific task. The most common technique for designing secure protocols in the two-party
setting is Yao’s garbling technique for Boolean circuits [46]. The current best known
circuit that computes the pattern matching functionality requires O(nm) gates, since
the circuit compares the pattern against every text location. (As noted by [20], a circuit
that implements the KMP algorithm requires O(nm logm) gates). It is an open problem
whether better circuits can be constructed.

In the semi-honest setting, Yao’s technique induces a protocol that uses O(nm) sym-
metric key operations and O(m) exponentiations that can be made independent of the
input length (where the latter is obtained by employing the ideas of extended oblivious
transfer (OT) [27], but also requires an additional assumption on the hash function). The
works by [19,33] present specific protocols that require O(nm) symmetric key opera-
tions (due to the automaton size) and O(n) exponentiations, which can also be made
independent of n using extended OT.

On the other hand, our protocol for the semi-honest setting requires 8n exponentia-
tions and n group multiplications, where at first Alice forwards Bob the encryptions of
her encoding for each substring of length m, Bob then computes the difference with his
encoding and finally the parties rerandomize the outcome and decrypt it. A summary of
these comparisons is presented in Table 1.

In the malicious setting, the state of the art generic implementation is a recent pro-
tocol by Lindell and Pinkas [32] that relies on the garbling technique of Yao. Due to
enforcing correct behavior the overhead of their protocol is inflated by a statistical pa-
rameter s = 132. Therefore, the constants of such a protocol when realizing pattern
matching are relatively high and dominated by 5.66sm + 39m + 10s + 6 exponentia-
tions and 6.5snm symmetric key operations. Moreover the communication complexity
is at least 7sm + 22n + 7s + 5 group elements and 4snm symmetric ciphertexts. For
large databases this bandwidth as well as the number of symmetric operations intro-
duce huge overheads. The only work that proves full simulation in the malicious setting
was developed by Gennaro et al. [20]. This protocol runs in O(m) rounds and requires
O(nm) exponentiations and bandwidth due to rerandomization of the automaton for
each iteration. Thus, even asymptotically their protocols achieves worse overhead than
our protocol (which also leads to higher constants since the [20] protocol uses zero-
knowledge proofs in each step). On the other hand, our protocol induces 38n + 6m
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Table 2. Comparisons with malicious constructions.

Symmetric Asymmetric Communication

[32] 6.5snm 5.66sm + 39m + 10s + 6 7sm + 22n + 7s + 5 group elements
& 4snm symmetric ciphertexts

[20] O(nm) O(nm) O(nm) group elements

This Work nm + 19n + 10 38n + 6m 26n + 6m + 14 group elements

exponentiations and nm + 19n + 10 group multiplications. The main advantage of our
protocol is regarding the communication complexity. A summary of these comparisons
is presented in Table 2.

Variants of Pattern Matching Generic protocols achieve the same overhead as in the
case of computing the standard pattern matching problem since circuit size is O(nm)

gates. Moreover, the protocols by Vergnaud [45] compute approximate pattern matching
and pattern matching with don’t cares with better computational overhead than our pro-
tocols. The solution for the former problem introduces O(n(logm + τ)) computation
(in comparison to O(nm) exponentiations in our protocol). The solution for the latter
problem introduces O(n logm) computational overhead (in comparison to O(nm) ex-
ponentiations in our protocol). Finally, the work of [6] studies pattern matching with
wildcards in the malicious setting and achieves similar costs to our protocols but for
larger alphabets.

1.5. A Roadmap

We first present the underlying primitives in Sect. 2. The following sections then contain
our protocols. The basic protocol is presented in Sect. 3. This is then extended, first with
wildcards in the pattern (Sect. 4) followed by approximate matching (Sect. 5). Finally,
the paper concludes with the protocols which hide the pattern and texts lengths (Sects. 6
and 7).

2. Preliminaries and Tools

Throughout the paper, we denote the security parameter by κ . A probabilistic machine is
said to run in polynomial-time (PPT) if it runs in time that is polynomial in the security
parameter κ and its input. A function μ(·) is negligible in κ (or simply negligible) if
for every polynomial p(·) there exists a value K such that μ(κ) < 1

p(κ)
for all κ > K ;

i.e., μ(κ) = κ−ω(1). Let X = {X(κ,a)}κ∈N,a∈{0,1}∗ and Y = {Y(κ, a)}κ∈N,a∈{0,1}∗ be
distribution ensembles. We say that X and Y are computationally indistinguishable,

denoted X
c≡ Y , if for every polynomial non-uniform distinguisher D there exists a

negligible μ(·) such that for every κ ∈ N and a ∈ {0,1}∗
∣
∣Pr

[
D

(
X(κ,a)

) = 1
] − Pr

[
D

(
Y(κ, a)

) = 1
]∣
∣ < μ(κ).
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2.1. Hardness Assumptions

Our constructions rely on the following hardness assumption.

Definition 1 (DDH). We say that the decisional Diffie–Hellman (DDH) problem is
hard relative to the group Gq if for all PPT A there exists a negligible function negl
such that

∣
∣Pr

[
A

(
Gq, q, g, gx, gy, gz

) = 1
] − Pr

[
A

(
Gq, q, g, gx, gy, gxy

) = 1
]∣
∣ ≤ negl(κ),

where Gq has order q and the probabilities are taken over the choices of g generating
Gq and x, y, z ∈ Zq .

2.2. Σ -Protocols

Definition 2 (Σ -protocol). A protocol π is a Σ -protocol for relation R if it is a 3-
round public-coin protocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input w

to P where (x,w) ∈ R, then V always accepts.
• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any

x and any pair of accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 	= e′,
outputs w such that (x,w) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm
M such that

{〈
P(x,w),V (x, e)

〉}
(x,w)∈R,e∈{0,1}∗ ≡ {

M(x, e)
}
x∈LR,e∈{0,1}∗ ,

where LR is the language of relation R, M(x, e) denotes the output of M upon
input x and e, and 〈P(x,w),V (x, e)〉 denotes the output transcript of an execution
between P and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals e.

2.3. Public Key Encryption Schemes

We begin by specifying the definitions of public key encryption, semantic security and
homomorphic encryption.

Definition 3 (PKE). We say that Π = (G,E,D) is a public-key encryption scheme if
G,E,D are polynomial-time algorithms specified as follows:

• G, given a security parameter κ (in unary), outputs keys (pk, sk), where pk is a
public key and sk is a secret key. We denote this by (pk, sk) ← G(1κ ).

• E, given the public key pk and a plaintext message m, outputs a ciphertext c en-
crypting m. We denote this by c ← Epk(m); and when emphasizing the random-
ness r used for encryption, we denote this by c ← Epk(m; r).

• D, given the public key pk, secret key sk and a ciphertext c, outputs a plaintext
message m s.t. there exists randomness r for which c = Epk(m; r) (or ⊥ if no such
message exists). We denote this by m ← Dpk,sk(c).
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For a public key encryption scheme Π = (G,E,D) and a non-uniform adversary
A = (A1, A2), we consider the following Semantic security game:

(pk, sk) ← G
(
1κ

)
.

(m0,m1,history) ← A1(pk), s.t. |m0| = |m1|.
c ← Epk(mb), where b ← {0,1}.
b′ ← A2(c,history).

A wins if b′ = b.

Denote by AdvΠ,A(κ) the probability that A wins the semantic security game.

Definition 4 (Semantic security). A public key encryption scheme Π = (G,E,D) is
semantically secure, if for every non-uniform adversary A = (A1, A2) there exists a
negligible function negl such that

AdvΠ,A(κ) ≤ 1

2
+ negl(κ).

An important tool that we exploit in our construction is homomorphic encryption over
an additive group as defined below.

Definition 5 (Homomorphic PKE). A public key encryption scheme (G,E,D) is ad-
ditively homomorphic if for all n and all (pk, sk) output by G(1κ ), it is possible to define
groups M, C such that

• The plaintext space is M, and all ciphertexts output by Epk are elements of C.
• For any m1,m2 ∈ M and c1, c2 ∈ C with m1 = Dsk(c1) and m2 = Dsk(c2), we

have

{pk, c1, c1 · c2} ≡ {
pk,Epk(m1),Epk(m1 + m2)

}

where the group operations are carried out in C and M, respectively, and the en-
cryptions of m1 and m1 + m2 use independent randomness.

Any additive homomorphic scheme supports the multiplication of a ciphertext by a
scalar by computing multiple additions.

2.4. The ElGamal PKE

At the core of our proposed protocols lies the additively homomorphic variation of
ElGamal PKE [17]. Essentially, we use the framework of Brandt [11] with minor vari-
ations. Formally, ElGamal PKE is a semantically secure public key encryption scheme
assuming the hardness of the decisional Diffie–Helmann problem (DDH). We describe
the plain scheme here; the distributed version is presented below. Let Gq be a group
of prime order q in which DDH is hard (we assume that multiplication and test-
ing group membership can be performed efficiently). Then the public key is a tuple
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pk = 〈Gq, q, g,h〉 and the corresponding secret key is sk = s, s.t. gs = h. Encryption is
performed by choosing r∈RZq and computing Epk(m; r) = 〈gr ,hr ·gm〉. Decryption of
a ciphertext C = 〈α,β〉 is performed by computing gm = β · α−s and then finding m by
running an exhaustive search. This variant of encrypting in the exponent suffices for our
purposes as we do not require full decryption, but just the ability to distinguish between
m = 0 and m 	= 0. Note that this variant of ElGamal meets Definition 5 for M = Zq and
C = G

2
q . We present the computation of the parties with respect to the ciphertext space

componentwise. Namely, we write Cr to denote 〈αr,βr 〉 and C/C′ for 〈α/α′, β/β ′〉,
for ciphertexts C = 〈α,β〉 and C′ = 〈α′, β ′〉, and r ∈ Zq .

2.4.1. Distributed ElGamal PKE

In a distributed scheme, the parties hold shares of the secret key so that the combined
key remains a secret. In order to decrypt, each party uses its share to generate an in-
termediate computation which are eventually combined into the decrypted plaintext.
Note that a public key and an additive sharing of the corresponding secret key is easily
generated [40]. Namely, the parties first agree on Gq and g. Then, each party Pi picks
si ∈R Zq and sends hi = gsi to the other. Finally, the parties compute h = h1h2 and set
pk = 〈Gq, q, g,h〉. Clearly, the secret key s = s1 + s2 associated with this public key is
shared amongst the parties. In order to ensure correct behavior, the parties must prove
knowledge of their si by running on (g,hi) the zero-knowledge proof πDL, specified in
Sect. 2.5. We denote this key generation protocol by πKeyGen which is correlated with
the functionality FKeyGen(1κ ,1κ) = ((pk, sk1), (pk, sk2)).

To decrypt a ciphertext C = 〈α,β〉, each party Pi raises α to the power of its share,
sends the outcome αi to the other party and then proves this was done correctly us-
ing πDL. Both parties then output β/(α1α2). We denote this protocol by πDec. This
protocol allows a variation where only one party obtains the decrypted result. Another
variation of πDec allows a party, say P1, to learn whether a ciphertext C = 〈α,β〉 en-
crypts g0 or not, but nothing more. This can be carried out as follows. P2 first raises
C to a random non-zero power, rerandomizes the result, and sends it to P1. The parties
then execute πNZ, defined below, to let P1 verify P2’s behavior. They then decrypt the
final ciphertext towards P1, who concludes that m = 0 iff the masked plaintext was 0.
Simulation is trivial given access to F RNZ

ZK . We denote this protocol by πDec0 and the
associated ideal functionality by FDec0.

2.5. Zero-Knowledge Proofs for Gq and ElGamal PKE

To prevent malicious behavior, the parties must demonstrate that they are well-behaved.
To achieve this, our protocols utilize zero-knowledge proofs of knowledge. All our
proofs are Σ -protocols which show knowledge of a witness that some statement is true
(i.e., belong to some relation R). A generic efficient technique that enables to transform
any Σ -protocol into a zero-knowledge proof (of knowledge) can be found in [25]. This
transformation requires additionally five (six) exponentiations.
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2.5.1. Zero-Knowledge Proofs with Constant Overhead

1. πDL, for demonstrating the knowledge of a solution x to a discrete logarithm prob-
lem [41].

RDL = {(
(Gq, q, g,h), x

) | h = gx
}
.

2. πEqDL, for demonstrating equality of two discrete logarithms [15].

REqDL = {(
(Gq, q, g1, g2, h1, h2), x

) | h1 = gx
1 ∧ h2 = gx

2

}
.

Phrased differently, πEqDL demonstrates that a quadruple forms a Diffie–Hellman
tuple or, equivalently, that an ElGamal ciphertext is an encryption of 0, where
g1, g2 is part of the public key and 〈h1, h2〉 is the computed ciphertext; see
Sect. 2.4 for the complete details of ElGamal.

3. πisBit, for demonstrating that a ciphertext C = 〈α,β〉 is either an encryption of
0 or 1. This can be obtained directly from πEqDL using the compound proof of
Cramer et al. [14].

RisBit = {(
(Gq, q, g,h,α,β), (b, r)

) | 〈α,β〉 = 〈
gr ,hr · gb

〉 ∧ b ∈ {0,1}}.
4. πMult, for demonstrating that a ciphertext encrypts the product of two encrypted

plaintexts [1]. Namely, given a ciphertext C the prover proves the knowledge of
a plaintext f and randomness rf , rπ such that Cf = Epk(f ; rf ) and Cπ = Cf ·
Epk(0; rπ ), where exponentiation is computed componentwise.

RMult = {(
(Gq, q, g,h,C,Cf ,Cπ), (f, rf , rπ )

)
s.t. Cf = 〈

grf , hrf · gf
〉 ∧

Cπ = Cf · 〈grπ , hrπ
〉}

.

5. πNZ, for demonstrating that a ciphertext C′ can be computed from C = 〈α,β〉 by
raising C (componentwise) to a non-zero exponent and rerandomizing it, i.e. C′ =
CR · Epk(0; r) = 〈α′, β ′〉.

RNZ = {((
g,h,α,β,α′, β ′), (R, r)

)
s.t.

〈
α′, β ′〉 = 〈

αRgr,βRhr
〉 ∧ R 	= 0

}
.

The challenging part when constructing a proof for this relation is to show that
R 	= 0. To do this, the prover picks R′ ∈R Z

∗
q , supplies the verifier with additional

ciphertexts, CR = Epk(R; rR), CR′ = Epk(R
′; rR′) and Cπ = Epk(RR′; rπ ), and

executes πMult twice: once on (C,CR,C′) and once on (CR,CR′ ,Cπ). The prover
then sends RR′ to the verifier and demonstrates it is the plaintext of Cπ using
πEqDL. Finally, the verifier checks that RR′ is non-zero.

The executions of πMult demonstrate that C′ has been obtained from C through
exponentiation and that the plaintext of Cπ depends on R. Running πEqDL and
the final check ensures that RR′ 	= 0 implying that so is R. Hence the protocol
demonstrates that C′ has been obtained correctly. Further, since the verifier re-
ceives only ciphertexts along with RR′, which is uniformly distributed in Z

∗
q , πNZ

is zero-knowledge.



Computationally Secure Pattern Matching in the Presence of Malicious Adversaries 369

2.5.2. Additional Zero-Knowledge Proofs

1. πPerm, for demonstrating that a set of ciphertexts {Ci}i is a random permutation
and rerandomization of another set, {C′

i}i . A number of potential proofs exist
in the literature; the most recent solution by Bayer and Groth [8] obtains sub-
linear communication, whereas the amount of the prover’s work in quasilinear.
Other works, such as [44], require linear communication/computation complex-
ity.

RPerm = {((
g,h, {Ci}i ,

{
C′

i

}
i

)
,
(
π, {ri}i

))
s.t.

〈
α′

i , β
′
i

〉 = 〈
απ(i)g

ri , βπ(i)h
ri
〉}

.

2. π�-proof, for demonstrating the correctness with respect to the following re-
lation, defined in two phases. Looking ahead, this proof is used within Pro-
tocol FPM-� for secure pattern matching with wildcards. Specifically, let Gq

be a group of prime order and let G
2
q be the ciphertext domain for the as-

sociated, additively homomorphic ElGamal encryption scheme with encryption
function Epk(·; ·). Let T1, . . . , Tn ∈ Gq

2 be a collection of encryptions. Then,
for j ∈ {1, . . . , n − m + 1} define first a function φj : (Zq

m × Zq) �→ Gq
2

by

φj

({wi}mi=1, rj
) =

(
m∏

i=1

(Ti+j )
wi ·2i−1

)

· Epk(0; rj ).

That is, the output is the rerandomization of an encryption of Alice’s sub-
string (which holds the text), starting at position j with wildcard positions re-
placed by 0. Next, define a function φT1,...,Tn : (Zq

m × Zq
m × Zq

n−m+1) �→
(Gq

2)m × (Gq
2)n−m+1 as follows:

φT1,...,Tn

({wi}mi=1, {rwi
}mi=1, {rj }n−m+1

j=1

) =
( {Epk(wi; rwi

)}mi=1,

{φj ({wi}mi=1, rj )}n−m+1
j=1

)

. (1)

I.e., φT1,...,Tn consists of m encryptions of values wi with randomness rwi
as well

as n − m + 1 rerandomized encryptions, each computed from m pairs, (wi, Ti+j )

as defined by φj . Therefore, the set ciphertexts encrypting the text and {wi}i is
the statement and the set of plaintexts and randomness is the witness. A detailed
protocol as well as a complete proof can be found in Appendix A. Our proof intro-
duces communication complexity O(n + m) which is linear in the inputs lengths,
and computation cost O(nm).

3. πH-proof, for demonstrating correctness with respect to the following relation, also
defined in two phases. Looking ahead, this proof is used within Protocol πAPM for
approximate pattern matching. The goal is for Alice to verify that the Hamming
distances have been correctly computed, i.e., that Bob correctly performed his part
of the computation between the substrings of the text, t , and his pattern, p. For
j = 1, . . . , n − m + 1 let

HT1,...,Tn

(j) : Z
m
q × Zq �→ Gq

2
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be defined as

HT1,...,Tn

(j)
({pi}mi=1, rj

) =
(

m∏

i=1

(Tj+i−1)
−2pi · Epk(1;0)pi

)

· Epk(0; rj ).

Now define

HT1,...,Tn : Zq
m × Zq

n−m+1 × Zq
m �→ (

Gq
2)n−m+1 × (

Gq
2)m

as

HT1,...,Tn

({pi}mi=1; {rpi
}mi=1; {rj }n−m+1

j=1

)

= ({
HT1,...,Tn

(j)
({pi}mi=1, rj

)}n−m+1
j=1 ,

{
Epk(pi; rpi

)
}m

i=1

)
.

A detailed protocol as well as a complete proof can be found in Appendix B.
Our proof introduces communication complexity O(n + m) which is linear in the
inputs lengths, and computation cost O(nm).

3. The Basic, Linear Solution

In this section we present our solution for the classic pattern matching problem. Initially,
Alice holds an n-bit string t , while Bob holds an m-bit pattern p and the parties wish to
compute the functionality FPM defined by

(
(p,n), (t,m)

) �→
{

({j | t̄j = p}n−m+1
j=1 , λ

)
if |p| = m and |t | = n,

(λ,λ) otherwise.

where λ is an empty string and t̄j is the substring of length m that begins at the j th
position in t . This problem has been widely studied for decades due to its potential
applications and can be solved in linear time complexity [10,31] when no level of secu-
rity is required. We examine a secure version for this problem where Alice, who holds
the text, does not gain any information about the pattern from the protocol execution,
whereas Bob, who holds the pattern, does not learn anything but the matched text lo-
cations. In our setting, the parties share no information (except for the input length)
though it is assumed that they are connected by an authenticated communication chan-
nel and that the inputs are over a binary alphabet. Extending this to larger alphabets
is discussed below. Our protocol exhibits overall linear communication and computa-
tion costs, and achieves full simulation in the presence of malicious adversaries. More
specifically, the parties compute O(n + m) exponentiations and exchange O(n + m)

group elements.
Here and below, we have the parties jointly (and securely) transform their inputs from

binary representation into elements of Zq (we assume that m < log2 q; larger pattern-
lengths can be accommodated by encoding the pattern and substrings of the text into
multiple values; see Sect. 3.1 for further details), while exploiting the fact that every
two consecutive substrings of the text are closely related. Informally, both parties break
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their inputs into bits and encrypt each bit separately. Next, the parties map every m

consecutive encryptions of bits into a single encryption that denotes an m-character
for which its binary representation is assembled from these m bits. Thus, the problem
is reduced to comparing two elements of Z2m (embedded into Zq ). The crux of our
protocol is to efficiently compute this mapping.

We are now ready to give a detailed description of our construction.

Protocol πPM

• Inputs: The input of Alice is a binary string t of length n and an integer m, whereas
the input of Bob is a binary string p of length m and an integer n. The parties share
a security parameter 1κ as well.

• The protocol:

1. Alice and Bob run protocol πKeyGen(1κ ,1κ) to generate a public key pk =
〈Gq, q, g,h〉 and the respective shares sA and sB of the secret key sk.

2. Bob sends encryptions Pi = Epk(pi; rpi
), i = 1, . . . ,m, of his m-bit pat-

tern p, to Alice. Further, for each encryption the parties run the zero-
knowledge proof of knowledge πisBit, allowing Alice to verify that the plain-
text of Pi is a bit known to Bob, i.e. that he has provided a bit-string of
length m. Both parties then compute an encryption of Bob’s pattern,

P ←
m∏

i=1

P 2i−1

i (2)

using the homomorphic property of ElGamal PKE.
3. Alice sends encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits tj of her

n-bit text, t , to Bob. Further, for each encryption the parties run πisBit, allow-
ing Bob to verify that the plaintext of Tj is a bit known to Alice, i.e. that she
has indeed provided the encryption of a bit-string of length n that she knows.

4. Let t̄j be the m-bit substring of Alice’s text t , starting at position j =
1, . . . , n−m+ 1. For each such string both parties compute an encryption of
that string,

T̄j ←
j+m−1∏

i=j

T 2i−j

i . (3)

5. For every T̄j , j = 1, . . . , n − m + 1, both parties compute


j ← T̄j · P −1. (4)

6. For every 
j j = 1, . . . , n − m + 1, Alice and Bob reveal to Bob whether its
plaintext δj is zero by running πDec0. Bob then outputs j if this is the case.

Correctness of πPM Before turning to our proof, we explain the intuition and demon-
strate that protocol πPM correctly determines which substrings of the text t match the
pattern p. Recall that the value P that is computed in Eq. (2) (Step 2) is an encryption
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of Bob’s pattern, p = ∑m
i=1 2i−1pi . This follows from the homomorphic property of

ElGamal PKE,

P =
m∏

i=1

P 2i−1

i = Epk

(
m∑

i=1

2i−1pi;
m∑

i=1

2i−1rpi

)

. (5)

Note that P is obtained deterministically from the Pi , hence both Alice and Bob hold
the same fixed encryption. Similarly, in Eq. (3) computed in Step 4, the parties compute
encryptions of the substrings of length m of Alice’s text,

t̄j =
j+m−1∑

i=j

2i−j ti ,

see a detailed discussion in the complexity paragraph regarding the efficiency of this
step. As with P , the parties hold the same, fixed encryptions (with randomness rt̄j =
∑j+m−1

i=j 2i−j rti ). The encryption 
j computed by Eq. (4) is an encryption of δj =
t̄j − p, i.e., the (Zq ) difference between the substring of the text starting at position j

and the pattern


j = T̄j · P −1

= Epk(t̄j − p; rt̄j − rp).

At this point, it simply remains for Bob to securely determine which of the 
j are
encryptions of zero, as

δj = 0 ⇐⇒ t̄j = p.

Security of πPM We are now ready to prove the following theorem:

Theorem 6 (Main). Assume that the DDH assumption holds in Gq , then πPM securely
computes FPM in the presence of malicious adversaries.

Proof. We separately prove security in the case that Alice is corrupted and the case
that Bob is corrupted. Our proof is in a hybrid model where a trusted party computes
the ideal functionalities FKeyGen, FDec0 and F RisBit

ZK .

Alice is Corrupted Recalling that Alice does not receive any output from the execu-
tion, we only need to prove that privacy is preserved and that Bob’s output cannot be
affected (except with negligible probability). Formally, let A denote an adversary con-
trolling Alice then construct a simulator S as follows:

1. S is given a text t of length n, an integer m and A’s auxiliary input and invokes A
on these values.

2. S emulates the trusted party for πKeyGen as follows. It first chooses two random
elements sA, sB ∈ Zq and hands A its share sA and the public key 〈Gq, q, g,h =
gsA+sB 〉.
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3. Next, S sends m encryptions of 0 and emulates F RisBit
ZK by sending 1.

4. S receives from A n encryptions and the witness for the trusted party for πisBit.
If the conditions for which the functionality outputs 1 are not met, S aborts by
sending ⊥ to the trusted party for FPM and outputs whatever A outputs.

5. Otherwise, S defines t according to the witness for πisBit and records it.
6. S and A compute P , {T̄j }j and {
j }j as in the hybrid execution. Then, S emu-

lates FDec0 accepting if the ideal functionality would accept as well.
7. If at any point A sends an invalid message, S aborts, sending ⊥ to the trusted

party for FPM. Otherwise, it sends (t,m) to the trusted party and outputs whatever
A does.

Clearly, S runs in probabilistic polynomial time. We prove now that the joint output
distribution is computationally indistinguishable in both executions. To see that A’s
view is computationally indistinguishable, note first that the only difference between the
executions is with respect to the encryptions that assemble p, i.e., the bits encryptions
of the pattern (as S sends encryptions of zero).

We prove that A cannot distinguish the simulated and hybrid views via a reduction to
the semantic security of ElGamal (cf. Definition 4). More formally, assume there exists
a distinguisher D for these executions, we construct a distinguisher DE as follows.
Upon receiving a public key pk and auxiliary input p, DE engages in an execution
of πKeyGen with A and sends it (sA,pk) where sA∈RZq . DE continues emulating the
role of Bob as S does except for Step 2 of the protocol where it needs to send the
encryptions of p1, . . . , pm. In this step DE outputs two sets of plaintexts: (i) p1, . . . , pm

and (ii) 0, . . . ,0. We denote by P̃1, . . . , P̃m the set of encryptions it receives back. DE

hands A this set and completes the run as S does. Finally, it invokes D on A’s output
and outputs whatever D outputs. Note that at no point in the reduction, will DE need to
use the actual plaintexts that correspond to the challenge ciphertexts. Moreover, if DE

is given the encryptions of p then the adversary’s view is distributed as in the hybrid
execution. Similarly, if it receives encryptions of zeros, then the adversary’s view is as
in the simulation with S .

It remains to show that the honest Bob outputs the same set of indices with over-
whelming probability in both executions. This follows directly from the correctness
argument above. In particular, assuming that Alice indeed completes the execution hon-
estly (which is indeed the case due to the zero-knowledge proofs), the protocol correctly
computes the matching text locations. This concludes the case that Alice is corrupted.

Bob is Corrupted Let A denote an adversary controlling Bob. In this case we need to
prove that Bob does not learn anything but the matching text locations. We similarly
construct a simulator S as follows,

1. S is given a pattern p of length m, an integer n and A’s auxiliary input and invokes
A on these values.

2. S emulates the trusted party for πKeyGen as follows. It first chooses two random
elements sA, sB ∈ Gq and hands A its share sB and the public key 〈Gq, q, g,h =
gsA+sB 〉.

3. S receives from A m encryptions and A’s input for the trusted party for F RisBit
ZK .

If the conditions for which the functionality outputs 1 are not met, S aborts by
sending ⊥ to the trusted party for FPM and outputs whatever A outputs.



374 C. Hazay and T. Toft

4. Otherwise, S defines P according to the witness for πisBit and sends it to the trusted
party. Let Z be the set of returned indexes.

5. Next, S sends n fresh encryptions of 0 and emulates F RisBit
ZK by sending 1.

6. Finally, S and A compute P , {T̄j }j and {
j }j as in the hybrid execution. Then
S emulates FDec0 by sending an output as specified by Z rather than by the en-
crypted “result”, {
j }j . Namely, S “decrypts” 
j into zero if and only if j ∈ Z.

7. If at any point A sends an invalid message, S aborts, sending ⊥ to the trusted
party for FPM. Otherwise, it outputs whatever A does.

It is immediate to see that S runs in probabilistic polynomial time. We prove next
that the adversary’s views are computational indistinguishable via a reduction to the
semantic security of ElGamal. Recall that the key difference between the executions
is that the encryptions of Alice’s text are replaced by encryptions of 0’s, which implies
that the result given to A in Step 6 of the simulation may not match the actual plaintexts.

Formally, assume there exists a distinguisher D for the simulated and hybrid proto-
col views. We may then construct a distinguisher DE breaking the semantic security
of ElGamal PKE as follows. Upon receiving a public key pk and auxiliary input t ,
DE emulates FKeyGen by sending (sB,pk) to A where sB∈RZq . Note that this per-
fectly matches A’s view in both protocol and simulation. DE continues emulating the
role of Alice as S does except for Step 5 of the simulation. Instead of simulating Alice’s
input, DE outputs two sets of plaintexts: (i) (t1, . . . , tn) and, (ii) (0 . . . ,0). We denote
by T̃1, . . . , T̃n the set of encryptions it receives back; DE hands A this set and com-
pletes the simulated run. Finally, DE invokes D on A’s output and outputs whatever D

outputs.
If D successfully distinguishes between a simulated view and a view of the hybrid

protocol, then DE distinguishes between encryptions of the ti ’s and encryptions of 0’s.
For case (i), i.e., if DE received encryptions of t1, . . . , tn, A’s view is identical to the
view when executing the hybrid protocol, since except for the interaction with FKeyGen,

F RisBit
ZK , and FDec0, Alice’s only action is to send her encrypted input. For case (ii),

DE sends n encryptions of 0 to A, hence in this case DE’s behavior exactly matches
that of S . �

Complexity of πPM The round complexity is constant as the key generation process
and the zero-knowledge proofs run in constant rounds. Further, the number of group
elements exchanged is bounded by O(n + m) as there are n − m + 1 substrings of
length m and each zero-knowledge proof requires a constant number of exponentiations.
Regarding computational complexity, it is clear that except for Step 4 at most O(m+n)

exponentiations are required. Note first that Eq. (3) can be implemented using the square
and multiply technique. Namely, for every j = 1, . . . , n − m + 1, T̄j is computed by
(· · · ((Tj+m−1)

2 · Tj+m−2)
2 · Tj+m−3 · · · )2 · Tj . This requires O(m) multiplications for

each text location, which amounts to total O(nm) multiplications for the entire text.
Reducing the number of multiplications into O(n) (on the expense of increasing the
number of exponentiations by a constant factor) can be easily shown. That is, in addition
to sending an encryption of 0 or 1 for each text location, Alice sends an encryption of 0
or 2m, respectively, and proves consistency. This enables to complete the transformation
from binary representation in constant time per text location. We comment that from
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practical point of view, it may be much more efficient to compute O(m) multiplications
for each location than proving this consistency (even though it only requires additional
constant number of exponentiations.) Finally, note that our protocol utilizes ElGamal
encryption which can be implemented over an elliptic curve group. This may reduce the
modulus value dramatically as now only 160 bits are typically needed for the size of
the key. This also means that the length of the pattern must be bounded by 160 bits. For
applications that require longer patterns we propose a different approach; see Sect. 3.1.

3.1. Variations

The following variations can be handled similarly to the classic problem of pattern
matching.

Non-binary Alphabets Alphabets of larger size, s, can be handled by encoding the
characters as elements of Zs and using s-ary rather than binary notation for the T̄j

and P . Proving in ZK that an encryption contains a valid character is straightforward,
e.g. it can be provided in binary (which of course requires O(log s) encryptions).

Long Patterns When the pattern length m, (or the alphabet size s) is large, requiring
q > sm may not be acceptable. This can be avoided by encoding the pattern p and sub-
strings t̄j into multiple Zq values, {p(i)}i , {t̄ (i)j }i for i ∈ [log2 sm/ log2 q]. Namely, the
number of blocks of length logq that are required to “cover” log sm; denote this value
by ρ. Having computed encryptions {
i}i of the differences {δi = p(i) − t̄

(i)
j }i , Alice

raises each encryption to a random, non-zero exponent ri , rerandomizes them and sends
them to Bob (proving that everything was done correctly). The parties then execute
πDec0 on the product of these encryptions and Bob reports a match if a 0 is found. Note
that the plaintext of this product is

∑
i ri · δi . Thus, if the pattern matches, all δi = 0

implying that this is an encryption of 0. If one or more δi 	= 0, then the probability of
this being an encryption of 0 is negligible. The overhead of this approach is dominated
by repeating the basic linear solution ρ times for each text location. As now, the parties
compare ρ blocks each time rather than just one. Hence, communication/computation
complexities are multiplied by ρ.

Hiding Matched Locations It may be required that Bob only learns the number of
matches and not the actual locations of the hits. One example is determining how fre-
quently some gene occurs rather than where it occurs in some DNA sequence. This is
easily achieved by simply having Alice pick a uniformly random permutation and per-
mute (and rerandomize) the 
j of Eq. (4). The encryptions are sent to Bob, and πPerm is
executed, allowing him to verify Alice’s behavior. Finally, πDec0 is run and Bob outputs
the number of encryptions of 0 received. Correctness is immediate: An encryption of 0
still signals that a match occurred. However, due to the random permutation that Alice
applies, the locations are shuffled, implying that Bob does not learn the actual matches.

4. Secure Pattern Matching with Wildcards

The first variant of the classical pattern matching problem allows Bob to place wild-
cards, denoted by �, in his pattern; these should match both 0 and 1. More formally, the
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parties wish to compute the functionality FPM−� defined by

(
(p,n), (t,m)

) �→
{({j | t̄j �≡ p}n−m+1

j=1 , λ
)

if |p| = m and |t | = n,

(λ,λ) otherwise,

where t̄j is the substring of length m that begins at the j th position of t and
�≡ is defined

as “equal except with respect to �-positions.” This problem has been widely looked at
by researchers with the aim to generalize the basic searching model to searching with
errors. This variant is known as pattern matching with don’t cares and can be solved in
O(n + m) time [28]. The secure version of this problem guarantees that Alice will not
be able to trace the locations of the don’t cares in addition to the security requirement
introduced for the basic problem.

The core idea of the solution is to proceed as in the standard one with two excep-
tions: Bob must supply the wildcard positions in encrypted form, and the substrings
of Alice’s text must be modified to ensure that they will match (i.e., equal) the pat-
tern at those positions. Achieving correctness and ensuring correct behavior requires
substantial modification of the protocol. Intuitively, for every m-bit substring t̄j of t ,
Bob replaces Alice’s value by 0 at the wildcard positions resulting in a string t̄ ′j , see
Step 6 below. Similarly, a pattern p′ is obtained from p by replacing the wildcards by 0.
Clearly this ensures that the bits of t̄ ′j and p′ are equal at all wildcard positions. Thus,
t̄ ′j = p′ precisely when t̄j equals p at all non-wildcard positions.

Protocol πPM-�

• Inputs: The input of Alice is a binary string t of length n and an integer m, whereas
the input of Bob is a string p over the alphabet {0,1, �} of length m and an inte-
ger n. The parties share a security parameter 1κ as well.

• The protocol:

1. Alice and Bob run protocol πKeyGen(1κ ,1κ) to generate a public key pk =
〈Gq, q, g,h〉, and the respective shares sA and sB of the secret key sk.

2. For each position i = 1, . . . ,m, Bob first replaces � by 0

p′
i ←

{
1 if pi = 1,

0 otherwise.

He then sends encryptions P ′
i = Epk(p

′
i; rp′

i
) for i = 1, . . . ,m to Alice, and

for each one they execute πisBit. Finally, both parties compute an encryption
of Bob’s “pattern” in binary,

P ′ ←
m∏

i=1

P ′2i−1

i .

3. For each position i = 1, . . . ,m of Bob’s pattern, he computes a bit denoting
the occurrences of a �,

wi ←
{

0 if pi = �,

1 otherwise.
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He then encrypts these and sends the result to Alice,

Wi ← Epk(wi; rwi
),

and the two run πisBit for each one.
4. For each i = 1, . . . ,m, Bob and Alice run πisBit on Wi/P

′
i . This demonstrates

to Alice that if p′
i is set, then so is wi , i.e. that only 0’s occur at wildcard

positions.
5. Alice supplies her input as in Step 3 of Protocol πPM in Sect. 3. She sends

encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits of t to Bob. Then the
parties run πisBit for each of the encryptions.

6. For every m-bit substring of t starting at position j = 1, . . . , n − m + 1, Bob
computes an encryption

T̄ ′
j ←

(
m∏

i=1

(
(Tj+i−1)

wi
)2i−1

)

· Epk(0; rj ).

He sends these to Alice, and they run π�-proof on the tuple consisting of the
encryptions of Alice’s input and Bob’s wi , as well as the T̄ ′

j . This allows
Alice to verify that Bob correctly computed encryptions of her substrings
with her input replaced by 0 at Bob’s wildcard positions.

7. The protocol concludes as Protocol πPM does. Namely, for each of the T̄ ′
j

where j = 1, . . . , n − m + 1, the parties compute


j ← T̄ ′
j · P ′−1

and run πDec0. This reveals to Bob which of plaintexts δj are 0. For each
δj = 0 he concludes that the pattern matched and outputs j .

To see that the protocol does not introduce new opportunities for malicious behavior,
first note that Alice’s specification is essentially as in the basic protocol πPM. Regard-
ing Bob, the proofs of correct behavior limit him to supplying an input that an honest
Bob could have supplied as well. Bob’s input, p′

i for i = 1, . . . ,m, is first shown to be
a bit string, Step 2. The invocations of πisBit of Step 3 then ensure that so is the “wild-
card string”. Finally, in Step 4 it is verified that for each wildcard pi of p, p′

i = 0. In
other words, there is a valid input where the honest Bob would send encryptions of the
values that the malicious Bob can use. The only remaining option for a malicious Bob
is in Step 6, however, the invocations of π�-proof ensure his correct behavior. Formal
simulation is analogous to that in Sect. 3. We state the following theorem:

Theorem 7 (Wildcards). Assume that the DDH assumption holds in Gq , then πPM-�
securely computes FPM-� in the presence of malicious adversaries.

Regarding complexity, clearly the most costly part of the protocol is Step 6 which re-
quires Bob to send Θ(n + m) encryptions to Alice, as well as an invocation of π�-proof.
Hence, due to the latter communication complexity is O(n + m) and round complexity
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remains constant, while computation is increased to O(nm) multiplications and expo-
nentiations. We remark that dropping the ZK-proofs results in a passively secure variant
requiring only O(n + m) exponentiations since the computation of T̄ ′

j in Step 6 can be
implemented similarly to square and multiply.

5. Secure Approximate Matching

The second variation considered is approximate pattern matching: Alice holds an n-bit
string t , while Bob holds an m-bit pattern p. The parties wish to determine approxi-
mate matches—strings with Hamming distance less than some threshold τ ≤ m. This is
captured by the functionality FAPM defined by

(
(p,n, τ ),

(
t,m, τ ′)) �→

⎧
⎨

⎩

({j | δH (t̄j ,p) < τ }n−m+1
j=1 , λ) if |p| = m ≥ τ = τ ′

and |t | = n,
(λ,λ) otherwise,

where δH denotes Hamming distance and t̄j is the substring of length m that begins at
the j th position in t . We assume that the parties share some threshold τ ∈ N. Note that
this problem is an extension of pattern matching with don’t cares problem introduced in
Sect. 4. Bob is able to learn all the matches within some error bound instead of learning
the matches for specified error locations.

Two of the most important applications of approximate pattern matching are spell
checking and matching DNA sequences. The most recent algorithm for solving this
problem without considering privacy is by Amir et al. [3] which introduced a solution
in time O(n

√
τ log τ). Our solution achieves O(nm) computation and O(nτ) commu-

nication complexity.
The main idea behind the construction is to have the parties securely supply their

inputs in binary as above. Then, to determine the matches, the parties first compute the
(encrypted) Hamming distance hj for each position j , using the homomorphic proper-
ties of ElGamal PKE (Steps 5 and 6). They then check whether hj = k for each k < τ .
To avoid leaking information, these results are permuted before the final decryption.

Protocol πAPM

• Inputs: The input of Alice is a binary string t of length n, an integer m and a
threshold τ ′, whereas the input of Bob is a binary string p of length m, an integer
n and a threshold τ . The parties share a security parameter 1κ as well.

• The protocol:

1. Alice and Bob run protocol πKeyGen(1κ ,1κ) to generate a public key pk =
〈Gq, q, g,h〉, and the respective shares sA and sB of the secret key sk.

2. Alice sends Bob τ ′ and the parties continue if τ = τ ′.
3. As in the basic solution, Bob first sends encryptions Pi = Epk(pi; rpi

) i =
1, . . . ,m, of the bits of his m-bit pattern, p, to Alice. They then run πisBit for
each one.

4. Alice similarly provides encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n of her
input as in πPM; for each one the parties execute πisBit.
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5. For every m-bit substring of t starting at position j = 1, . . . , n − m + 1, Bob
computes an encryption

H ′
j ←

m∏

i=1

(Tj+i−1)
−2pi · Epk(1;0)pi (6)

and rerandomizes it. He then sends all these to Alice and demonstrates that
they have been correctly computed by executing πh-proof on the encryptions
Pi of the pi and the H ′

j .
6. For every m-bit substring, t̄j of t starting at position j = 1, . . . , n − m + 1,

both parties locally compute encryptions of the Hamming distance between
t̄j and p,

Hj ← H ′
j ·

(
m∏

i=1

Tj+i−1

)

. (7)

7. For every k = 0, . . . , τ − 1 (i.e., for every Hamming distance which would
be considered a match) and for every substring of length m starting at j =
1, . . . , n − m + 1, both parties compute


j,k ← Hj · 〈1, g−k
〉
. (8)

8. For every j = 1, . . . , n−m+1, Alice picks a uniformly random permutation
πj : Zτ → Zτ and applies πj to the set {
j,k}k ,

(

′

j,0, . . . ,

′
j,τ−1

) ← πj (
j,0, . . . ,
j,τ−1),

rerandomizes all encryptions,


′′
j,k ← 
′

j,k · Epk

(
0; r ′

j,k

)

for j = 1, . . . , n − m + 1 and k = 0, . . . , τ − 1, and sends the 
′′
j,k to Bob.

For every permutation, j = 1, . . . , n − m + 1, the parties execute πPerm

on ((
j,0, . . . ,
j,τ−1), (

′′
j,0, . . . ,


′′
j,τ−1)) allowing Bob to verify that the

plaintexts of the 
′′
j,k correspond to those of the 
j,k for all (fixed) j .

9. Finally, Alice and Bob execute πDec0 on each 
′′
j,k for j = 1, . . . , n − m + 1

and k = 0, . . . , τ −1. This reveals to Bob which plaintexts δj,k are 0. He then
outputs j iff this is the case for one of δ′′

j,0, . . . , δ
′′
j,τ−1.

Correctness follows from the intuition: The plaintexts of the Hj from Eq. (7) are the
desired Hamming distances. It is straightforward to verify that if the H ′

j have been cor-
rectly computed, the pi are bits, and the Tj are encryptions of bits, then the encryption

H ′
j ·

(
m∏

i=1

Tj+i−1

)

=
m∏

i=1

(Tj+i−1)
1−2pi · Epk(1;0)pi
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contains the Hamming distance between the string p ∈ {0,1}m and the encrypted sub-
string of length m starting at position j . The expression

(Tj+i−1)
1−2pi · Epk(1;0)pi

simply negates the encrypted bit, Tj+i−1, if pi is set, i.e., computes an encryption of
tj+i−1 ⊕ pi . Further, as multiplying ciphertexts computes the encrypted sum of the
plaintexts and m < q , then clearly the overall result is the number of differing bits—in
other words, the Hamming distance.

Each threshold test is performed using τ tests of equality, one for each possible value
k < τ , where each test simply subtracts the associated k from Hj under the encryp-
tion, Eq. (8), at which point the parties may mask and decrypt towards Bob. Note that
the standard masking combined with the permutation of Step 8 ensures that for every
potential match, Bob either receives τ uniformly random encryptions of random, non-
zero values, or τ − 1 such encryptions and a single encryption of zero. Both are easily
simulated, hence we state the following theorem:

Theorem 8 (Approximate). Assume that the DDH assumption holds in Gq , then πAPM
securely computes FAPM in the presence of malicious adversaries.

Regarding complexity, the most expensive steps are those associated with computing
the Hamming distances, Steps 5 and 6, and the permutations and decryptions needed to
compare the Hamming distances to τ , Steps 8 and 9. The former requires O(m + n)

communication, but O(nm) multiplications and exponentiations. The latter requires
both O(nτ) communication, multiplications and exponentiations. As τ ≤ m this implies
O(nτ) communication and O(mn) computation overall. Round complexity is constant
as in the previous solutions. We remark that dropping the ZK-proofs results in a more
efficient, passively secure variant, since the computational complexity of Steps 5 and 6
is reduced to O(nm) multiplications and O(n + m) exponentiations.

5.1. A Variation—Using Paillier Encryption

The approximate pattern matching protocol is our most costly construction in terms
of communication, as O(nτ) elements are exchanged between the parties. This was
due to implementing the comparison between Hamming distance and threshold using
τ equality tests. We now propose an alternative to the above scheme, and note that it
requires o(n

√
τ log τ) communication, i.e., exchange fewer elements than any “naive”,

secure implementation based on [3] would.
Our protocol could equally well be constructed using Paillier encryption, [39]. The

drawbacks include a significantly less efficient key generation as well as larger cipher-
texts due to basing security on factoring rather than discrete logarithms. However, com-
parison (greater-than) becomes much more efficient requiring communication complex-
ity of O(loglog τ ·(logloglog τ +k)) where k is a security or correctness parameter, [42].
This implies an overall communication complexity of O(n · loglog τ(logloglog τ +k)).1

1 This construction increases the round-complexity to O(loglog τ); for constant round complexity
O(n · √log τ(loglog τ + k)) elements will be exchanged.
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We remark that in practice, it may be preferable to avoid statistical security/correctness;
with present knowledge this requires O(log τ) elements to be exchanged, e.g., by adapt-
ing the protocol of Nishide and Ohta, [37]. Despite an overall worse asymptotic behavior
of O(n log τ), avoiding the factor of k improves efficiency for “small” τ .

6. Hiding the Pattern Length

Here Alice is not required to know the length m of Bob’s pattern, only an upper bound
M ≥ m. Moreover, she will not learn any information about m. More formally, the
parties wish to compute the functionality FPM-hpl defined by

(
(p,n), (t,M)

) �→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| ≤ M and |t | = n,

(λ,λ) otherwise,

where t̄j is the substring of length m that begins at the j th position in t . A proto-
col πPM-hpl that realizes FPM-hpl can be obtained through minor alterations of πPM-�.
The main idea is to have Bob construct a pattern p′ of length M by padding p with
M − m wildcards. Though not completely correct, intuitively, executing πPM-� on in-
put ((p′, n), (t,M)) provides the desired result, as the wildcards ensure that the irrel-
evant postfixes of the t̄j are “ignored.” There are two reasons why this does not suf-
fice. Firstly, the wildcards of πPM-� mean match any character, however, matches must
also be found when the wildcards occur after the end of the text (where there are no
characters). Secondly, a malicious Bob must not have full access to wildcard-usage—
i.e., he must not be able to arbitrarily place wildcards, they must occur only at the
end of p′. To eliminate these issues, Alice’s text must be extended, while Bob must
demonstrate that his wildcards are correctly placed. In detail, our construction is the
following.

Protocol πPM-hpl

• Inputs: The input of Alice is a binary string t of length n and an integer M , whereas
the input of Bob is a string p over the alphabet {0,1} of length m ≤ M and an
integer n. The parties share a security parameter 1κ as well.

• The protocol:

1. Alice and Bob run protocol πKeyGen(1κ ,1κ) to generate a public key pk =
〈Gq, q, g,h〉, and the respective shares sA and sB of the secret key sk.

2. Bob constructs a pattern p′ of length M by padding p with M −m zeros. He
then sends encryptions P ′

i = Epk(p
′
i; rp′

i
) for i = 1, . . . ,M to Alice, and for

each one they execute πisBit. Finally, both parties compute an encryption of
Bob’s “pattern” in ternary,

P ′ ←
m∏

i=1

P ′3i−1

i .
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3. For each position i = 1, . . . ,M of p′, Bob computes a bit denoting if this
position is padding

wi ←
{

0 if i > m,

1 otherwise.

He encrypts these and sends the result to Alice,

Wi ← Epk(wi; rwi
),

and the two run πisBit for each one.
4. For each i = 1, . . . ,M , Bob and Alice run πisBit on Wi/P

′
i . This demonstrates

to Alice that if p′
i is set, then so is wi , i.e., that if Bob claims some position

is padding (wi = 0) then the associated p′
i is also 0.

5. For each i = 1, . . . ,M − 1, Bob and Alice run πisBit on Wi/Wi+1. This
demonstrates to Alice that a 1 never follows a 0 in the wi , i.e., that
w1, . . . ,wM is monotonically non-increasing. Hence zeros (signifying
padding) occur at the end.

6. Alice supplies her input as in Step 3 of Protocol πPM in Sect. 3. She sends
encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits of t to Bob. Then the
parties run πisBit for each of the encryptions.

7. Alice and Bob pad Alice’s encrypted text with M − 1 default encryptions
of 2, Tj = 〈1, g2〉 for j ∈ {n + 1, n + 2, n + M − 1}.

8. For every M-bit substring of the padded t starting at position j = 1, . . . , n,
Bob computes an encryption

T̄ ′
j ←

(
M∏

i=1

(
(Tj+i−1)

wi
)3i−1

)

· Epk(0; rj ).

He sends these to Alice, and they run π�-proof on the tuple consisting of the
encryptions of Alice’s padded input and Bob’s wi , as well as the T̄ ′

j . This
allows Alice to verify that Bob correctly computed encryptions of her sub-
strings in ternary with her input replaced by 0 at Bob’s padding positions.2

9. The protocol concludes as above: For each of the T̄ ′
j where j = 1, . . . , n, the

parties compute


j ← T̄ ′
j · P ′−1,

and run πDec0. This reveals to Bob which of plaintexts δj are 0. For each
δj = 0 he concludes that the pattern matched and outputs j .

Correctness is straightforward: Alice pad her text with the character 2, which will
match Bob’s padding but not his binary pattern. This explains the need for ternary rep-
resentation rather than binary representation in Steps 2 and 8. Specifically, any charac-
ter, including 2, will match the padding characters of p′ since it is replaced by 0 in the

2 π�-proof specified in Appendix A deals with binary representation. Modifying it into ternary representa-
tion is straightforward.
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computation of the encrypted substring T̄ ′
j , in Step 8. Thus, if Bob behaves honestly and

supplies a correct input, then the matches are correctly output.
Moreover, due to the use of zero-knowledge proofs, malicious parties cannot deviate,

i.e., they are forced to behave as an honest party would. In particular, Alice verifies that
Bob’s “padding vector” w1, . . . ,wM , is not malformed in Steps 4 and 5. All padding of
p′ is 0 and padding is added only at the end of p, such that the 1 character never follows
the 0 character in the padding portion. Finally, Bob cannot use non-binary inputs due
to the execution of πisBit. Hence a malicious Bob is reduced to supplying an input that
an honest Bob could supply implying that the correct matches are found. The security
argument for a malicious Alice follows similarly.

The communication complexity of πPM-hpl is O(n+M), whereas the computation is
O(nM) multiplications due to the computation of Step 8. The analysis is analogous to
the one for πPM-�; the main differences are Bob’s demonstration that the padding occurs
at the end, Step 5, and the extension of Alice’s text to one of length n + M − 1, Step 7,
which clearly is linear in n + M . We conclude with the following theorem,

Theorem 9 (Pattern length hiding). Assume that the DDH assumption holds in Gq ,
then πPM-hpl securely computes FPM-hpl in the presence of malicious adversaries.

Adding a Lower Bound on m Allowing Bob to input arbitrary patterns of length at
most M may not be acceptable. In particular using a single-bit pattern in πPM-hpl reveals
all of Alice’s text, and if an honest Bob is allowed this action, then so is a malicious one.
This “attack” can be prevented by adding a lower bound, μ on Bob’s pattern length. This
can be enforced by setting W1, . . . ,Wμ to default encryptions of 1, 〈1, g〉, in the above
protocol.

7. Hiding the Text Length

The final variant does not require Bob to know the actual text length n, only an upper
bound N ≥ n. Moreover, he learns no information about n other than what can be in-
ferred from the output. This property is desirable in applications where it is crucial to
hide the size of the database as it gives away sensitive information. More formally, the
parties wish to compute the functionality FPM-htl,

(
(p,N), (t,m)

) �→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| = m and |t | ≤ N ,

(λ,λ) otherwise,

where t̄j is the substring of length m that begins at the j th position in t .
The core idea of the solution is to extend the alphabet with an additional character

and have Alice pad her text with N − n occurrences of this. Overall, the protocol is
similar to πPM; moreover, Alice is forced to behave honestly using a similar construc-
tion to the one ensuring Bob’s honesty in πPM-hpl above. The whole construction is as
follows:
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Protocol πPM-htl

• Inputs: The input of Alice is a binary string t of length n and an integer m, whereas
the input of Bob is a binary string p of length m and an integer N . The parties share
a security parameter 1κ as well.

• The protocol:

1. Alice and Bob run protocol πKeyGen(1κ ,1κ) to generate a public key pk =
〈Gq, q, g,h〉, and the respective shares sA and sB of the secret key sk.

2. As in the basic solution, Bob sends encryptions Pi = Epk(pi; rpi
), i =

1, . . . ,m, of his m-bit pattern, p, to Alice. Further, for each encryption the
parties execute πisBit, allowing Alice to verify that Bob has provided a bit-
string of length m. Both parties then compute an encryption of Bob’s pat-
tern,

P ←
m∏

i=1

P 3i−1

i .

Note that contrary to the basic solution, the binary pattern is encoded in
ternary to allow an additional symbol, 2.

3. Initially Alice pads her text with 1’s; we denote the padded text t ′. She then
sends encryptions, T ′

j = Epk(t
′
j ; rt ′j ), j = 1, . . . ,N , of the bits of this N -bit

input, to Bob. Further, for each of the N encryptions, the parties execute
πisBit, allowing Bob to verify that Alice has indeed provided the encryption
of a known N -bit string.

4. Then, for j = 1, . . . ,N Alice computes

dj ←
{

1 if j > n,

0 otherwise.

These bits represent Alice’s padding, and encryptions of them, Dj =
Epk(dj ; rdj

) j = 1, . . . ,N , are then sent to Bob. Alice then proves that
they indeed contain bits by running πisBit, and she further demonstrates
that d1, . . . , dN is monotonically non-decreasing. Similarly to Bob’s proof in
Step 5 of πPM-hpl, running πisBit on Dj+1/Dj demonstrates that all padding
occurs at the end of t ′.

5. Next, Alice and Bob run πisBit on T ′
j /Dj for j = 1, . . . ,N . This demon-

strates to Bob that whenever dj is set, then so is t ′j , hence Alice’s padding
contains only 1’s.

6. For every m-bit substring of the padded text t ′, starting at position j =
1, . . . ,N − m + 1, both parties compute an encryption of that string with
any padding replaced by 2’s:

T̄ ′
j ←

j+m−1∏

i=j

(
T ′

i · Di

)3i−j

.
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7. As Step 5 of πPM, for every T̄ ′
j , j = 1, . . . ,N − m + 1 the parties com-

pute


j ← T̄ ′
j · P −1.

8. For every j = 1, . . . ,N −m+1 Alice and Bob run πDec0 on 
j ; Bob outputs
j iff δj = 0.

Correctness of πPM-htl is easily verified. The honest Alice sets the N −n rightmost dj

and t ′j to 1. Therefore, the T̄ ′
j computed in Step 6 consists of an m-character substring of

t ′ in ternary, where any 1’s from padding has been replaced by 1 + 1 = 2. Bob’s pattern
is similarly computed in ternary, implying that 
j contains 0 iff the pattern matches.

Regarding security, Bob’s behavior is essentially the same as in πPM; hence the proof
of security is analogous. Regarding Alice, note that even if she is malicious, she is forced
to provide a well-formed text and denotation of padding due to the zero-knowledge
proofs of knowledge. In Step 4 she demonstrates that the d = d1, . . . , dN consists of a
string of 0’s followed by a string of 1’s. (This is equivalent to saying that all padding
occurs at the end.) Then in Step 5 she demonstrates that she indeed padded t with 1’s. In
other words, an honest Alice could have supplied the same input. Formally, simulating
the view is analogous to the basic case.

Complexity is similar to the basic protocol and only O(N + m) encryptions change
hands, hence only this many zero-knowledge proofs of knowledge are needed as well.
Analogously to the computation of the T̄j in πPM, computing T̄ ′

j in Step 6 naïvely re-
quires O(Nm) multiplications. Again, it is possible to reduce this to linear at the cost
of increasing the number of exponentiations by a constant factor. Thus, both communi-
cation and computation complexities are linear while the required number of rounds is
constant.

Theorem 10 (Text length hiding). Assume that the DDH assumption holds in Gq , then
πPM-htl securely computes FPM-htl in the presence of malicious adversaries.

Appendix A. Σ-Protocol π�-proof

In this section we provide a Σ -protocol π�-proof used within Protocol πPM-�, Step 6.
The detailed protocol is seen in Fig. A.1 and demonstrates knowledge of a preimage of
φT1,...,Tn for the value ({Ci}mi=1, {T̄ ′

j }n−m+1
j=1 ), i.e., demonstrates knowledge of the plain-

texts and randomness of the m first encryptions and—more importantly in the present
work—demonstrates that the final n − m + 1 encryptions are computed correctly from
the encryptions Tj and values, wi . Hence, this protocol allows Alice to verify that Bob
has correctly replaced her encrypted bits (i.e., Tj ) with encryptions of 0 (i.e., (Tj )

0—
a default encryption of 0) at the wildcard positions of the encrypted substrings, denoted
by T̄ ′

j .

Theorem 11. π�-proof is a Σ -protocol.

Proof. We show correctness, special soundness and special honest verifier zero-
knowledge.
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Fig. A.1. Protocol π∗-proof.

Prover: Verifier:

Witness Public Statement

{wi }mi=1 ∈ Z
m
q T1, . . . Tn ∈ (G2

q )n;

{rwi
}m
i=1 ∈ Z

m
q {Ci }mi=1, {T̄ ′

j
}n−m+1
j=1

{rj }n−m+1
j=1 ∈ Z

n−m+1
q ∈ (G2

q )m × (G2
q )n−m+1

s.t.

φT1,...,Tn ({wi }mi=1; {rwi
}m
i=1; {rj }n−m+1

j=1 )

= ({Ci}mi=1, {T̄ ′
j
}n−m+1
j=1 )

Uniformly generate:

{w̃i }mi=1∈RZ
m
q

{rw̃i
}m
i=1∈RZ

m
q

{r̃j }n−m+1
j=1 ∈RZ

n−m+1
q

A ← φT1,...,Tn ({w̃i }mi=1;
{rw̃i

}m
i=1; {r̃j }n−m+1

j=1 )

A = ({C(A)
i

}m
i=1, {T̄ (A)

j
}n−m+1
j=1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Uniformly generate:
E∈RZq

E←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
For i = 1, . . . ,m

w
(Z)
i

← wi · E + w̃i mod q

r
(Z)
wi

← rwi
· E + rw̃i

mod q

For j = 1, . . . , n − m + 1

r
(Z)
j

← rj · E + r̃j mod q

Z = ({w(Z)
i

}m
i=1; {r(Z)

wi
}m
i=1; {r(Z)

j
}n−m+1
j=1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Verification: accept if

{Epk(w
(Z)
i

; r(Z)
wi

)}m
i=1

= {(Ci)
E · C(A)

i
}m
i=1

and

{φj ({w(Z)
i

}m
i=1, r

(Z)
j

)}n−m+1
j=1

= {(T̄ ′
j
)E · T̄ (A)

j
}n−m+1
j=1
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Correctness An honest verifier always accepts when interacting with an honest prover.
This is clear, as for i ∈ {1, . . . ,m}

Epk

(
w

(Z)
i ; r(Z)

wi

) = 〈
gr

(Z)
wi , hr

(Z)
wi · gw

(Z)
i

〉

= 〈
g

rwi
·E+rw̃i

mod q
, h

rwi
·E+rw̃i

mod q · gwi ·E+w̃i mod q
〉

= (〈
grwi , hrwi · gwi

〉)E · (〈gw̃i , hw̃i · gw̃i
〉)

= (Ci)
E · C(A)

i

as well as for j ∈ {1, . . . , n − m + 1}

φj

({
w

(Z)
i

}m

i=1, r
(Z)
j

)

=
(

m∏

i=1

(Ti+j )
w

(Z)
i ·2i−1

)

· Epk

(
0; r(Z)

j

)

=
(

m∏

i=1

(Ti+j )
wi ·E+w̃i mod q·2i−1

)

· Epk(0; rj · E + r̃j mod q)

=
(

m∏

i=1

(Ti+j )
wi ·2i−1

)E

·
(

m∏

i=1

(Ti+j )
w̃i ·2i−1

)

· Epk(0; rj )E · Epk(0; r̃j )

=
(

m∏

i=1

(Ti+j )
wi ·2i−1 · Epk(0; rj )

)E

·
(

m∏

i=1

(Ti+j )
w̃i ·2i−1

Epk(0; r̃j )
)

= (
T̄ ′

j

)E · T̄ (A)
j .

Special Soundness To prove special soundness, it must be shown that given two ac-
cepting executions (A,E,Z) and (A,E′,Z′) with the same commitment, A, there exists
an algorithm to efficiently compute a witness, i.e., an algorithm to efficiently compute

({ŵi}mi=1, {rŵi
}mi=1, {r̂j }n−m+1

j=1

) ∈ Z
m
q × Z

m
q × Z

n−m+1
q ,

such that

φT1,...,Tn

({ŵi}mi=1, {rŵi
}mi=1, {r̂j }n−m+1

j=1

) = ({Ci}mi=1,
{
T̄ ′

j

}n−m+1
j=1

)
.

First let

Z = ({
w

(Z)
i

}m

i=1;
{
r(Z)
wi

}m

i=1;
{
r
(Z)
j

}n−m+1
j=1

)

and

Z′ = ({
w

(Z′)
i

′}m

i=1;
{
r(Z′)
wi

′}m

i=1;
{
r
(Z′)
j

′}n−m+1
j=1

)
.
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Since E − E′ 	≡ 0 mod q it is invertible; letting δ = (E − E′)−1 mod q , we may com-
pute

{ŵi}mi=1 ← {(
z
(w)
i − z

(w)
i

′) · δ}m

i=1

{rŵi
}mi=1 ← {(

r(Z)
wi

− r(Z′)
wi

) · δ}m

i=1

{r̂j }n−m+1
j=1 ← {(

r
(Z)
j − r

(Z′)
j

) · δ}n−m+1
j=1 .

Verifying that this is a witness is straightforward:

Epk(ŵi; rŵi
) = Epk

((
w

(Z)
i − w

(Z′)
i

) · δ; (r(Z)
wi

− r(Z′)
wi

) · δ)

= (
Epk

(
w

(Z)
i ; r(Z)

wi

) · Epk

(
w

(Z′)
i ; r(Z′)

wi

)−1)δ

= (
(Ci)

E · C(A)
i · ((Ci)

E′ · C(A)
i

)−1)(E−E′)−1 mod q

= Ci

φj

({ŵi}mi=1; r̂j
) = φj

({(
w

(Z)
i − w

(Z′)
i

) · δ}m

i=1;
(
r
(Z)
j − r

(Z′)
j

) · δ)

=
(

m∏

i=1

(Ti+j )
(w

(Z)
i −w

(Z′)
i )·δ·2i−1

)

· Epk

(
0; (r(Z)

j − r
(Z′)
j

) · δ)

=
((

m∏

i=1

(Ti+j )
(w

(Z)
i −w

(Z′)
i )·2i−1

)

· Epk

(
0; r(Z)

j − r
(Z′)
j

)
)δ

=
((

m∏

i=1

(Ti+j )
(w

(Z)
i )·2i−1

)

· Epk

(
0; r(Z)

j

)

×
((

m∏

i=1

(Ti+j )
(w

(Z′)
i )·2i−1

)

· Epk

(
0; r(Z′)

j

)
)−1)δ

= (
φj

({
w

(Z)
i

}m

i=1, r
(Z)
j

) · (φj

({
w

(Z′)
i

}m

i=1, r
(Z′)
j

))−1)δ

= ((
T̄ ′

j

)E · T̄ (A)
j · ((T̄ ′

j

)E′ · T̄ (A)
j

)−1)((E−E′)−1 mod q)

= T̄ ′
j

Special Honest Verifier Zero-Knowledge Given challenge, E, the simulator picks

Z = ({
w

(Z)
i

}m

i=1;
{
r(Z)
wi

}m

i=1;
{
r
(Z)
j

}n−m+1
j=1

) ∈R Z
m
q × Z

m
q × Z

n−m+1
q .
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From this an appropriate A = ({C(A)
i }mi=1; {T̄ (A)

j }n−m+1
j=1 ) is computed as

{
C

(A)
i

}m

i=1 ← {
C−E

i · Epk

(
w

(Z)
i ; r(Z)

wi

)}m

i=1

and
{
T̄

(A)
j

}n−m+1
j=1 ← {(

T̄ ′
j

)−E · φj

({
w

(Z)
i

}m

i=1, r
(Z)
j

)}n−m+1
j=1 .

Multiplying the former ones by (Ci)
E and the latter ones by (T̄ ′

j )
E clearly results in

φ(Z), hence, Z is exactly the reply that an honest prover would send—since φ(Z) con-
sists of m “fresh” encryptions, no other possibilities exist for the w

(Z)
i and r

(Z)
wi

. Further,

once the w
(Z)
i become fixed, the evaluations of the φj ’s are simply rerandomizations,

hence no other options exist for the r
(Z)
j exist either. �

Complexity Communication complexity of π�-proof is clearly O(m + n). The prover
sends something in the image of φT1,...,Tn as well as a preimage, Z, and both are linear
in m and n. The verifier on the other hand sends only a single Zq element. Regarding
computation, the most expensive step is the evaluation of φT1,...,Tn , which both parties
must do. This requires computing O(m) encryptions—the Ci—as well as n − m + 1
evaluations of functions φj . It is immediate to see that the former requires O(m) mul-
tiplications and exponentiations. The latter on the other hand is more expensive. Each
φj consist of the rerandomization of the product of m exponentiations. Since there are
n − m + 1 of these, overall O(nm) multiplications and exponentiations are needed.

Appendix B. Σ-Protocol πH-proof

In this section we provide a Σ -protocol πH-proof used within Protocol πAPM, Step 5.
The detailed protocol is seen in Fig. B.1 and demonstrates knowledge of a preimage of
HT1,...,Tn for the value

({Hj }n−m+1
j=1 , {Pi}mi=1

) ∈ (
Gq

2)n−m+1 × (
Gq

2)m
,

i.e., demonstrates knowledge of the pi and the randomness used in the computation
of the ciphertexts. Most importantly, this demonstrates to the verifier that the Hj were
correctly computed from {Tj }nj=1. Hence, this protocol allows Alice to verify that Bob
has correctly computed his contribution to the Hamming distance computation based on
both his and her encrypted input.

Theorem 11. πH-proof is a Σ -protocol.

Proof. We show correctness, special soundness and special honest verifier zero-
knowledge.
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Fig. B.1. Protocol πH-proof.

Prover: Verifier:

Witness Public Statement

{pi}mi=1 ∈ Z
m
q T1, . . . Tn ∈ (G2

q )n;

{rpi
}m
i=1 ∈ Z

m
q {Hj }n−m+1

j=1 , {Pi }mi=1

{rj }n−m+1
j=1 ∈ Z

n−m+1
q ∈ (G2

q )n−m+1 × (G2
q )m

s.t.

HT1,...,Tn ({pi }mi=1; {rpi
}m
i=1; {rj }n−m+1

j=1 )

= ({Hj }n−m+1
j=1 , {Pi }mi=1)

Uniformly generate:

{p̃i}mi=1∈RZ
m
q

{rp̃i
}m
i=1∈RZ

m
q

{r̃j }n−m+1
j=1 ∈RZ

n−m+1
q

A ← HT1,...,Tn ({p̃i }mi=1;
{rp̃i

}m
i=1; {r̃j }n−m+1

j=1 )

A = ({H(A)
j

}n−m+1
j=1 , {P (A)

i
}m
i=1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Uniformly generate:
E∈RZq

E←−−−−−−−−−−−−−−−−−−−−−−−−−−−
For i = 1, . . . ,m

p
(Z)
i

← pi · E + p̃i mod q

r
(Z)
pi

← rpi
· E + rp̃i

mod q

For j = 1, . . . , n − m + 1

r
(Z)
j

← rj · E + r̃j mod q

Z = ({p(Z)
i

}m
i=1; {r(Z)

pi
}m
i=1; {r(Z)

j
}n−m+1
j=1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Verification: accept if

{Epk(p
(Z)
i

; r(Z)
pi

)}m
i=1

= {(Pi)
E · P (A)

i
}m
i=1

and

{H(j)
T1,...,Tn

({p(Z)
i

}m
i=1, r

(Z)
j

)}n−m+1
j=1

= {(Hj )E · H(A)
j

}n−m+1
j=1
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Correctness An honest verifier always accepts when interacting with an honest prover.
This is clear, as for i ∈ {1, . . . ,m}

Epk

(
p

(Z)
i ; r(Z)

pi

) = 〈
gr

(Z)
pi , hr

(Z)
pi · gp

(Z)
i

〉

= 〈
g

rpi
·E+rp̃i

mod q
, h

rpi
·E+rp̃i

mod q · gpi ·E+p̃i mod q
〉

= 〈
grpi , hrpi · gpi

〉E · 〈grp̃i , h
rp̃i · gp̃i

〉

= (Pi)
E · P (A)

i ,

while for j ∈ {1, . . . , n − m + 1}

H
(j)
T1,...,Tn

({
p

(Z)
i

}m

i=1, r
(Z)
j

)

=
(

m∏

i=1

(Ti+j−1)
−2p

(Z)
i · Epk(1;0)p

(Z)
i

)

· Epk

(
0; r(Z)

j

)

=
(

m∏

i=1

(Ti+j−1)
−2(piE+p̃i mod q)Epk(1;0)piE+p̃i mod q

)

× Epk(0; rj · E + r̃j mod q)

=
(

m∏

i=1

(
(Ti+j−1)

−2pi Epk(1;0)pi
)E · ((Ti+j−1)

−2p̃i Epk(1;0)p̃i
)
)

· Epk(0; rj )E

× Epk(0; r̃j )

=
((

m∏

i=1

(Ti+j−1)
−2pi Epk(1;0)pi

)

· Epk(0; rj )
)E

×
(

m∏

i=1

(
(Ti+j−1)

−2p̃i Epk(1;0)p̃i
) · Epk(0; r̃j )

)

= (Hj )
E · H(A)

j .

Special Soundness To prove special soundness, it must be shown that given two ac-
cepting executions (A,E,Z) and (A,E′,Z′) with the same commitment, A, there exists
an algorithm to efficiently compute a witness, i.e., an algorithm to efficiently compute

({p̂i}mi=1, {rp̂i
}mi=1, {r̂j }n−m+1

j=1

) ∈ Z
m
q × Z

m
q × Z

n−m+1
q ,

such that

HT1,...,Tn

({p̂i}mi=1, {rp̂i
}mi=1, {r̂j }n−m+1

j=1

) = ({Hj }n−m+1
j=1 , {Pi}mi=1

)
.
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Letting

Z = ({
p

(Z)
i

}m

i=1;
{
r(Z)
pi

}m

i=1;
{
r
(Z)
j

}n−m+1
j=1

)

and

Z′ = ({
p

(Z′)
i

}m

i=1;
{
r(Z′)
pi

}m

i=1;
{
r
(Z′)
j

}n−m+1
j=1

)
,

and noting that E 	= E′ implies that E−E′ is invertible modulo q , the algorithm initially
computes δ = (E − E′)−1 mod q . It then proceeds to compute a preimage:

{p̂i}mi=1 ← {(
p

(Z)
i − p

(Z′)
i

′) · δ}m

i=1,

{rp̂i
}mi=1 ← {(

r(Z)
pi

− r(Z′)
pi

) · δ}m

i=1,

{r̂j }n−m+1
j=1 ← {(

r
(Z)
j − r

(Z′)
j

) · δ}n−m+1
j=1 .

Verifying that this is a witness for {Hj }n−m+1
j=1 , {Pi}mi=1 is straightforward:

Epk(p̂i; rp̂i
) = Epk

((
p

(Z)
i − p

(Z′)
i

) · δ; (r(Z)
pi

− r(Z′)
pi

) · δ)

= (
Epk

(
p

(Z)
i ; r(Z)

pi

) · Epk

(
p

(Z′)
i ; r(Z′)

pi

)−1)δ

= (
(Pi)

E · P (A)
i · ((Pi)

E′ · P (A)
i

)−1)(E−E′)−1 mod q

= Pi,

H
(j)
T1,...,Tn

({p̂i}mi=1; r̂j
)

=
(

m∏

i=1

(Tj+i−1)
−2p̂i · Epk(1;0)p̂i

)

· Epk(0; r̂j )

=
(

m∏

i=1

(Tj+i−1)
−2((p

(Z)
i −p

(Z′)
i )·δ) · Epk(1;0)(p

(Z)
i −p

(Z′)
i )·δ

)

· Epk

(
0; (z(r)

j − z
(r)
j

′) · δ)

=
(

m∏

i=1

(
(Tj+i−1)

−2p
(Z)
i · Epk(1;0)p

(Z)
i

)
Epk

(
0; r(Z)

j

)
)δ

×
((

m∏

i=1

(
(Tj+i−1)

−2p
(Z′)
i · Epk(1;0)p

(Z′)
i

)
Epk

(
0; r(Z′)

j

)
)−1)δ

= (
(Hj )

E · H(A)
j · ((Hj )

E′ · H(A)
j

)−1)(E−E′)−1 mod q

= Hj .
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Special Honest Verifier Zero-Knowledge Given challenge, E, the simulator picks

Z = ({
p

(Z)
i

}m

i=1;
{
r(Z)
pi

}m

i=1;
{
r
(Z)
j

}n−m+1
j=1

) ∈R Z
m
q × Z

m
q × Z

n−m+1
q

uniformly at random. From this an appropriate A = ({P (A)
i }mi=1; {H(A)

j }n−m+1
j=1 ) is com-

puted as:
{
P

(A)
i

}m

i=1 ← {
P −E

i · Epk

(
p

(Z)
i ; r(Z)

pi

)}m

i=1

and
{
H

(A)
j

}n−m+1
j=1 ← {

(Hj )
−E · H(j)

T1,...,Tn

({
p

(Z)
i

}m

i=1, r
(Z)
j

)}n−m+1
j=1 .

In a real protocol execution, P
(A)
i is a fresh encryption of a uniformly random value;

this is also the case here, due to the multiplication by Epk(p
(Z)
i ; r(Z)

pi
).

Regarding the H
(A)
j , note that if all Tk , k ∈ {j, j + 1, . . . , j +m− 1}, are encryptions

of (q + 1)/2, then evaluating H
(j)
T1,...,Tn

results in an encryption of 0. Thus, in this case,

H
(A)
j sent in the protocol execution is simply a uniformly random encryption of 0. This

is the same for the simulation, assuming that Hj is indeed in the image of H
(j)
T1,...,Tn

.

If at least one tk 	= (q + 1)/2, then evaluating H
(j)
T1,...,Tn

on a uniformly random input
results in a uniformly random encryption of a uniformly random message. Since the pi

are uniformly random, then at least one

(Tj+i−1)
−2pi · Epk(1;0)pi

is an encryption of a uniformly random value, pi(1 − 2tj+i−1). The encryption is
rerandomized with the multiplication by Epk(0; rj ). Thus in an honest protocol exe-

cution, H
(A)
j is a uniformly random encryption of a uniformly random message; this

is also the case in the simulation due to the multiplication by the uniformly random
HT1,...,Tn

(j)({p(Z)
i }mi=1, r

(Z)
j ).

Finally, since there is only a single witness, Z is exactly the response that an honest
prover would send on challenge E. To see this, note that the Pi are encryptions, hence
they fix the values pi and rpi

. At this point only a single value is possible for each rj ,
since the remainder of the HT1,...,Tn

(j)-functions is simply rerandomization of fixed en-
cryptions. The fact that these fixed encryptions are unknown to the verifier changes
nothing. �

Complexity Communication complexity of πh-proof is clearly O(m + n). The prover
sends something in the image of HT1,...,Tn as well as a preimage, and both are linear
in m and n, while the verifier sends a single Zq element. Regarding computation, the
most expensive step is the evaluation of HT1,...,Tn , which both parties must do. This
requires computing O(m) encryptions—the Pi—as well as n − m + 1 evaluations of
functions H

(j)
T1,...,Tn

. It is immediate to see that the former requires O(m) multiplications

and exponentiations. The latter on the other hand is more expensive. Each H
(j)
T1,...,Tn

consist of the rerandomization of the product of m exponentiations. Since there are
n − m + 1 of these, overall O(nm) multiplications and exponentiations are needed.
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