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Abstract. Unlike the standard notion of pseudorandom functions (PRF), a non-
adaptive PRF is only required to be indistinguishable from a random function in the
eyes of a non-adaptive distinguisher (i.e., one that prepares its oracle calls in advance).
A recent line of research has studied the possibility of a direct construction of adaptive
PRFs from non-adaptive ones, where direct means that the constructed adaptive PRF
uses only few (ideally, constant number of) calls to the underlying non-adaptive PRF.
Unfortunately, this study has only yielded negative results (e.g., Myers in Advances in
Cryptology – EUROCRYPT 2004, pp. 189–206, 2004; Pietrzak in Advances in Cryp-
tology – CRYPTO 2005, pp. 55–65, 2005).

We give an affirmative answer to the above question, presenting a direct construc-
tion of adaptive PRFs from non-adaptive ones. The suggested construction is extremely
simple, a composition of the non-adaptive PRF with an appropriate pairwise indepen-
dent hash function.

1. Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser, and Mi-
cali [11], cannot be distinguished from a family of truly random functions by an effi-
cient distinguisher who is given an oracle access to a random member of the family.
PRFs have an extremely important role in cryptography, allowing parties, which share
a common secret key, to send secure messages, identify themselves and to authenticate
messages [10,13]. In addition, they have many other applications, essentially in any set-
ting that requires random function provided as black-box. Different PRF constructions
are known in the literature, whose security is based on different hardness assumption.
Constructions relevant to this work are those based on the existence of pseudorandom
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generators [11] (and thus on the existence of one-way functions [12]), and on, the so
called, synthesizers [19].

In this work we study the question of constructing (adaptive) PRFs from non-adaptive
PRFs. The latter primitive is a (weaker) variant of the standard PRF we mentioned
above, whose security is only guaranteed to hold against non-adaptive distinguishers
(i.e., ones that “write” all their queries before the first oracle call). Since a non-adaptive
PRF can be easily cast as a pseudorandom generator or as a synthesizer, [11,19] tell
us how to construct (adaptive) PRF from a non-adaptive one. If the input length of
the underlying non-adaptive PRF is n, then the resulting length-preserving (i.e., map-
ping strings of length n to strings of the same length) (adaptive) PRF of both of these
constructions makes Θ(n) calls to the underlying non-adaptive PRF. [11] was later im-
proved to show that w(logn) sequential calls are sufficient (cf., [8, Sect. 3.8.4, Exe. 30]).

A recent line of work has tried to figure out whether more efficient reductions from
adaptive to non-adaptive PRF’s are likely to exist. In a sequence of works [5,18,20,21],
it was shown that several “natural” approaches (e.g., composition or XORing members
of the non-adaptive family with itself) are unlikely to work. See more in Sect. 1.3.

1.1. Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate pairwise
independent hash function, yields an adaptive PRF. To state our result more formally,
we use the following definitions: a function family F is T = T (n)-adaptive PRF, if
no distinguisher of running time at most T , can tell a random member of F from a
random function with advantage larger than 1/T . The family F is T -non-adaptive PRF,
if the above is only guarantee to hold against non-adaptive distinguishers. Given two
function families F1 and F2, we let F1 ◦ F2 [resp., F1 ⊕ F2] be the function family
whose members are all pairs (f, g) ∈ F1 × F2, and the action (f, g)(x) is defined as
f (g(x)) [resp., f (x) ⊕ g(x)]. We prove the following statements (see Sect. 3 for the
formal statements).

Theorem 1.1 (Informal). Let H be an efficient pairwise-independent function family
mapping strings of length n to [T (n)]{0,1}n , where [T ]{0,1}n is the first T elements (in
lexicographic order) of {0,1}n and let F be a (p · T )-non-adaptive PRF with input
length n, where p ∈ poly is a function of the evaluating time of H. Then F ◦ H is a
(

3
√

T )-adaptive PRF.

For instance, assuming that F is a (p(n) · 2cn)-non-adaptive PRF and that H maps
strings of length n to [2cn]{0,1}n , Theorem 1.1 yields the result that F ◦ H is a (2

cn
3 )-

adaptive PRF.
Theorem 1.1 is only useful, however, for polynomial-time computable T ’s (in this

case, the family H assumed by the theorem exists, see Sect. 2.2.2). Unfortunately, in
the important case where F is only assumed to be polynomially secure non-adaptive
PRF, no useful polynomial-time computable T is guaranteed to exist.1

1 Clearly F is p-non-adaptive PRF for any p ∈ poly, but applying Theorem 1.1 with T ∈ poly, does not
yield a polynomially secure adaptive PRF.
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We suggest two different solutions for handling polynomially secure PRFs. In Ap-
pendix A we observe (following Bellare [1]) that a polynomially secure non-adaptive
PRF is a T -non-adaptive PRF for some T ∈ nω(1). Since this T can be assumed without
loss of generality to be a power of two, Theorem 1.1 yields a non-uniform (uses ω(1)-
bit advice) polynomially secure adaptive PRF that makes a single call to the underlying
non-adaptive PRF. Our second solution is to use the following “combiner”, to construct
a (uniform) adaptively secure PRF, which makes ω(1) parallel calls to the underlying
non-adaptive PRF. Intuitively, the combiner apply Theorem 1.1 on the polynomially
secure non-adaptive PRF for ω(1) times, with respect to T = n,n2, n3, . . . , nω(1), and
finally XOR the outputs of these functions. Theorem 1.1 guarantees the security of at
least one of the XORed functions, and thus security of the combiner follows.

Corollary 1.2 (Informal). Let F be a polynomially secure non-adaptive PRF with
input length n, let H = {Hn}n∈N be an efficient pairwise-independent length-preserving
function family and let k(n) ∈ ω(1) be polynomial-time computable function.

For n ∈ N and i ∈ [n], let ̂Hi
n be the function family ̂Hi

n = {̂h : h ∈ Hn}, where
̂h(x) = 0n−i ||h(x)1,...,i (‘||’ stands for string concatenation). Then the ensemble

{⊕i∈[k(n)](Fn ◦ ̂H�i·logn�
n )}n∈N is a polynomially secure adaptive PRF.

1.2. Proof Idea

To prove Theorem 1.1 we first show that F ◦H is indistinguishable from Π ◦H, where
Π being the set of all functions from {0,1}n to {0,1}�(n) (letting �(n) be F ’s output
length), and then conclude the proof by showing that Π ◦H is indistinguishable from Π .

F ◦H is indistinguishable from Π ◦H. Let D be (a possibly adaptive) algorithm of
running time T (n), which distinguishes F ◦H from Π ◦H with advantage ε(n).
We use D to build a non-adaptive distinguisher ̂D of running time p(n) · T (n), which
distinguishes F from Π with advantage ε(n). Given an oracle access to a function
φ, the distinguisher ̂Dφ(1n) first queries φ on all the elements of [T (n)]{0,1}n . Next
it chooses at uniform h ∈ H, and uses the stored answers to its queries, to emulate
Dφ◦h(1n).
Since ̂D runs in time p(n) · T (n), for some large enough p ∈ poly, makes non-
adaptive queries, and distinguishes F from Π with advantage ε(n), the assumed
security of F yields the result that ε(n) < 1

p(n)·T (n)
.

Π ◦H is indistinguishable from Π . We prove that Π ◦H is statistically indistinguish-
able from Π . Namely, even an unbounded distinguisher (that makes bounded num-
ber of calls) cannot distinguish between the families. The idea of the proof is fairly
simple. Let D be an s-query algorithm trying to distinguish between Π ◦H and Π .
We first note that the distinguishing advantage of D is bounded by its probability of
finding a collision in a random φ ∈ Π ◦H (in case no collision occurs, φ’s output is
uniform). We next argue that in order to find a collision in φ, the distinguisher D gains
nothing from being adaptive. Indeed, assuming that D found no collision until the ith
call, then it has only learned that h does not collide on these first i queries. There-
fore, a random (or even a constant) query as the (i + 1) call, has the same chance to
yield a collision, as any other query has. Hence, we assume without loss of generality
that D is non-adaptive, and use the pairwise independence of H to conclude that D’s
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probability in finding a collision, and thus its distinguishing advantage, is bounded
by s(n)2/2T (n).

Combining the above two observations, we conclude that an adaptive distinguisher
whose running time is bounded by 3

√
T (n), cannot distinguish F ◦ H from Π (i.e.,

from a random function) with an advantage better than T (n)
2
3

2T (n)
+ 1

p(n)T (n)
≤ 1/ 3

√
T (n).

Namely, F ◦H is a ( 3
√

T (n))-adaptive PRF.

1.3. Related Work

Maurer and Pietrzak [15] were the first to consider the question of building adaptive
PRFs from non-adaptive ones. They showed that in the information theoretic model, a
self composition of a non-adaptive PRF does yield an adaptive PRF.2

In contrast, the situation in the computational model (which we consider here) seems
very different: Myers [18] proved that it is impossible to reprove the result of [15]
via fully-black-box reductions. Pietrzak [20] showed that under the Decisional Diffie–
Hellman (DDH) assumption, composition does not imply adaptive security. In [21] he
showed that the existence of non-adaptive PRFs whose composition is not adaptively
secure, yields the result that a key-agreement protocol exists. Finally, Cho, Lee, and
Ostrovsky [5] generalized [21] by proving that composition of two non-adaptive PRFs
is not adaptively secure iff a (uniform transcript) key agreement protocol exists. We
mention that [5,18,20], and in a sense also [15], hold also with respect to XORing of
the non-adaptive families.

A parallel line of work studied the notion and uses of weak PRFs (which are secure
only against random quires). Damgård and Nielsen [6] showed how to use weak PRF
directly in order to achieve private-key encryption, circumvent the need to first construct
a PRF. Maurer and Sjödin [16] improved [6]’s construction and also gave a construction
of PRF from weak PRF. Maurer and Tessaro [17] showed how to construct a PRF from
an even weaker primitive—constant-query weak PRF. Recently, [7,14] studied weak
PRFs also in the context of message authentication codes.

In a very recent subsequent work, Berman et al. [3] used more sophisticated hash-
ing technique to improve the result presented here. Specifically, [3] use the so called
Cuckoo hashing to give an optimal version of Theorem 1.1—the resulting PRF is an
O(T )-adaptive PRF (however, [3] does not achieve qualitative improvement over Corol-
lary 1.2—it still requires ω(1) calls to the underlying non-adaptive polynomially secure
PRF to get an adaptive polynomially secure PRF).

2. Preliminaries

2.1. Notations

All logarithms considered here are in base two. We let ‘||’ denote string concatenation.
We use calligraphic letters to denote sets, uppercase for random variables, and lower-
case for values. For an integer t , we let [t] = {1, . . . , t}, and for a set S ⊆ {0,1}∗ with

2 Specifically, assuming that the non-adaptive PRF is (Q, ε)-non-adaptively secure, no Q-query non-
adaptive algorithm distinguishes it from random with advantage larger than ε, then the resulting PRF is
(Q, ε(1 + ln 1

ε ))-adaptively secure.
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|S| ≥ t , we let [t]S be the first t elements (in increasing lexicographic order) of S .
We let poly denote the set all polynomials, and let PPTM denote the set of probabilistic
polynomial-time algorithms (i.e., Turing machines) that run in strictly polynomial time.
A function μ : N → [0,1] is negligible, denoted μ(n) = neg(n), if μ(n) < 1/p(n) for
every p ∈ poly and large enough n.

Given a random variable X, we write X(x) to denote Pr[X = x], and write x ← X to
indicate that x is selected according to X. Similarly, given a finite set S , we let s ← S
denote that s is selected according to the uniform distribution on S . The statistical
distance of two distributions P and Q over a finite set U , denoted as SD(P,Q), is
defined as maxS⊆U |P(S) − Q(S)| = 1

2

∑

u∈U |P(u) − Q(u)|.

2.2. Ensemble of Function Families

Let F = {Fn : Dn �→ Rn}n∈N stands for an ensemble of function families, where each
f ∈ Fn has domain Dn and its range contained in Rn. Such an ensemble is length
preserving, if Dn = Rn = {0,1}n for every n.

Definition 2.1 (Efficient function family ensembles). A function family ensemble
F = {Fn}n∈N is efficient, if the following hold:

Samplable. F is samplable in polynomial time: there exists a PPTM that, given 1n,
outputs (the description of) a uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0,1}n and (a de-
scription of) f ∈Fn, outputs f (x).

2.2.1. Operating on Function Families

Definition 2.2 (Composition of function families). Let F1 = {F1
n : D1

n �→R1
n}n∈N and

F2 = {F2
n : D2

n �→ R2
n}n∈N be two ensembles of function families with R1

n ⊆ D2
n for

every n. We define the composition of F1 with F2 as F2 ◦ F1 = {F2
n ◦ F1

n : D1
n �→

R2
n}n∈N, where F2

n ◦F1
n = {(f2, f1) ∈ F2

n ×F1
n }, and (f2, f1)(x) := f2(f1(x)).

Definition 2.3 (XOR of function families). Let F1 = {F1
n : D1

n �→ R1
n}n∈N and F2 =

{F2
n : D2

n �→ R2
n}n∈N be two ensembles of function families with R1

n,R2
n ⊆ {0,1}�(n)

for every n. We define the XOR of F1 with F2 as F2 ⊕

F1 = {F2
n

⊕

F1
n : D1

n ∩D2
n �→

{0,1}�(n)}n∈N, where F2
n

⊕

F1
n = {(f2, f1) ∈ F2

n × F1
n }, and (f2, f1)(x) := f2(x) ⊕

f1(x).

2.2.2. Pairwise Independent Hashing

Definition 2.4 (Pairwise independent families). A function family H = {h : D �→ R}
is pairwise independent (with respect to D and R), if

Prh←H
[

h(x1) = y1 ∧ h(x2) = y2
] = 1

|R|2 ,

for every distinct x1, x2 ∈D and every y1, y2 ∈R.
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For every � ∈ poly, the existence of efficient pairwise independent family ensembles
mapping strings of length n to strings of length �(n) is well known [4]. In this paper we
use efficient pairwise independent function family ensembles mapping strings of length
n to the set [T (n)]{0,1}n , where T (n) ≤ 2n and is without loss of generality a power
of two.3 Let H be an efficient length-preserving pairwise independent function family
ensemble and assume that t (n) := logT (n) is polynomial-time computable. Then the
function family ̂H = { ̂Hn = {̂h : h ∈ H,̂h(x) = 0n−t (n)||h(x)1,...,t (n)}}, is an efficient
pairwise independent function family ensemble, mapping strings of length n to the set
[T (n)]{0,1}n .

2.2.3. Pseudorandom Functions

Definition 2.5 (Pseudorandom functions). An efficient function family ensemble F =
{Fn : {0,1}n �→ {0,1}�(n)}n∈N is a (T (n), ε(n))-adaptive PRF, if for every oracle-aided
algorithm (distinguisher) D of running time T (n) and large enough n, we have

∣

∣Prf ←Fn

[

Df
(

1n
) = 1

] − Prπ←Πn

[

Dπ
(

1n
) = 1

]∣

∣ ≤ ε(n),

where Πn is the set of all functions from {0,1}n to {0,1}�(n). If we limit D above to be
non-adaptive (i.e., it has to write all his oracle calls before making the first call), then F
is called (T (n), ε(n))-non-adaptive PRF.

The ensemble F is a T -adaptive PRF, if it is a (T ,1/T )-adaptive PRF according to
the above definition. It is polynomially secure adaptive PRF (for short, adaptive PRF),
if it is a p-adaptive PRF for every p ∈ poly. Finally, it is super-polynomially secure
adaptive PRF, if it is a T -adaptive PRF for some T (n) ∈ nω(1). The same conventions
are also used for non-adaptive PRFs.

Clearly, a super-polynomially secure PRF is also polynomially secure. In Appendix A
we prove that the converse is also true: a polynomially secure PRF is also super-
polynomially secure PRF.

3. Our Construction

In this section we present the main contribution of this paper—a direct construction of
an adaptive pseudorandom function family from a non-adaptive one.

Theorem 3.1 (Restatement of Theorem 1.1). Let T be a polynomial-time computable
integer function, let H = {Hn : {0,1}n �→ [T (n)]{0,1}n}n∈N be an efficient pairwise in-
dependent function family ensemble, and let F = {Fn : {0,1}n �→ {0,1}�(n)}n∈N be a
(p · T , ε)-non-adaptive PRF, where p ∈ poly is such that p(n) ≥ eT (n) + 2eH(n),
for eT (n) being the evaluation time of T (n) and eH(n) the sampling and evaluation

time of Hn. Then F ◦H is a (s, ε + s2

2T
)-adaptive PRF for every function s such that

s(n) < T (n) for every n ∈ N.

3 For our applications, see Sect. 3, we can always consider T ′(n) = 2�log(T (n))� , which only causes us a
factor of two loss in the resulting security.
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Theorem 3.1 yields the following simpler statement.

Corollary 3.2. Let T , H and p be as in Theorem 3.1. Assuming F is a (p · T )-non-
adaptive PRF, then F ◦H is a (

3
√

T )-adaptive PRF.

Proof. Applying Theorem 3.1 with respect to s(n) = 3
√

T (n) and ε(n) = 1
p(n)T (n)

,

yields the result that F ◦H is a (s(n), 1
p(n)T (n)

+ s(n)2

2T (n)
)-adaptive PRF. Since 1

p(n)T (n)
<

1
2s(n)

and s(n)2

2T (n)
≤ 1

2s(n)
, it follows that F ◦H is a (s,1/s)-adaptive PRF. �

To prove Theorem 3.1, we use the (non efficient) function family ensemble Π ◦H,
where Π = Π� (i.e., the ensemble of all functions from {0,1}n to {0,1}�), and � = �(n)

is the output length of F . We first show that F ◦H is computationally indistinguishable
from Π ◦H, and complete the proof by showing that Π ◦H is statistically indistin-
guishable from Π .

3.1. F ◦H is Computationally Indistinguishable from Π ◦H
Lemma 3.3. Let T , F , H and p be as in Theorem 3.1. Then for every oracle-aided
distinguisher D of running time T (n), there exists a non-adaptive oracle-aided distin-
guisher ̂D of running time p(n) · T (n) with

∣

∣Prg←Fn

[

̂Dg
(

1n
) = 1

] − Prg←Πn

[

̂Dg
(

1n
) = 1

]∣

∣

=∣

∣Prg←Fn◦Hn

[

Dg
(

1n
) = 1

] − Prg←Πn◦Hn

[

Dg
(

1n
) = 1

]∣

∣

for every n ∈N, where Πn is the set of all functions from {0,1}n to {0,1}�(n).

In particular, the pseudorandomness of F yields the result that F ◦H is computation-
ally indistinguishable from the ensemble Π ◦H by an adaptive distinguisher of running
time T .

Proof. The distinguisher ̂D is defined as follows:

Algorithm 3.4 (̂D).

Input: 1n.
Oracle: a function φ over {0,1}n.

1. Compute φ(x) for every x ∈ [T (n)]{0,1}n .
2. Set g = φ ◦ h, where h is uniformly chosen in Hn.
3. Emulate Dg(1n): answer a query x to φ made by D with g(x), using the informa-

tion obtained in Step 1.

Note that ̂D makes T (n) non-adaptive queries to φ, and it can be implemented to
run in time eT (n) + eH(n) + T (n) + eH(n)T (n) ≤ p(n)T (n). We conclude the proof
by observing that in case φ is uniformly drawn from Fn, the emulation of D done in
̂Dφ is identical to a random execution of Dg with g ← Fn ◦Hn. Similarly, in case φ is
uniformly drawn from Πn, the emulation is identical to a random execution of Dπ with
π ← Πn ◦Hn. �
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3.2. Π ◦H is Statistically Indistinguishable from Π

The following lemma is commonly used for proving the security of hash-based MACs
(cf., [9, Proposition 6.3.6]), yet for completeness we give a full proof below.

Lemma 3.5. Let n,T be integers with T ≤ 2n, and let H be a pairwise independent
function family mapping string of length n to [T ]{0,1}n . Let D be an (unbounded) s-query
oracle-aided algorithm (i.e., making at most s oracle queries), then

∣

∣Pr g←Π◦H
[

Dg = 1
] − Pr π←Π

[

Dπ = 1
]∣

∣ ≤ s2/2T ,

where Π is the set of all functions from {0,1}n to {0,1}� (for some � ∈N).

Proof. We assume for simplicity that D is deterministic (the reduction to the random-
ized case is standard) and makes exactly s valid (i.e., inside {0,1}n) distinct queries,
and let Ω = ({0,1}�)s . Consider the following random process:

Algorithm 3.6.

1. Emulate D, while answering the ith query qi with a uniformly chosen ai ∈ {0,1}�.
Set q = (q1, . . . , qs) and a = (a1, . . . , as).

2. Choose h ← H.
3. Emulate D again, while answering the ith query q ′

i with a′
i = ai (the same ai from

Step 1), if h(q ′
i ) /∈ {h(q ′

j )}j∈[i−1], and with a′
i = aj , if h(q ′

i ) = h(q ′
j ) for some

j ∈ [i − 1].
Set q ′ = (q ′

1, . . . , q
′
s) and a′ = (a′

1, . . . , a
′
s).

Let A, Q, A′, Q′ and H be the (jointly distributed) random variables induced by the
values of q , a, q ′, a′, and h, respectively, in a random execution of the above process.
It is not hard to verify that A is distributed the same as the oracle answers in a random
execution of Dπ with π ← Π , and that A′ is distributed the same as the oracle answers
in a random execution of Dg with g ← Π ◦H. Hence, for proving Lemma 3.5, it suffices
to bound the statistical distance between A and A′.

Let Coll be the event that H(Qi) = H(Qj ) for some i �= j ∈ [s]. Since the queries
and answers in both emulations of Algorithm 3.6 are the same until a collision with
respect to H occurs, it follows that

Pr[A �= A′] ≤ Pr[Coll] (1)

On the other hand, since H is chosen after Q is set, the pairwise independent of H
yields the result that

Pr[Coll] ≤ s2/2T , (2)

and therefore Pr[A �= A′] ≤ s2/2T . It follows that Pr[A ∈ C] ≤ Pr[A′ ∈ C] + s2/2T for
every C ⊆ Ω , yielding the result that SD(A,A′) ≤ s2/2T . �
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3.3. Putting It Together

We are now finally ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let D be an oracle-aided algorithm of running time s with
s(n) < T (n). Claim 3.3 yields the result that

∣

∣Prg←Fn◦Hn

[

Dg
(

1n
) = 1

] − Prg←Πn◦Hn

[

Dg
(

1n
) = 1

]∣

∣ ≤ ε(n)

for large enough n, where Lemma 3.5 yields the result that

∣

∣Pr g←Πn◦Hn

[

Dg
(

1n
) = 1

] − Pr π←Πn

[

Dπ
(

1n
) = 1

]∣

∣ ≤ s(n)2/2T (n)

for every n ∈ N. Hence, the triangle inequality yields the result that

∣

∣Prg←Fn◦Hn

[

Dg
(

1n
) = 1

] − Prπ←Πn

[

Dπ
(

1n
) = 1

]∣

∣ ≤ ε(n) + s(n)2/2T (n)

for large enough n, as requested. �

3.4. Handling Unknown Security

Corollary 3.2 is useful when the function T , which determines the security of the un-
derlying non-adaptive PRF, is efficiently computable (or when considering non-uniform
PRF constructions, see Sect. 1.1) and known at construction time. In this section we
show how to handle the case where T is not known at construction time, and the case of
polynomially secure non-adaptive PRF.

We use the following PRF “combiner”.

Definition 3.7. Let H be a function family into {0,1}n. For i ∈ [n], let ̂Hi be the
function family into [2i]{0,1}n such that ̂Hi = {̂h : h ∈H}, for ̂h(x) := 0n−i ||h(x)1,...,i .

Corollary 3.8. Let F be a T -non-adaptive PRF sampled and evaluated in time
eF ∈ poly, let H be an efficient length-preserving pairwise independent function fam-
ily ensemble sampled and evaluated in time eH ∈ poly, and let I(n) ⊆ [n] be an in-
dex set computable (in n) in time eI ∈ poly. Finally, let G = {Gn}n∈N, for Gn :=
⊕

i∈I(n)(Fn ◦ ̂Hi
n).

Then for every integer function t computable in time et ∈ poly, with t (n) ∈ I(n) and
2t (n) ≤ T (n)/p(n) for large enough n, where p ∈ poly such that p(n) ≥ n + 3et (n) +
2eH(n), we see that G is a (

3
√

2t /(q · et ))-adaptive PRF, where q ∈ poly such that
q(n) ≥ |I(n)| (eI(n) + eH(n) + eF (n)).

Before proving the corollary, let us first use it for constructing an adaptive PRF from a
non-adaptive PRF whose security is not known at construction time. The resulting PRF
makes logarithmic number of calls to the underlying non-adaptive PRF, and assuming
the non-adaptive PRF is T -non-adaptive PRF, the resulting PRF is 6

√
T -adaptive PRF.
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Corollary 3.9. Let F be a function family, let H be an efficient length-preserving
pairwise independent function family ensemble and let I(n) = {1,2,4, . . . ,2�logn�}. Let

G = {⊕i∈I(n)(Fn ◦ ̂Hi
n)}n∈N.

Assuming F is (p · T )-non-adaptive PRF, for some function T with evaluation time
eT , then G is (

6
√

T /(q · eT ))-adaptive PRF, where p and q be as in the statement of
Corollary 3.8 (replacing et with eT )

Proof. For n ∈ N let t (n) = max{i ∈ I(n) : 2i ≤ T (n)}. Note that in order to com-
pute t , it is suffice to compute T . Moreover, since every element in I(n) is the square
of its predecessor, it follows that T (n) ≥ 2t (n) ≥ √

T (n) for every n ∈ N. Corol-
lary 3.8 yields the result that G is (

3
√

2t /(q · eT ))-adaptive PRF and therefore G is
(

6
√

T /(q · eT ))-adaptive PRF. �

Proof of Corollary 3.8. It is easy to see that G is efficient, so it is left to argue
for its security. In the following we assume for simplicity that the evaluation time
of 2n on input n ∈ N is bounded by n. Let t be an integer function computable in
time et with t (n) ∈ I(n) and 2t (n) ≤ T (n)/p(n) for every n ≥ n∗ ≥ 0. It follows that
̂Ht = { ̂Ht (n)

n }n∈N is an efficient pairwise independent function family ensemble with
evaluation and sampling time e

̂Ht (n) ≤ eH(n) + et (n). Moreover, let T ∗(n) = 2t (n),
and note that T ∗(n) can be computed in time eT ∗(n) ≤ et (n) + t (n) ≤ et (n) + n. Thus,
F is (p · T ∗)-non-adaptive PRF, ̂Ht = { ̂Ht (n)

n : {0,1}n �→ [T ∗(n)]{0,1}n}n∈N is an effi-
cient pairwise independent function family ensemble and p(n) ≥ n+3et (n)+2eH(n) ≥
eT ∗(n)+2e

̂Ht (n). Hence, Corollary 3.2 yields the result that F ◦ ̂Ht is a (
3
√

T ∗ = 3
√

2t )-
adaptive PRF.

Assume towards a contradiction that there exists an oracle-aided distinguisher D that
runs in time T ′(n) = 3√

2t (n)/(q(n) · et (n)) and

∣

∣Prg←Gn

[

Dg
(

1n
) = 1

] − Prπ←Πn

[

Dπ
(

1n
) = 1

]∣

∣ > 1/T ′(n) (3)

for infinitely many n’s. We use the following distinguisher for breaking the pseudoran-

domness of F ◦ ̂Ht :

Algorithm 3.10 (̂D).

Input: 1n.
Oracle: a function φ over {0,1}n.

1. For every i ∈ I(n) \ {t (n)}, choose gi ←Fn ◦ ̂Hn
i
.

2. Set g := φ ⊕ ⊕

i∈I(n)\{t (n)} gi .
3. Emulate Dg(1n).

Note that ̂D can be implemented to run in time |I(n)| (eI(n) + eH(n) + eF (n)) ·
et (n) · 3√

2t (n)/(q(n) · et (n)) ≤ 3√
2t (n). Also note that in case φ is uniformly distributed

over Πn, then g (selected by ̂Dφ(1n)) is uniformly distributed in Πn, where in case φ

is uniformly distributed in Fn ◦ ̂Ht (n)
n = (F ◦ ̂Ht )n and n ≥ n∗, then g is uniformly
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distributed in Gn. It follows that

∣

∣Prg←(F◦ ̂Ht )n

[

̂Dg
(

1n
) = 1

] − Prπ←Πn

[

̂Dπ
(

1n
) = 1

]∣

∣

= ∣

∣Prg←Gn

[

Dg
(

1n
) = 1

] − Prπ←Πn

[

Dπ
(

1n
) = 1

]∣

∣ (4)

for every n ≥ n∗. In particular, Sect. 3 yields the result that

∣

∣Prg←(F◦ ̂Ht )n

[

̂Dg
(

1n
) = 1

] − Prπ←Πn

[

̂Dπ
(

1n
) = 1

]∣

∣ >
q(n) · et (n)

3√
2t (n)

>
1

3√
2t (n)

for infinitely many n’s, in contradiction to the pseudorandomness of F ◦ ̂Ht proven
above. �

3.4.1. Polynomial Security

Corollary 3.9 immediately yields a construction of a polynomially secure adaptive PRF
from a polynomially secure non-adaptive one.4 The resulting PRF, however, makes log-
arithmic number of calls to the underlying non-adaptive PRF. Below we show how to
construct a polynomially secure adaptive PRF that makes only ω(1) such calls.

Corollary 3.11 (Restatement of Corollary 1.2). Let F be a polynomially secure non-
adaptive PRF, let H be an efficient pairwise independent length-preserving function
family ensemble and let k(n) ∈ ω(1) be a polynomial-time computable function. Then
G := {⊕i∈[k(n)](Fn ◦ ̂H�i·logn�

n )}n∈N is polynomially secure adaptive PRF.

Proof. We show that G is r-adaptive PRF for every r ∈ poly. In the following we as-
sume for simplicity that the evaluation time of a polynomial and of a base two logarithm
on input n ∈ N, is bounded by n (even for short inputs).

Fix cT ∈ N to be determined by the analysis and let T (n) = ncT (note that F is
T -non-adaptive PRF). Let eF and eH be bounds on the sampling and evaluation time
of F and H respectively. Let I(n) := {�logn� , �2 · logn� , . . . , �k(n) · logn�} and let
eI be a bound on the evaluation time of I(n). Let p(n) = ncp ≥ 4n + 2eH and let
q(n) = ncq ≥ k(n)(eI(n)+ eH(n)+ eF (n)) (i.e., q bounds the evaluating and sampling
time of k, I , H and F ). Finally, let t (n) = �(cT − cp) · logn�.

For large enough n we have (1) t (n) ∈ I(n), (2) 2t (n) ≤ T (n)/p(n) and (3) the eval-
uation time of t (n) is at most n, and thus p(n) ≥ n + 3et (n) + 2eH(n) (i.e., p bounds
the evaluating and sampling time of 2t (n) and H). Hence, Corollary 3.8 yields the result
that G is an (n(cT −cp)/3−cq−1)-adaptive PRF. Taking cT = 3(cr + cq + 1) + cp , for a
fixed cr ∈ N, yields the result that G is an ncr -adaptive PRF. �

4 In order to show that G of Corollary 3.9 is r-adaptive PRF, for some r ∈ poly, it is suffice to take F
that is r6-non-adaptive PRF. If F is assumed to be polynomially secure non-adaptive PRF, then it is also
r6-non-adaptive PRF, as required
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Appendix A. From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is that of polynomial se-
curity: any PPTM trying to break the primitive has only negligible success probability.
Bellare [1] showed that for any polynomially secure primitive there exists a single neg-
ligible function μ, such that no PPTM can break the primitive with probability larger
than μ. Here we take his approach a step further, showing that for any polynomially
secure primitive, there exists a super-polynomial function T , such that no adversary of
running time T breaks the primitive with probability larger than 1/T .

In the following we identify algorithms with their string description. In particular,
when considering algorithm A, we mean the algorithm defined by the string A (accord-
ing to some canonical representation). A T -time algorithm makes at most T (n) steps
on input of length n.

We prove the following result.

Theorem A.1. Let v : {0,1}∗ ×N �→ [0,1] be a function with the following properties:
(1) v(A, n) = neg(n) for every oracle-aided PPTM A; and (2) if the distributions induced
by random executions of Af (x) and Bf (x) are the same for any input x ∈ {0,1}n and
function f (each distribution describes the algorithm’s output and oracle queries), then
v(A, n) = v(B, n).5

Then there exists a non-decreasing integer function T (n) ∈ nω(1) such that v(A, n) ≤
1/T (n) for every T -time algorithm A and large enough n.

Remark A.2 (Applications). Let f be a polynomially secure OWF (i.e., Pr[A(f (Un)) ∈
f −1(f (Un))] = neg(n) for any PPTM A). Applying Theorem A.1 with v(A, n) :=
Pr[A(f (Un)) ∈ f −1(f (Un))], yields the result that f is super-polynomially secure
OWF (i.e., there exists T (n) ∈ nω(1) such that Pr[A(f (Un)) ∈ f −1(f (Un))] ≤ 1/T (n)

for any algorithm of running time T and large enough n).
Similarly, for a polynomially secure PRF F = {Fn}n∈N (see Definition 2.5), ap-

plying Theorem A.1 with v(A, n) := |Prf ←Fn
[Af (1n) = 1] − Prπ←Πn [Aπ (1n) = 1]|,

where Πn is the set of all functions with the same domain/range as Fn, yields the result
that F is super-polynomially secure PRF.

Proof of Theorem A.1. Given an algorithm A and an integer i, let Ai denote the
variant of A that on input of length n, halts after ni steps (hence, Ai is a PPTM for any fix
i ∈N). Let Si be the first i strings in {0,1}∗, according to some canonical order, viewed

5 That is, v is determined by the algorithm’s behavior.
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as descriptions of i algorithms. Let I(n) = {1} ∪ {i ∈ [n] : ∀A ∈ Si , k ≥ n : v(Ai , k) <

1/ki}, let t (n) = maxI(n) and let T (n) = nt(n). Claim A.3 states that t is unbounded
and non-decreasing.

Let A be a T -time algorithm, and let iA be the first integer such that A ∈ SiA . By
Claim A.3 ∃n∗ ∈ N such that t (n) > iA for every n ≥ n∗. Fix n ≥ n∗. Since A ∈ St (n),
we have v(At (n), n) < 1/nt(n) = 1/T (n).

In addition, since A is of running time T , the second property of v yields the result
that v(A, n) = v(At (n), n), and therefore v(A, n) < 1/T (n). �

Claim A.3. The function t is unbounded and non-decreasing.

Proof. To see that t is unbounded, fix i ∈ N, and for each A ∈ Si , let nA be the first
integer such that v(Ai , n) < 1/ni for every n ≥ nA (such nA exists by the first property
of v), and let ni = max{nA : A ∈ Si} ∪ {i}. It follows that i ∈ [ni] and that v(Ai , n) <

1/ni for every n ≥ ni and A ∈ Si , yielding that t (ni) ≥ i.
Intuitively, t is non-decreasing since once an algorithm is taken into consideration in

I(n∗), for some n∗ ∈ N, it will be taken into consideration in I(n) for any n > n∗. Fix
n∗ ∈ N. To formally argue the above we show that t (n) ≥ t∗ = t (n∗) for every n > n∗.
The definition of t yields the result that v(At∗ , k) ≤ 1/kt∗ for every A ∈ St∗ and k ≥ n∗.
It immediately follows that v(At∗ , k) ≤ 1/kt∗ for every A ∈ St∗ and k ≥ n > n∗. Hence,
t∗ ∈ I(n), and thus t (n) ≥ t∗. �

A.1. Non-uniform Security

Theorem A.1 holds only for uniform algorithms (i.e., Turing machines). Here we prove
a similar result for the non-uniform case (i.e., polynomially bounded circuits). In the fol-
lowing we consider adversaries that are families of circuits, denoted with A = {An}n∈N.
A circuit A is of size (at most) s, if A has at most s gates. Similarly, a circuit family
A = {An}n∈N is of size s, here s is a function, if An is of size s(n) for every n ∈ N. The
family A is polynomially bounded, if it is of size p for some p ∈ poly.

Theorem A.4. Let S be the set of all circuits and let v : S �→ [0,1]6 be a function
with v(An) = neg(n) for every oracle-aided polynomially bounded circuit family A =
{An}n∈N. Then there exists a non-decreasing integer function T (n) ∈ nω(1) and n∗ ∈ N,
such that v(An) ≤ 1/T (n) for every circuit family A = {An}n∈N of size T and n ≥ n∗.

Proof. We use the following approach (adopted from [1]): for integer pair (n, s), let
Cn,s be the set of all n-input, s-size circuits. Fix Bn,s ∈ Cn,s with v(Bn,s) ≥ v(C) for
all C ∈ Cn,s (note that Bn,s is well defined since Cn,s is finite). For i ∈ N, let Bi =
{Bn,ni }n∈N and let I(n) = {0} ∪ {i ∈ [n] : ∀k ≥ n : v(Bk,ki ) < 1/ki}. Namely, for every
i ∈ I(n) and k ≥ n, the “success” of any circuit family of size ki is bounded by 1/ki .
Let t (n) = maxI(n) and let T (n) = nt(n). Claim A.5 states that t is a non-decreasing
unbounded integer function. Hence, to complete the proof, it is left to show that there

6 In the uniform case the second parameter of v was used to represent the length of the input given to the
algorithm. In contrast, in the non-uniform case, a circuit can only receive a single input length, and there is
no need to give the input length as a parameter. Thus v’s domain is restricted only to S .
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exists n∗ ∈ N such that v(An) ≤ 1/T (n) for every circuit family A = {An} of size T and
n ≥ n∗.

Indeed, let A = {An}n∈N be a circuit family of size T , let n∗ ∈ N be such that
t (n∗) ≥ 1 (such n∗ is guaranteed to exist by Claim A.5) and fix n ≥ n∗. The defini-
tion of t yields the result that v(Bn,nt(n) ) < 1/nt(n) = 1/T (n). Finally, the definition of
Bn,nt(n) yields the result that v(An) ≤ v(Bn,nt(n) ), and therefore v(An) ≤ 1/T (n). �

Claim A.5. The function t is a non-decreasing unbounded integer function.

Proof. To see that t is unbounded, we fix i ∈ N and show that ∃n ∈ N : t (n) ≥ i.
Consider the circuit family Bi , let nBi be the first integer such that v(Bn,ni ) < 1/ni for
every n ≥ nBi (note that such nBi exists by the property of v) and let ni = max{nBi , i}.
It follows that i ∈ [ni] and that v(Bn,ni ) < 1/ni for every n ≥ ni , yielding that t (ni) ≥ i.

To see that t is non-decreasing, we fix n∗ ∈ N, and show that t (n) ≥ t∗ = t (n∗)
for every n > n∗. The definition of t yields the result that v(Bk,kt∗ ) < 1/kt∗ for every

k ≥ n∗. It immediately follows that v(Bk,kt∗ ) < 1/kt∗ for every k ≥ n > n∗. Hence,
t∗ ∈ I(n), and thus t (n) ≥ t∗. �
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