
J. Cryptol. (2015) 28: 240–256
DOI: 10.1007/s00145-013-9163-8

Efficient Recursive Diffusion Layers for Block Ciphers
and Hash Functions

Mahdi Sajadieh
Department of Electrical Engineering, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran

m.sajadieh@khuisf.ac.ir

Mohammad Dakhilalian
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

mdalian@cc.iut.ac.ir

Hamid Mala
Department of Information Technology Engineering, University of Isfahan, Isfahan, Iran

h.mala@eng.ui.ac.ir

Pouyan Sepehrdad
EPFL, Lausanne, Switzerland

pouyan.sepehrdad@epfl.ch

Received 27 August 2012
Online publication 22 November 2013

Abstract. Many modern block ciphers use maximum distance separable (MDS) ma-
trices as the main part of their diffusion layers. In this paper, we propose a very efficient
new class of diffusion layers constructed from several rounds of Feistel-like structures
whose round functions are linear. We investigate the requirements of the underlying
linear functions to achieve the maximal branch number for the proposed 4 × 4 words
diffusion layer, which is an indication of the highest level of security with respect to lin-
ear and differential attacks. We try to extend our results for up to 8 × 8 words diffusion
layers. The proposed diffusion layers only require simple operations such as word-level
XORs, rotations, and they have simple inverses. They can replace the diffusion layer of
several block ciphers and hash functions in the literature to increase their security, and
performance. Furthermore, it can be deployed in the design of new efficient lightweight
block ciphers and hash functions in future.

Key words. Block ciphers, Diffusion layer, Branch number, MDS matrix.

1. Introduction

Block ciphers are one of the most important building blocks in many security proto-
cols. Modern block ciphers are cascades of several rounds where every round consists

This paper was solicited by the Editors-in-Chief as one of the best papers from FSE 2012, based on the
recommendation of the program committee.

© International Association for Cryptologic Research 2013

mailto:m.sajadieh@khuisf.ac.ir
mailto:mdalian@cc.iut.ac.ir
mailto:h.mala@eng.ui.ac.ir
mailto:pouyan.sepehrdad@epfl.ch

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 241

of confusion and diffusion layers. In many block ciphers, while the confusion layer is
often realized as a parallel application of non-linear substitution boxes (S-boxes), the
diffusion layer is built from a linear transformation. The diffusion layer plays an effica-
cious role in providing resistance against the most well-known attacks on block ciphers,
such as differential cryptanalysis (DC) [2], and linear cryptanalysis (LC) [8].

When considering a word-based linear transformation, where the word size is equal
to the input/output size of the S-box, the branch number provides a lower bound on
the number of active S-boxes throughout the diffusion layer for differential and linear
attacks. The goal for a designer is to maximize this number, in order to diffuse the
non-linear properties of the S-Boxes faster to the subsequent rounds of the cipher. The
faster this non-linearity spreads, the less number of rounds the cipher requires to become
secure against linear and differential attacks. It has been shown that the maximal branch
number for a linear transformation of s words is s +1 and diffusion layers with maximal
branch number can be achieved by using MDS matrices [4].

An MDS matrix (Maximum Distance Separable) is a matrix representing a function
with certain diffusion properties that have useful applications in cryptography. Techni-
cally, an m×n matrix A over a finite field K is an MDS matrix if it is the transformation
matrix of a linear transformation f (x) = Ax from Kn to Km such that no two different
(m + n)-tuples of the form (x, f (x)) coincide in n or more components. Equivalently,
the set of all (m + n)-tuples (x, f (x)) is an MDS code, i.e. a linear code that reaches
the Singleton bound.

In 1994, Vaudenay [11,12] suggested using MDS matrices in cryptographic primi-
tives to produce what he called multipermutations, not-necessarily linear functions with
the same property. These functions have what he called perfect diffusion: changing t of
the inputs change at least m − t + 1 of the outputs. He showed how to exploit imperfect
diffusion to cryptanalyze functions that are not multipermutations. MDS matrices were
later used in many block ciphers such as Square, SHARK, AES, Twofish and Hierocrypt
and in the stream cipher MUGI and the cryptographic hash function Whirlpool.

The common approach to construct MDS matrices is to extract them from MDS codes
such as Reed–Solomon codes [7]. However, constructing MDS diffusion layers with
low-cost implementations is a challenge for designers. Another problem arises when
MDS diffusion layers are exploited in substitution-permutation networks (SPN), where
the MDS matrix is used in the encryption and its inverse is used in the decryption pro-
cess. Thus, constructing MDS matrices with low-cost inverse is of great importance.

In this paper, we propose a new method to construct low-cost diffusion layers with
an extra property that their inverse can also be implemented efficiently. We call the pro-
posed layer a recursive diffusion layer. It is constructed from several rounds of Feistel-
like structures whose round functions are linear. It consists of simple linear operations
such as shift, rotation and XOR with very similar inversion operations. We are going
to elaborate on the conditions for the underlying linear function to be an MDS matrix
using one or multiple such linear functions by proposing a systematic method to find
them. We believe that our proposed solution would be a rather simple recipe for design-
ing a diffusion layer with maximal branch number and will be useful for future designs
of cryptographic algorithms.

242 M. Sajadieh et al.

1.1. Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), . . . , xs−1(n)]. The number of non-
zero elements in x is denoted by w(x), also known as the Hamming weight of x. The
following notations are used throughout this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
Li : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x) ⊕ L2(x)

L1L2(x) : L1(L2(x))

L2
1(x) : L1(L1(x))

I (·) function : Identity function, I (x) = x

x � m (x � m) : Shift of a bit string x by m bits to the right (left)
x ≫ m (x ≪m) : Circular shift of a bit string x by m bits to the right (left)
| · | : Determinant of a matrix in GF(2)

a||b : Concatenation of two bit strings a and b

x(n) : An n-bit value x

For a diffusion layer D applicable on x, we have the following definitions:

Definition 1 ([4]). The differential branch number of a linear diffusion layer D is
defined as

βd(D) = min
x�=0

{
w(x) + w

(
D(x)

)}

We know that the linear function D can be shown as a binary matrix B, and Dt is a
linear function obtained from Bt , where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is defined
as:

βl(D) = min
x�=0

{
w(x) + w

(
Dt(x)

)}

It is well known that for a diffusion layer acting on s-word inputs, the maximal βd

and βl are s +1 [4]. A diffusion layer D taking its maximal βd and βl is called a perfect
or MDS diffusion layer. Furthermore, a diffusion layer with βd = βl = s is called an
almost perfect diffusion layer [4].

1.2. Our Contribution

In this paper, we define the notion of a recursive diffusion layer, and we propose a
method to construct such perfect diffusion layers.

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 243

Definition 3. A diffusion layer D with s words xi as the input and s words yi as the
output is called a recursive diffusion layer if it can be represented in the following form:

D :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)

y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...

ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0,F1, . . . ,Fs−1 are arbitrary linear functions.

An advantage of this structure is that the inverse of D is very similar to D and does not
require the inverse of Fi functions. The inverse can be computed as:

D−1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xs−1 = ys−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

xs−2 = ys−2 ⊕ Fs−2(xs−1, y0, . . . , ys−3)
...

x0 = y0 ⊕ F0(x1, x2, . . . , xs−1)

(2)

As an example, consider a 2-round Feistel structure with a linear round function L as
a recursive diffusion layer with s = 2. The input–output relation for this diffusion layer
is

D :
{

y0 = x0 ⊕ L(x1)

y1 = x1 ⊕ L(y0)

The quarter-round function of the stream cipher Salsa20 is an example of a non-linear
recursive diffusion layer [1].

D :

⎧
⎪⎪⎨

⎪⎪⎩

y1 = x1 ⊕ ((x0 + x3) ≪ 7)

y2 = x2 ⊕ ((x0 + y1) ≪ 9)

y3 = x3 ⊕ ((y1 + y2) ≪ 13)

y0 = x0 ⊕ ((y2 + y3) ≪ 18)

Also, the lightweight hash function PHOTON [5] and the block cipher LED [6] use
MDS matrices based on Eq. (1). In these ciphers, an m × m MDS matrix Bm was de-
signed based on the following matrix B for the performance purposes:

B =

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .

0 0 0 . . . 1
1 Z1 Z2 . . . Zm−1

⎞

⎟⎟⎟⎟⎟
⎠

By matrix B, one element of m inputs is updated and other elements are shifted. If we
use Bm, all inputs are updated, but we must check if this matrix is MDS. One example

244 M. Sajadieh et al.

for m = 4 is the PHOTON matrix working over GF(28):

B =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⎞

⎟⎟
⎠ ⇒ B4 =

⎛

⎜⎜
⎝

1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

⎞

⎟⎟
⎠

In this paper, we propose a new approach to design linear recursive diffusion layers
with the maximal branch number in which Fi ’s are composed of one or two linear
functions and a number of XOR operations. The design of the proposed diffusion layer
is based on the invertibility of some simple linear functions in GF(2). Linear functions
in this diffusion layer can be designed to be low-cost for different sizes of the input
words, thus the proposed diffusion layer might be appropriate for resource-constrained
devices, such as RFID tags. Although these recursive diffusion layers are not involutory,
they have similar inverses with the same computational complexity.

This paper proceeds as follows: In Sect. 2, we introduce the general structure of our
proposed recursive diffusion layer. Then, for one of its instances, we systematically in-
vestigate the required conditions for the underlying linear function to achieve the max-
imal branch number. In Sect. 3, we propose some other recursive diffusion layers with
less than 8 input words and only one linear function. We use two linear functions to
have a perfect recursive diffusion layer for s > 4 in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2. The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive struc-
ture. The diffusion layer D takes s words xi for i = {0,1, . . . , s−1} as input, and returns
s words yi for i = {0,1, . . . , s − 1} as output. So, we can represent this diffusion layer
as

y0||y1|| · · · ||ys−1 = D(x0||x1|| · · · ||xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where L is
a linear function, αk,βk ∈ {0,1}, α0 = 1 and β0 = 0. This diffusion layer can be rep-
resented in the form of Eq. (1) in which the Fi functions are all the same and can be
represented as

Fi(x1, x2, . . . , xs−1) =
s−1⊕

j=1

αjxj ⊕ L

(
s−1⊕

j=1

βjxj

)

To guarantee the maximal branch number for D, the linear function L and the coeffi-
cients αj and βj must satisfy some necessary conditions. Conditions on L are expressed
in this section and those of αj ’s and βj ’s are expressed in Sect. 3. The diffusion layer
described by Eq. (3) is an instance that satisfies the necessary conditions on αj , and βj

with s = 4. In the rest of this section, we concentrate on the diffusion layers of this form

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 245

1: Input : s n-bit words x0, . . . , xs−1
2: Output : s n-bit words y0, . . . , ys−1
3: for i = 0 to s − 1 do
4: yi = xi

5: end for
6: for i = 0 to s − 1 do

7: yi = yi ⊕
(

s−1⊕

j=0,j �=i

α[(j−i) mod s]yj

)
⊕ L

(
s−1⊕

j=0,j �=i

β[(j−i) mod s]yj

)

8: end for

Fig. 1. The first class of the recursive diffusion layers.

and show that we can find invertible linear functions L such that D becomes a perfect
diffusion layer.

D :

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)

y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(3)

As shown in Fig. 2, this diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

The inverse transformation, D−1, has a very simple structure and does not require the
inversion of the linear function L. The inverse of D is

D−1 :

⎧
⎪⎪⎨

⎪⎪⎩

x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)

x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)

x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To show
that D has the maximal branch number, first we introduce some lemmas and theorems.

If L(x) can be written as a · x in a finite field, then Eq. (3) can be expressed as a
matrix representation as below:

B =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 a 1 a + 1

⎞

⎟⎟
⎠ ⇒

⎛

⎜⎜
⎝

y0
y1
y2
y3

⎞

⎟⎟
⎠ = B4

⎛

⎜⎜
⎝

x0
x1
x2
x3

⎞

⎟⎟
⎠ (4)

We can construct MDS matrix similar to PHOTON matrix by the proposed diffu-
sion layer. In Eq. (1), if Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where
L(x) = 2x and x ∈ GF(28), PHOTON MDS matrix is obtained [5]. If we change B to
Eq. (3), and define L(x) = 2x, we have

B =

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⎞

⎟⎟
⎠ ⇒ B4 =

⎛

⎜⎜
⎝

1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20

⎞

⎟⎟
⎠

246 M. Sajadieh et al.

Fig. 2. The proposed recursive diffusion layer of Eq. (3).

Theorem 4 ([4]). A Boolean function F has maximal differential branch number if,
and only if it has maximal linear branch number.

As a result of Theorem 4, if we prove that the diffusion layer D represented in Eq. (3)
has the maximal differential branch number, its linear branch number will be maximal
too. Thus, in the following, we focus on the differential branch number.

Lemma 5. A linear functions L(x) is invertible if, and only if for any non-zero value a,
L(a) �= 0.

Proof. For any linear function L(x), we have L(0) = 0. If there exists a �= 0 such that
L(a) = 0, then L(x) is not invertible. On the other hand, suppose a = 0 is the unique
zero of L(x), and L(x) is not invertible. So, there exist two values b and c (b �= c) such
that L(b) = L(c). Since L(x) is a linear function, we have L(b⊕ c) = L(b)⊕L(c) = 0,
while b⊕c �= 0. This contradicts the assumption that a = 0 is the unique zero of L(x). �

Lemma 6. Assume the linear operator Li corresponds to the linear function Li(x).
If the linear operator L3 can be represented as the multiplication of two operators L1
and L2, then the corresponding linear function L3(x) = L2(L1(x)) is invertible if, and
only if the linear functions L1(x) and L2(x) are invertible.

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 247

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the other
hand, if L3(x) is invertible then L1(x) must be invertible, otherwise, there are distinct
x1, and x2 such that L1(x1) = L1(x2). Thus, L3(x1) = L2(L1(x1)) = L2(L1(x2)) =
L3(x2) which contradicts the invertibility of L3(x). The invertibility of L2(x) is proved
in the same way. �

Example 1. We can rewrite the linear function L3(x) = L3(x) ⊕ x (L3 = L3 ⊕ I)
as L3(x) = L2(L1(x)), where L1(x) = L(x) ⊕ x (L1 = L ⊕ I) and L2(x) = L2(x) ⊕
L(x)⊕ x (L2 = L2 ⊕L⊕ I). Thus, the invertibility of L3(x) is equivalent to the invert-
ibility of the two linear functions L1(x) and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (3), if the four linear functions
L(x), x ⊕ L(x), x ⊕ L3(x) and x ⊕ L7(x) are invertible, then this diffusion layer is
perfect.

Proof. We show that the differential branch number of this diffusion layer is 5. First,
the 4 words of the output are directly represented as functions of the 4 words of the
input:

D :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y0 = x0 ⊕ L(x1) ⊕ x2 ⊕ x3 ⊕ L(x3)

y1 = x0 ⊕ L(x0) ⊕ x1 ⊕ L(x1) ⊕ L2(x1) ⊕ x2 ⊕ L2(x3)

y2 = L2(x0) ⊕ x1 ⊕ L(x1) ⊕ L3(x1) ⊕ x2 ⊕ L(x2) ⊕ x3 ⊕ L2(x3) ⊕ L3(x3)

y3 = x0 ⊕ L2(x0) ⊕ L3(x0) ⊕ L(x1) ⊕ L2(x1) ⊕ L3(x1) ⊕ L4(x1)

⊕ L(x2) ⊕ L2(x2) ⊕ L2(x3) ⊕ L4(x3)

(5)
In the proof, we look at all different cases for the Hamming weight of the input. In

other words, we show that if the Hamming weight of the input is m = 1,2,3,4, then the
Hamming weight of the output is greater than or equal to 5 − m. Each case will pose
different conditions on L which in the end can be summarized to the condition given
in the theorem. The diffusion layer represented in Eq. (3) is invertible. Consider m = 4,
then all of the 4 words in the input are active, and we are sure at least one of the output
words is active too. Thus, the theorem is correct for m = 4. The remainder of the proof
is performed for the 3 cases of w(�(x)) = m, for m = 1,2,3 separately. In each of these
cases, some conditions are forced on the linear function L.

Case 1: w(�x) = 1

To study this case, first the subcase

(�x0 �= 0,�x1 = �x2 = �x3 = 0 or �x = �x0||0||0||0)

is analyzed. For this subcase, Eq. (5) is simplified to:

D :

⎧
⎪⎪⎨

⎪⎪⎩

�y0 = �x0
�y1 = (I ⊕ L)(�x0)

�y2 = L2(�x0)

�y3 = (I ⊕ L2 ⊕ L3)(�x0)

248 M. Sajadieh et al.

If D is a perfect diffusion layer, then �y0, �y1, �y2, and �y3 must be non-zero.
Clearly, �y0 is non-zero and based on Lemma 5, the conditions for �y1, �y2, and
�y3 to be non-zero are that the linear functions I ⊕ L, L2, and I ⊕ L2 ⊕ L3 must be
invertible. Note that based on Lemma 6 the invertibility of L yields the invertibility
of L2. Considering Lemma 6, if the other three sub-cases are studied, it is induced that
the linear functions x ⊕ L(x) ⊕ L2(x) and x ⊕ L(x) ⊕ L3(x) must also be invertible.

Case 2: w(�x) = 2

In this case, there exist exactly two active words in the input difference, and we obtain
some conditions on the linear function L to guarantee the branch number 5 for D. In
the following, we only analyze the subcase

(�x0,�x1 �= 0 and �x2 = �x3 = 0 or �x = �x0||�x1||0||0)

With this assumption, Eq. (5) is simplified to

D :

⎧
⎪⎪⎨

⎪⎪⎩

�y0 = �x0 ⊕ L(�x1)

�y1 = (I ⊕ L)(�x0) ⊕ (I ⊕ L ⊕ L2)(�x1)

�y2 = L2(�x0) ⊕ (I ⊕ L ⊕ L3)(�x1)

�y3 = (I ⊕ L2 ⊕ L3)(�x0) ⊕ (L ⊕ L2 ⊕ L3 ⊕ L4)(�x1)

(6)

To show that w(�y) is greater than or equal to 3, we must find some conditions on
L such that if one of the �yi ’s is zero, then the other three �yj ’s cannot be zero. Let
�y0 = 0, then

�x0 ⊕ L(�x1) = 0 ⇒ �x0 = L(�x1)

If �x0 is replaced in the last three equations of Eq. (6), we obtain �y1, �y2 and �y3
as follows:

⎧
⎨

⎩

�y1 = �x1
�y2 = �x1 ⊕ L(�x1)

�y3 = L2(�x1)

Obviously, �y1 is not zero. Furthermore, considering Lemma 5, for �y2 to be non-
zero, we conclude that the function x ⊕L(x) must be invertible. For �y1 ⇒ �y3, L2(x)

is invertible. This condition was already obtained in the Case 1. We continue this pro-
cedure for �y1 = 0.

�y1 = �x0 ⊕ L(�x0) ⊕ x1 ⊕ L(�x1) ⊕ L2(�x1) = 0
⇒ �x0 ⊕ L(�x0) = x1 ⊕ L(�x1) ⊕ L2(�x1)

From the previous subcase, we know that if �y0 = 0, then �y1 �= 0. Thus, we con-
clude that �y0 and �y1 cannot be simultaneously zero. Therefore, by contraposition,
we obtain that if �y1 = 0, then �y0 �= 0. So, we only check �y2 and �y3. From the
third equation in Eq. (6), we have

(I ⊕ L)(�y2) = L2(�x1) ⊕ L3(�x1) ⊕ L4(�x1) ⊕ �x1

⊕L2(�x1) ⊕ L3(�x1) ⊕ L4(�x1)

= �x1

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 249

x ⊕ L(x) is invertible, thus we conclude that with the two active words �x0 and �x1
in the input, �y1 and �y2 cannot be zero simultaneously. With the same procedure, we
can prove that �y1, and �y3 cannot be zero simultaneously.

Here we only gave the proof for the case (�x0,�x1 �= 0, �x2 = �x3 = 0). We per-
formed the proof procedure for the other cases, and no new condition was added to the
previous set of conditions in Case 1.

Case 3: w(�x) = 3

In this case, assuming three active words in the input, we show that the output has at
least 2 non-zero words. Here, only the case

(�x0,�x1,�x2 �= 0 and �x3 = 0 or �x = �x0||�x1||�x2||0)

is analyzed. The result holds for the other three cases with w(�x) = 3. Let rewrite
Eq. (5) for �x3 = 0 as follows:

D :

⎧
⎪⎪⎨

⎪⎪⎩

�y0 = �x0 ⊕ L(�x1) ⊕ �x2

�y1 = (I ⊕ L)(�x0) ⊕ (I ⊕ L ⊕ L2)(�x1) ⊕ �x2

�y2 = L2(�x0) ⊕ (I ⊕ L ⊕ L3)(�x1) ⊕ (I ⊕ L)(�x2)

�y3 = (I ⊕ L2 ⊕ L3)(�x0) ⊕ (L ⊕ L2 ⊕ L3 ⊕ L4)(�x1) ⊕ (L ⊕ L2)(�x2)

(7)
When �y0 = �y1 = 0, from the first two lines of Eq. (7), �x0 and �x1 are obtained as
the function of �x2.

⎧
⎨

⎩

�y0 = �x0 ⊕ L(�x1) ⊕ �x2 = 0
�y1 = �x0 ⊕ L(�x0) ⊕ �x1 ⊕ L(�x1)

⊕L2(�x1) ⊕ �x2 = 0
⇒

{�x1 = L(�x2)

�x0 = �x2 ⊕ L2(�x2)

Now, replacing �x0 = �x2 ⊕ L2(�x2) and �x1 = L(�x2) into �y2 and �y3 yields
⎧
⎨

⎩

�y2 = L2(�x0) ⊕ (I ⊕ L ⊕ L3)(�x1) ⊕ (I ⊕ L)(�x2) = �x2

�y3 = (I ⊕ L2 ⊕ L3)(�x0) ⊕ (L ⊕ L2 ⊕ L3 ⊕ L4)(�x1) ⊕ (L ⊕ L2)(�x2)

= (I ⊕ L)(�x2)

From Case 1, we know that the functions x ⊕ L(x) are invertible. Therefore, �y2,
and �y3 are non-zero. If the other sub-cases with three active words in the input are
investigated, it is easy to see that no new condition is added to the present conditions
on L. Finally, we conclude that the diffusion layer D presented in Fig. 1 is perfect if the
linear functions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1(x) = L(x)

L2(x) = x ⊕ L(x)

L3(x) = x ⊕ L(x) ⊕ L2(x)

L4(x) = x ⊕ L(x) ⊕ L3(x)

L5(x) = x ⊕ L2(x) ⊕ L3(x)

are invertible. We know that L3(L2(x)) = x ⊕ L3(x) and L5(L4(L2(x))) = x ⊕ L7(x).
Thus, by Lemma 6, we can summarize the necessary conditions on the linear function
L as the invertibility of L(x), (I ⊕ L)(x), (I ⊕ L3)(x), and (I ⊕ L7)(x). �

250 M. Sajadieh et al.

Table 1. Some instances of the linear function L satisfying Theorem 7.

n Some linear functions L

4 L(x) = (x ⊕ x � 3) ≪ 1
8 L(x) = (x ⊕ (x & 0x2) � 1) ≪ 1

16 L(x) = (x ⊕ x � 15) ≪ 1
32 L(x) = (x ⊕ x � 31) ≪ 15 or L(x) = (x ≪ 24) ⊕ (x & 0xFF) or L(x) = (x � 3) ⊕ (x � 1)

64 L(x) = (x ⊕ x � 63) ≪ 1 or L(x) = (x ≪ 8) ⊕ (x & 0xFFFF) or L(x) = (x � 15) ⊕ (x � 1)

Next, we need a simple method to check whether a linear function L satisfies the con-
ditions of Theorem 7 or not. For this purpose, we use the binary matrix representation
of L. Assume that xi is an n-bit word. Hence, we can represent a linear function L with
an n × n matrix A with elements in GF(2). As a result of Lemma 5, if L is invertible, A
is not singular over GF(2) (|A| �= 0). To investigate whether a linear function L satisfies
the conditions of Theorem 7, we construct the corresponding matrix An×n from L, and
check the non-singularity of the matrices A, I ⊕ A, I ⊕ A3, and I ⊕ A7 in GF(2).

In the following, we construct concrete functions L which are lightweight and satisfy
the conditions mentioned in Theorem 7. For example, the functions L(x) = x, L(x) =
x � a and L(x) = x ≫ a are the examples of the most lightweight linear functions.
However, they do not satisfy Theorem 7 conditions, because at least one of the two
functions L(x) and x ⊕ L(x) are not invertible. A set of candidates for lightweight
linear functions can be expressed as:

L(x(n)) = (x(n) � a) ⊕ (x(n) � b) . (8)

If (a +b)|n, then L(x) is invertible [15]. The remaining conditions x ⊕L(x), x ⊕L3(x)

and x ⊕ L7(x) have to be checked. Although the linear function in Eq. (8) has a com-
plicated inverse, it does not require circular shift which is considered as an advantage
for this function. Note that circular shift is not supported by some compilers. Another
proposal for L(x) is

L(x(n)) = (
x(n) ⊕ (x(n) � a)

)
≪ b (9)

The linear function in Eq. (9), for a > n/2, has a lightweight inverse L(x(n)) =
(x(n) ≫ b)⊕ (x(n) ≫ b) � a which will be used in diffusion layer proposed in Sect. 4.

We introduce some lightweight linear functions with n-bit inputs/outputs in Table 1
which satisfy the conditions of Theorem 7. Note that for n = 8, there does not exist any
linear function of the form Eq. (8) or Eq. (9) satisfying conditions of Theorem 7.

2.1. Application of the Proposed Diffusion Layer in Current Block Ciphers

Together with designing new lightweight block ciphers, the proposed diffusion layer
can also be applied to diffuse the non-linearity of big-size S-boxes. One of these block
ciphers is MMB [3] that uses 32-bit S-boxes. Each round of MMB is composed of four
transformations:

– σ : bit-wise XOR of the intermediate value and the round key.
– γ : modular multiplication of each 32-bit word of the intermediate value with a

fixed 32-bit constant Gi modulo 232 − 1.

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 251

– η: an operation on two of the four input words.

– θ : the only diffusion operation in MMB which is an involutory binary matrix as
below:

B =

⎛

⎜⎜
⎝

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎞

⎟⎟
⎠

We can use the proposed diffusion layer with L(x(32)) = (x(32) � 3) ⊕ (x(32) � 1)

instead of the diffusion layer used in the block cipher MMB. If we use the proposed
diffusion layer in this cipher, it becomes stronger against differential and linear attacks,
because branch number of the binary matrix of MMB is 4 while branch number of the
proposed diffusion layer is 5. This change also prevents the attacks presented against
this block cipher in [13]. By computer simulations in C using a PC with CPU: 2.93 GHz
and RAM: 2 GB, we observed that this modification reduces the performance of MMB
by making it 30 % slower in the software implementations. This was achieved by com-
paring the running time of the protocol for 1 million encryptions.

Another block cipher where we can replace the diffusion layer by the proposed one
is Hierocrypt [9]. Hierocrypt does not explicitly use big-size S-boxes, but it constructs
32 bit S-boxes by using nested SPN structure together with four 8-bit S-boxes and the
MDSL matrix. For diffusion within those 32-bit S-boxes, a 16×16 binary matrix called
MDSH is used, which is MDS for four 32-bit inputs. If we use our proposed diffusion
layer with the same L(x), instead of the MDSH [9], we can achieve a 2 times faster
implementation with the same level of security.

AES Mix-column layer has a simple implementation. As another comparison, we de-
cided to replace the MDSH matrix in Hierocrypt with the MDS matrix of AES. But
since MDS code of AES is over GF(28) and the inputs of MDSH are four 32-bit words,
we modified the corresponding irreducible polynomial in AES and replaced it with
x32 + x7 + x5 + x3 + x2 + x + 1 [10] to work over GF(232), which would still re-
main MDS. We call this new construction, sch1. As another construction, we replaced
the MDSH in Hierocrypt with the MDS code we proposed above in our solution and we
called it sch2. We observed that sch2 still brings on 5 % better performance compared
to sch1.

3. Other Desirable Structures for the Proposed Diffusion Layer

In Sect. 2, the general form of the proposed diffusion layer was introduced in Fig. 1.
Then, by assuming a special case of αi ’s and βi ’s, an instance of this diffusion layer
was given in Eq. (3). In this section, we obtain all sets of αi ’s and βi ’s such that the
diffusion layer of Fig. 1 becomes perfect. We know some properties of αi ’s and βi ’s;
for instance if all the words of the output are directly represented as a function of input
words, a function of each xi (0 ≤ i ≤ s − 1) must appear in each equation. Another
necessary condition is obtained for two active words of the input. Assume there exist
only two indices i, j such that xi , xj �= 0. If we write each two output words yp , yq in

252 M. Sajadieh et al.

a direct form as a function of xi and xj , we obtain

{
yp = Lpi

(xi) ⊕ Lpj
(xj)

yq = Lqi
(xi) ⊕ Lqj

(xj)

If

Lpi

Lqi

= Lpj

Lqj

or

∣∣∣∣∣
Lpi

Lpj

Lqi
Lqj

∣∣∣∣∣
= 0

then, yp = 0 is equivalent to yq = 0. Thus, the minimum number of active words in
the input and output is less than or equal to s and the branch number will not reach the
maximal value s + 1. This procedure must be repeated for 3, and more active words in
the input. As an extension, we can use Lemma 3 of [10].

Lemma 8 ([10]). Assume the diffusion layer has m inputs/outputs bits, and L is the
linear operator of L(x), and I is the linear operator of I (x). Moreover, MLD is an
m × m matrix representation of the operator of the diffusion layer. If D is perfect, then
all the submatrices of MLD are non-singular.

If we construct the MLD of Eq. (3), we have

MLD =

⎛

⎜⎜⎜
⎝

I L I I ⊕L
I ⊕L I ⊕L⊕L2 I L2

L2 I ⊕L⊕L3 I ⊕L I ⊕L2 ⊕L3

I ⊕L2 ⊕L3 L⊕L2 ⊕L3 ⊕L4 L⊕L2 L2 ⊕L4

⎞

⎟⎟⎟
⎠

when calculating 69 sub-matrix determinants of MLD , we observe that these submatri-
ces are non-singular only if L fulfills the condition of Theorem 7. However, by following
this procedure, it is complicated to obtain all sets of αi ’s and βi ’s analytically. So, by
systematizing the method based on Lemma 8, we performed a computer simulation to
obtain all sets of αi ’s, and βi ’s in the diffusion layer in Fig. 1 that yield a perfect diffu-
sion. We searched for all αi ’s and βi ’s that make the diffusion layer of Fig. 1 a perfect
diffusion layer. This procedure was repeated for s = 2,3, . . . ,8. We found one set of
(αi , βi) for s = 2, four sets for s = 3, and four sets for s = 4. The obtained diffusion
layers along with the conditions on the underlying linear function L are reported in Ta-
ble 2. We observed that for s = 5, 6, 7, 8 the diffusion layer introduced in Fig. 1 cannot
be perfect.

Note that some linear functions in Table 1 such as L(x(64)) = (x(64) � 15) ⊕
(x(64) � 1) are not suitable for diffusion layers, since x(64) ⊕ L15(x(64)) must be in-
vertible.

As we can see in Fig. 1, and its instances presented in Table 2, there exists some
kind of regularity in the equations defining yi ’s, in the sense that the form of yi+1 is
determined by the form of yi , and vice versa (Fi ’s are all the same in Eq. (1)). However,
we can present some non-regular recursive diffusion layers with a more general form
(Fi ’s are different) as in Fig. 3, where Ai,j ,Bi,j ∈ {0,1}.

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 253

Table 2. Perfect regular recursive diffusion layers for s < 8 with only one linear function L.

s Diffusion layer D Function that must be invertible

2

{
y0 = x0 ⊕ L(x1)

y1 = x1 ⊕ L(y0)
L(x) and x ⊕ L(x)

3

⎧
⎨

⎩

y0 = x0 ⊕ L(x1 ⊕ x2)

y1 = x1 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x ⊕ L(x) and x ⊕ L3(x)

3

⎧
⎨

⎩

y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)

y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x ⊕ L(x), x ⊕ L3(x) and x ⊕ L7(x)

3

⎧
⎨

⎩

y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)

y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x ⊕ L(x), x ⊕ L3(x) and x ⊕ L7(x)

3

⎧
⎨

⎩

y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)

y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x ⊕ L(x) and x ⊕ L3(x)

4

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)

y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x ⊕ L(x), x ⊕ L3(x) and x ⊕ L7(x)

4

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)

y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)

y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x ⊕ L(x), x ⊕ L3(x) and x ⊕ L7(x)

4

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)

y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)

y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)

y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x ⊕ L(x), x ⊕ L3(x), x ⊕ L7(x) and x ⊕ L15(x)

4

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)

y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)

y2 = x2 ⊕ x3 ⊕ ⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)

y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x ⊕ L(x), x ⊕ L3(x), x ⊕ L7(x) and x ⊕ L15(x)

1: Input : s n-bit words x0, . . . , xs−1
2: Output : s n-bit words y0, . . . , ys−1
3: for i = 0 to s − 1 do
4: yi = xi

5: end for
6: for i = 0 to s − 1 do

7: yi = yi ⊕
(

s−1⊕

j=0,j �=i

Ai,j yj

)
⊕ L

(
s−1⊕

j=0,j �=i

Bi,j yj

)

8: end for

Fig. 3. Non-regular recursive diffusion layers.

If Ai,j = α(j−i) mod s , and Bi,j = β(j−i) mod s , then Fig. 3 is equivalent to Fig. 1.
The main property of this new structure is that it still has one linear function L, and a

254 M. Sajadieh et al.

simple structure for the inverse. For example, if s = 4, then, the diffusion layer D is
⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ A0,1 · x1 ⊕ A0,2 · x2 ⊕ A0,3 · x3 ⊕ L(B0,1 · x1 ⊕ B0,2 · x2 ⊕ B0,3 · x3)

y1 = x1 ⊕ A1,0 · y0 ⊕ A1,2 · x2 ⊕ A1,3 · x3 ⊕ L(B1,0 · y0 ⊕ B1,2 · x2 ⊕ B1,3 · x3)

y2 = x2 ⊕ A2,0 · y0 ⊕ A2,1 · y1 ⊕ A2,3 · x3 ⊕ L(B2,0 · y0 ⊕ B2,1 · y1 ⊕ B2,3 · x3)

y3 = x3 ⊕ A3,0 · y0 ⊕ A3,1 · y1 ⊕ A3,2 · y2 ⊕ L(B3,0 · y0 ⊕ B3,1 · y1 ⊕ B3,2 · y2)

We searched the entire space for s = 3 and s = 4 (the order of search is 22s(s−1)). For
s = 3, we found 196 structures with branch number 4, and for s = 4, 1634 structures
with branch number 5. The conditions on linear functions that caused maximal branch
number, are different for each structure. Among the 196 structures for s = 3, the struc-
ture with the minimum number of operations (only 7 XORs, and one L evaluation) is
the following:

D :
⎧
⎨

⎩

y0 = x0 ⊕ x1 ⊕ x2
y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)

y2 = x2 ⊕ y0 ⊕ y1

where L(x) and x ⊕ L(x) must be invertible.
This relation is useful to enlarge the first linear function of the hash function JH for

3 inputs [14]. For s = 4, we did not find any D with the number of L evaluations less
than four. However, the one with the minimum number of XORs is given as below:

D :

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)

y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)

y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)

y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5,6, . . . is too time consuming (note that for s = 5
the order of search has complexity 240), and we could not search all the space for s ≥ 5.

4. Increasing the Number of Linear Functions

In Sect. 3, we observed that for s > 4 we cannot design a regular recursive diffusion
layer in the form of Fig. 1 with only one linear function L. In this section, we in-
crease the number of linear functions to overcome the regular structure of the diffusion
layer of Eq. (3). A new structure is represented in Fig. 4, where αk,βk, γk ∈ {0,1},
k ∈ {0,1, . . . , s − 1}, α0 = 1, β0 = 0 and γ0 = 0.

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to easily
obtain conditions on L1 and L2 that make it a perfect diffusion layer (the order of search
for s input/output is 23(s−1)). To obtain simplified conditions for a maximal branch
number, let L1 and L2 have a simple relation like L2(x) = L2

1(x) or L2(x) = L−1
1 (x).

For the linear functions in Eq. (8), L2(x) is more complex in comparison to L(x).
However, there exist some linear functions in the form of Eq. (9) such that L−1(x) is
simpler than L2(x). As an example, for L(x(32)) = (x(32) ⊕ x(32) � 31) ≪ 1, we have
L−1(x(32)) = ((x(32) ≫ 1) ⊕ (x(32) ≫ 1) � 31), but L2(x(32)) = (x(32) ⊕ (x(32) �
31)≪ 1) ⊕ ((x(32) ≪ 1) � 31)≪ 1.

Efficient Recursive Diffusion Layers for Block Ciphers and Hash Functions 255

1: Input : s n-bit words x0, . . . , xs−1
2: Output : s n-bit words y0, . . . , ys−1
3: for i = 0 to s − 1 do
4: yi = xi

5: end for
6: for i = 0 to s − 1 do

7: yi =
(

s−1⊕

j=0
α[(j−i) mod s]yj

)
⊕ L1

(
s−1⊕

j=0
β[(j−i) mod s]yj

)
⊕ L2

(
s−1⊕

j=0
γ[(j−i) mod s]yj

)

8: end for

Fig. 4. Regular recursive diffusion layers with two linear functions L.

Table 3. Some perfect regular diffusion layers for s = 5,6,7,8 with two linear functions.

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4) ⊕ L2(x1)

5 y0 = L−1(x1 ⊕ x2) ⊕ x0 ⊕ x1 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ L(x3 ⊕ x5) ⊕ L2(x1 ⊕ x2 ⊕ x3)

6 y0 = L−1(x1 ⊕ x3) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ L(x3 ⊕ x4) ⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ L(x1 ⊕ x2 ⊕ x3 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5) ⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x7) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ L(x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7)

In Table 3, we introduce some recursive diffusion layers with (L1 = L and L2 = L−1)
or (L1 = L and L2 = L2) that have maximal branch numbers. These diffusion layers
are obtained similar to that of Table 2. In this table, for each case, only y0 is presented.
Other yi ’s can be easily obtained from Fig. 4, since the Fi ’s are all the same.

If the 14 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)

I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)

I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)

I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

I ⊕ L4095(x) I ⊕ L8191(x)

are invertible (all irreducible polynomials up to degree 13), then all the diffusion layers
introduced in Table 3 are perfect. One example for a 32-bit linear function satisfying
these conditions is

L(x(32)) = (
x(32) ⊕ (x(32) � 31)

)
≪ 29

5. Conclusion

In this paper, we proposed a new family of efficient diffusion layers (recursive diffu-
sion layers) which are constructed using several rounds of Feistel-like structures whose
round functions are linear. The proposed diffusion layers are very efficient and have
simple inverses, thus they can be deployed to improve the security or performance of

256 M. Sajadieh et al.

some of the current block ciphers and hash functions and in the design of the future
lightweight block ciphers and hash functions, even providing provable security against
differential and linear attacks. For a fixed structure, we determined the required condi-
tions for its underlying linear function to be perfectly secure with respect to linear and
differential attacks. Then, for the number of words in input (output) less than eight, we
extended our approach, and found all the instances of the perfect recursive diffusion
layers with the general form described in Fig. 1. Also, we proposed some other diffu-
sion layers with non-regular forms. Finally, diffusion layers with two linear functions
were proposed. By using two linear functions, we designed perfect recursive diffusion
layers for higher number of words.

References

[1] D.J. Bernstein, The Salsa20 Stream Cipher (2005). http://www.ecrypt.eu.org/stream/salsa20p2.html
[2] E. Biham, A. Shamir, Differential Cryptanalysis of DES-Like Cryptosystems, in CRYPTO’90. Lecture

Notes in Computer Science, vol. 537 (Springer, Berlin, 1990), pp. 2–21
[3] J. Daemen, Cipher and Hash function design strategies based on linear and differential cryptanalysis.

Ph.D. thesis, Elektrotechniek Katholieke Universiteit Leuven, Belgium (1995)
[4] J. Daemen, V. Rijmen, The Design of Rijndael: AES—The Advanced Encryption Standard (Springer,

Berlin, 2002)
[5] J. Guo, T. Peyrin, A. Poschmann, The PHOTON family of lightweight Hash functions, in CRYPTO’11.

Lecture Notes in Computer Science, vol. 6841 (Springer, Berlin, 2011), pp. 222–239
[6] J. Guo, T. Peyrin, A. Poschmann, M. Robshaw, The LED block cipher, in CHES’11. Lecture Notes in

Computer Science, vol. 6917 (Springer, Berlin, 2011), pp. 326–341
[7] S. Lin, D. Costello, Error control coding: fundamentals and applications (Prentice Hall, New York,

2004)
[8] M. Matsui, Linear cryptanalysis method for DES cipher, in EUROCRYPT’93. Lecture Notes in Com-

puter Science, vol. 765 (Springer, Berlin, 1993), pp. 386–397
[9] K. Ohkuma, H. Muratani, F. Sano, S. Kawamura, The block cipher hierocrypt, in SAC’01. Lecture Notes

in Computer Science, vol. 2012 (Springer, Berlin, 2001), pp. 72–88
[10] M. Sajadieh, M. Dakhilalian, H. Mala, Perfect involutory diffusion layers based on invertibility of some

linear functions. IET Inf. Secur. J. 5(1), 228–236 (2011)
[11] C. Schnorr, S. Vaudenay, Black box cryptoanalysis of Hash networks based on multipermutations, in

EUROCRYPT’94. Lecture Notes in Computer Science, vol. 950 (Springer, Berlin, 1994), pp. 47–57
[12] S. Vaudenay, On the need for multipermutations: cryptanalysis of MD4 and SAFER, in FSE’94. Lecture

Notes in Computer Science, vol. 1008 (Springer, Berlin, 1994), pp. 286–297
[13] M. Wang, J. Nakahara, Y. Sun, Cryptanalysis of the full MMB block cipher, in SAC’09. Lecture Notes

in Computer Science, vol. 5867 (Springer, Berlin, 2009), pp. 231–248
[14] H. Wu, The Hash Function JH (2008). http://icsd.i2r.astar.edu.sg/staff/hongjun/jh/jh.pdf
[15] G. Zeng, K. He, W. Han, A Trinomial Type of σ -LFSR Oriented Toward Software Implementation.

Science in China Series F-Information Sciences, vol. 50 (Springer, Berlin, 2007), pp. 359–372

http://www.ecrypt.eu.org/stream/salsa20p2.html
http://icsd.i2r.astar.edu.sg/staff/hongjun/jh/jh.pdf

	Efﬁcient Recursive Diffusion Layers for Block Ciphers and Hash Functions
	Abstract
	Introduction
	Notations
	Our Contribution

	The Proposed Diffusion Layer
	Application of the Proposed Diffusion Layer in Current Block Ciphers

	Other Desirable Structures for the Proposed Diffusion Layer
	Increasing the Number of Linear Functions
	Conclusion
	References

