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Abstract. Key-dependent message (KDM) secure encryption schemes provide se-
crecy even when the attacker sees encryptions of messages related to the secret-key sk.
Namely, the scheme should remain secure even when messages of the form f(sk) are
encrypted, where f is taken from some function class F. A KDM amplification pro-
cedure takes an encryption scheme which satisfies 7-KDM security, and boosts it into
a G-KDM secure scheme, where the function class G should be richer than F. It was
recently shown by Brakerski et al. (TCC 2011) and Barak et al. (EUROCRYPT 2010)
that a strong form of amplification is possible, provided that the underlying encryption
scheme satisfies some special additional properties.

In this work, we prove the first generic KDM amplification theorem which relies
solely on the KDM security of the underlying scheme without making any other as-
sumptions. Specifically, we show that an elementary form of KDM security against
functions in which each output bit either copies or flips a single bit of the key (a.k.a.
projections) can be amplified into KDM security with respect to any function family
that can be computed in arbitrary fixed polynomial-time. Furthermore, our amplifica-
tion theorem and its proof are insensitive to the exact setting of KDM security, and
they hold in the presence of multiple-keys and in the symmetric-key/public-key and
the CPA/CCA cases. As a result, we can amplify the security of most known KDM
constructions, including ones that could not be amplified before.

Finally, we study the minimal conditions under which full-KDM security (with re-
spect to all functions) can be achieved. We show that under strong notion of KDM
security, the existence of fully homomorphic encryption which allows to encrypt the
secret-key (i.e., “cyclic-secure”) is not only sufficient for full-KDM security, as shown
by Barak et al., but also necessary. On the other hand, we observe that for standard
KDM security, this condition can be relaxed by adopting Gentry’s bootstrapping tech-
nique (STOC 2009) to the KDM setting.
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1. Introduction

The study of secure encryption scheme is perhaps the most central subject in cryp-
tography. Since the introduction of semantic security [26] through the formulation of
CCA-security [19,33,35] and more, modern cryptography has successfully developed
increasingly stronger notions of security providing secrecy in highly adversarial set-
tings. Still, all these strong notions of security guarantee secrecy only as long as the
encrypted messages are independent of the secret key. This limitation dates back to the
seminal work of Goldwasser and Micali [26] who observed that semantic security may
not hold if the adversary gets to see an encryption of the secret key. For many years,
such usage scenarios were considered as “security bugs” that should be prevented by
system designers.

A decade ago, the assumption of independency between the secret key and the en-
crypted data was challenged by Camenisch and Lysyanskaya [16] and Black et al. [11].
Specifically, Camenisch and Lysyanskaya considered schemes that remain secure un-
der a “key cycle” usage, where we have t keys organized in a cycle and each key is
encrypted under its left neighbor. A generalization of this notion, called key-dependent
message (KDM) security, was suggested by Black et al. Informally, an encryption is
KDM® secure with respect to a function class  if security holds even when the ad-
versary can ask for an encryption of the message M = f(sky, ..., sk;) under the ith
public-key, where ski, ..., sk; are the secret keys present in the system and f is an ar-
bitrary function in F. This notion of security implies cyclic-security if F is expressive
enough (e.g., contains all “selector” functions), and it becomes stronger when the func-
tion class F grows. Hence, one would like to achieve KDM security while making the
function class F as large as possible.

The notion of KDM security was extensively studied in the past few years in several
flavors including the symmetric/public-key and the CPA/CCA settings [2,6-9,11-13,
15-17,27-29]. These works were motivated by the fundamental nature of the ques-
tion as well as by concrete applications including encrypted storage systems (e.g.,
BitLocker [12]), anonymous credentials [16], and realization of security proofs at the
framework of axiomatic security [1,3,11]. (See [12] for more motivations and details.)

Although much is known today about KDM security both on the positive and negative
sides, it is still unclear whether a standard encryption scheme can be transformed into
a scheme which provides KDM® security, even with respect to a single key (i.e., t = 1)
and simple non-trivial function families (e.g., selectors).] Hence, it is natural to move
forward and explore the possibility of building strong KDM security given a weak form
of KDM security as a primitive. This makes sense as today, following the seminal work
of Boneh et al. [12] and its follow-ups [6,13,17], it is known that a basic form of KDM
security (with respect to the family of “affine functions™) can be achieved in several
settings under various concrete cryptographic assumptions. Therefore, we ask:

Is there a generic transformation which amplifies KDM security from a
weak family of functions F to a larger family of functions G?

! Known impossibility results [9,27] only hold with respect to sufficiently rich families of functions (e.g.,
capable of computing poly(k)-independent hash functions, or pseudorandom functions).
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The question of KDM amplification was recently addressed by Brakerski et al. [15]
and Barak et al. [9], who made an important progress by showing how to amplify the
KDM security of several existing schemes. While the resulting amplification procedures
are relatively powerful (there is a considerable difference between F and G), they fall
short of providing full generality as they strongly rely on additional properties of the
underlying scheme (i.e., simulatable-KDM security and entropic-KDM security—to be
defined later). As a concrete example, it is unknown how to use any of these techniques
to amplify the KDM-security of the symmetric-key encryption scheme of [6] which is
based on the Learning Parity With Noise (LPN) assumption. (See Sect. 1.3 for more
details about these works and their relation to our approach.)

1.1. Our Results

We give an affirmative answer to the above question by providing the first generic KDM
amplification procedure. In particular, we consider the projection function class of all
functions f : (ski, ..., sk;) — v in which each output bit depends on (at most) a single
bit of the input. Namely, each output bit v; is either fixed to a constant or copies/flips an
original bit of one of the keys. We show that this elementary function family is complete
in the following sense:

Theorem 1.1 (Completeness of projections, Informal). Let G be any function family
which can be computed in some fixed polynomial time. Then, any encryption scheme
which satisfies KDMY) security with respect to projections can be transformed into a
new encryption scheme which is KDM® -secure with respect to G.

Generality Theorem 1.1 assumes nothing but KDM security regarding the underly-
ing scheme. Furthermore, the theorem (and its surprisingly simple proof) is insensitive
to the exact setting of KDM security: it holds for any number of keys ¢, and in both
symmetric-key/public-key and CPA/CCA settings. In all these cases, the new scheme
is proven to be secure exactly in the same setting as the original scheme. This allows
us, for example, to amplify the security of the affine-KDM secure scheme of [6], and
obtain the first symmetric-key encryption scheme with strong KDM security based on
the LPN assumption.

Extensions Theorem 1.1 can be further strengthened as follows. First, we can achieve
length-dependent KDM security [9], which means that the target family G can be taken
to be the family of all polynomial-size circuits whose size grows with their input and
output lengths via a fixed polynomial rate (e.g., the circuit size is quadratic in the in-
put and output lengths). This family is very powerful and it was shown to be rich
enough for most known applications of KDM security [9].2 (See Sect. 2 for details.)
In addition, in the case of CPA security (both in the public-key and symmetric-key set-
tings), we can weaken the requirement from the underlying scheme and ask for KDM

2 Most of the statements in [9] refer to the slightly weaker notion of Bounded KDM security in which the
circuit size grows only as a function of the input via a fixed polynomial rate. However, as observed in [9,
Sect. 6] their construction actually satisfies the stronger definition of length-dependent KDM security.
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security with respect to projections with a single output: namely, all Boolean func-
tions f(ski, ..., sk;) — b which output a single bit of one of the keys, or its negation.
This can be extended to the CCA setting via the transformations of [7,17] (though in
the public-key setting one has to employ, in addition, non-interactive zero-knowledge
proofs).

The relaxation to single-output projections also enables a liberal interface to which
we can easily plug previous constructions. For example, one can instantiate our re-
duction with schemes that enjoy KDM security with respect to affine functions, while
almost ignoring technical details such as the underlying field and its representation.
(These details required some effort in previous works. See the appendices in [9,13,15].)
This, together with the simple proof of our main theorem, allows to simplify the proofs
of [9,13] for the existence of length-dependent KDM secure encryption scheme un-
der the Decisional Diffie-Hellman (DDH) assumption [12], the Learning With Errors
assumptions (LWE) [6], and the Quadratic Residuosity (QR) and Paillier’s Decisional
Composite Residuosity (DCR) assumptions [13].

Given this completeness theorem, the current status of KDM security resembles the
status of other “complete” primitives in cryptography such as one-way functions or
oblivious transfer [20,34]: We do not know how to build these primitives from generic
weaker assumptions, however, any instantiation of them suffices for an entire world of
applications (i.e., all symmetric-key primitives in the case of one-way functions, and
generic secure-computation in the case of oblivious transfer, cf. [24,25]).

Beyond Length-Dependent Security ~ Although length-dependent KDM security seems
to suffice for most applications, one can strive for an even stronger notion of security
in which the KDM function class contains all functions (or equivalently all functions
computable by circuits of arbitrary polynomial size). It is somewhat likely that any
length-dependent secure scheme actually achieves full-KDM security (see the discus-
sion in [9]). Still, one may want to construct such a scheme in a provably secure way.
As a basic feasibility result, it was shown in [9] that any fully homomorphic encryption
scheme [21] which allows to encrypt the secret-key (i.e., “cyclic-secure”) is also full-
KDM secure. Unfortunately, despite the recent progress in the study of FHEs (cf. [36]
and references there) it is still unknown how to construct cyclic-secure FHEs under stan-
dard assumptions.®> Hence, one may ask whether it is possible to relax this requirement
and achieve full-KDM security under weaker assumptions.

We make two simple observations regarding this question. First, we consider the
case of simulatable KDM security [9], in which it should be possible to simulate an
encryption of f(sk) given only the corresponding public-key in a way that remains in-
distinguishable even to someone who knows the secret-key. We show that in this setting
the two notions: circular-secure FHE and full-KDM are equivalent. Hence, achieving
full-KDM security under a relaxed assumption requires to use non-simulatable con-
structions.

3 One can use standard assumptions to construct a leveled homomorphic-encryption (LHE) which sup-
ports homomorphic operations up to a-priori known bounded depth (e.g., [14,22]). However, the only known
transformation from LHE to FHE requires an additional cyclic security assumption. This further motivates
the study of KDM security.
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Our second observation asserts that the bootstrapping technique of Gentry [21] can
be used in the KDM setting as well (even for the case of non-simulatable constructions).
That is, if one can construct an encryption scheme which guarantees KDM security with
respect to circuits whose depth is only slightly larger than the depth of the decryption
algorithm, then this scheme is actually fully KDM secure. Unfortunately, all known
amplification techniques [9,15] including the ones in this paper, amplify KDM security
at the cost of making the decryption algorithm “deeper”. Still, we view this observation
as an interesting direction for future research.

1.2. Our Techniques

To formalize the question of KDM amplification, we define the notion of reduction
between KDM function families G <xpm F which means that any scheme that provides
KDM security with respect to F can be transformed via a fully black-box reduction
to a new scheme that satisfies KDM security with respect to G.* We describe a novel
way to derive such KDM reductions based on the machinery of randomized encoding
of functions [5,31]. Before we explain this notion, let us start with the simpler case of
deterministic encoding.

Say that a function f deterministically encodes a function g if for every x the output
of f(x) “encodes” the output of g(x) in the sense that g(x) can be efficiently computed
based on f(x) and vice versa. That is, there are two efficiently computable mappings
S and R such that S(g(x)) = f(x), and R(f(x)) = g(x). Suppose that we are given a
scheme which provides KDM security with respect to the encoding f, and we would
like to immunize it against the function g. This can be easily achieved by modifying
the encryption scheme as follows: to encrypt a message M we first translate it into the
f-encoding by computing S(M), and then encrypt the result under the original encryp-
tion scheme. Decryption is done by applying the original decryption algorithm, and
then applying the recovery algorithm R to translate the result back to its original form.
Observe that an encryption of g(sk) in the new scheme is the same as an encryption
of S(g(sk)) = f(sk) under the original scheme. Hence, the KDM security of the new
scheme with respect to g reduces to the KDM security of the original scheme with
respect to f.

This simple idea provides a direct reduction with very nice structure: any KDM query
for the new scheme is translated into a single KDM query for the original scheme.
This simple single-query-to-single-query translation leads to high level of generality:
the transformation is insensitive to the exact KDM setting (symmetric-key/public-key
and CPA/CCA), to the number of keys, and it can be used with respect to large function
families G and F as long as every function in G is encoded by some function in F via a
pair of universal mappings S and R. On the down side, one may complain that security
was not really amplified, as the function g and its encoding f are essentially equivalent.
It turns out that this drawback can be easily fixed by letting f be a randomized encoding
of g.

4 The term fully black-box reduction means (as usual in cryptography) that the new scheme makes only
black-box use of the original scheme, and that the security proof of the construction is also black-box in the
sense that an adversary breaking the new scheme can be used as an oracle in order to break the underlying
scheme. In contrast, our security proof makes a non black-box use of the KDM family. See later discussion.
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In the case of randomized encoding (RE), the function f (x; r) depends not only on x
but also on an additional random input r. For every fixed x, the output of f(x; r) is now
viewed as a probability distribution (induced by a random choice of ) which should
encode the value of g(x). Namely, there are two efficiently computable randomized
mappings S and R such that for every x: (1) the distribution S(g(x)) is indistinguishable
from f(x;r), and (2) with high probability over the choice of r (or even with probability
one) R(f(x;r)) = g(x). One can view these conditions as saying that g(x) is encoded
by a collection of functions { f;-(x)},, where f.(x) = f(x; 7).

Now suppose that our scheme is KDM secure with respect to the family { f(x)},,
then we can apply the above approach and get a scheme which satisfies KDM security
with respect to g. The only difference is that now the message preprocessing step is
randomized: To encrypt a message M first encode it by the randomized mapping S(M),
and then use the original encryption function. The security reduction is essentially the
same except that a KDM query for g in the new scheme is emulated by an old KDM
query for a randomly chosen function f,. This idea can be easily extended to the case
where all functions in G are encoded by functions in F:

Theorem 1.2 (Informal). If F is an RE of G, then G <xpm F.

The crux of this theorem, is that, unlike deterministic encoding, randomized encoding
can represent complicated functions by collections of very simple functions [4,5,31,32].
Specifically, by combining the above theorem with the REs of [4], which, in turn, are
based on Yao’s garbled circuit [37], we obtain our main results (Theorem 1.1).

1.3. Comparison with BGK and BHHI

Our techniques are inspired by both [15] (BGK) and [9] (BHHI). We believe that our
approach inherits the positive features of each of these works, and sheds new light on the
way they relate to each other. Let us review the main ideas behind these constructions
and explain how they compare to our solution.

1.3.1. The BGK Reduction

The starting point in [15] is an encryption scheme which satisfies entropic KDM se-
curity with respect to F. Roughly speaking, this means that KDM security should
hold not only when sk is chosen uniformly from the key space K = {0, 1}* but also
when it is chosen uniformly from a smaller domain X', e.g., X' = {0, 1} By rely-
ing on this notion, BGK shows that for every efficiently computable injective mapping
a : K' — K, one can amplify security from F to the class F o «, i.e., with respect to
functions f(a(sk)) for every f € F. The idea is to choose the key sk’ from K’ and
employ the original scheme with the key sk = a(sk’). This allows to translate a KDM
query f(a(sk’)) for the new scheme into an entropic-KDM query f(sk) for the old
scheme.

The deterministic encoding (DE) approach is inspired by the BGK approach, and
can be seen as a complementary solution. BGK extends a function f : K — M to
foa: K" — M by shrinking the key space (from K to K'), whereas in the DE approach
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f:K— Misextended to R o f : K — M’ by padding messages which effectively
shrinks the message space (from M to M’ = R(M)).

As a result BGK enjoys a similar attractive security reduction with single-query-to-
single-query translation. This leads to flexibility with respect to the KDM setting. In-
deed, although the BGK approach is not fully general due to its use of entropic-KDM se-
curity (a notion which seems stronger than standard KDM security), it immediately gen-
eralizes to the CCA and the symmetric-key settings, as long as the underlying scheme
provides entropic-KDM security.

It should be mentioned that in our approach the amplification is achieved by modify-
ing the encryption algorithm, rather than the key-generation algorithm as in BGK. This
minor difference turns to have a considerable effect. First, it allows to use fresh ran-
domness in every application of the encryption algorithm, and so the linkage between
functions in G to functions in F can be randomized. Indeed, this is exactly what allows
us to exploit the power of randomized encoding. In contrast, the BGK approach tweaks
the key-generation algorithm and so the relation between G to F is bounded to be deter-
ministic. In addition, since our modification happens in the encryption (and decryption)
phases, we can let the function class G grow not only with the security parameter but
also with the size of the messages. This leads to the strong notion of length-dependent
security, and in addition allows to achieve KDM®) where the number of keys ¢ grows
both with the message length and the security parameter.

In contrast, the family G of BGK cannot grow with the message length, and it can
only contain a polynomial number of functions. This limitation prevents it from be-
ing used in applications which require KDM security with respect to larger functions
classes (e.g., secure realization of symbolic protocols with axiomatic proofs of secu-
rity). Furthermore, amplification for large number of keys can be achieved only at the
expense of putting more restrictions on the underlying scheme (i.e., simulatable KDM
security). On the other hand, assuming these additional properties, the BGK approach
can get KDM security for concrete functions (e.g., constant degree polynomials) which
involve an arbitrary unbounded number of keys ¢, whereas in our approach the arity of
the KDM function is always bounded by some fixed predefined polynomial in the se-
curity parameter and message length.> Finally, it is important to mention that the BGK
reduction treats G in a black-box way, while the randomized encoding approach treats
this class in a non-black-box way.

1.3.2. The BHHI Reduction

The BHHI approach relies on a novel connection between homomorphic encryptions
and KDM security. First, it is observed that in order to obtain KDM security with respect
to G it suffices to construct a scheme which provides both cyclic-security (i.e., KDM
security with respect to the identity function) and homomorphism with respect to a

5 More precisely, our reduction limits the circuit size of the KDM function and therefore also its arity;
However, it puts no restriction on the number of keys in the system. Hence, if our transformation is applied
to a scheme which satisfies KDM() security for arbitrary #’s (as in [6,12]), we obtain an encryption scheme
which provides KDM(®) security even when the number of keys ¢ in the system is unbounded, as long as
the size (and arity) of the KDM functions available to the adversary is bounded by some (predetermined)
polynomial. See Remarks 2.2 and 3.8.
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function family G, i.e., it should be possible to convert a ciphertext C = Epx (M) into
C’ = Ep(g(M)) for every g € G. Indeed, the homomorphism property can be used to
convert a ciphertext Epk(sk) into the ciphertext Epk(g(sk)), and so cyclic-security is
amplified to G-KDM security.

BHHI construct such an encryption scheme by combining a two-party secure com-
putation protocol with two messages (i.e., based on Yao’s garbled circuit [37]) with a
strong version of oblivious transfer which satisfies an additional cyclic-security prop-
erty. The latter primitive is referred to as targeted encryption (TE). The basic idea is to
view the homomorphic property as a secure-computation task in which the first party
holds the message M and the second party holds the function g. The cyclic nature of
the TE primitive allows to implement this homomorphism even when the input M is
the secret-key. Finally, BHHI show that TE can be constructed based on affine-KDM
secure encryption scheme which satisfies a strong notion of simulation: There exists a
simulator which given the public-key pk can simulate a ciphertext Epx(g(sk)) in a way
which is indistinguishable even for someone who holds the secret-key.

The BHHI construction seems conceptually different from our RE approach (i.e., ho-
momorphism vs. encoding). Moreover, the construction itself is not only syntactically
different, but also relies on different building blocks (e.g., TE). Still, the RE construc-
tion shares an important idea with BHHI: The use of secure-computation techniques. It
is well known that REs are closely related to secure multiparty-computation (MPC) pro-
tocols [31], and, indeed, the role of REs in our reduction resembles the role of MPC in
BHHI. In both solutions at some point the security reduction applies the RE/MPC to the
function g in G. Furthermore, both works achieve strong KDM security by instantiating
the RE/MPC with Yao’s garbled circuit (GC)—a tool which leads to both stand-alone
RE construction [4] and, when equipped with an OT, to a two-party secure-computation
protocol.

It should be emphasized, however, that the actual constructions differ in some im-
portant aspects. While we essentially encrypt the whole GC-based encoding under the
underlying KDM encryption scheme, BHHI tweak the GC protocol with a cyclic-secure
OT (i.e., TE). Pictorially, our underlying KDM-secure scheme “wraps” the GC encod-
ing, whereas in BHHI the KDM-secure primitive is “planted inside” the GC protocol.
This difference affects both generality and simplicity as follows.

First, BHHI are forced to implement a KDM-secure OT, a primitive which seems
much stronger than standard KDM secure encryption schemes. For example, KDM-
secure symmetric-key encryption schemes can be constructed at the presence of a ran-
dom oracle [11] while OT protocols cannot [30].° Moreover, as we already mentioned,
although TE can be based on several known affine-secure KDM schemes (i.e., ones
which enable strong simulation), the LPN assumption (with constant error-rate) is a
concrete example under which symmetric-key encryption scheme with KDM-security
with respect to affine functions exist, yet OT is not known to exist. Furthermore, since
BHHI send the garbled circuit in the clear, it is not hard to show that the resulting
scheme is not CCA-secure even if the TE provides CCA security. Finally, the modifi-
cation of the GC protocol leads to a relatively complicated security proof, which relies
on non-standard properties of the GC (e.g., “Security against outsiders”), and requires

6 It seems that a similar statement holds even for public-key KDM-secure schemes. See [11,23].
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non-trivial additional work in order to achieve KDM® security with multiple keys (i.e.,
for large 1).

2. KDM-Security

2.1. Definitions

Notation For a positive integer n € N, let [n] denote the set {1,...,n}. A function
e(k) : N — [0, 1] is negligible if it tends to zero faster than 1/k¢ for every constant
¢ > 0. We let neg(k) denote an arbitrary negligible function in k (i.e., when we say
that f(k) < neg(k) we mean that there exists a negligible function ¢ (k) such that for
every k, f(k) < e(k)). The term efficient refers to probabilistic machines that run in
polynomial time in the security parameter.

Encryption Schemes (Syntax) An encryption scheme consists of three efficient algo-
rithms (KG, E, D), where KG is a key generation algorithm which given a security pa-
rameter 1¥ outputs a pair (sk, pk) of decryption and encryption keys; E is an encryption
algorithm that takes a message M € {0, 1}* and an encryption key pk and outputs a ci-
phertext C; and D is a decryption algorithm that takes a ciphertext C and a decryption
key sk and outputs a plaintext M’. We also assume that both algorithms take the security
parameter 1 as an additional input, but typically omit this dependency for simplicity.
We emphasize that the time complexity of E and D is polynomial in k 4 £ where k is
the security parameter and £ is the length of the message/ciphertext, respectively.

Encryption schemes should satisfy correctness, which requires that for each message
M € {0, 1}*

Pr [De(Epk(M)) # M] < 8(k),
(sk,pk) EKG(1%)

where the decryption error of the scheme & (k) should be negligible, and the probability
is taken over the randomness of KG, E and D. For security parameter k, let C; denote the
space from which decryption keys are chosen. We assume, without loss of generality,
that the binary representation of elements from /Xy, is k bit long.

Following Goldreich [25], we note that the above definition captures both public-key
and symmetric-key encryption schemes where the latter corresponds to the special case
in which the decryption key sk and encryption key pk are equal. As we will see, the
difference between the two settings will be part of the security definitions.

KDM Ensembles Lett:N — N be a function that determines the number of keys, and
let £ : N — N be a length function. A t-ary KDM function ensemble with output length £
is a collection of functions F = {fi ; : lC,i(k) — {0, 1}’3(‘“)}(1(‘ ») indexed by the security
parameter k and an identification string z, where each function f; ; maps a tuple of ¢ (k)
keys in Ky into a message of length £(|z]).” By default, the index z represents the cir-
cuit that computes the function fi .. We sometime abuse notation and identify F with

7 One could let ¢ depend on z itself, and not only on its length |z|. We prefer the current formulation for
simplicity.
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o Initialization. The challenger randomly chooses a bit b & {0,1} and t = (k)
key-pairs (ski, pk;) ..., (sk;, pk;) by invoking KG(lk) for ¢ times. The adver-
sary A can send a “public-key” query and get to see all the encryption keys
(Pky, - .-, pky).

e Queries. The adversary .A may adaptively make polynomially many queries of
the following types:

— Encryption queries of the form (i, M) where i € [¢t] and M € {0, 1}*. The
challenger responds with C & E(pk;, M) if b=1, and C & E(pk;, 0™y if
b=0.

— KDM queries of the form (i, z) where i € [¢] and z € {0, 1}*. The challenger
computes M = fi .(ski, ..., sk;) and responds with C & E(pk;, M) if b=
1,and C < E(pk;, 0M1y if b = 0.

— Decryption queries of the form (i, C) where i € [¢] and the string C was
not given as an answer of a previous encryption/KDM query. The challenger

responds with M = Dgy, (C) regardless of the value of b.
o Final phase. The adversary outputs a bit ¥’ € {0, 1} and wins if b =b'.

Fig. 1. The 7-KDM game is defined with respect to the function ensemble F = { f; .} and is indexed by
the security parameter k. The presence (resp., absence) of public-key query captures the public-key (resp.,
symmetric-key) setting.

the evaluation algorithm of the ensemble which maps 1%, z and sk e IC,i(k) to f, z(s_)k).
By convention, if f ; is not in the collection we assume that 7 (lk , Z, qu) = 0. The en-
semble is efficiently computable if the time-complexity of the evaluation algorithm F is
polynomial in the security parameter k. A weaker form of efficiency (for which our re-
sults also apply) allows the complexity of F to be polynomial in the security parameter
and the output length, namely, to be bounded by (£(|z|) + k)¢ for some constant c. In
this case we say that F is output efficiently computable. Output-efficient ensembles are
strictly richer than efficient ensembles.

The KDM Game An F-KDM Chosen-Ciphertext Attack (CCA) in the public-
key setting is defined in Fig. 1 as a game that takes place between a challenger
and an adversary A. The advantage of A when attacking a scheme & is «a(k) =
Pr[.A wins the KDM game] — %

By restricting the power of the adversary in the KDM game (Fig. 1) we get other
KDM settings. Specifically, the symmetric-key setting corresponds to adversaries of
type sym who do not ask public-key queries, and the CPA setting corresponds to adver-
saries of type CPA who do not make decryption queries. Hence, we can classify KDM
adversaries into one of the following four rypes: (pub, CCA), (pub, CPA), (sym, CCA),
and (sym, CPA). An adversary of type 7 that conducts an F-KDM attack is denoted as
(T, F)-adversary.

Definition 2.1 (KDM-secure encryption). Let T be a type, and F be a function ensem-
ble. An encryption scheme is (7', F)-KDM secure if every efficient (T, F) adversary has
at most negligible advantage when attacking the scheme.
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Remark 2.2 (Refined arity). Following previous works, we define KDM security with
a single parameter ¢ which denotes both the number of keys in the system and the arity
of the KDM ensemble F. We note that it is possible to use a more refined two-parameter
definition, in which the arity of F is ¢ and the total number of the keys that participate in
the game is T > 7. For example, imagine a scheme which remains secure when the KDM
game is initialized with large (or even unbounded) number of keys, but the adversary is
allowed to employ KDM functions which are applied to any pair of keys. This refined
notion can be formalized by augmenting a KDM query (i, z) with an ordered 7-size
subset S C [7], meaning that f, should be applied to (sk;);cs. For simplicity, we use a
single parameter definition which assumes that 7, the number of keys in the system, is
equal to ¢, the arity of the KDM ensemble. We note that some of our results hold even
when t is unbounded. (See Remark 3.8.)

2.2. Examples of KDM Ensembles

We consider several examples of t-ary KDM ensembles F = {F}.

Constants, Selectors, and Projections If Fj contains all constant functions {fy :
(ski, ..., sk;) = M}y, then, as observed in [12], KDM queries are equivalent to stan-
dard encryption queries and KDM security is nothing but standard security (with respect
to the type T'). If the ensemble F; contains all selector functions { f; : (ski, ..., sk;)
sk} jerr], we get the notion of cligue security [12] (which is stronger than circular se-
curity [16]), that is, the scheme is secure even if the adversary sees encryptions of the
form Epy, (sk;) for every i, j € [t]. Another elementary class that slightly generalizes
the previous ones is the class of all functions f : sk — v in which each output bit de-
pends on (at most) a single bit of the input sk = (ski, ..., sk;). Namely, the jth output
bit v; is either fixed to a constant or copies/flips an original bit of one of the keys, i.e.,
v; €{0,1,sk; 4,1 — sk; 4}, where sk; 4 is the gth bit of the ith secret key. We refer
to this class as the class of projections and let IT ,i , denote the restriction of this class
to functions of input length k¢ and output length £(k). Projections is a proper subclass
of the class of affine functions L : IF’;’ — Fg(k). Observe that all the above classes are
efficiently computable. We also consider the class of projections of unbounded poly-
nomial length IT} =,y 17, ,ﬁ e Which is output-efficiently computable. The construc-
tions of [6,12,13] (or variants of them) achieve (pub, CPA)-KDM security with respect
to IT; for every polynomial t(k).8

Polynomial-Size Circuits [9] For polynomials p(-) and £(-), let C,’(, tp denote the class
of all Boolean circuits C : {0, 1}¥ — {0, 1}¢® of size at most p(k + £(k)). For example,
if £ =1 and ¢, p are quadratic we get the family of all circuits C : {0, 1}¥ — {0, l}k2 of
size (k 4+ k%)% ~ k*. It is not hard to see that C,’C’ tp is efficiently computable as it can be
computed by an efficient universal algorithm F which given sk and a circuit C of size
p(k + £(k)) evaluates C(sk) in time poly(kt). Security with respect to the class C,’(’e’p
is denoted by (p, £)-bounded circuit-size KDM security.

8 More precisely, [6,12] present a single construction which works for every polynomial # (k), while [13]
provide for every polynomial ¢ a different construction.
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We also consider a stronger variant of this notion as follows. A scheme is p-
length-dependent KDM secure if it is (p, £)-bounded circuit-size KDM secure for ev-
ery polynomial £(-). Equivalently, it is KDM secure with respect to the class C,’C, »=
Uen Cltc,k“, > For example, if 1 = 1 and p is quadratic, we get security with respect
to every circuit C whose size is quadratic in the output length. Although C,’(, » is not
efficiently computable, it is output efficiently computable as it can be evaluated in time

poly(k, £).

Remark 2.3 (length-dependent security vs. full security). Full-KDM security corre-
sponds to the case where F is the class of all functions. Recall that adversaries are
assumed to be efficient, and each KDM query f; is assumed to be specified via a de-
scription z of the circuit that computes f,. Under these conventions, adversaries are al-
ways restricted to KDM functions which are polynomial-time computable (with respect
to an arbitrary polynomial), and so, a scheme which is p-length-dependent secure with
respect to every polynomial p(-) is also fully secure. We note that in some scenarios p-
length-dependent security, say for quadratic p, may be considered to be almost as pow-
erful as full KDM security. Indeed, length-dependent security allows the adversary to
use larger circuits by encrypting longer messages. Therefore, although quadratic-length-
dependent scheme does not guarantee security when the adversary sees Epk( f (sk)) for
a function f of complexity, say O(k’), we can prove security under a similar attack
in which f is replaced with a padded version f'(sk) = (f(sk), Ok3). It seems that, at
least in some scenarios, security against the latter attack is as useful as the former. Fur-
thermore, in [9] it was shown that p length-dependent security (say for quadratic p) is
sufficient for axiomatic-security applications (i.e., it gives the ability to securely instan-
tiate symbolic protocols with axiomatic proofs of security).

Remark 2.4 (The role of the arity #). Clearly, 7-KDM security becomes stronger when
the arity ¢ grows. At one extreme, one may consider a single encryption scheme which
satisfies 7-KDM security for an arbitrary polynomial 7 (k), and at the other extreme one
may consider the case of ¢ = 1, which is still non-trivial even for projection functions.

2.3. Encoding KDM Ensembles

Intuitively, a randomized encoding of a function g(x) is a randomized mapping f (x; r)
whose output distribution (which is induced by a random choice of ) depends only on
the output of g. We formalize this intuition via the notion of computationally private
randomized encoding of [4], while adopting the original definition from a non-uniform
adversarial setting to the uniform setting (i.e., adversaries are modeled by probabilistic
polynomial-time Turing machines), and tailoring it to the case of KDM ensembles.

Definition 2.5 (Randomized encoding). Let G : 1*¥ x {0, 1} — {0, 1}¢*-" be a func-
tion, and let F : 1% x {0, 1}* x {0, 1}"*" — 10, 1}*®") be a randomized function
whose third argument is its random tape. We say that G(1¥, x) is encoded by F (1%, x; r)
if there exist a recovery algorithm Rec : 1¥ x {0, 1}*®™ — {0, 1}¢*" and a random-
ized simulator algorithm Sim : 1% x {0, 1}¢*&m) 5 10, 1}5*-1) that satisfy the following:
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e Perfect correctness. For every k, n and x € {0, 1}", the error probabilities
k ko k
I:r[Rec(l JF(1%,x5r)) #G(1%,x)] and

Pr[Rec(1¥, sim(1%, G (1%, x))) # G (1%, x)]
are both zero.”
e Computational privacy. For every adversary A of complexity poly(k) we have

[P AF 53D (15) = 1] — P ASMOS G5 (15) = 1]] < neg(k),

where the oracles are defined as follows: Given x the first oracle returns a sample
from F (lk , x; r) where the randomness r is chosen uniformly at random, and the
second oracle returns a sample from Sim(1%, G (1%, x)).

o Efficiency. Typically, efficiency requires that both F' and G are computable in time
k¢ for some constant c¢. In our context, we relax this requirement and say that the
encoding is efficient if F and G are computable in time (k + £)° where £(]x]) is
the output length of G(1*, x). This means that the output length s of F (1%, x;r) is
polynomial in k 4 £(|x|). In addition, the complexity of Rec and Sim is assumed
to be polynomial in the length of their inputs, and therefore it is also polynomial in
k+£(]x]).

Let G(1%, z, s_’k) and F(1X, (z,r), sqk) be a pair of KDM function ensembles with the
same arity ¢ = t(k). We say that G is encoded by F if the function Gk, (z, sqk)) is
encoded by the function F 1k, (z, Sﬁk); r):=Fk, (z,r), sék), where r is treated as a
random input of F’.

2.4. Reductions Among KDM-Ensembles

We say that a KDM function ensemble G KDM-reduces to another KDM function en-
semble F (in symbols G <gpm F) if there exists a transformation Wthh converts an
encryption scheme £ that is 7-KDM secure to an encryption scheme & which is G-
KDM secure. Formall}i,\ such a (black-box) reduction is composed of (1) (construction)
an encryption scheme £ which is given an oracle access to the scheme &; and (2) (secu-
rity reduction) an efficient algorithm B such that for any F-adversary .A which attacks
& with advantage o, the G-adversary B¢ attacks the scheme & with polynomially re-
lated advantage (e.g., o/poly(k)). This definition can be instantiated with respect to all
four different types. We say that the reduction is type-preserving if BA€ is always of
the same type as A (i.e., B always ask the same type of queries that A asks in the KDM
game). Type preserving reduction extends KDM-security while being insensitive to the
concrete setting which is being used. Formally,

Lemma 2.6 (KDM-reductions). Suppose that the KDM function ensemble G KDM-
reduces to the ensemble F via a type-preserving reduction (£,B). For every T €
{pub, sym} x {CCA, CPA}, if the encryption scheme & is (T, F)-KDM secure then the
scheme EF is (T, G)-KDM secure.

9 Previous definitions require only that the first quantity is zero, however, all known constructions (of
perfectly correct randomized encoding) satisfy the current (stronger) definition.
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3. KDM Reductions via Randomized Encoding
Our main theorem shows that randomized encoding gives rise to KDM reductions.

Theorem 3.1 (main theorem). Suppose that the KDM function ensemble F encodes
the KDM function ensemble G. Then, G KDM-reduces to F via a type-preserving re-
duction.

To prove the theorem we need to describe a construction and a security reduction.
From now on, let Sim and Rec be the simulator and recovery algorithm which establish
the encoding of G by F.

Construction 3.2. Given an oracle access to the encryption scheme £ = (KG, E, D),
we define the scheme & as follows:

KG(1¥) =KG(1%),  Ep(M) =Em(Sim(M)),  Ds(C) = Rec(Dsk(C)),

where all algorithms (i.e., encryption, decryption, simulator and recovery) get the secu-
rity parameter 1% as an additional input.

It is not hard to show that & satisfies the syntactic requirements of encryption
schemes. Indeed, the complexity of @q(lk) is polynomial in the security parameter
k, while the efficiency of the encoding ensures that the complexity of Epk(M ) (resp.,
6sk(C)) is polynomial in k and | M| (resp., k and |C|). Correctness also follows easily
as shown in the following lemma.

Lemma 3.3 (correctness). The decryption error of the scheme & is the same as the
decryption error § of £, and so it is negligible.

Proof. The probability that a message M is incorrectly decrypted is bounded by

Pr [Dsk(Epk(M”)) # M'] + Pr[Rec(M’) # M|,
(ok,sk) L KG(15), M" £ Sim(m)

since the second term is 0, due to the (perfect) correctness of the encoding, we can
bound the above by max s Pr[Dsk(Epk(M')) # M'] < §(k), where M’ ranges over the
support of Sim(M) and (pk, sk) < KG(1%). O

Next, we show that the security of g can be based on that of £. Given an oracle access
toa (T, G) adversary A that attacks £, we define a (T, F) adversary B that attacks £ by
randomly choosing one of two strategies B° and B'.

Reduction 3.4 (The adversary BA'S). Toss a coin o & {0,1}. If 0 =1 invoke the
following adversary B':

e Initialization: B' invokes A. If A asks for the encryption keys then B' makes a
similar query and passes the answer to A.
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e Encryption query: If A makes an encryption query (i, M), for i € [t] and M €
{0, 1}*, then B samples M’ = Sim(M), sends (i, M') as an encryption query (w.rt.
to &) and passes the answer of the challenger to A.

e KDM query: If A makes a KDM query (i, z), fori € [t] and z € {0, 1}* (i.e., for the
function G(1%, z,-)), then the adversary B uniformly chooses randomness r and
asks the KDM query (i, (z,r)) (i.e., for the randomized encoding Fak z, )=
F(1k, (z,7),-)). The answer of the challenger is being sent to A.

e Decryption query: If A makes a decryption query (i, C), then B' checks that it is
legal (by inspecting all previous encryption/KDM queries), and if so, (1) passes the
same decryption query to the challenger, (2) applies the recovery algorithm Rec to
the result, and (3) sends it back to AL,

e Termination: B! terminates with the same output of A.

If o = 0 then invoke the adversary B°. This adversary is similar to B' except that en-
cryption and KDM queries of A are both translated into encryption queries as follows:
given an encryption query of A of the form (i, M) (resp., KDM query of the form (i, 7)),
the adversary BY samples M' = Sim(0%) and asks for the ciphertext Epk, (M), where £
is the length of M (resp., output length of G(1¥, z, -)).10 At the end, B° flips the output
of A and terminates.

Note that the above reduction is indeed type-preserving. Before we analyze the re-
duction, we need some notation. Let V 4 o(k) (resp., V 4 1(k)) be the random variable
which describes the view of .4 in the G-KDM game with respect to & conditioned on the
event that the challenger sets the challenge bit b to O (resp., 1). Similarly, for b € {0, 1}
and o € {0, 1} let V.4 go (k) be the view of 4 as emulated by B° conditioned on the
event that the challenge bit (in the 7-KDM game that B° plays) is b.

Let us first focus on the adversary B'. If the challenge bit b is 1 (i.e., when the chal-
lenger is in the “real-mode”), then the difference between the emulated view V 4 g1 (k)
and the view of A in the actual KDM game V 4 | (k), is only due to the difference in the
way KDM queries are answered. In the real game answers to KDM queries are com-
puted properly as Epk,- (G(*, z, sqk)) = Epk; (Sim(G(1*, z, sék))), whereas in the emulated
game they are computed by Epg, (F(1 k. (z,U), sﬁk)). However, this difference should not
be noticeable due to the privacy of the randomized encoding. Formally, let «, (k) (resp.,
B;, (k)) denote the probability that A (resp., B) guesses the challenge bit when it takes
the value b. Then,

Lemma 3.5. |,311 (k) — a1 (k)| < neg(k).

Proof. We define the following distinguisher D which, given an oracle access to either
Sim(G(1X, -, ) orto F/(1%, (-, ); U) = F(1X, (-; V), ), attempts to distinguish between
the two. The adversary D emulates the challenger with challenge bit b = 1. It generates a
key vector (sk;, pk;);e[s] by executing the key-generation algorithm KG(1%) for ¢ times.
Then D invokes A. If A asks a KDM query (i, z) then D calls its oracle with the
value (z, sk). Let M denote the answer of the oracle. The distinguisher computes the

10 Recall that the output length can be efficiently computed given z.
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ciphertext C = Epx, (M) and sends the ciphertext C to A. If A asks other types of queries
such as public-key queries, encryption queries, and decryption queries, the distinguisher
D answers them properly exactly as the real challenger does when it is in the real mode
b = 1. (For the case of a decryption query (i, C), the distinguisher checks that it is
legal by inspecting all previous KDM/encryption queries, and if so, sends Dg, (C).)
The distinguisher halts with output 1 if and only if .4 outputs 1.

Note that: (1) If D gets an oracle access to Sim(G(1%, -, -)) then the view of A is
distributed exactly as V 4 1(k) and so in this case D outputs 1 with probability o (k);
(2) If D gets an oracle access to F’ (1%, (-, -); U) then the view of A is distributed exactly
asin V4 g1 1 (k), and so in this case D outputs 1 with probability /311 (k). Hence, by the
privacy of the encoding, it follows that |ﬂ11 (k) — a1 (k)| <neg(k). O

We would like to argue now that a similar thing happens in the “fake” mode when
b = 0; namely, that V4 g1 (k) is indistinguishable from V4 ¢(k), and therefore ﬂé
is close to ap. However, when A attacks the original scheme (and the challenger is
in the “fake” mode) his KDM queries are answered with Epk,- 0% = Epk; (Sim(0%)),
whereas in the game emulated by B! these queries are answered by Epk; (0°), where
=1|G(1%, z, qu)| and s = | F (1%, (z; V), sﬂk)|. Although the privacy of the encoding en-
sures that the plaintexts are of the same length, i.e., s = |Sim(0£)|, the actual distribu-
tions of the plaintexts may differ, and so it may be the case that the two views are distin-
guishable. Intuitively, such a scenario would violate the ciphertext-indistinguishability
of the encryption. To make this intuition formal, we need the adversary B° which breaks
the standard ciphertext-indistinguishability security of £ whenever such a gap exists. As
a result we will show that the average success probability of B! and B is roughly half
the success probability of .A. To this aim we prove the following.

Lemma 3.6. (k) = ag(k) and BJ(k) + B} (k) = 1.

Proof. First, we note that V ABY1 (k), the view of A as emulated by B when the chal-
lenge bit b = 1, is identical to V 4 ¢ (k) the view of A in the real game when the challenge
b = 0. Indeed, in both cases a KDM query (i, z) (resp., an encryption query (i, M))
is answered with Epk,- 0% = Epk; (Sim(0%)) where ¢ is the output length of Gk z, )
(resp., £ = |M]|). Since BO flips the output of A it follows that ﬂ?(k) equals oo (k).

To prove the second equality we first claim that V 4 ;30 ((k), the view of .A when em-
ulated by B when the challenge bit b = 0, is identically distributed to V A.B! 0(k), the
view of A as emulated by B! when the challenge bit » = 0. Indeed, the only difference
is that in the first case KDM queries (i, z) are answered by E(O'Sim(g(lk'Z’Sk)”), while
in the second case the answer is E(O'jC (lk’(z;")’s"”). Since z and k are fixed, the output
lengths of F(1*, z; (r,-)) and Sim(G(1*, z, -)) are fixed and equal, and so the claim fol-
lows. The claim implies that ﬂg k) + ,36 (k) =1, as B! outputs the outcome of A, and
B flips it. O

By combining the two lemmas (3.5 and 3.6), it follows that the advantage 8 = (/311 +
,35 + ,38 + ,3?)/4 — % of B is at least %a — neg(k) where o = %(al + ap) — % is the
advantage of 4. Hence, we established the correctness of the reduction.
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Theorem 3.7. If A is an efficient adversary that breaks E with respect to G with ad-
vantage o(k), then the adversary BA€ breaks € with respect to F with advantage

B (k) = a(k)/2 — neg(k).

Remark 3.8. By inspecting the above proof, we can see that Theorem 3.1 tolerates the
following relaxations:

1. Assume that G(1%, (z, sﬂk)) is encoded by the function F’ (1, (z, qu); r) and that
the ensemble F (lk , 7, sqk) is indexed by z’. Then, the reduction works as long as
there exists an efficiently computable translation function p : (1" ,Z,7r) = 7' such
that (1%, p(1¥, z, r), sk) = F' (1%, (z, sk); r). (Recall that the original definition
of encoding in Sect. 2.3 corresponds to the special case where p is the identity
function.)

2. The proof goes through even if the encoding itself makes use of the underlying
encryption scheme £ as long as this usage is done in a fully black-box way (the
same holds for any cryptographic primitive which can be based on £ via a black-
box reduction e.g., one-way function). More precisely, Theorem 3.1 holds (i.e.,
lead to black-box KDM reduction/construction) as long as the security of the en-
coding reduces to the security of the underlying primitive (i.e., £) via a black-box
reduction, and as long as the simulator, decoder, and the translation function p can
be implemented given a black-box access to the underlying primitive.

3. The reduction is insensitive to the number of keys in the system. Specifically,
under the refined notion of KDM™ security (Remark 2.2), the proof essentially
shows that if F encodes the KDM function ensemble G, then, for every t, G
KDM(™)-reduces to F via a type-preserving reduction.

4. Completeness of Projections

In [4] it is shown that Yao’s garbled circuit technique allows to encode any efficiently
computable function by a decomposable encoding in which every bit depends on at most
a single bit of the deterministic input. This means that, for every fixed randomness, the
encoding is a projection. (See Sect. 2.2 for a definition.) Formally,

Fact 4.1 ([4]). Let € > 0 be an arbitrarily small constant. Every function G(1%, x) of
circuit-size a(k) can be encoded by a function F (1%, x; r) with the following properties:

1. The simulator and decoder use a black-box access to a symmetric encryption
(equivalently, to a one-way function).

2. For every fixed randomness r, the resulting function F ,(x) = F(1%,x;r) is a
projection function of output length a(k)' 4.

3. The mapping from the circuit of G(1%,-) to the circuit of Fi.» is efficiently com-
putable given a black-box access to the symmetric encryption scheme.

4. The security of the encoding reduces to the security of the symmetric encryption
scheme via a black-box reduction.

By combining this fact with Theorem 3.1 we get the following:
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Proposition 4.2 (Completeness of projections). Let G; be a t-ary KDM ensemble with
output length £(|z|) where t(-), £(-) are polynomials.

e If G, is efficiently computable in time k¢ then G; <pm 11, where ¢ > 0 is an

k’k(.‘+8 b
arbitrarily small constant and IT1 ,€ q is the t-ary ensemble of projections of output
length q.

e If G is output efficiently computable then G; <xom IT; where IT; = U e 1T} pa-

Moreover, the reductions are type preserving.

Hence, one can upgrade KDM security from (almost) the weakest KDM function
ensemble to the very powerful notion of p-length-dependent KDM security.

Proof. Fix some ¢ > 0 and let G (lk, Z, sqk) be the evaluation algorithm of g,§ whose
complexity is k. By applying Fact 4.1, we obtain an encoding F'(1*, (z, sk); ) such

that for every fixing of r the resulting function is in /7 li (4o By applying Theorem 3.1

(together with Remark 3.8), it follows that G; <kpm 1, | (... The same argument
holds if g,g is output efficiently computable, except that now g,g is computable in time
(k+£(]z]))¢ and so the encoding (with some fixed randomness) is a projection of output
length (k + £(|z]))¢!#) which falls into I7}. O

Specifically, (p, £)-bounded circuit-size KDM security reduces to KDM-security
with respect to polynomially bounded projections (of output length ¢ (k) = p'*¢(k))
and p-length-dependent KDM security reduces to KDM-security with respect to pro-
jections of arbitrary output length.

In the case of CPA KDM security, one can actually derive KDM-security with respect
to projections of arbitrary output length (i.e., IT}) from single-output projections IT li,l'

Lemma 4.3 (Completeness of single-output projections for CPA-KDM).  For every
polynomial t (-), we have IT ,i <kpm IT ,ﬁ 10 where the reduction holds for both (sym, CPA)
and (pub, CPA) types.

Proof. The proof follows by simple concatenation: the new encryption/decryption
algorithms encrypts/decrypts the message/ciphertext by applying the original encryp-
tion/decryption algorithm in a bit by bit manner. Hence, a KDM query in I1 ,i o for the

new scheme can be emulated by £ KDM queries in I7, 11,1 for the original scheme. [

As shown in [7], we can use the standard encrypt-then-MAC transformation to up-
grade the security of a scheme that satisfies (sym, CPA)-KDM security into a scheme
that satisfies (sym, CCA)-security with respect to the same KDM class. A similar result
was proven for the public-key setting by [17] via the Naor—Yung double-encryption
paradigm (which relies on the existence of NIZK). Hence, by Proposition 4.2 and
Lemma 4.3, we have:

Corollary 4.4 (KDM Collapse). For every polynomials t and p, there exists a I1 ,ﬁ -
KDM secure scheme if and only if there exists a t-ary p-length-dependent KDM se-
cure encryption scheme. This holds unconditionally for the KDM types (sym, CPA),
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(sym, CCA), and (pub, CPA), and it holds for (pub, CCA) assuming the existence of
non-interactive zero-knowledge proof system for NP.

We remark that all the known constructions of affine-KDM secure encryption
schemes [6,12,13] can be adapted to yield KDM security with respect to single-output
projections (see Appendix A). Hence, we get p-length-dependent (pub, CPA)-KDM
(resp., (sym, CCA)) based on the DDH, LWE, QR, or DCR assumptions (resp., LPN
assumption), which can be boosted into (pub, CCA)-KDM assuming the existence of
NIZK for NP. Furthermore, the schemes based on [6,12] remain secure even when
there is an arbitrary number of keys in the system. (See Remarks 2.2 and 3.8.)

5. On Full KDM Security

In this section, we study the possibility of constructing a scheme which satisfies KDM
security for the class of all efficiently computable functions. In [9] it was shown that
such a scheme can be constructed based on the existence of cyclic-secure fully ho-
momorphic encryption (FHE) [21]. We show that a similar assumption is inherently
required for full KDM security which is also simulatable. For simplicity, we focus on
the case of arity # = 1 and single-query adversaries.

A public-key encryption scheme £ = (KG, E, D) is simulatable 7-KDM secure if
there exists a polynomial-time simulator S such that for every (sk, pk) € KG(1%), and
every circuit family f; € F of size poly(k), the ensemble S(pk, fx) is indistinguishable
from Epk(fx(sk)). (Note that this means that the distinguisher holds the secret-key sk.)
The notions of simulatable circular-security and simulatable full-KDM security corre-
spond to the two extreme cases where JF contains only the identity function, and F
contains all functions.

An FHE allows to translate encryptions of a message M into an encryption of a
related message h(M) for any polynomial-size circuit 4. More formally, we say that
& is fully homomorphic if there exists an efficient algorithm Eval such that for every
(sk, pk) € KG(1%), every circuit family {/;} of size poly(k), and every sequence of
messages My € {0, 1}P°Y(®) the ensemble Eval(pk, /., Epk(My)) is computationally in-
distinguishable from the ensemble Epk (hx (My)).

In [9], it was shown that if an encryption scheme is both simulatable circular-secure
and fully homomorphic then it is also simulatable fully KDM secure. We show that the
other direction holds as well, and so the two notions are equivalent.

Proposition 5.1. Any simulatable fully KDM secure encryption scheme is also fully
homomorphic circular-secure.

Proof. Given a simulatable fully KDM secure encryption scheme (KG, E, D) with
simulator S, we define Eval(pk, #, C) by invoking S on the pair (pk, f,,c) where
Jn.c is the mapping sk = h(Dsk(C)). Note that the circuit size of fj ¢ is polynomial
in the circuit size of & (since D is efficient). Also, by definition, we have for every
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(sk, pk) € KG(1%), sequence {M}} and sequence {/;},
Eval(pk, h, Epc(Mi)) = S(OK, fin Enc(Mp))

= Epk(hk (Dsk(Epk(Mk))))
= Epk (A (Mp)).

where = (resp., é) denotes statistical (resp., computational) indistinguishability. ]

Let us waive the simulatability requirement, and move back to the standard notion of
KDM security. We show that if an encryption scheme £ = (KG, E, D) provides KDM
security gainst a function which is slightly “stronger” than its decryption algorithm D,
then & is actually fully KDM secure. This is done by observing that Gentry’s “boot-
strapping technique” can be adapted to the KDM setting.

Proposition 5.2. Let T € {(pub, CPA), (sym, CPA)}, and let £ = (KG,E,D) be T-
KDM secure encryption with respect to single-output projections and with respect to the
Sunction family Fi. = {fc,.c, : sk = NAND(Dg(C1), Dsk(C2))}, where Cy, Cy range
over {0, 11?%) and p(k) is the length of an encryption of one-bit message under secret-
key of length k. Then, & is fully KDM secure of type T .

Proof. In the CPA setting it suffices to prove full KDM security with respect to all
circuits of single output. We show how to convert an attacker which sends arbitrary
KDM queries into one which uses only queries from Fj. Let & be a circuit of size s,
which is, without loss of generality, composed of NAND gates, and let /; denote the
function computed by the ith gate of /1, where gates are ordered under some topological
ordering. We translate a KDM query for & into s KDM calls to Fj by traversing the
circuit from bottom to top in a gate by gate manner preserving the following invariant:
The ith query will be answered by a ciphertext C; such that, if the oracle is in the real
mode C; = Epk(h;(sk)) and if it is in the fake mode C; = Epk(0). For an input gate, this
can be achieved directly by making a single KDM query with a single-output projection.
To do this for an internal gate 2, whose input wires are connected to s; and / ; for some
i,j <¥, weuse a KDM query to fc; c ” It is not hard to see that the invariant holds,
and therefore the claim follows. |
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Appendix A. From Affine Functions to Projections

Converting affine-security to security under single-output projections is immediate if
the affine functions are defined over the binary field F, (as in the LPN-based scheme
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of [17] or the QR-based schemes of [13]), but can also be established in more general
cases, which capture most known schemes, as follows.

Suppose that we have a scheme £ which encrypts ring elements M € R, using a
secret-key sk = (sk;)icn) € R". The scheme provides KDM security with respect to
the class of affine functions from R" to R namely:

L={LsplaeR".beR}, whereLyp:sk>b+ Y a;-sk;.

1

BHHO Like Schemes Assume that each key element sk; is either the additive identity
element 0 of the ring R or the multiplicative identity element 1 of R. Let us represent
each key element sk; by a single bit (sk); in the natural way. In this case, the ensemble
of bit-wise projections is a subclass of affine functions over R. Indeed, the projection
fi.o((sk)) = (sk); @ o can be written as sk; if 0 =0, and as 1 — sk; if 0 = 1. Hence,
KDM security with respect to projections follows immediately from affine-KDM secu-
rity. This case captures the DDH-based schemes of [12] and the schemes of [13] which
are based on the DCR or QR assumptions (or more generally on the subgroup indistin-
guishability assumption).

Efficiently Computable Bit-Wise Representation We proceed with a more general ap-
proach. Assume that the secret key sk € R" is represented by a k-bit string denoted by
(sk) = ({sk)1, ..., (sk)). Furthermore, assume that the mapping from sk to each bit of
the representation (sk) can be computed by a polynomial-size arithmetic formula (or,
more generally, arithmetic branching program, see [10,18]) over R. Then, the mappings
fi.o sk (sk); and f; 1 :skr— 1 — (sk); can also be computed by a polynomial-size
formula. Hence, by [18], there exists a perfect (universal) RE f,',,,(sk; r) such that for
every fixed choice of r, fA,,i,g (sk) = fA,-,(7 (sk; r) is an affine function over R. Therefore,
by Theorem 3.1, the security of the scheme can be amplified to hold with respect to
single-output projections.

This approach is useful, for example, when the ring is of polynomial size in the
security parameter (as in the LWE-based scheme of [6]). In this case, one can trivially
compute the (standard) binary-decomposition of ring elements by a polynomial size
formula. For example, if the multiplicative order of the ring is p then the ith bit of the
representation of a ring element x can be computed by the formula [ [, (x —r)? ~! where
r ranges over all polynomially many elements in R having O in the ith coordinate of
their binary decomposition.

This example can be easily extended to the case where the ring R can be decomposed
into several rings of polynomial-size. For example, consider the ring R = Z, where
p =[] pi, and the p;’s are polynomially bounded co-primes. Then, by the CRT, we
can first project an element x € Z, to the sub-ring Z,, x 1 x --- x 1 via the formula
x9/P1 | and then recover the bit-representation inside Z p, Vvia the previous brute-force
formula. By repeating the process for each factor p;, and accumulating the sub-ring
representations, we obtain a bit-wise representation of x. A similar approach can be used
by decomposing the multiplicative (resp., additive) group of the ring to polynomially
bounded multiplicative (resp., additive) subgroups. This can be done, for example, if Z,,
is an exponentially large ring whose multiplicative order ¢ (g) factors into polynomially
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bounded co-primes pq,..., p¢ (e.2., when ¢ is a prime). More generally, it suffices
to break the set R into a product of polynomially bounded sets S; x --- x Sk (not
necessarily sub-rings) such that the ith coordinate of an element x € R can be computed
by arithmetic formula over R. We believe that such a strategy can be applied to the
scheme of [14] (at least for some range of the parameters).
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