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Abstract. This paper studies perfect zero-knowledge proofs. Such proofs do not
allow any simulation errors, and therefore techniques from the study of statistical zero-
knowledge (where a small error is allowed) do not apply to them. We introduce a new
error shifting technique for building perfect simulators. Using this technique we give
the first complete problem for the class of problems admitting non-interactive perfect
zero-knowledge (NIPZK) proofs, a hard problem for the class of problems admitting
public-coin PZK proofs, and other applications.
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1. Introduction

Perfect zero-knowledge protocols allow one party (the prover) to prove the validity of an
assertion to another party (the verifier), but without leaking any information [14]. This
is formalized using the notion of a simulator, and requiring that the simulation error be
zero. The notion of perfect zero knowledge can be relaxed to statistical zero knowledge,
where the prover leaks a negligible amount of information, and computational zero
knowledge, where this leakage is not noticeable by computationally bounded verifiers.

The past few years have seen great progress in proving general results about the
class of problems admitting statistical zero-knowledge (SZK) proofs. These results pro-
vide complete problems and show equivalence between private and public-coin proofs,
honest and malicious verifiers, efficient provers, and more ([10,12,21,22,26,32]). Var-
ious techniques, such as lower-bound protocols [13] and transformations that polarize
and reverse the statistical distance represented by circuits [26], were used in proving
these results. Unfortunately, these and other techniques used in the study of statistical
zero-knowledge proofs do not apply to the class of problems admitting perfect zero-
knowledge (PZK) proofs. Intuitively, these techniques manipulate the protocol in a way
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that introduces a small error into the simulation. This is not an issue in the case of sta-
tistical zero knowledge, where a small simulation error is allowed, but it is an issue in
the case of perfect zero knowledge, where no simulation error is allowed. Consequently,
many fundamental questions about PZK remain open.

Perfect zero-knowledge protocols are interesting from a cryptographic perspective
because they provide the maximum level of privacy for the prover. Under certain com-
plexity assumptions, every language in NP has a perfect zero-knowledge argument
[4,20], and recently a non-interactive argument was discovered [15] (an argument is
a computationally sound proof). Their simple definition also makes them ideal to use as
a testbed for studying zero knowledge in new settings. Recent examples include the lo-
cal zero-knowledge protocol of [19] and the quantum zero-knowledge protocol of [33].
From a complexity-theoretic perspective, there are well-known problems that uncon-
ditionally admit PZK proofs, such as QUADRATIC-RESIDUOUSITY, DISCRETE-LOG,
and GRAPH-ISOMORPHISM [9,14,31]. These problems are in NP, but not known to be
in P or NP-complete. Moreover, they all admit 3-round proofs, yet we do not know
whether PZK proofs can be made to have a constant number of rounds (this was re-
cently proven for SZK [23], but the techniques do not extend to PZK). Our goal is to
develop tools that will facilitate the study of perfect zero-knowledge proofs.

1.1. Our Results

As was mentioned earlier, techniques used in the study of statistical zero-knowledge
proofs introduce error into the simulation, and therefore cannot be applied to perfect
zero-knowledge proofs. To overcome this difficulty we introduce what we call an er-
ror shifting technique. Roughly speaking, the idea is to first identify where the error is
coming from, and then shift it forward to the protocol in a way that does not affect the
simulation (but may affect the completeness or soundness errors). This is in contrast
to techniques from the statistical setting, where the error is incorporated into the con-
structions, thus leading to simulation errors later on. Since the notion of simulation is
central to cryptography, our technique may be useful for achieving perfect simulation
in contexts outside of zero-knowledge.

The first domain to which we apply the error shifting technique is complete problems.
Recall that a problem Π is said to be hard for some complexity class C if every problem
in the class C efficiently reduces to it. The problem Π is said to be complete for C if
Π is hard for C and Π is in C. Complete problems are a powerful tool because they
represent an entire class. Thus, by proving a result with respect to a complete problem
we get a general result about the entire class. Indeed, most of the study of statistical
zero-knowledge proofs was made possible by first finding complete problems and then
using them to prove more advanced results. This also means that providing complete
problems for the perfect setting is an important step towards translating the results from
the statistical setting to the perfect setting.

We obtain complete and hard problems in both the interactive and the non-interactive
setting. In the non-interactive setting we consider STATISTICAL DISTANCE FROM

UNIFORM (SDU), the complete problem of Goldreich Sahai and Vadhan [11] (based
on [30]) for the class of problems admitting non-interactive statistical zero-knowledge
(NISZK) proofs. Instances of this problem are circuits that represent distributions,
namely the output distribution of the circuit when the input to the circuit is uniformly
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distributed. YES instances are circuits that represent distributions that are statistically
close to uniform, and NO instances have a small support.

Here, we obtain the first complete problem for the class of problems admitting non-
interactive perfect zero-knowledge (NIPZK) proofs:

Theorem 1. The problem UNIFORM (UN) is NIPZK-complete.

Our problem UNIFORM is similar to SDU, except that YES instances of UNIFORM

are circuits exactly representing the uniform distribution rather than merely being sta-
tistically close, but where the circuits also have an additional output bit used for shifting
the error forward. Intuitively, we shift the error from the reduction, through the circuits,
and into the protocol. The difference between UNIFORM and SDU is natural as it reflects
the difference between perfect and statistical simulation.

Turning our attention to the interactive model, we consider STATISTICAL DISTANCE

(SD), the complete problem of Sahai and Vadhan [26] for the class of problems admit-
ting statistical zero-knowledge (SZK) proofs. Instances of this problem are pairs 〈X,Y 〉
of circuits. As YES instances, X and Y represent statistically close distributions, and as
NO instances, X and Y are represent statistically far distributions. In the case of public-
coin HVPZK problems with perfect completeness, [26] showed that a similar reduction
yields circuits X and Y that are identically distributed as YES instances. Using the error
shifting technique, we remove the restriction on perfect completeness and obtain the
problem IDENTICAL DISTRIBUTIONS. This problem is similar to the perfect variant of
SD, except that it introduces a third circuit to the instance.

Theorem 2. The problem IDENTICAL DISTRIBUTIONS is hard for the class of prob-
lems admitting public-coin-PZK (and even public-coin-HVPZK) proofs.

Our theorems and the error shifting technique can facilitate the study of perfect zero-
knowledge proofs in both the interactive and the non-interactive setting. For example,
our hard problem was used in [18] to study the round complexity of perfect zero-
knowledge proofs and to prove an equivalence between zero knowledge and instance-
dependent commitment schemes in the perfect setting (a more meaningful equivalence
was recently given [23], but it only applies to the statistical and the computational set-
tings). We give two additional applications.

The first application shows equivalence between the notion of zero knowledge where
the simulator is allowed to fail (also known as abort) to the notion of zero knowledge
where the simulator is not allowed to fail. This result is with respect to the honest verifier
(more accurately, any fixed verifier). The second application considers closure proper-
ties of NIPZK. That is, using UNIFORM, we give NIPZK proofs for the OR of any
two NIPZK problems admitting very small completeness and soundness errors. We
mention that no such closure result is known in the case of non-interactive statistical
zero-knowledge (NISZK) proofs.

1.2. Related Work

To the best of our knowledge, the only general result about perfect zero-knowledge
proofs is due to [5], who showed a transformation from honest-verifier PZK proofs



536 L. Malka

to malicious-verifier PZK proofs. This transformation applies only to constant-round,
public-coin proofs.

Our work is inspired by the study of statistical zero-knowledge proofs, and we build
on the results of [11,26] (based on [1,7,22,30]). Sahai and Vadhan [26] showed a
HVPZK-complete problem, but their problem is unnatural, and is defined in terms of
the class itself. They also tried to modify the reductions from the statistical setting so
that they apply to the perfect setting, but their idea works only in certain cases (e.g.,
when the underlying problem has a proof with perfect completeness). Bellare and Rog-
away [2] showed other basic results about NIPZK, but their notion of zero knowledge
allows simulation in expected (as opposed to strict) polynomial time. This notion is dis-
advantageous, especially when non-interactive protocols are executed as sub-protocols.
The literature offers a variety of NIPZK proofs for specific problems (cf. [2,3,27])
and other results about NIPZK proofs that apply to problems with special properties
(cf. [27–29]).

1.3. Organization

We use standard definitions, to be found in Sect. 2. In Sect. 3 we present the error
shifting technique and use it to obtain a NIPZK-complete problem. In Sect. 4 we apply
this technique to the interactive setting, where we obtain a hard problem. In Sect. 5 we
show some applications of these results.

2. Preliminaries

We study complexity classes of promise problems [6], which are a generalization of

languages. Formally, Π
def= 〈ΠY,ΠN〉 is a promise problem if ΠY ∩ΠN = ∅. The set ΠY

contains the YES instances of Π , and the set ΠN contains the NO instances of Π . We

define Π
def= 〈ΠN,ΠY〉. Any language L can be defined as a promise problem 〈L,L〉.

As in the study of statistical zero-knowledge, promise problems will be defined in
terms of circuits. A circuit X : {0,1}m → {0,1}n is a boolean function, encoded in
some way (see e.g. [24]), but we mainly treat X as a distribution, namely the out-
put distribution of the circuit when the input to the circuit is uniformly distributed.
Thus, given a set T , the probability Pr[X ∈ T ] equals Prr [X(r) ∈ T ], where r is uni-
formly chosen from {0,1}m. The statistical distance between circuits, or more gener-
ally, the statistical distance between two discrete distributions X and Y , is defined as

�(X,Y)
def= 1

2

∑
α |Pr[X = α] − Pr[Y = α]|.

2.1. Protocols and Proofs

We study both interactive and non-interactive perfect zero-knowledge proofs, using
standard definitions [8]. We start with the definition of a non-interactive protocol, which
we customize for the context of zero-knowledge proofs.

Definition 2.1 (Non-interactive protocols). A non-interactive protocol 〈c,P,V 〉 is a
triplet (or simply a pair 〈P,V 〉, making c implicit), where P and V are functions, and
c ∈ N. We use rP to denote the random input to P . The interaction between P and V

on common input x is the following random experiment.
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1. Uniformly choose rP and a common random string rI ∈ {0,1}|x|c .
2. Let π = P(x, rI ; rP ), and let m = V (x, rI ,π).
3. Output 〈x, rI ,π,m〉.

We call 〈P,V 〉(x)
def= 〈x, rI ,π,m〉 the view of V on x. We say that V accepts x (respec-

tively, rejects x) in 〈P,V 〉(x) if m = accept (respectively, m = reject).

Definition 2.1 considers a deterministic verifier V . Non-interactive protocols where
the verifier is probabilistic can be transformed into ones where the verifier is determinis-
tic while preserving many of the properties of the original protocol [17]. The definition
of interactive protocols is a simple extension of the above, except that there is no com-
mon random string, V has random input rV , and P and V exchange messages until one
of them accepts, rejects, or fails. Formally,

Definition 2.2 (Interactive protocols). An interactive protocol is a pair 〈P,V 〉 of func-
tions. The interaction between P and V on common input x is the following random
experiment.

1. Let rP and rV be random inputs to P and V , respectively.
2. repeat the following for i = 1,2, . . .

(a) If i is odd, let mi = P(x,m1, . . . ,mi−1; rP ).
(b) If i is even, let mi = V (x,m1, . . . ,mi−1; rV ).
(c) If mi ∈ {accept,reject,fail}, then exit loop.

Each interaction yields a transcript 〈x,m1, . . . ,mn; rV 〉, and the strings mi are called
messages. The probability space containing all the transcripts is called the view of V on
x, and is denoted 〈P,V 〉(x). We say that V accepts x if mi = accept for an even i.

We say that 〈P,V 〉 is constant round if there is a constant c such that in any interac-
tion the number of messages exchanged in at most c. We say that 〈P,V 〉 is public coin
for V if for any n ∈ N and any transcript ending with verifier message mn, the random-
ness rV accessed by V is m2m4 · · ·mn−2, and for all even i ≤ n− 2 the length of mi is a
function of only x,m1, . . . ,mi−1. We say that 〈P,V 〉 is public coin if 〈P ∗,V 〉 is public
coin for any P ∗.

A proof for a problem is a protocol that admits certain properties with respect to
the problem. Informally, the verifier is efficient, with high probability it accepts YES
instances of the problem, and with low probability it accepts NO instances (even if a
computationally unbounded prover is cheating). In the following definition the differ-
ence between these probabilities is expressed via a non-negligible function c.

Definition 2.3 (Non-interactive proofs). A non-interactive protocol 〈c,P,V 〉 is a non-
interactive proof for a problem Π if there is a constant a ∈N and c(n), s(n) :N → [0,1]
such that 1 − c(n) ≥ s(n) + 1/na for every n, and the following conditions hold.

• Efficiency: V runs in time polynomial in |x|.
• Completeness: for all x ∈ ΠY we have PrrI ,rP [V (x, rI ,P (x, rI ; rP )) =
accept] ≥ 1 − c(|x|).
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• Soundness: for any x ∈ ΠN and every function P ∗ we have PrrI ,rP [V (x, rI ,

P ∗(x, rI ; rP )) = accept] ≤ s(|x|).
The function c is called the completeness error, and the function s is called the sound-
ness error. We say that 〈P,V 〉 has perfect completeness if c = 0.

Although the completeness and soundness errors are defined using functions, in both
the interactive and the non-interactive model our reductions will actually use c = s = 1

3 .
This is without loss of generality because the reductions consider honest verifiers and
therefore the errors can be reduced via parallel repetition.

Interactive proofs are defined from interactive protocols in exactly the same way,
except that there is no reference string. Formally,

Definition 2.4 (Interactive proofs). Let Π = 〈ΠY,ΠN〉 be a problem, and let 〈P,V 〉
be an interactive protocol. We say that 〈P,V 〉 is an interactive proof for Π if there
is a, and c(n), s(n) : N → [0,1] such that 1 − c(n) > s(n) + 1/na for any n, and the
following conditions hold.

• Efficiency: V is a probabilistic Turing machine whose running time over the en-
tire interaction is polynomial in |x| (this implies that the number of messages ex-
changed is polynomial in |x|).

• Completeness: if x ∈ ΠY, then V accepts in 〈P,V 〉(x) with probability at least
1 − c(|x|). The probability is over rP and rV (the randomness for P and V , re-
spectively).

• Soundness: if x ∈ ΠN, then for any function P ∗ V accepts in 〈P ∗,V 〉(x) with
probability at most s(|x|). The probability is over the randomness rP of P and rV
for V .

2.2. Zero Knowledge

We proceed to the definition of zero knowledge. Intuitively, a protocol is zero knowledge
if the view of the verifier can be produced by the verifier itself, without help from the
prover. This is formalized using the notion of a polynomial-time simulator that creates
this view. Sequences of distributions {D(x)}x∈T and {D′(x)}x∈T , called ensembles, are
identically distributed if D(x) and D′(x) are identically distributed for all x ∈ T . We
define zero knowledge with respect to simulators that do not fail, but in Sect. 5 we
give a definition that allows failure, and show that the two are equivalent (for certain
properties).

Definition 2.5 (Non-interactive zero-knowledge protocols). A non-interactive proto-
col 〈P,V 〉 is perfect zero knowledge (NIPZK) for a problem Π = 〈ΠY,ΠN〉 if there is
a probabilistic Turing machine S running in strict polynomial time, called the simulator,
such that the ensembles

{〈P,V 〉(x)
}
x∈ΠY

and
{
S(x)

}
x∈ΠY

are identically distributed. If these ensembles are statistically indistinguishable, then
〈P,V 〉 is a non-interactive statistical zero-knowledge (NISZK) protocol for Π . Sim-
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ilarly, if the ensembles are computationally indistinguishable, then 〈P,V 〉 is non-
interactive computational zero-knowledge (NICZK) protocol for Π . The class of prob-
lems possessing NIPZK (respectively, NISZK, NICZK) proofs is also denoted NIPZK
(respectively, NISZK, NICZK).

This definition can be extended to the interactive setting in the natural way. In the
following, SV ∗

denotes oracle access of S to the Turing machine V ∗.

Definition 2.6 (Zero-knowledge protocols). A protocol 〈P,V 〉 for a problem Π =
〈ΠY,ΠN〉 is perfect (respectively, statistical, computational) zero knowledge if there
is a probabilistic oracle Turing machine S running in strict polynomial time, called
the simulator, such that for every probabilistic Turing machine V ∗ running in strict
polynomial time we have

{〈
P,V ∗〉(x)

}
x∈ΠY

and
{
SV ∗

(x)
}
x∈ΠY

are identically distributed (respectively, statistically indistinguishable, computation-
ally indistinguishable.) The class of problems having perfect (respectively, statistical,
computational) zero-knowledge protocols is denoted PZK (respectively, SZK,CZK.)
When the above ensembles are indistinguishable for V ∗ = V we say that 〈P,V 〉 is
honest verifier, perfect (respectively, statistical, computational) zero knowledge, and we
denote the respective classes by HVPZK, HVSZK, and HVCZK.

3. A Complete Problem for NIPZK

In this section we introduce the error-shifting technique and use it to obtain the first
complete problem for the class of problems admitting non-interactive perfect zero-
knowledge (NIPZK) proofs. The proof system that we obtain has interesting charac-
teristics, which we discuss later. We start with motivation, and give formal definitions
and proofs in Sect. 3.1.

We describe STATISTICAL DISTANCE FROM UNIFORM (SDU), the NISZK-
complete problem of [11], and explain why the reduction and the protocol for this
problem cannot be applied to NIPZK. Instances of SDU are circuits that represent dis-
tributions, namely the output distribution of the circuit when the input to the circuit is
uniformly distributed. Specifically, YES instances are circuits representing a distribu-
tion that is close to uniform, and NO instances are circuits representing a distribution
that is far from uniform.

Definition 3.1. SDU
def= 〈SDUY,SDUN〉, where

SDUY = {
X| �(X,Un) < 1/n

}
,

SDUN = {
X| �(X,Un) > 1 − 1/n

}
,

X is a circuit with n output bits, and Un is the uniform distribution on {0,1}n.
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The reduction of [11] (based on [30]) reduces any NISZK problem Π to SDU
through a sequence of reductions. The part of this reduction that we modify is as fol-
lows. Let x be an instance of Π and let 〈P,V 〉 be a NISZK proof for Π with a simulator
S. The instance x is reduced to a circuit X which executes S(x) and obtains a transcript.
The transcript contains a simulated message of the prover and a simulated reference
string. If the verifier accepts in this transcript, then X outputs the simulated reference
string. Otherwise, X outputs the all-zero string. Intuitively, this reduction works be-
cause if x is a YES instance, then the simulated reference string is almost uniformly
distributed, and thus X is a YES instance of SDU. Conversely, if x is a NO instance,
then the verifier rejects on most reference strings, and thus X is a NO instance of SDU.

When we apply the reduction of [11] to NIPZK problems Π , and x is a YES instance,
the output of S perfectly simulates the reference string. Thus, we expect to obtain a
circuit X that represents the uniform distribution. However, if Π does not have perfect
completeness, then the verifier may reject x, which skews the distribution represented
by X. This will cause problems later, when we try to construct a proof system and a
simulator for the complete problem. We overcome this issue using the error shifting
technique.

The Error Shifting Technique In its most general form, the error shifting technique
shifts into the protocol errors that would otherwise become simulation errors. This de-
scription is very loose, but we chose it because our technique can be applied in different
contexts, and in each of these contexts it takes a different form. The following applica-
tion will clarify our technique.

� The first step of the error shifting technique is to identify where the simulation error
comes from. In our case, if the verifier rejects, then the circuit X does not represent the
uniform distribution. Thus, the error comes from the completeness error of the proof of
the underlying problem. Since we need to shift this error forward, we first separate it by
adding an extra output bit to the circuit X. That is, X executes the simulator and outputs
the simulated reference string followed by an extra bit. This bit takes the value 1 if the
verifier accepts, and 0 if the verifier rejects.

� The second step of the error shifting technique is to shift the error forward, to the
completeness or the soundness error of the protocol. In our case, from the circuit X to
the protocol for our complete problem. This step is not trivial because we cannot just use
the protocol of [11] for SDU. Specifically, in this protocol the prover sends a string r ,
and the verifier accepts if X(r) equals the reference string. A simple analysis can show
that even if we adapt this idea to our modified circuit, then we will get a simulation
error. Thus, we modify this protocol by starting with the simulator, and constructing
the prover based on the simulator. Informally, the simulator samples the circuit X, and
the verifier accepts if the extra bit in this sample is 1. The prover simply mimics the
simulator. This shifts the error from X to the completeness error of the new protocol.
We make this intuition formal in the next section.

3.1. A Complete Problem for NIPZK

In this section we formalize the intuition given in the previous section, thus proving that
UNIFORM is NIPZK-complete. Our proof system has interesting characteristics, which
we discuss after proving that UNIFORM is hard for NIPZK.
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Theorem 3.2. UNIFORM (UN) is NIPZK-complete.

Recall that instances of UNIFORM are circuits X. Essentially, as a YES instance
X represents the uniform distribution, and as a NO instance X has a small range.
However, recall that X also has an extra rightmost output bit. To formally describe
these properties, we use the convention that n + 1 denotes the number of output
bits of X. We use TX to denote the outputs of X that end with the bit 1. Formally,

TX
def= {x1|∃r s.t. X(r) = x1}, where x1 denotes the concatenation of the string x with

the bit 1. Also, we use X′ to denote the distribution on the n-bit prefix of the output of
X. That is, X′ is obtained by picking a random input r , computing X(r), and taking the
n-bit prefix of X(r). As we shall see, when X is a YES instance of UNIFORM, the zero
knowledge and completeness properties would imply that TX is large and X′ is the uni-
form distribution. Conversely, when X is a NO instances of UNIFORM, the soundness
property would imply that |TX| is small.

The problem UNIFORM is defined in terms of TX and X′. Formally, given a circuit X

with n + 1 output bits, we say that X is β-negative if |TX| ≤ β · 2n. That is, TX has at
most β · 2n elements. We say that X is α-positive if X′ is the uniform distribution on n

bits and Prr [X(r) ∈ TX] ≥ α. This notion is not symmetric to that of β-negative, but it
does imply that TX has at least α · 2n elements.

Definition 3.3. The problem UNIFORM is defined as UN
def= 〈UNY,UNN〉, where

UNY = {
X|X is 2/3-positive

}
, and

UNN = {
X|X is 1/3-negative

}
.

The constants 2/3 and 1/3 come from the completeness and soundness errors of
the underlying proof, and as we mentioned in Sect. 2, these can be obtained from the
definitions using repetition.

Proceeding to the completeness result, we recall that proving that a problem is com-
plete for a given class requires proving that the problem is hard for the class (that is,
any problem in the class reduces to this problem) and that it is in the class. Thus, we
first show that the reduction from the previous section reduces every NIPZK problem
to UNIFORM.

Lemma 3.4. UNIFORM is NIPZK-hard.

Proof. Let Π = 〈ΠY,ΠN〉 be a NIPZK problem. Fix a non-interactive protocol
〈P,V 〉 for Π with completeness and soundness errors 1/3. Let rI denote the common
reference string in 〈P,V 〉, and fix c such that |rI | = |x|c for every x ∈ ΠY ∪ ΠN. Fix
a simulator S for 〈P,V 〉. Let � ∈ N such that the randomness of S on inputs of length
n is of length at most n�. Let S′ denote a circuit that on input x ∈ ΠY ∪ ΠN and rS of

length |x|� outputs S′(rS)
def= S(x; rS).

We show that Π Karp-reduces to UNIFORM. That is, we define a polynomial-time
Turing machine that on input x ∈ ΠY ∪ΠN outputs a circuit X : {0,1}|x|� → {0,1}|x|c+1

such that if x ∈ ΠY, then X ∈ UNY, and if x ∈ ΠN, then X ∈ UNN. On input
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rS of length |x|� the circuit X executes S′(rS) and obtains S(x; rS) = 〈x, r ′
I , π〉. If

V (x, r ′
I , π) = accept, then X outputs the string r ′

I 1 (i.e., the concatenation of r ′
I and

1), and otherwise it outputs r ′
I 0.

Now we analyze our reduction. Let x ∈ ΠY, and let X be the output of the above
reduction on x. We show that X is 2/3-positive. Consider the distribution on the output
〈x, r ′

I , π〉 of S(x). Since S(x) and 〈P,V 〉(x) are identically distributed, r ′
I is uniformly

distributed. Thus, X′ (i.e., the distribution on the first |x|c output bits of X) is uniformly
distributed. It remains to show that Pr[X ∈ TX] ≥ 2/3. This immediately follows from
the perfect zero knowledge and completeness properties of 〈P,V 〉. That is, the output
of S is identically distributed to 〈P,V 〉(x), and V accepts in 〈P,V 〉 with probability at
least 2/3.

Let x ∈ ΠN, and let X be the output of the above reduction on x. We show that X

is 1/3-negative. Assume towards contradiction that |TX| > 2|x|c /3. We define a prover
P ∗ that behaves as follows on CRS rI . If rI 1 ∈ TX , then there is an input rS to X such
that X(rS) = rI 1. By the construction of X, there is randomness rS for the simulator
such that S(x; rS) = 〈x, rI ,π〉, and V (x, rI ,π) = 1. In this case P ∗ sends π to V . If
rI 1 /∈ TX , then P ∗ fails. Notice that P ∗ makes V accept on any rI such that rI 1 ∈ TX .
Since |TX| > 2|x|c /3, and since rI is uniformly chosen in 〈P ∗,V 〉, the probability that
rI 1 ∈ TX is strictly greater than 1/3. Thus, V accepts in 〈P ∗,V 〉(x) with probability
strictly greater than 1/3, and contradiction to the soundness error of 〈P,V 〉. Hence, X

is 1/3-negative. �

It remains to prove that UNIFORM is in NIPZK. We remark that our proof is unusual
in the sense that we construct the prover and the verifier based on the simulator, and it
is possible that on YES instances there are prover messages that will make the verifier
accept, but instead the prover is sending a message that will make the verifier reject.

Lemma 3.5. UNIFORM has a NIPZK proof with a deterministic verifier.

Proof. Our prover and verifier for UNIFORM are based on the simulator, but describ-
ing the simulator before the proof is somewhat counter intuitive. Thus, we start with the
proof. Given a circuit X with n+ 1 output bits, we use By to denote the set of all strings
r̂ for which the n-bit prefix of X(r̂) is y ∈ {0,1}n. On input X : {0,1}� → {0,1}n+1 and
common reference string rI ∈ {0,1}n the prover P picks π uniformly from BrI . Such
a π exists when X ∈ UNY because X′ (i.e., the distribution on the first n bits of X) is
the uniform distribution. The deterministic verifier accepts if X(π) = rI 1, and rejects
otherwise.

Our prover is based on the following simulator. Let S be a probabilistic polynomial-
time Turing machine that on input X uniformly picks π ′ ∈ {0,1}�, and computes z =
X(π ′). The simulator assigns the n-bit prefix of z to r ′

I (i.e., the simulated reference
string), and outputs 〈X,r ′

I , π
′〉. Let X ∈ ΠY. We show that S perfectly simulates 〈P,V 〉.

Consider the distribution S(X) on simulated transcripts 〈X,r ′
I , π

′〉, and the distribution
〈P,V 〉(X) on the view 〈X,rI ,π〉 of V . Since X′ is uniformly distributed over {0,1}n,
the string r ′

I obtained by the simulator is uniformly distributed over {0,1}n. Since rI
is uniformly distributed, r ′

I and rI are identically distributed. It remains to show that π

and π ′ are identically distributed conditioned on rI = r ′
I . For any simulated reference



How to Achieve Perfect Simulation and a Complete Problem for Non-interactive Perfect Zero-Knowledge543

string r ′
I , the randomness π ′ chosen by the simulator is uniformly distributed in Br ′

I
.

Similarly, for any reference string rI the message π of the prover is a string chosen
uniformly from BrI . Hence, conditioned on rI = r ′

I , the strings π and π ′ are identically
distributed. We conclude that S(X) and 〈P,V 〉(X) are identically distributed for any
X ∈ ΠY.

Turning our attention to the completeness property, we show that V accepts X with
probability at least 2/3. By the zero knowledge property, the output 〈X,r ′

I , π
′〉 of

S(X) is identically distributed to the view 〈X,rI ,π〉 of V on X. Thus, it is enough
to show that when choosing a transcript 〈X,r ′

I , π
′〉 according to S(x), the probability

that V (X, r ′
I , π

′) = 1 is at least 2/3. Since S uniformly chooses π ′, and since X is
2/3-positive, the probability that X(r) ∈ TX is at least 2/3. Thus, the probability that
the suffix of X(r) is 1 is at least 2/3. Hence, V accepts X with probability at least
2/3. The soundness property follows easily. Let X ∈ UNN. Since X is 1/3-negative,
|TX| ≤ 1/3 · 2n. Since rI is uniformly distributed, the probability that rI 1 ∈ TX is at
most 1/3. Hence, if X ∈ UNN, then V accepts X with probability at most 1/3. �

Theorem 3.2 follows from Lemmas 3.4 and 3.5.

4. A Hard Problem for Public-Coin PZK Proofs

This section shows a hard problem for the class of problems admitting public-coin,
honest-verifier perfect zero-knowledge (HVPZK) proofs. This is achieved by remov-
ing the assumption on perfect completeness from the reduction of [26]. Our problem
was used in [18] to study the round complexity of perfect zero-knowledge proofs and
to prove an equivalence between zero knowledge and instance-dependent commitment
schemes. Notice that since PZK ⊆ HVPZK, our problem is also hard for public-coin
PZK proofs.

For motivation, we start by describing STATISTICAL DISTANCE (SD), the complete
problem of [26] for SZK. Instances of this problem are pairs 〈X,Y 〉 of circuits. As YES
instances, X and Y represent statistically close distributions, and as NO instances, X

and Y are represent statistically far distributions. Specifically, SD
def= SD1/3,2/3, where

SDα,β is defined as follows:

Definition 4.1. SDα,β def= 〈SDα,β
Y ,SDα,β

N 〉, where

SDα,β
Y = {〈X0,X1〉| �(X0,X1) ≤ α

}
, and

SDα,β
N = {〈X0,X1〉| �(X0,X1) ≥ β

}
.

We remark that SD and SD are referred to in the literature as the same problem be-
cause both of them are complete for SZK and reduce to each other. The reduction of [26]
takes any problem that admits a public-coin, honest-verifier statistical zero-knowledge
(HVSZK) proof and reduces it to SD. The issue with this reduction is that, when we
apply it to the class of problems admitting public-coin, honest-verifier perfect zero-
knowledge (HVPZK) proofs, we get a pair of circuits 〈X0,X1〉 that, as YES instances,
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are only statistically close, but not identically distributed (unless the problem admits a
proof with perfect completeness). This is unnatural because the closeness between X0
and X1 reflects the closeness of the simulation. Thus, in the perfect setting we expect
X0 and X1 to be identically distributed, as in SD0,1/2.

Definition 4.2. SD0,1/2 def= 〈SD0,1/2
Y ,SD0,1/2

N 〉, where

SD0,1/2
Y = {〈X0,X1〉| �(X0,X1) = 0

}
, and

SD0,1/2
N = {〈X0,X1〉| �(X0,X1) ≥ 1/2

}
.

In the next section we describe the reduction to SD in more detail and show that,
essentially, SD0,1/2 is hard for the class of problems admitting public-coin HVPZK
proofs.

4.1. A Hard Problem for Public-Coin HVPZK Proofs

We show that, essentially, SD0,1/2 is hard for the class of problems admitting public-
coin HVPZK proofs. This is done by applying the error shifting technique to the reduc-
tion of [26], which we now describe.

Let Π be a problem with a public-coin HVPZK proof 〈P,V 〉 and a simulator S.

Given a string x, we use v
def= v(|x|) to denote the number of rounds in the interaction

between P and V on input x. That is, in round i the prover P sends mi and V replies
with a random string ri , until P sends its last message mv , and V accepts or rejects. We
denote the output of S(x) by 〈x,m1, r1, . . . ,mv〉. The reduction of [26] maps instances
x of Π to pairs of circuits 〈X′, Y ′〉. These circuits are constructed from the circuits Xi

and Yi , defined as follows. The circuit Xi chooses randomness, executes S(x) using this
randomness, and outputs the simulated transcript, truncated at the ith round. That is, Xi

obtains 〈x,m1, r1, . . . ,mv〉, and outputs 〈m1, r1, . . . ,mi, ri〉. The circuit Yi is defined
exactly the same, except that it replaces ri with a truly random string r ′

i .

• Xi(r): execute S(x; r) to obtain 〈x,m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . ,mi, ri〉.
• Yi(r, r

′
i ): execute S(x; r) to obtain 〈x,m1, r1, . . . ,mv〉. Output 〈m1, r1, . . . ,mi, r

′
i〉.

Notice that Xi and Yi represent the same distribution when x is a YES instance.
This is so because S(x) perfectly simulates the view of the verifier, and therefore ri is
uniformly distributed, just like r ′

i . Using ⊗ to denote the concatenation of circuits, let
X = X1 ⊗ · · · ⊗ Xv . That is, X executes all the circuits Xi and outputs the concatena-
tion of their outputs. Similarly, let Y = Y1 ⊗ · · · ⊗ Yv . Again, X and Y are identically
distributed when x is a YES instance. Now, the pair 〈X′, Y ′〉 is defined from 〈X,Y 〉 as
follows. The circuit Y ′ outputs the output of Y followed by 1. The circuit X′ outputs the
output of X followed by the output of Z, where Z is the circuit that outputs 1 if with
high probability S(x) outputs accepting transcripts, and 0 otherwise. Notice that Z can
achieve this by running independent executions of S(x) and estimating the probability
that S(x) output an accepting transcript.

The reduction of [26] does not apply to public-coin HVPZK proofs (unless we as-
sume perfect completeness) because on YES instances x it is possible that V rejects x,
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which would make the circuit Z output 0 with non-zero probability, and this leads to a
non-zero statistical distance between X′ and Y ′. We overcome this issue using the error
shifting technique.

Recall that the first step of the error shifting technique is to identify where the simu-
lation error comes from. In this case, the error comes from the circuit Z. Since we need
to shift this error forward, instead of including Z in the circuits X′ and Y ′, we separate
the error and map instances x of Π to triplets 〈X,Y,Z〉. Thus, if x is a YES instance,
then X and Y are identically distributed, and Z outputs 1 with high probability. Such a
triplet would be a YES instance of our hard problem. Similarly, by the simulator analy-
sis from [26] (cf. [1,7,16,25]), if x is a NO instance, then either X and Y are statistically
far, or Z outputs 0 with a high probability. Such a triplet would be a NO instance of our
hard problem.

Lemma 4.3. For any problem Π = 〈ΠY,ΠN〉 possessing a public-coin HVPZK
proof there is a Karp reduction mapping strings x to circuits 〈X,Y,Z〉 with the fol-
lowing properties.

• If x ∈ ΠY, then �(X,Y) = 0 and Pr[Z = 1] ≥ 2/3.
• If x ∈ ΠN, then �(X,Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3.

Our hard problem can be defined as SD0,1/2∧ CAPP, where ∧ denotes the AND of
two promise problems, and CAPP is known as CIRCUIT APPROXIMATION PROBABIL-
ITY PROBLEM [24]. Recall that the AND of two promise problems Π and Γ is defined

as Π ∧ Γ
def= 〈(Π ∧ Γ )Y, (Π ∧ Γ )N〉, where

(Π ∧ Γ )Y = {〈x, y〉|x ∈ ΠY ∧ y ∈ ΓY
}

and

(Π ∧ Γ )N = {〈x, y〉|x ∈ ΠN ∨ y ∈ ΓN
}
.

Instances of CAPP are circuits Z such that, Pr[Z = 1] ≥ 2/3 if Z is a YES instance, and
Pr[Z = 1] ≤ 1/3 if Z is a NO instance. CAPP is a complete promise problem for BPP
(when considering BPP as a class of promise problems). We refer to SD0,1/2∧ CAPP
as IDENTICAL DISTRIBUTIONS (ID).

The second step of the error shifting technique is to shift the error forward, to the
completeness or soundness error of the protocol. However, we do not have a HVPZK
proof for IDENTICAL DISTRIBUTIONS, and even SD0,1/2 is not known to have one (this
was an open question in [26]). Thus, we show that given an arbitrary zero-knowledge
protocol for SD0,1/2, the error can be shifted from the circuit Z to this protocol. In
particular, this shows that any perfect zero-knowledge (PZK) proof for SD0,1/2 can
be converted to a PZK proof for IDENTICAL DISTRIBUTIONS. Furthermore, we will
preserve all the properties of the original protocol.

The error is shifted as follows. Let 〈P,V 〉 be an arbitrary zero-knowledge protocol
for SD0,1/2. We construct a new protocol 〈P ′,V ′〉 on instances 〈X,Y,Z〉 of ID (instead
of a pair 〈X,Y 〉 of SD0,1/2). We let P ′ = P and define V ′ just like V , except that
before the protocol begins, V ′ estimates the value of Pr[Z = 1] and rejects if this value
is at most 1/3. If V ′ did not reject, then P ′ and V ′ execute 〈P,V 〉 on input 〈X,Y 〉.
Analyzing this protocol is straightforward. Notice that V ′ is very unlikely to reject if
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Pr[Z = 1] ≥ 2/3, and that if the protocol continues, then either 〈X,Y,Z〉 is a YES
instance of our hard problem and �(X,Y) = 0, or 〈X,Y,Z〉 is a NO instance of our
hard problem and �(X,Y) ≥ 1/2. Hence, in this case the behavior of P ′ and V ′ on
instances of our hard problem is identical to the behavior of P and V on instances of

SD0, 1
2 . The following theorem follows.

Theorem 4.4. If SD0,1/2 has a public-coin HVPZK proof, then ID is complete for
public-coin HVPZK.

5. Applications

Our error shifting technique and hard problem were used in [18] to study perfect zero-
knowledge proofs. In this section we show two additional applications of our results.
The first one shows an equivalence between two notions of simulation. The second
shows that, under certain conditions, non-interactive perfect zero-knowledge (NIPZK)
proofs are closed under the OR operator.

5.1. Obtaining Simulators that Do not Fail

Zero-knowledge protocols have been defined in the literature with respect to simulators
that are either allowed or not allowed to fail (also known as abort). We show that these
notions are equivalent for honest-verifier zero knowledge. Our transformation shifts the
simulation error into the completeness error and therefore does not preserve perfect
completeness.

We first recall that the definitions of zero knowledge used in this paper (Defini-
tions 2.5 and 2.6) require that the output of the simulator be “close” to the view of the
verifier. A relaxation of this notion due to [5] allows the simulator to fail with probabil-
ity at most 1

2 , and requires that, conditioned on non-failure, the output of the simulator
be “close” to the view of the verifier. Notice that the constant 1

2 is arbitrary as any non-
negligible error probability can be reduced via repetition. The formal definition follows.

Definition 5.1 (Zero-knowledge protocols with simulators that can fail). A protocol
〈P,V 〉 for a problem Π = 〈ΠY,ΠN〉 is perfect (respectively, statistical, computational)
zero knowledge if there is a probabilistic oracle Turing machine S running in polynomial
time, called the simulator, such that for every probabilistic Turing machine V ∗ running
in polynomial time the following holds:

1. For all x ∈ ΠY we have Pr[SV ∗
(x) = fail] ≤ 1

2 , where the probability is over
the randomness of S and V ∗.

2. Letting ŜV ∗
(x) denote the distribution on the output of SV ∗

(x) conditioned on
SV ∗

(x) �= fail, the following ensembles are identically distributed (respectively,
statistically indistinguishable, computationally indistinguishable)

{〈
P,V ∗〉(x)

}
x∈ΠY

and
{
ŜV ∗

(x)
}
x∈ΠY

.

It is well-known that in the statistical and the computational settings, a simulator S

that is allowed to fail can be converted to a simulator S′ that is not allowed to fail. On
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common input x this can be done simply by running |x| executions of S(x), each with
a fresh random input, and outputting the first non-fail output. If all executions fail, then
S(x) simply outputs null, but since this happens with probability at most 1/2n, the
error that the null message introduces into the simulation is negligible. Thus, S(x) is
indistinguishable from the view of the verifier. Clearly, this simple idea does not apply
to the perfect setting. In fact, since the simulation error is increased, this idea suggests
that perhaps by allowing the simulator to fail, the prover may leak some knowledge to
the verifier. By using the error shifting technique, we overcome this issue and show that
the two notions of simulation are equivalent. We only consider the interactive setting,
but the idea applies also to the non-interactive setting.

Lemma 5.2. A problem Π has an honest-verifier perfect zero-knowledge proof ac-
cording to Definition 2.6 if and only if it has an honest-verifier perfect zero-knowledge
proof according to Definition 5.1.

Proof. Trivially, Definition 2.6 implies Definition 5.1. In the forward direction, let Π

be a problem with a perfect zero-knowledge protocol 〈P,V 〉 and a simulator S that fails
with probability at most 1

2 . The first step of the error shifting technique is to identify
where the error is coming from and isolate it. In this case, the error comes from the
failure probability of the simulator, and it is already separated from the output of the
simulator. Hence, we proceed to the next step of the error shifting technique. That is,
we shift the error into the protocol.

On input x we define a new prover P ′ whose first step is to run |x| executions of
S(x). If S(x) fails in all |x| executions, then P ′(x) sends null to the verifier V and
the protocol terminates. Otherwise, it behaves just like P(x). The new simulator S′ for
〈P ′,V 〉 is modified to run |x| executions of the original simulator S(x). If all executions
fail, then just like P ′, it sends null to the verifier V and the protocol terminates.
Otherwise, one of the outputs of S(x) is not fail, and S′ outputs the first such non-fail
output.

We analyze the new simulator S′. Consider all sufficiently long x ∈ ΠY. The first
observation is that S′(x) never fails. The second observation is that both P ′ and S′ send
to V the message null with the same probability. Conditioned on S′ not sending this
message, the output of S′(x) is identically distributed to the output of S(x), which,
by Definition 5.1, is identically distributed to the view 〈P,V 〉(x) of the honest veri-
fier. Conditioned on P ′ not sending the null message, 〈P ′,V 〉(x) and 〈P,V 〉(x) are
identically distributed because P ′ behaves just like P . Thus, S(x) and 〈P ′,V 〉(x) are
identically distributed. We conclude that the two notions are equivalent. �

5.2. Under Certain Restrictions NIPZK is Closed Under the OR Operator

In this section we prove a partial result towards showing that NIPZK is closed under
the OR operator. We make strong conditions on the soundness and completeness error
of a proof for the underlying problem. This illuminates the difficulties of working with
perfect zero-knowledge proofs. No such closure result is known in the case of non-
interactive statistical zero-knowledge (NISZK) proofs (cf. [11,30]).

Before we present our lemma, recall that a complexity class C is closed under the
OR operator (denoted ∨) if for any two problems Π,Γ ∈ C we have Π ∨ Γ ∈ C, where
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Π ∨ Γ
def= 〈(Π ∨ Γ )Y, (Π ∨ Γ )N〉,

(Π ∨ Γ )Y = {〈x, y〉|x ∈ ΠY ∨ y ∈ ΓY
}
, and

(Π ∨ Γ )N = {〈x, y〉|x ∈ ΠN ∧ y ∈ ΓN
}
.

Notice that, since we are working with promise problems, in the definition of (Π ∨Γ )Y,
when one of x, y is not a YES instance, the intention is that this element is a NO instance
of either Π or Γ . Our lemma follows.

Lemma 5.3. Let Π and Γ be NIPZK problems. Consider the reduction from these
problems to instances of UNIFORM, and denote by X circuits with n + 1 output bits
obtained by the reduction. If as YES instances the circuits X are 1-positive, and as NO
instances the circuits X are 2−(1+n/2)-negative, then Π ∨ Γ ∈ NIPZK.

Proof. We show that Π ∨ Γ Karp-reduces to UNIFORM.
Let X and Y be the circuits obtained by reducing instances of Π and Γ , respectively,

to UNIFORM as assumed in the hypothesis of the lemma. We denote by X′ and Y ′ the
n-bit prefix of X and Y , respectively. Our Karp reduction builds a circuit Z from X and
Y . The circuit Z outputs n + 1 bits using the following computation:

1. If the suffix bit of both X and Y is 1, then Z outputs X′ ⊕ Y ′, followed by 1.
2. If the suffix bit of exactly one of X and Y is 1, then Z outputs the output of that

circuit.
3. If the suffix bit of both X and Y is 0, then Z outputs the all-zero string.

To complete the proof, we need to show that Z ∈ UNY if at least one of X and Y is a
YES instance, and that Z ∈ UNN if both X and Y are NO instances. Since YES instances
are 1-positive, if at least one of X and Y is a YES instance, then the suffix bit of this
instance is 1 and the n-bit prefix of this instance is uniformly distributed over {0,1}n.
Without loss of generality this instance is X. Thus, depending on the output of Y , the
circuit Z either outputs the output of X, or it outputs X′ ⊕ Y ′, followed by 1. In both
cases the suffix bit of Z is 1 and Z′ is uniformly distributed over {0,1}n, where Z′ is
the n-bit prefix of Z. Hence, Z is 1-positive.

We turn our attention to NO instances of Π and Γ . As usual, TX denotes the set
of outputs of X whose rightmost bit is 1. We define TY and TZ analogously for Y

and Z, respectively. Since NO instances are 2−(1+n/2)-negative, |TX| ≤ 2n · 2−(1+n/2).
Similarly, |TY | ≤ 2n · 2−(1+n/2). By the construction of Z it follows that |TZ| ≤ |TX| ·
|TY | + |TX| + |TY | ≤ 2n/4 + 2−n/2 ≤ 1/3 · 2n. This implies that Z is 1/3-negative. The
lemma follows. �
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