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Abstract. This paper addresses deterministic public-key encryption schemes (DE),
which are designed to provide meaningful security when only source of randomness in
the encryption process comes from the message itself. We propose a general construc-
tion of DE that unifies prior work and gives novel schemes. Specifically, its instantia-
tions include:

• The first construction from any trapdoor function that has sufficiently many hard-
core bits.

• The first construction that provides “bounded” multi-message security (assuming
lossy trapdoor functions).

The security proofs for these schemes are enabled by three tools that are of broader
interest:

• A weaker and more precise sufficient condition for semantic security on a high-
entropy message distribution. Namely, we show that to establish semantic secu-
rity on a distribution M of messages, it suffices to establish indistinguishability
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for all conditional distribution M|E, where E is an event of probability at least
1/4. (Prior work required indistinguishability on all distributions of a given en-
tropy.)

• A result about computational entropy of conditional distributions. Namely, we
show that conditioning on an event E of probability p reduces the quality of
computational entropy by a factor of p and its quantity by log2 1/p.

• A generalization of leftover hash lemma to correlated distributions.

We also extend our result about computational entropy to the average case, which is
useful in reasoning about leakage-resilient cryptography: leaking λ bits of information
reduces the quality of computational entropy by a factor of 2λ and its quantity by λ.

Key words. Deterministic encryption, Trapdoor functions, Hardcore functions, Com-
putational entropy, Information leakage, q-Bounded security.

1. Introduction

Public-key cryptosystems require randomness: indeed, if the encryption operation is de-
terministic, the adversary can simply use the public key to verify that the ciphertext c

corresponds to its guess of the plaintext m by encrypting m. However, such an attack
requires the adversary to have a reasonably likely guess for m in the first place. Re-
cent results on deterministic public-key encryption (DE) (building on previous work in
the one-time, information-theoretic symmetric-key setting [18,22,56], and described in
more detail below) have studied how to achieve security when the randomness comes
only from m itself [4,6,11,12,35,44,50,63]. DE has a number of practical applications,
such as efficient search on encrypted data and securing legacy protocols (cf. [4]). It is
also interesting from a foundational standpoint; indeed, its study has proven useful in
other contexts: Bellare et al. [5] show how it extends to a notion of “hedged” public-key
encryption that reduces dependence on external randomness for probabilistic encryption
more generally, Dent et al. [17] adapt its notion of privacy to a notion of confidentiality
for digital signatures, and (subsequent to our work) Bellare, Keelveedhi, and Risten-
part [8,9] and Abadi et al. [1] show how it extends to a notion of “message-locked”
encryption that permits deduplication on encrypted storage systems.

However, our current understanding of DE is somewhat lacking. In particular, con-
structions of [4,6,11,35], as well as their analysis techniques, are rather disparate. The
works of [4,6] construct DE schemes by “faking” the coins used to encrypt the message
in a probabilistic encryption scheme as some deterministic function of the message;
for example, [6] uses Goldreich–Levin hardcore bits [31] of an iterated trapdoor per-
mutation applied to the message. On the other hand, [11] (and subsequent works such
as [12]) encrypt via special trapdoor functions (called “lossy” [48,49]). Additionally,
while constructions in the random oracle model [4] achieve security for multiple mes-
sages, current constructions in the standard model (without random oracles) achieve
only “single message” security. (As shown in [4], single message and multi-message
security is inequivalent for DE), and it is unclear to what extent this is inherent to such
schemes.1

In this work, our main goal is to provide a unified framework for the construction of
DE and to help resolve these issues.

1 Subsequent to our work, results of Wichs [64] and Bellare et al. [7] also address this issue, as we discuss
later in more detail.
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1.1. Our Results

A Scheme Based on Trapdoor Functions We propose (in Sect. 4) a general Encrypt-
with-Hardcore (EwHCore) construction of DE from trapdoor functions (TDFs), which
generalizes the basic idea behind the schemes of [4,6] and leads to a unified framework
for the construction of DE. Let f be a TDF with a hardcore function hc, and let E be
any probabilistic public-key encryption algorithm. Our construction EwHCore encrypts
an input message x as follows: it computes y = f (x) and then encrypts y using E with
hc(x) as the coins; that is, the encryption of x is E(f (x);hc(x)).

Intuitively, this scheme requires that (1) the output of hc be sufficiently long to pro-
vide enough random coins for E , and (2) that it not reveal any partial information about
x (because E does not necessarily protect the privacy of its random coins). Require-
ment 1 can be satisfied, for example, if inverting f is sub-exponentially hard, if the
output of hc is long enough to be used as a seed for some pseudorandom generator, or
under specific assumptions, as described below. There are two nontrivial technical steps
needed to formalize requirement 2 and realize it. First, we define a condition required
of hc (which we call “robustness”) and show that it is sufficient for security of the re-
sulting DE. Second, through a computational entropy argument, we show how to make
any sufficiently long hc robust by applying a randomness extractor.

This general scheme admits a number of instantiations depending of f and hc. For
example, when f is any trapdoor function and hc is a random oracle (RO), we obtain
the construction of [4].2 When f is an iterated trapdoor permutation (TDP) and hc is a
collection Goldreich–Levin (GL) [31] bits extracted at each iteration, we obtain the con-
struction of [6]. When f is a lossy trapdoor function (LTDF) [48] and hc is a pairwise-
independent hash, we get a variant of the construction of [11] (which is less efficient
but has a more straightforward analysis). We also obtain a variant of the construction
of Hemenway et al. [35] under the same assumption as they use (see Sect. 5.2 for de-
tails). Note that in all but the last of these cases, the hardcore function is already robust
(without requiring an extractor), which shows that in prior work this notion played an
implicit role. In particular, the GL bits are robust, explaining why [4,6] specifically uses
them and not some other hardcore bits.

Moreover, this general scheme not only explains past constructions, but also gives us
new ones. Specifically, if f is a trapdoor function with enough hardcore bits, we obtain:

• DE that works on the uniform distribution of messages;
• DE that works on any distribution of messages whose min-entropy is at most log-

arithmically smaller than maximum possible;
• assuming sufficient hardness distinguishing the output of hc from uniform (so in

particular of inverting f ), DE that works on even-lower entropy message distribu-
tions.

Prior results require more specific assumptions on the trapdoor function (such as as-
suming that it is a permutation or that it is lossy—both of which imply enough hardcore

2 Technically, this construction does not even need a TDF because of the random oracle model; however,
it may be prudent to use a TDF because then it seems more likely that the instantiation of the random oracle
will be secure as it may be hardcore for the TDF.
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bits). Furthermore, our results yield more efficient schemes in the permutation case, by
avoiding iteration (under strong enough assumptions).

Notably, we obtain the first DE scheme without random oracles based on the hard-
ness of syndrome decoding using the Niederreiter trapdoor function [45], which was
shown to have linearly many hardcore bits by Freeman et al. [27] (and, moreover, to be
secure under correlated products, as defined by Rosen and Segev [55]) but is not known
to be lossy. (A scheme in the random oracle model follows from [4].) Additionally, the
RSA [54] and Paillier [47] trapdoor permutations have linearly many hardcore bits un-
der certain computational assumptions (the “Small Solutions RSA” [59] and “Bounded
Computational Composite Residuosity” [13] assumptions, respectively). Therefore, we
can use these TDPs to instantiate our scheme efficiently under the same computational
assumptions. Before our work, DE schemes from RSA and Paillier either required many
iterations [6] or decisional assumptions that imply lossiness of these TDPs [11,27,39].

Security for Multiple Messages: Definition and Construction An important caveat is
that, as in [6,11], we can prove the above standard-model DE schemes secure only
for the encryption of a single high-entropy plaintext, or, what was shown equivalent
in [11], an unbounded number of messages drawn from a block source [14] (where
each subsequent message brings “fresh” entropy). On the other hand, the strongest and
most practical security model for DE introduced by [4] considers the encryption of an
unbounded number of plaintexts that have individual high entropy but may not have
any conditional entropy. In order for EwHCore to achieve this, the hardcore function hc
must also be robust on correlated inputs.3 In particular, it follows from [4] that a RO
hash satisfies such a notion, leading to their multi-message secure scheme. We thus have
a large gap between the classes of message sources with (known) secure constructions
in the RO model versus in the standard model.

To help bridge this gap, we propose (in Sect. 6) a notion of “q-bounded” security
for DE, where up to q high-entropy but arbitrarily correlated messages may be en-
crypted under the same public key (whose size may depend polynomially on q). Fol-
lowing [11], we also extend our security definition to unbounded multi-message secu-
rity where messages are drawn from what we call a “q-block source” (essentially, a
block source where each “block” consists of q messages which may be arbitrarily cor-
related but have individual high entropy); Theorem 4.2 of [11] extends to show that
q-bounded multi-message security and unbounded multi-message security for q-block
sources are equivalent for a given min-entropy. Then, using our EwHCore construction
and a generalization of the leftover hash lemma discussed below, we show q-bounded
DE schemes (for long enough messages), for any polynomial q , based on LTDFs losing
an 1−O(1/q) fraction of the input. It is known how to build such LTDFs from the deci-
sional Diffie–Hellman [48], d-linear [27], and decisional composite residuosity [11,27]
assumptions.

Regarding security for unbounded arbitrarily correlated messages in the standard
model, a subsequent result of Wichs [64] shows that it is impossible using black-box

3 A general study of correlated-input security for the case of hash functions rather than hardcore functions
was concurrently initiated in [33].
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reductions to falsifiable assumptions.4 However, in further subsequent work, Bellare et
al. [7] achieve this notion under a particular non-falsifiable assumption. We stress that
our result on q-bounded security holds under common, falsifiable assumptions.

1.2. Our Tools

Our results are enabled by three tools that we believe to be of more general applicability
(detailed in Sect. 3).

A More Precise Condition for Security of DE We revisit the definitional equivalences
for DE proven by [6] and [11]. At a high level, they showed that the semantic security
style definition for DE (called PRIV) introduced in the initial work of [4], which asks
that a scheme hides all public-key independent5 functions of messages drawn from some
distribution is in some sense equivalent to an indistinguishability-based notion for DE,
which asks that it is hard to distinguish ciphertexts of messages drawn from one of two
possible distributions. Notice that while PRIV can be meaningfully said to hold for a
given message distribution, IND inherently talks of pairs of distributions.6 The works
of [6,11] compensated for this by giving an equivalences in terms of min-entropy levels.
That is, they showed that PRIV for all message distributions of min-entropy μ is implied
by indistinguishability with respect to all pairs of plaintext distributions of min-entropy
slightly less than μ.

We demonstrate a more precise equivalence that, for a fixed distribution M, identifies
a class of pairs of distributions such that if IND holds on those pairs, then PRIV holds
on M. By reexamining the equivalence proof of [6], we show that PRIV on M is implied
by IND on all pairs of “slightly induced” distributions of M | E, where E is an arbitrary
event of probability at least 1/4. This more precise equivalence makes security easier to
reason about. Specifically, it is needed to argue that “robustness” of hc is sufficient for
security EwHCore (essentially, a robust hardcore function is one that remains hardcore
on a slightly induced distribution7).

We also note that this more precise equivalence may be of independent interest for
other primitives whose security holds for specific source distributions.

Conditional Computational Entropy We investigate how conditioning reduces compu-
tational entropy of a random variable X. We consider notions of computational entropy

4 The result of Wichs holds when the entropy of each message is logarithmically than uniform. Whether
deterministic encryption is possible when messages are arbitrarily correlated but individually full entropy is
an interesting open question.

5 As shown in [4], the restriction to public-key independent functions is somewhat inherent here; we
mention that subsequent work [50] has shown some limited dependence is possible, but for simplicity we do
not address this here.

6 Subsequent work [50] has defined a “real-or-random” (RoR) style IND definition for a single message
distribution (where the other message distribution in the pair is fixed to be uniform). However, this definition
is overly restrictive in our context and is really only helpful when security is defined with respect to min-
entropy levels; indeed, our result shows that for PRIV to hold on a given message distribution, the RoR IND
notion need not.

7 One could alternatively define robustness as one that remains hardcore on inputs of slightly lower en-
tropy; however, in our proofs of robustness we would then need to go through an additional argument that
distributions of lower entropy are induced by distributions of higher entropy.
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based on indistinguishability. The standard notion is HILL entropy which generalizes
pseudorandomness to the high entropy setting [3,34]. Suppose you have a distribution
that has computational entropy (such as the pair f (r),hc(r) for a random r). If you con-
dition that distribution on an event E of probability p, how much computational entropy
is left?

To make this question more precise, we should note that notions of computational
entropy are parameterized by quality (how distinguishable is X from a variable Z that
has true entropy) and quantity (how much true entropy is there in Z).

We prove an intuitively natural result: conditioning on an event of probability p re-
duces the quality of computational entropy by a factor of p and the quantity of entropy
by log2 1/p (note that this means that the reduction in quantity and quality is the same,
because the quantity of entropy is measured on logarithmic scale).

Naturally, the answer becomes so simple only once the correct notion of entropy is in
place. Our result holds for a weaker notion of computational entropy called Metric∗
entropy (defined in [3,25]). This entropy is convertible (with some loss) to HILL en-
tropy using the techniques of [3,60], which can then be used with randomness extractors
to get pseudorandom bits.

Our result improves previous bounds of Dziembowski and Pietrzak [25, Lemma 3],
where the loss in the quantity of entropy was related to its original quality. The use of
metric entropy simplifies the analogous result of Reingold et al. [51, Theorem 1.3] for
HILL entropy. Other recent work [30, Lemma 3.1], [15, Lemma 16] also addresses the
question of conditional computational entropy. We compare our bounds with those of
[15,25,30,51] in Appendix B.

We use this result to show that randomness extractors can be used to convert a hard-
core function into a robust one, through a computational entropy argument for slightly
induced distributions. It can also be useful in the leakage-resilient cryptography (in-
deed, leakage-resilient cryptography is the subject of [25]), when instead of an event
E one conditions on a random variable leaked to the adversary. For the information-
theoretic case, it is known that leakage of a λ-bit-long random variable reduces the
average entropy by at most λ (Lemma 2.1). We show essentially the same8 for the
computational case: if a λ-bit-long random variable is leaked, then the amount of com-
putational Metric∗ entropy decreases by at most λ and its quality decreases by at most
2λ (again, this entropy can be converted to HILL entropy and be used in randomness
extractors [20,36]).

(Crooked) Leftover Hash lemma for Correlated Distributions We show that the
leftover hash lemma (LHL) [34, Lemma 4.8], as well as its generalized form [20,
Lemma 2.4] and the “Crooked” LHL [21], extend in a natural way to “correlated” dis-
tributions. That is, suppose we have t random variables (sources) X1, . . . ,Xt , where
each Xi individually has high min-entropy but may be fully determined by the outcome
of some other Xj (though we assume Xi �= Xj for all i �= j ). We would like to apply
a hash function H such that H(X1), . . . ,H(Xt ) is statistically indistinguishable from t

independent copies of the uniform distribution on the range of H (also over the choice

8 In case of randomized leakage, the information-theoretic result of [20, Lemma 2.2(b)] gives better
bounds.
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of the key for H , which is made public). We show that this is the case assuming H

is 2t-wise independent. (The standard LHL is thus t = 1; previously, Kiltz et al. [40]
showed this for t = 2.) Naturally, this requires the output size of H to be about a 1/t

fraction of its input size, so there is enough entropy to extract. Subsequent work of [50,
Theorem 4.6] shows another generalization of (Crooked) LHL, which differs from ours
in several respects. The main differences are that the conditions imposed on H by [50]
are much more permissive (in particular, only (log t)-wise independence is needed, and
the output can be much longer), but the conclusion applies to each H(Xi) only in isola-
tion (but for every i, which can thus be chosen after H is fixed).9

1.3. Further Related Work

Work on DE We note that we focus on the basic case of passive, “chosen plaintext”
attack on DE in this paper. There are a variety of stronger attack models that have
been proposed, and we leave it as an interesting future direction to study to what extent
our techniques apply against them. These include security against chosen-ciphertext
attack [4,50], auxiliary message-dependent input [12], and “adaptive” message distri-
butions (i.e., that depend in some way on the public key) [50]. We note that a notion
of “incremental” DE (where a small change in the message induces a correspondingly
small change in its encryption) has also been studied [44] due to its importance in the
application of DE to deduplication on encrypted storage systems, and it would be simi-
larly interesting to study to what extent our schemes can be adapted to the incremental
setting.

Work on Conditional Computational Entropy In addition to the work described above,
there have been several subsequent works on conditional computational entropy. At
the time when the conference version of our work [28] was written, it was not known
whether our computational entropy loss result applied when the starting random variable
was already conditional (except in special cases [15] or for different definitions [29,30,
53]). This is known as a “chain” rule for HILL entropy. A counterexample to the chain
rule using ideas from deniable encryption was recently shown by Krenn et al. [42].
Skorski [57] provides a general characterization of when the chain rule applies.

The work of Jetchev and Pietrzak [37] provides a constructive way to simulate the
value of the condition, which enables the proof of the chain rule for a relaxed definition
of HILL entropy. The work of Vadhan and Zheng [60] provides a proof of the condi-
tional entropy loss result via a uniform reduction, making the result constructive in a
very strong sense.

2. Preliminaries

2.1. Notation and Background

Unless otherwise indicated, an algorithm may be randomized and must run in proba-
bilistic polynomial-time (PPT) in its input size. An adversary is a non-uniform algorithm

9 We note that the result of [50] is phrased in terms of block sources, which we have ignored here for
ease of comparison (our result also extends to what we call “q-block” sources); see Remark 3.13 for further
details.
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(or tuple of algorithms). We make the convention that the running-time of an adversary
includes its program (i.e., circuit) size and the time to run any overlying experiment.
The security parameter is denoted by k, and 1k denotes the string of k ones. We of-
ten suppress dependence of variables on k for readability. A function f : N → [0,1] is
negligible if f = o(k−c) for all constants c ≥ 0.

If A is an algorithm then x
$← A(. . .) denotes that x is assigned the output of running

A on the elided inputs and a fresh random tape, while x ← A(. . . ; r) denotes the same

but with the random tape fixed to r . If S is a finite set then s
$← S denotes that s is as-

signed a uniformly random element of S. We use the abbreviation x1, . . . , xn
$← A(. . .)

for x1
$← A(. . .) ; . . . ; xn

$← A(. . .).
If A is deterministic then we drop the dollar sign above the arrow. We denote by

{0,1}∗ the set of all (binary) strings, and by {0,1}n the set of strings of length n. By
x1‖ · · · ‖xm we denote an encoding of strings x1, . . . , xm from which x1, . . . , xm are
uniquely recoverable. We denote by x ⊕y the bitwise exclusive-or (xor) of equal-length
strings x, y. For two n-bit strings x, y we denote by 〈x, y〉 the inner-product of x and y

when interpreted as vectors over GF(2). Vectors are denoted in boldface, for example
x. If x is a vector then |x| denotes the number of components of x and x[i] denotes
its ith component, for 1 ≤ i ≤ |x|. For convenience, we extend algorithmic notation to
operate on each vector of inputs component-wise. For example, if A is an algorithm and

x,y are vectors then z
$← A(x,y) denotes that z[i] $← A(x[i],y[i]) for all 1 ≤ i ≤ |x|.

Let X and Y be random variables. For t, ε ≥ 0, we say that X and Y are computation-
ally (t, ε)-indistinguishable, denoted X ≈t,ε Y , if |Pr[D(X) = 1] − Pr[D(Y) = 1]| ≤ ε

for all distinguishers D running in time at most t .

Statistical Notions Let X be a random variable on a finite set X . We write PX for
the distribution of random variable X and PX(x) for the probability that X puts on
value x ∈ X , i.e., PX(x) = P[X = x]. Denote by |X| the size of the support of X, i.e.,
|X| = |{x : PX(x) > 0}|. We often identify X with PX when there is no danger of con-

fusion. By x
$← X we denote that x is assigned a value drawn according to PX . When

this experiment is PPT we say that X is efficiently sampleable. We write X | E for the
random variable X conditioned on an event E. When X is vector-valued we denote it
in boldface, for example X. For a function f : X → R, we denote the expectation of f

over X by Ef (X)
def= Ex∈X f (x)

def= ∑
x∈X PX(x)f (x).

The max-entropy of X is H0(X) = log |X|. The min-entropy of X is
H∞(X) = − log(maxx PX(x)), the (worst-case) conditional min-entropy of X given
Y is H∞(X|Y) = − log(maxx,y PX|Y=y(x)), and the average conditional min-entropy
of X given Y [20] is H̃∞(X|Y) = − log(Ey∈Y maxx PX|Y=y(x)). Following [4,6], for
vector-valued X the min-entropy is the minimum individual min-entropy of the com-
ponents, i.e., H∞(X) = − log(maxx,i PX[i](x[i])). The collision probability of X is
Col(X) = ∑

x PX(x)2. The statistical distance between random variables X and Y

with the same domain is �(X,Y ) = 1
2

∑
x |PX(x) − PY (x)|. We write X ≈ε Y if

�(X,Y ) ≤ ε, and when ε is negligible then we say X and Y are statistically close.
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t-Wise Independent Functions Let F : K × D → R be a function. We say that F is
t-wise independent if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈ R

Pr
[
F(K,x1) = y1 ∧ · · · ∧ F(K,xt ) = yt : K

$←K
] = 1

|R|t .

In other words, F(K,x1), . . . ,F (K,xt ) are all uniformly and independently random
over R. 2-wise independence is also called pairwise independence.

Entropy After Information Leakage Dodis et al. [20, Lemma 2.2] characterized the
effect of auxiliary information on average min-entropy:

Lemma 2.1 [20, Lemma 2.2]. Let A,B,C be random variables. Then

1. For any δ > 0, the conditional entropy H∞(A|B = b) is at least
H̃∞(A|B) − log(1/δ) with probability at least 1 − δ over the choice of b.

2. If B has at most 2λ possible values, then H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − λ ≥
H̃∞(A|C) − λ. In particular, H̃∞(A|B) ≥ H∞((A,B)) − λ ≥ H∞(A) − λ.

Extractors Let χ be a finite set. A polynomial-time computable deterministic function
ext : χ × {0,1}d → {0,1}m × {0,1}d is a strong (k, ε)-extractor [46] if the last d

outputs of bits of ext are equal to the last d input bits (these bits are called seed),
and δ(ext(X,Ud),Um × Ud) ≤ ε for every distribution X on χ with H∞(X) ≥ k. The
number of extracted bits is m, and the entropy loss is k − m.

Average-case extractors, defined in [20, Sect. 2.5], are extractors extended to work
with average-case, rather than unconditional, min-entropy. Vahdan [61, Problem 6.8]
shows that any (k, ε)-extractor for k ≤ log2 |χ | − 1 is also an (m,3ε)-average-case ex-
tractor. However, the additional loss is not always necessary. Indeed, the Leftover Hash
Lemma generalizes without any loss to the average-case setting, as shown in [20].

Definition 2.2. Let χ1, χ2 be finite sets. An extractor ext is a (k, ε)-average-case
extractor if for all pairs of random variables X,Y over χ1, χ2 such that H̃∞(X|Y) ≥ k,
we have δ((ext(X,Ud),Y ),Um × Ud × Y) ≤ ε.

Public-Key Encryption A (probabilistic) public-key encryption scheme with plaintext-
space PtSp is a triple of algorithms Π = (K,E,D). The key-generation algorithm K
takes input 1k to return a public key pk and matching secret key sk. The encryption
algorithm E takes pk and a plaintext m to return a ciphertext; this algorithm is ran-
domized, using randomness r . The deterministic decryption algorithm D takes sk and
a ciphertext c to return a plaintext. We require that for all plaintexts m ∈ PtSp

Pr
[
D

(
sk,E(pk,m)

) = m : (pk, sk)
$←K

(
1k

)] = 1.

Next we define security against chosen-plaintext attack [32]. With an encryption
scheme Π = (K,E,D), an adversary A = (A1,A2), and k ∈N we associate
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Experiment Expind-cpa
Π,A (k):

b
$← {0,1} ; (pk, sk)

$←K(1k)

(m0,m1, state)
$← A1(pk)

c
$← E(pk,mb)

d
$← A2(pk, c, state)

If d = b return 1 else return 0

where we require A1’s output to satisfy |m0| = |m1|. Define the IND-CPA advantage of
A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k) = 1
] − 1.

We say that Π is IND-CPA secure if Advind-cpa
Π,A (·) is negligible for any PPT adversary A.

Lossy Trapdoor Functions A lossy trapdoor function (LTDF) generator [48] is a pair
LTDF = (F ,F ′) of algorithms. Algorithm F is a usual trapdoor function (TDF) gener-
ator, namely on input 1k outputs (a description of a) function f on {0,1}n for n = n(k)

along with (a description of) its inverse f −1, and algorithm F ′ outputs a (description
of a) function f ′ on {0,1}n. For a distinguisher D, define its LTDF advantage against
LTDF as

Advltdf
LTDF,D(k) = Pr

[
D(f ) = 1 : (

f,f −1) $←F
(
1k

)] − Pr
[
D

(
f ′) = 1 : f ′ $←F ′(1k

)]
.

We say that LTDF is secure if Advltdf
LTDF,D(·) is negligible for any PPT D. We say LTDF

has residual leakage s if for all f ′ output by F ′ we have |Image(f ′)| ≤ 2s . The lossiness
of LTDF is � = n − s.

One-Way and Hardcore Functions on Non-uniform Distributions We extend the usual
notion of one-wayness to vectors of inputs drawn from non-uniform and possibly corre-
lated distributions. Let F be a TDF generator and X be a distribution on input vectors.
With F ,X, an inverter I , and k ∈N we associate

Experiment Expowf
F ,X,I

(k):

(f,f −1)
$←F

x
$← X

x′ $← I (f,f (x))

If ∃i such that x[i] = x′ return 1 else return 0

Define the OWF advantage of I against F,X as

Advowf
F ,X,I (k) = Pr

[
Expowf

F ,X,I (k) = 1
]
.

We say that F is one-way on a class of distributions on input vectors X if for every
X ∈ X and every PPT inverter I , Advowf

F ,X,I
(·) is negligible. We extend hardcore func-

tions (HCFs) in a similar way. Namely, with a trapdoor function generator F , function
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hc : {0,1}k → {0,1}n, distribution on input vectors X, a distinguisher D, and k ∈ N we
associate

Experiment Exphcf
F ,hc,X,D

(k):

b
$← {0,1} ; (f,f −1)

$←F
x

$← X

h0 ← hc(f,x) ; h1
$← ({0,1}n)×|x|

d
$← D(f,f (x),hb)

If d = b return 1 else return 0

Define the HCF advantage of D against F,hc,X as

Advhcf
F ,hc,X,D(k) = 2 · Pr

[
Exphcf

F ,hc,X,D(k) = 1
] − 1.

We say that hc is hardcore for F on a class of distributions on input vectors X if for
every X ∈ X and every PPT distinguisher D, Advhcf

F ,hc,X,D
(·) is negligible.

Note that we depart somewhat from standard treatments in that we allow a HCF
to also depend on the description of the trapdoor function (via the argument f ). This
allows us to simplify our exposition.

Augmented Trapdoor Functions It is useful to introduce the notion of an “augmented”
version of a TDF, which augments the description of the latter with keying material for a
HCF. More formally, let F be a trapdoor function generator and let H be a keyed func-
tion with keyspace K. Define the H -augmented version of F , denoted F[H ], that on

input 1k returns (f,K), (f −1,K) where (f,f −1)
$←F(1k) and K

$←K; evaluation is
defined for x ∈ {0,1}k as f (x) (i.e., evaluation just ignores K) and inversion is defined
analogously.

Goldreich–Levin Hardcore Function For i ∈ N define the length-i Goldreich–Levin
(GL) function [31] GLi : {0,1}i×k × {0,1}k → {0,1}i as GLi(M,x) = Mx, where Mx

is the matrix-vector product of randomly-sampled matrix M and x over GF(2) (it is also
possible to choose a random Toeplitz matrix instead of a completely random matrix).
If i is small enough (roughly logarithmic in the security of F ), then GLi is hardcore
for F[GLi]. Moreover, this result does not dependent on the input distribution of F ; it
depends only on the hardness of F on that particular distribution.

2.2. Computational Entropy

For computational entropy we define several classes of distinguishers. Let Ddet,{0,1}
s

be the set of all deterministic circuits of size s with binary output in {0,1}, let
Ddet,[0,1]

s be the set of all deterministic circuits of size s with output in [0,1], and let
Drand,{0,1}

s ,Drand,[0,1]
s be the sets of probabilistic circuits with output ranges {0,1} and

[0,1], respectively. (We talk of circuit size rather than running-time in the context of
computational entropy for consistency with the literature.) Given a circuit D, define the
computational distance δD between X and Z as δD(X,Z) = |E[D(X)] − E[D(Z)]|.
While min-entropy is measured only by amount, computational min-entropy has two
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additional parameters: distinguisher size s and quality ε. Larger s and smaller ε mean
“better” entropy.

Definition 2.3 ([34]). A distribution X has HILL entropy at least k, denoted
HHILL

ε,s (X) ≥ k if there exists a distribution Z where H∞(Z) ≥ k, such that

∀D ∈Drand,{0,1}
s , δD(X,Z) ≤ ε.

An alternative notion called Metric entropy is often used for proofs and is obtained
by switching in the order of quantifiers. Thus, a different Z can be used for each distin-
guisher:

Definition 2.4 ([3]). A distribution X has Metric entropy at least k, denoted
HMetric

ε,s (X) ≥ k if ∀D ∈ Drand,{0,1}
s there exists a distribution ZD with H∞(ZD) ≥ k

and δD(X,ZD) ≤ ε.

For HILL entropy, drawing D from Ddet,{0,1}
s ,Ddet,[0,1]

s ,Drand,{0,1}
s ,Drand,[0,1]

s is es-
sentially equivalent, as shown in [25,29]). For metric entropy, however, the choice
among these four classes can make a difference. In particular, if we change the class
of D in Definition 2.4 to Ddet,[0,1]

s , we get so-called “metric-star” entropy, denoted
HMetric∗

ε,s (this notion was used in [25,29]).
Equivalence (with a loss in quality) between Metric∗ and HILL entropy10 was

shown by Barak, Shaltiel, and Wigderson [3, Theorem 5.2]:

Theorem 2.5 ([3]). Let X be a discrete distribution over a finite set χ . For every ε,
εHILL > 0, ε′ ≥ ε + εHILL, k, and s, if HMetric∗

ε,s (X) ≥ k then HHILL
ε′,sHILL(X) ≥ k where

sHILL = Ω(ε2
HILLs/ log |χ |).

The free parameter in the above theorem, εHILL, provides a tradeoff between dis-

tinguisher size and advantage. For simplicity, we can set εHILL = 3
√

log |χ |
s

yielding

sHILL = Ω( 3
√

s
log |χ | ) and ε′ = ε + 3

√
log |χ |

s
. For typical parameters (specifically, when

ε ≤ (log |χ |/s)1/3), this setting balances the resulting ε′ and sHILL, i.e., gives us
ε′ = O(1/sHILL).

We show the proof of a slightly stronger version of this theorem in Theorem C.1.
Extractors can be applied to distributions with computational entropy to obtain pseu-

dorandom, rather than random, outputs: that is, outputs that are computationally in-
distinguishable from, rather than statistically close to, uniformly random strings. This
fact is well-known for HILL entropy. However, we have not seen it proven for Metric
entropy and, although the proof is quite straightforward, we provide it here for com-
pleteness. (Since HILL entropy implies Metric entropy, this proof also works for HILL
entropy.)

10 Metric∗ entropy is weaker than HILL entropy in two ways, the distinguisher is deterministic and the
distribution Z can depend on the distinguisher.



A Unified Approach to Deterministic Encryption 683

Fig. 1. Known state of equivalence for HILL and Metric Entropy. It is known how to extract from HILL
and Metric entropy but not Metric∗ entropy.

Theorem 2.6. Let ext : χ ×{0,1}d → {0,1}m×{0,1}d be a (k, εext)-extractor, com-
putable by circuits of size sext. Let X be a distribution over χ with Hmetric

εMetric,s(X) ≥ k.

Then ∀D ∈Drand,{0,1}
s′ , where s′ ≈ sMetric − sext,

δD
(
ext(X,Ud),Um × Ud

) ≤ εext + εMetric.

Proof. We proceed by contradiction. Suppose not, that is, ∃D ∈ Drand,{0,1}
s′ such that

δD
(
ext(X,Ud),Um × Ud

)
) > εext + εMetric.

We use D to construct a distinguisher D′ to distinguish X from all distributions Z where
H∞(Z) ≥ k, violating the metric-entropy of X. We define D′ as follows: upon receiving
input α ∈ χ , D′ samples seed ← Ud , runs β ← ext(α, seed) and then runs D(β, seed)

on the result. Note that D′ ∈ Drand,{0,1}
s where s ≈ s′ + sext = sMetric. Thus we have

the following ∀Z, where H∞(Z) ≥ k:

δD′
(X,Z) = δD

(
ext(X,Ud),ext(Z,Ud)

)

≥ δD
(
ext(X,Ud),Um × Ud

) − δD
((
ext(Z,Ud),Um × Ud

))

> εext + εMetric − εext = εMetric.

Thus D′ is able to distinguish X from all Z with sufficient min-entropy. This is a con-
tradiction. �

Unfortunately, the theorem does not extend to Metric∗ entropy, because the dis-
tinguisher D′ we construct in this proof is randomized. The only way to extract from
Metric∗ entropy that we know of is to convert Metric∗ entropy to HILL∗ entropy us-
ing Theorem 2.5 (which incurs some loss) and then use Theorem 2.6 (see Fig. 1). Thus,
Metric∗ entropy appears to be qualitatively weaker than Metric and HILL entropy.

Conditional entropy has been extended to the computational case by Hsiao, Lu,
Reyzin [36].

Definition 2.7 ([36]). Let (X,Y ) be a pair of random variables. X has conditional
HILL entropy at least k conditioned on Y , denoted HHILL

ε,s (X|Y) ≥ k if there exists a
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collection of distributions Zy for each y ∈ Y , giving rise to a joint distribution (Z,Y ),

such that H̃∞(Z|Y) ≥ k and ∀D ∈Drand,{0,1}
s , δD((X,Y ), (Z,Y )) ≤ ε.

Again, we can switch the quantifiers of Z and D to obtain the definition of conditional
metric entropy.

Definition 2.8. Let (X,Y ) be a pair of random variables. X has conditional Metric
entropy at least k conditioned on Y , denoted by HMetric

ε,s (X|Y) ≥ k, if ∀D ∈ Drand,{0,1}
s

there exists a collection of distributions Zy for each y ∈ Y , giving rise to a joint distri-
bution (Z,Y ), such that H̃∞(Z|Y) ≥ k and δD((X,Y ), (Z,Y )) ≤ ε.

Conditional Metric∗ can be defined similarly, replacing Drand,{0,1} with Ddet,[0,1].
Theorem 2.5 can be extended to the conditional case with the same techniques

(see [15,29] a proof):

Theorem 2.9. Let X be a discrete distribution over a finite set χ1 and let Y be a
discrete random variable over χ2. For every ε, εHILL > 0, ε′ ≥ ε + εHILL, k and s, if
HMetric∗

ε,s (X|Y) ≥ k then HHILL
ε′,sHILL(X|Y) ≥ k where s′ = Ω(ε2

HILLs/ log |χ1||χ2|).

Again, it is reasonable to set εHILL = 3
√

log |χ1||χ2|
s

and get sHILL = Ω( 3
√

s
log |χ1||χ2| )

and ε′ = ε + 3
√

log |χ1||χ2|
s

.

Similarly to extractors in the case of unconditional entropy, average-case extractors
can be used on distributions that have conditional Metric (and therefore also on distri-
butions that have HILL) entropy to produce pseudorandom, rather than random outputs.
The proof is similar to [36, Lemma 5]. However, it is not known how to extract directly
from conditional Metric∗ entropy; we first have to convert it to HILL using Theo-
rem 2.9.

2.3. Deterministic Encryption

We say that an encryption scheme Π = (K,E,D) is deterministic if E is deterministic.

Semantic Security of DE We recall the semantic-security style PRIV notion for DE
from [4].11 With encryption scheme Π = (K,E,D), an adversary A = (A0,A1,A2),
and k ∈N we associate

11 More specifically, it is a “comparison-based” semantic-security style notion; this was shown equivalent
to a “simulation-based” formulation in [6].
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Experiment Exppriv-1
Π,A (k):

(pk, sk)
$←K(1k)

state
$← A0(1k)

(x1, t1)
$← A1(state)

c
$← E(pk,x1)

g
$← A2(pk, c, state)

If g = t1 Return 1 Else Return 0

Experiment Exppriv-0
Π,A (k):

(pk, sk)
$←K(1k)

state
$← A0(1k)

(x1, t1), (x0, t0)
$← A1(state)

c
$← E(pk,x0)

g
$← A2(pk, c, state)

If g = t1 Return 1 Else Return 0

We require that there are functions v = v(k), � = �(k) such that (1) |x| = v, (2)
|x[i]| = � for all 1 ≤ i ≤ v, and (3) the x[i] are all distinct with probability 1 over

(x, t)
$← A1(state) for any state output by A0.12 In particular we say A outputs vec-

tors of size v for v as above. Define the PRIV advantage of A against Π as

Advpriv
Π,A(k) = Pr

[
Exppriv-1

Π,A (k) = 1
] − Pr

[
Exppriv-0

Π,A (k) = 1
]
.

Let M be a class of distributions on message vectors. Define AM to be the class of
adversaries {A = (A0,A1,A2)} such that for each A ∈AM there is a M ∈M for which x

has distribution M over (x, t)
$← A1(state) for any state output by A0. We say that Π is

PRIV secure for M if Advpriv
Π,A(·) is negligible for any PPT A ∈AM. Note that (allowing

non-uniform adversaries as usual) we can without loss of generality consider only those
A with “empty” A0, since A1 can always be hardwired with the “best” state. However,
following [6] we explicitly allow state because it greatly facilitates some proofs.

Indistinguishability of DE Next we recall the indistinguishability-based formulation
of security for DE given (independently) by [6,11] (and which is adapted from [22]).
With an encryption scheme Π = (K,E,D), an adversary D = (D1,D2), and k ∈ N we
associate

Experiment Expind
Π,A(k):

(pk, sk)
$←K(1k)

b
$← {0,1} ; x

$← D1(b)

c
$← E(pk,x)

d
$← D2(pk, c)

If b = d return 1 else return 0

We make the analogous requirements on D1 as on A1 in the PRIV definition. Define the
IND advantage of D against Π as Advind

Π,D(k) = 2 · Pr[Expind
Π,D(k) = 1] − 1. Let M∗

be a class of pairs of distributions on message vectors. Define DM
∗ to be the class of

adversaries {D = (D1,D2)} such that for each D ∈ DM
∗ , there is a pair of distributions

(M0,M1) ∈ M
∗ such that for each b ∈ {0,1} the distribution of x

$← D1(b) is Mb . We
say that Π is IND secure for M∗ if Advind

Π,D(·) is negligible for any PPT D ∈DM
∗ .

12 In this work we only consider the definition relative to deterministic Π , so requirement (3) is without
loss of generality.



686 B. Fuller, A. O’Neill, and L. Reyzin

3. Our Tools

3.1. A Precise Definitional Equivalence for DE

While the PRIV definition is meaningful with respect a single message distribution M ,
the IND definition inherently talks of pairs of different message distributions (but see
Footnote 6). Thus, in proving an equivalence between the two notions, the best we can
hope to show is that PRIV security for a message distribution M is equivalent to IND
security for some class of pairs of message distributions (depending on M). However,
prior works [6,11] did not provide such a statement. Instead, they showed that PRIV
security on all distributions of a given entropy μ is equivalent to IND security on all
pairs of distributions of slightly less entropy.

Induced Distributions To state our result we first give some definitions relating to a
notion of “induced distributions.” Let X,X′ be distributions (or random variables) on
the same domain. For α ∈ N, we say that X′ is an α-induced distribution of X if X′ is
a conditional distribution X′ = X | E for an event E such that Pr[E] ≥ 2−α . We call E
the corresponding event to X′. We require that the joint distribution (X,E) is efficiently
samplable (where we view event E as a binary random variable).

Define X[α] to be the class of all α-induced distributions of X. Furthermore, let
X0,X1 be two α-induced distributions of X with corresponding events E0,E1, respec-
tively. Define X∗[α] = {(X0,X1)} to be the class of all pairs (X0,X1) for which there
is a pair (X′

0,X
′
1) of α-induced distributions of X such that X0 (resp. X1) is statistically

close to X′
0 (resp. X′

1).13

The Equivalence We are now ready to state our result. The following theorem captures
the “useful” direction that IND implies PRIV.14

Theorem 3.1. Let Π = (K,E,D) be an deterministic encryption scheme. For any
distribution M on message vectors, PRIV security of Π with respect to M is implied by
IND security of Π with respect to M∗[2]. In particular, let A ∈AM be a PRIV adversary
against Π . Then there is a IND adversary D ∈ DM∗[2] such that for all k ∈N

Advpriv
Π,A(k) ≤ 162 · Advind

Π,D(k) +
(

3

4

)k

.

Furthermore, the running-time of D is the time for at most that for k executions of A

(but 4 in expectation).

13 We need to allow a negligible statistical distance for technical reasons; cf. Proposition A.3. (This relax-
ation is reminiscent of the notion of smooth entropy [52] by Renner and Wolf.) Since we will be interested
in indistinguishability of functions of these distributions, this will not make any appreciable difference, and
hence we mostly ignore this issue in the remainder of the paper.

14 Indeed, IND is much easier to work with than PRIV, so it is preferable to use in security proofs. As
explained below, if one wants to establish a definitional equivalence some additional technical restrictions are
required.
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The theorem essentially follows from the techniques of [6]. Thus, our contribution
here is not in providing any new technical tools used in proving this result but rather
in extracting it from the techniques of [6]. For completeness, we give the entire proof
(incorporating simplifications due to [17] that lead to better concrete security) in Ap-
pendix A.

To establish a definitional equivalence; that is, also show that PRIV implies IND,
we need to further restrict the latter to pairs (that are statistically close to pairs) of
complementary 2-induced distributions of M (which we did not do above for conceptual
simplicity), where we call X0,X1 complementary if E1 = E0. (The idea for the proof
of this equivalence, which is omitted here, is to have the constructed PRIV adversary
sample according to M and let the partial information be whether the corresponding
event for the induced complementary distributions of the given IND adversary occurred
or not.)

Why Is the More Precise Equivalence Better? This equivalence result is more precise
than prior work, because it requires a weaker condition in order to show PRIV holds on
a specific message distribution. Moreover, conceptually, viewing a lower-entropy dis-
tribution as a conditional (induced) version of a higher-entropy distribution is helpful
in simplifying proofs. In particular, it allows us to use results about entropy of condi-
tional distributions, which we explain next. Looking ahead, it also simplifies proofs for
schemes based on one-wayness, because it is easy to argue that one-wayness is pre-
served on slightly induced distributions (the alternative would require us to go through
an argument that distributions of lower entropy are induced by distributions of higher
entropy).

3.2. Measuring Computational Entropy of Induced Distributions

We study how conditioning a distribution reduces its computational entropy. This result
is used later in the work to show that randomness extractors can convert a hardcore
function into a robust one; it is also applicable to leakage-resilient cryptography. Some
basic definitions and results concerning computational entropy are reviewed in Sect. 2.2;
in particular, we will use Metric∗ computational entropy defined there.

It is easy to see that conditioning on an event E with probability PE reduces
(information-theoretic) min-entropy by at most logPE; indeed, this is shown Lemma 5.5.
(Note that this statement is quite intuitive: the more surprising a leakage value is, the
more it decreases the entropy.) In the following lemma, we show that the same holds
for the computational notion of Metric∗ entropy if one considers reduction in both
quantity and quality.

We actually need a slightly stronger statement in order to use Lemma 3.2 later, in
the proof of Lemma 5.1: namely, we will need to make sure that the support of the
indistinguishable distribution with true randomness does not increase after conditioning.
We call this additional property support preservation.

Lemma 3.2. Let X,Y be discrete random variables. Then

HMetric∗
ε/PY (y),s′(X|Y = y) ≥ HMetric∗

ε,s (X) − log 1/PY (y)
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where s′ ≈ s. Furthermore, the reduction is support preserving.15

The use of Metric∗ entropy and an improved proof allow for a simpler and tighter
formulation than results of [25, Lemma 3] and [51, Theorem 1.3] (see Appendix B for
a comparison).

The proof is similar to [51]. The high level outline of the proof is: Let ν =
HMetric∗

ε,s (X).

1. Suppose D distinguishes X|Y = y from any distribution Z of min-entropy ν − �

with advantage ε′. Show that either for all Z with min-entropy ν − �, E[D(Z)]
is lower than E[D(X|Y = y)] by at least ε′, or for all such Z, E[D(Z)] is higher
than E[D(X|Y = y)] by at least ε′. Assume the former without loss of generality.
This initial step allows us to remove absolute values and to find a high-entropy
distribution Z+ on which E[D(Z+)] is the highest.

2. Show that there exists a distinguisher D′ that also has advantage ε′ but, unlike D,
outputs only 0 or 1. This is done by finding a cutoff α: if D’s output is above α, it
D′ will output 1, and otherwise it will output 0.

3. Show that for every z outside of Z+, D′ outputs 0, and that Z+ is essentially flat.
Use these two facts to show an upper bound on E[D′(W)] for any W of min-
entropy ν.

4. Show a lower bound on E[D′(X)] based the performance of D′ on X|Y = y.

We now proceed with the full proof:

Proof. Let χ be the outcome space of X. For notational convenience, for random
variables A,B we will say that A ⊆ B if the support of A is a subset of the support of B .
Likewise, we will say a ∈ A to say that a is in the support of A. Fix a set ζ ⊆ χ , ζ will be
used to represent the support of random variables with min-entropy. For the reduction to
be support preserving, all distributions with min-entropy should have support no more
than ζ .

Assume HMetric∗
ε,s (X) ≥ ν. Fix y ∈ Y ; let ε′ = ε/PY (y) and s′ ≈ s be some value to

be precisely determined by the end of the proof. We assume for contradiction that

HMetric∗
ε′,s′ (X|Y = y) ≥ ν − log 1/PY (y)

does not hold. By definition of metric entropy there exists a distinguisher Dy ∈Ddet,[0,1]
s′

such that ∀Z ⊆ ζ with H∞(Z) ≥ ν − log 1/PY (y) we have
∣
∣E

[
Dy(X)

∣
∣ Y = y

] −E

[
Dy(Z)

]∣
∣ > ε′. (1)

To contradict the Metric∗ entropy of X, it suffices to show there exists a distin-
guisher D′

y ∈ Drand,{0,1}
s such that ∀W ⊆ ζ with H∞(W) ≥ ν,

E

[
D′

y(X)
] −E

[
D′

y(W)
] = ε.

15 “Support preserving” here means the following. The definition of Metric∗ entropy of X calls for an

indistinguishable from X distribution ZD with true entropy for every distinguisher D ∈Ddet,[0,1]
s . Let ζX be

the union of supports of all ZD . Similarly, define ζX|Y=y to be the union of supports for ZD that cannot be

distinguished by D ∈ Ddet,[0,1]
s′ from X|Y = y. Support-preserving means ζX|Y=y ⊆ ζX .
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Let Z− ⊆ ζ and Z+ ⊆ ζ be distributions of min-entropy ν − log 1/PY (y) that are
subsets of ζ minimizing E[Dy(Z

−)] and maximizing E[Dy(Z
+)], respectively. Let

β− def= E[Dy(Z
−)], β+ def= E[Dy(Z

+)] and β
def= E[Dy(X)|Y = y].

Claim 3.3. Either β− ≤ β+ + ε′ < β or β < β− − ε′ ≤ β+.

From (1) and the fact that Z+,Z− have min-entropy at least ν − log 1/PY (y) it suf-
fices to show that either β− ≤ β+ < β or β < β− ≤ β+. Suppose it does not hold.
Then β− < β < β+. Then we can define a distribution Z ⊆ ζ as a convex combination
of Z+,Z− with E[Dy(Z)] = β . Furthermore a distribution formed by taking a con-
vex combination of distributions with min-entropy ν − log 1/PY (y) has min-entropy
ν − log 1/PY (y) (this is easily seen by considering the maximum-probability event).
Furthermore, a distribution that is a convex combination of distributions whose support
is at most ζ has support at most ζ . This is a contradiction of (1).

For the rest of the proof we will assume that the first case β− < β+ + ε′ < β holds.

Claim 3.4. There exists a point ρ ∈ [0,1] such that

Pr
[
Dy(X|Y = y) > ρ

] − Pr
[
Dy

(
Z+)

> ρ
]
> ε′. (2)

Proof. One has that

ε′ < E

[
Dy(X|Y = y)

] −E

[
Dy

(
Z+)]

=
∫ 1

0
Pr

x∈X|Y=y

[
Dy(x) > ρ

]
dρ −

∫ 1

0
Pr
z∈Z

[
Dy(z) > ρ

]
dρ

=
∫ 1

0

(
Pr

x∈X|Y=y

[
Dy(x) > ρ

] − Pr
z∈Z

[
Dy(z) > ρ

])
dρ.

Suppose no ρ ∈ [0,1] satisfies (2). This means ∀ρ ∈ [0,1],Pr[Dy(X) > ρ|Y = y] −
Pr[Dy(Z

+) > ρ] ≤ ε′ and thus

∫ 1

0

(
Pr

x∈X|Y=y

[
Dy(x) > ρ

] − Pr
z∈Z

[
Dy(z) > ρ

])
dρ ≤ ε′.

This is a contradiction. �

Since Dy is a fixed size circuit, it outputs values of some bounded precision. Call the
ordered set of possible output values Π = {p1, . . . , pj }. Then, let α = max{pi |pi ≤ ρ}.
Thus, α is a fixed precision number where ∀pi ∈ Π,pi > α implies pi > ρ. This means
that

Pr
[
Dy(X|Y = y) > α

] − Pr
[
Dy

(
Z+)

> α
]
> ε′. (3)
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We define a distinguisher D′
y as follows:

D′
y(z) =

{
0 Dy(z) ≤ α

1 Dy(z) > α.
(4)

The only difference in the size of D′
y and Dy is the addition of a comparison to α, which

takes up size proportional to the number of output bits of Dy . Thus s, the size of D′
y , is

approximately the same as s′, the size of Dy . We define the quantities

βα
def= Pr

[
Dy(X|Y = y) > α

] = E

[
D′

y(X|Y = y)
]

β+
α

def= Pr
[
Dy

(
Z+)

> α
] = E

[
D′

y

(
Z+)]

.

Let γ = minz∈Z+ Dy(z). Since βα − β+
α ≥ ε′, we know that β+

α < 1. This implies
that γ < α.

Claim 3.5. For all z ∈ ζ if Pr[Z+ = z] �= 2−ν+log 1/PY (y), then Dy(z) ≤ γ < α and
therefore D′

y(z) = 0.

Proof. Recall that because H∞(Z+) = ν − log 1/PY (y), for all z ∈ ζ we have
Pr[Z+ = z] ≤ 2−ν+log 1/PY (y). Thus, suppose, for contradiction that there exists a
z ∈ ζ such that Pr[Z+ = z] < 2−ν+log 1/PY (y) and Dy(z) > γ . Choose a w with
Pr[Z+ = w] > 0 such that Dy(w) = γ . Create a distribution Z′ by starting with Z+,
increasing the probability of z and decreasing the probability of w by the same amount,
while keeping the min-entropy guarantee. Then we have E[Dy(Z

′)] > E[Dy(Z
+)]

which is a contradiction to how Z+ was chosen. �

Claim 3.5 implies that

β+
α =

∑

z∈χ

Pr
[
Z+ = z

]
D′

y(z) =
∑

z∈Z+
2−ν+log 1/PY (y)D′

y(z) = 1

PY (y)
2−ν

∑

z∈Z+
D′

y(z).

Claim 3.6. For all W ⊆ ζ where H∞(W) ≥ ν, E[D′
y(W)] ≤ β+

α PY (y) .

Proof. Indeed,

E

[
D′

y(W)
] =

∑

z∈ζ

Pr[W = z]D′
y(z) ≤

∑

z∈ζ

2−νD′
y(z)

= 2−ν
∑

z∈Z+
D′

y(z) = PY (y)E
[
D′

y

(
Z+)]

.
�

Claim 3.7. E[D′
y(X)] ≥ βαPY (y).
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Proof. One computes

E

[
D′

y(X)
] = E

[
D′

y(X)|Y = y
]

Pr[Y = y] +E

[
D′

y(X)|Y �= y
]

Pr[Y �= y]
≥ E

[
D′

y(X)|Y = y
]

Pr[Y = y]
= βαPY (y). �

By combining Claim 3.6, Claim 3.7, and (3) we have that for Z:

E

[
D′

y(X)
] −E

[
D′

y(Z)
]
> βαPY (y) − β+

α PY (y) = ε′PY (y) = ε. (5)

Thus, we have successfully distinguished the distribution X from Z. This is a contra-
diction. �

If we now consider averaging over all values of Y , we obtain the following simple
formulation that expresses how much average entropy is left in X from the point of
view of someone who knows Y . (This scenario naturally occurs in leakage-resilient
cryptography, as exemplified in [25]).

Theorem 3.8. Let X,Y be discrete random variables. Then

HMetric∗
ε|Y |,s′ (X|Y) ≥ HMetric∗

ε,s (X) − log |Y |

where s′ ≈ s16 (recall that |Y | is the size of the support of Y ). The reduction is support
preserving, in the same sense as in Lemma 3.2.

This statement is similar to the statement for the information-theoretic case (where
the reduction is only in quantity, of course) from Lemma 2.1. In Appendix B, we com-
pare this theorem to [15, Lemma 16] and [30, Lemma 3.1].

As discussed in Sect. 2.2, it is not known whether Metric∗ entropy can be directly
extracted from. To extract, we must convert the conditional Metric∗ entropy to con-
ditional HILL entropy. Theorem 2.5 provides such a conversion with a substantial loss
in quality; thus, it should be applied only when necessary. Here we provide a “HILL-
to-HILL” formulation of Lemma 3.2.

Corollary 3.9. Let X be a discrete random variable over χ and let Y be a discrete
random variable. Then,

HHILL
ε′,s′ (X|Y = y) ≥ HHILL

ε,s (X) − log 1/PY (y) (6)

where ε′ = ε/PY (y) + 3
√

log |χ |
s

, and s′ = Ω( 3
√

s/ log |χ |). The reduction is support pre-

serving.17

16 The difference between the size of the two distinguishers is a comparison circuit that converts the
Metric∗ distinguisher which has a range of outputs to a binary distinguisher. This involve comparison with
a number in [0,1] whose size is at most the number of output wires of the Metric∗ distinguisher.

17 “Support preserving” for HILL entropy is similar to the same notion for Metric∗ entropy explained in
Lemma 3.2. It simply means that the distribution ZX|Y=y , which is indistinguishable from X|Y = y according
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The corollary follows by combining Lemma 3.2 and Theorem C.1, which is simply

the support-preserving version of Theorem 2.5, and setting εHILL = 3
√

log |χ |
s

. A similar
corollary is available for conditioning on average-case Y (see Corollary B.4).

3.3. A (Crooked) Leftover Hash Lemma for Correlated Distributions

The following generalization of the (Crooked) LHL to correlated input distributions will
be very useful to us when considering bounded multi-message security in Sect. 6. Since
our generalization of the classical LHL is a special case of our generalization of the
Crooked LHL, we just state the latter here.

Lemma 3.10 (CLHL for Correlated Sources). Let H : K × D → R be a 2t-wise
δ-dependent function for t > 0 with range R, and let f : R → S be a function (we
assume S contains no more than the image of f , i.e., f maps onto all of S). Let
X = (X1, . . . ,Xt ) where the Xi are random variables over D such that H∞(Xi) ≥ μ

for all 1 ≤ i ≤ n and, moreover, Pr[Xi = Xj ] = 0 for all 1 ≤ i �= j ≤ t . Then

�
((

K,f
(
H(K,X)

))
,
(
K,f (U)

)) ≤ 1

2

√
|S|t(t22−μ + 3δ

)
(7)

where K
$←K and U = (U1, . . . ,Ut ) where the Ui ’s are all uniform and independent

over R (recall that functions operate on vectors X and U component-wise).

Note that the lemma implies the corresponding generalization of the classical LHL
by taking H to have range S and f to be the identity function. The proof of the above
lemma, which extends the proof of the Crooked LHL in [11], is in Appendix D.

Remark 3.11. Dodis and Yu [24] recently used fourwise-independent hash functions
to construct nonmalleable extractors [23]. Note that when f is the identity function
and t = 2, then, like nonmalleable extractors, Lemma 3.10 also requires fourwise-
independent hashing and gives the adversary two hash values; however, the differences
between the settings are numerous.

Remark 3.12. We can further extend Lemma 3.10 to the case of average conditional
min-entropy using the techniques of [20]. Such a generalization (without considering
correlated sources) is similarly useful in the context of randomized encryption from
lossy TDFs [48].

Remark 3.13. As pointed out in Sect. 1.2, a different generalization of CLHL was
provided by [50, Theorem 4.6] subsequent to our work. The comparison is made dif-
ficult by the different notation used in the two results: the result of [50, Theorem 4.6]
considers block sources, i.e., sequences of T (in their notation) random variables, where
each random variable brings fresh entropy. We do not consider block sources, so there
is no equivalent letter in our notation—essentially, for us T = 1. Lemma 3.10 can be

to the definition of HILL entropy, has no greater support than the distribution ZX which is indistinguishable
from X.
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extended to block sources in a straightforward way, because each block brings fresh en-
tropy (in such an extension, each Xi would replaced by a sequence of random variables
coming from a block source).

The set of random variables X in the notation of [50, Theorem 4.6] is the same as the
set of random variables {X1, . . . ,Xt } in our Lemma 3.10. Our result applies to the joint
distribution H(X1), . . . ,H(Xt ) simultaneously, while the result of [50, Theorem 4.6]
applies to each H(Xi) in isolation. Both results produce roughly the same total number
of output bits (close to the min-entropy of Xi ), which means that each of the individual
outputs in our result is considerably shorter (roughly a 1/t fraction). Furthermore, our
requirement on the hash function is much more restrictive: we need independence that is
linear, rather than logarithmic, in the number of random variables. Intuitively, this more
restrictive requirement is needed because our goal is to remove correlations among the
random variables, while the goal of [50, Theorem 4.6] is to make sure the hash function
is not correlated to each of the random variables.

4. Deterministic Encryption from Robust Hardcore Functions

4.1. Robust Hardcore Functions

We introduce a new notion of robustness for hardcore functions. Intuitively, robust
HCFs are those that remain pseudorandom when the input is conditioned on an event
that occurs with good probability. We expand on this below.

Definition 4.1. Let F be a TDF generator and let hc be an HCF such that hc is hard-
core for F with respect to a distribution X on input vectors. For α = α(k), we say hc
is α-robust for F on X if hc is also hardcore for F with respect to the class X[α] of
α-induced distributions of X.

Discussion Robustness is interesting even for the classical definition of hardcore bits,
where hc is boolean and a single uniform input x is generated in the security experiment.
Here robustness means that hc remains hardcore even when x is conditioned on an
event that occurs with good probability. It is clear that not every hardcore bit in the
classical sense is robust—note, for example, that while every bit of the input to RSA is
well-known to be hardcore assuming RSA is one-way [2], they are not even 1-robust
since we may condition on a particular bit of the input being a fixed value. It may
also be interesting to explore robustness in contexts other than DE, such as leakage
resilience [43] and computational randomness extraction (or key derivation) [41].

4.2. The Encrypt-with-Hardcore Scheme

The Scheme Let Π = (K,E,D) be a probabilistic encryption scheme, F be a TDF
generator, and hcf be a HCF. Assume that hc outputs binary strings of the same length
as the random string r needed by E . Define the associated “Encrypt-with-Hardcore”
deterministic encryption scheme EwHCore[Π,F ,hc] = (DK,DE,DD) with plaintext-
space PtSp = {0,1}k via
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Algorithm DK(1k):

(pk, sk)
$←K(1k)

(f,f −1)
$←F(1k)

Return ((pk, f ), (sk, f −1))

Algorithm DE((pk, f ), x):
r ← hcf (x)

c ← E(pk, f (x); r)
Return c

Algorithm DD((sk, f −1), c):
y ←D(sk, c)

x ← f −1(y)

Return x

Security Analysis To gain some intuition, suppose hc is hardcore for F on some distri-
bution X on input vectors. One might think that PRIV security of
EwHCore = EwHCore[Π,F ,hc] on X then follows by IND-CPA security of Π . How-
ever, this is not true. To see this, suppose hc is a “natural” hardcore function (i.e., outputs
some bits of the input). Define Π ′ = (K,E ′,D′) to be like Π = (K,E,D) except that
the coins consumed by E ′ are extended by one bit, which E ′ outputs in the clear and D′
ignores. That is, define E ′(pk, x; r‖b) = E(pk, x; r)‖b and D′(sk, y‖b) = D(sk, y).
Then IND-CPA security of Π ′ follows from that of Π , but a straightforward attack
shows EwHCore is not PRIV on X. This is how our notion of robustness comes into
play.

Theorem 4.2. Suppose Π is IND-CPA secure, hc is 2-robust for F on a distribution
M on input vectors. Then EwHCore[Π,F ,hc] is PRIV-secure on M .

The theorem follows from combining Theorem 3.1 with the following lemma, which
shows that what does follow if hc is hardcore (but not necessarily robust) is the IND
security of EwHCore.

Lemma 4.3. Suppose Π is IND-CPA, hc is hardcore for F on a distribution M on
input vectors, and that g is pseudorandom. Then EwHCore = EwHCore[Π,F ,hc] is
IND secure on M . In particular, let D ∈ DM be a IND adversary against EwHCore.
Then there is an IND-CPA adversary A against Π , an adversary B against hc on M

such that for all k ∈N

Advind
EwHCore,D(k) ≤ Advind-cpa

Π,A (k) + 2 · Advhcf
F ,hc,M,B(k). (8)

Furthermore, the running-times of A,B are the time to run D.

Proof. Let Game G1 correspond to the IND experiment with D against EwHCore, and
let Game G2 be like G1 except that the coins used to encrypt the challenge plaintext
vector are truly random. For i ∈ {0,1} let Bi = (Bi

1,B
i
2) be the HCF adversary against

F hc defined via

Algorithm Bi
1(1

k):

x
$← D1(i)

Return x

Algorithm Bi
2(pk,y,h):

c ← E(pk,y;h)

d
$← D2(pk, c)

Return d
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Then

Pr
[
GD

1 = b
] = Pr

[
GD

1 = b
∣
∣ b = 1

] + Pr
[
GD

1 = b
∣
∣ b = 0

]

= Pr
[
GD

2 = b
∣
∣ b = 1

] + Advhcf
F ,hc,B1(k)

+ Pr
[
GD

2 = b
∣
∣ b = 0

] + Advhcf
F ,hc,B0(k)

≤ Pr
[
GD

2 = b
] + 2 · Advhcf

F ,hc,B(k)

where we take B to be whichever of B0,B1 has the larger advantage. Now define IND-
CPA adversary A against Π via

Algorithm A1(pk):

x0
$← D1(0)

x1
$← D1(1)

Return (x0,x1)

Algorithm A2(pk, c):

d
$← D2(pk, c)

Return d

Then (8) follows from taking into account the definition of the advantages of D,A. �

A subtle point worth mentioning is where in the proof we use the fact that the
Lemma 4.3 considers IND security of EwHCore rather than PRIV (which, as we have
said, does not follow). It is in the step that uses security of the hardcore function. If
we considered PRIV security, in this step the constructed HCF adversaries against F
would need to test whether the output of the PRIV adversary against EwHCore is equal
to a “target value” representing partial information on the input to F , which these ad-
versaries are not given. Indeed, this is exactly what caused complications in the original
analysis of the scheme of [6], who used the PRIV notion directly.

5. Single-Message Instantiations of Encrypt-with-Hardcore

5.1. Getting Robust Hardcore Functions

Making any Large Hardcore Function Robust We show that by applying a randomness
extractor in a natural way, one can convert any large hardcore function in the standard
sense to one that is robust (with some loss in parameters). However, while the conver-
sion procedure is natural, proving that it works turns out to be nontrivial.

For a random variable A with support A, define the entropy discrepancy of A

as disc(A) = log |A| − H∞(A) = H0(A) − H∞(A). Let F be a TDF generator. Let
disck(f ) be the entropy discrepancy of the public key f , viewed as a random variable
produced by F(1k). Let X be an input distribution for f and hc : {0,1}k → {0,1}�
be an HCF for f on X. Let ext : {0,1}� × {0,1}d → {0,1}m × {0,1}d be a strong
average-case (�−α − disc(f )− disc(X), εext)-extractor for α ∈ N that takes time text
to compute. Define a new “extractor-augmented” HCF hc[ext] for F[ext] as follows:
hc[ext]s(x) = ext(hc(x), s) for all x ∈ {0,1}k and s ∈ {0,1}d . (Here we view ext as
a keyed function with the second argument as the key.) The following characterizes the
α-robustness of hc[ext].



696 B. Fuller, A. O’Neill, and L. Reyzin

Lemma 5.1. If hc is a sufficiently long hardcore function for F on an input distribu-
tion X, then hc[ext] is a hardcore function for any input distribution X′ ∈ X[α]. More
precisely, if

(
f,f (X),hc(X)

) ≈t,ε

(
f,f (X),U�

)
, then

(
f,f

(
X′),ext

(
hc

(
X′),Ud

)
,Ud

) ≈t ′−text,,2ε′+εext

(
f,f

(
X′),Um,Ud

)
,

where in both equations f is distributed according to F(1k), and ε′ = ε · 2α +
3
√

(k + log |F | + �)/t and t ′ = Ω( 3
√

t/(k + log |F | + �)).

We note that in order to apply this lemma, (� − α − disc(f ) − disc(X)) must be
large enough in order to allow for a useful extractor. Thus, the “entropy loss” is
not only α (which is expected, because it is the entropy deficiency of X′), but also
disc(f ) + disc(X). Therefore, we need the starting hardcore function output length �

to be sufficiently large compared to the entropy discrepancies of both f and X. Fortu-
nately, for typical trapdoor functions such as RSA, disc(f ) is 0 because the distribution
of public keys produced by the key generation method is flat. Moreover, sufficiently
long � can always be achieved if the starting hardcore function output is long enough
to be used as a seed for a pseudorandom generator, since then it can be expanded to
any polynomial length (here we are referring to running the hardcore function through a
pseudorandom generator before applying the extractor, thus changing hc to have longer
output �).

Also note that when α = log(k), the security loss in the reduction is polynomial (in
our application we just need α = 2). We note that the conversion procedure also works
when hc is hardcore on a distribution X on input vectors, but we omit this since we
do not know any examples of “natural” hardcore functions that are secure on correlated
inputs. (Looking ahead, in Sect. 6 we give a direct constructions of the such hardcore
function without needing the conversion procedure of Lemma 5.1.)

Proof. Let f be distributed according to the distribution of public keys produced by
F(1k). Slightly abusing notation, we will also denote the support of this distribution by
F . Assume that for t, ε > 0

(
f,f (X),hc(X)

) ≈t,ε

(
f,f (X),U�

)
. (9)

By definition of HILL entropy,

HHILL
ε,t

(
f,f (X),hc(X)

) ≥ H∞
(
f,f (X),U�

) = H∞(f ) + H∞(X) + �

(using the fact that f is injective). Let ζ denote the set of all triples (f, y, r) such
that f ∈ F , and y = f (x) for some x ∈ X. Let E be such that X′ = X | E; note that
Pr[E] = 2−α . Applying the “HILL-to-HILL” Corollary 3.9, we know that

HHILL
ε′,t ′

(
f,f (X),hc(X) | E

) ≥ HHILL
ε,t

(
f,f (x),hc(X)

) − α

≥ H∞(f ) + H∞(X) + � − α,
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where ε′ = ε · 2α + 3
√

(k + log |F | + �)/t , and t ′ = Ω( 3
√

t/(k + log |F | + �)). By Def-
inition 2.3 of HILL entropy and the fact that Corollary 3.9 is support preserving, this
implies that there exist random variables (A,B,C) ⊆ ζ such that

(
f,f (X),hc(X)

) | E ≈t ′,ε′ (A,B,C), (10)

and furthermore H∞((A,B,C)) ≥ H∞(f ) + H∞(X) + � − α. Because an independent
random string does not help the distinguisher,

(
f,f (X),hc(X),Ud

) | E ≈t ′,ε′ (A,B,C,Ud).

Because applying a deterministic function to the distributions can help the distinguisher
by at most the time it takes to compute the function,

(
f,f (X),ext

(
hc(X),Ud

)
,Ud

) | E ≈t ′−text,ε′
(
A,B,ext(C,Ud),Ud

)
. (11)

We now claim that
(
A,B,ext(C,Ud),Ud

) ≈εext (A,B,U�,Ud). (12)

Indeed,

H̃∞
(
C | (A,B)

) ≥ H∞(A,B,C) − log |A| − log |B|
≥ H∞(A,B,C) − log |F | − log

∣
∣f (X)

∣
∣

≥ � − α − disc(f ) − disc(X),

where the first inequality uses Lemma 2.1, the second inequality follows from A ⊆ F
and B ⊆ f (X), and the final inequality follows from the definition of (A,B,C), the
definition of disc, and the fact that f is injective. Thus, (12) follows by security of ext.
Note that (10) implies that (f,f (X)) | E ≈t ′,ε′ (A,B), which implies

(A,B,U�,Ud) ≈t ′,ε′
(
f,f (X),U�,Ud

) | E. (13)

Combining (11), (12), (13) via the triangle inequality we have
(
f,f (X),ext

(
hc(X),Ud

)
,Ud

) | E ≈t ′−text,2ε′+εext

(
f,f (X),U�,Ud

) | E. (14)

Recalling that f is distributed independently of E and X′ = X|E, we get the statement
of the lemma. �

Remark 5.2. The conclusion of the lemma actually holds given a weaker hypothesis
on the starting hardcore function. Namely, its output need not be indistinguishable from
uniform but rather have high computational (HILL) entropy.

The above conversion procedure notwithstanding, we give specific examples of hard-
core functions that are already robust without requiring the former. This is especially
useful to view constructions from both one-wayness as in [6] and from lossiness as
in [11] in a unified way: these constructions emanate from the fact that both “one-way
hardness” and min-entropy are preserved on slightly induced distributions.
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Robust Goldreich–Levin Bits for Any TDF First, we show that the Goldreich–
Levin [31] hardcore function as considered in [6] is robust. Indeed, robustness of
Goldreich–Levin follows from the following simple lemma, which describes how “one-
way hardness” on an input distribution is preserved on induced distributions.

Lemma 5.3. Let F be a TDF generator. Let X be an input distribution and fix X′ ∈
X[α] for α ∈ N. Then for any inverter I ′ against F on X′ there is an inverter I against
F on X such that for all k ∈N

Advowf
F ,X′,I ′(k) ≤ 2α · Advowf

F ,X,I (k). (15)

Furthermore, the running-time of I is the time to run I ′.

Proof. Let I ′ be the inverter that simply runs I on its input, and let E be the corre-
sponding event to X′. Let G be the event that Expowf

F ,X′,I ′(k) = 1. Then

Advowf
F ,X′,I ′(k) = Pr

[
G

∣
∣ E

] · Pr[E] + Pr
[
G

∣
∣ E

] · Pr[E]
≥ Pr

[
G

∣
∣ E

] · Pr[E]
= Advowf

F ,X,I (k) · 1/2−α,

from which (15) follows by rearranging terms. �

Note that when α = O(log k), the reduction incurs a polynomial loss in advantage
(again, in our applications we just need α = 2). As mentioned, the security of GLi for
an input distribution X depends only on the hardness of F on X. By Lemma 5.3, the
hardness of F on all X′ ∈ X[α] is polynomially related to the hardness of F on X.
Thus, if GLi is hardcore for F[GLi] on X, it is hardcore for F[GLi] on all X′ ∈ X[α].
This yields the following proposition.

Proposition 5.4. Let F[GLi] be as defined above and suppose GLi is hardcore for
F[GLi] on single-input distribution X. Then GLi is O(log k)-robust for F[GLi] on X.

Robust Bits for Any LTDF Peikert and Waters [48] showed that LTDFs admit a sim-
ple, large hardcore function, namely a pairwise-independent hash function (the same
argument applies also to universal hash functions or, more generally, randomness ex-
tractors). We show robustness of the latter based on the following simple lemma, which
says that min-entropy of a given input distribution is preserved on sub-distributions in-
duced by an event that occurs with good probability.

Lemma 5.5. Let X be a random variable with H∞(X) ≥ μ, and let X′ be a random
variable where PX′ is a an α-induced sub-distribution of PX . Then H∞(X′) ≥ μ − α.
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Proof of Lemma 5.5. Suppose not, and let E be the corresponding event to X′. Then
there exists an x′ such that PX′(x′) > 2−μ+α . But then

PX

(
x′) ≥ Pr

[
X = x′ ∣∣ E

] · Pr[E] + Pr
[
X = x′ ∣∣ E

] · Pr[E]
≥ Pr

[
X = x′ ∣∣ E

] · Pr[E]
> 2−μ+α · 2−α

= 2−μ

a contradiction. �

By combining the Generalized Leftover Hash Lemma of [20] (i.e., for the case
of average min-entropy) with the “chain rule” for average conditional min-entropy
(Lemma 2.1), it follows that if F is a lossy trapdoor function generator with residual
leakage s, then a pairwise-independent hash function H : K×{0,1}k → {0,1}r is hard-
core for F[H] on any single-input distribution X with min-entropy s + r + 2(log 1/ε)

for negligible ε (as compared to [48, Lemma 3.4], we simply observe that the argu-
ment does not require the input to be uniform). Then, using Lemma 5.5 we have the
following.

Proposition 5.6. Let LTDF = (F ,F ′) be a LTDF generator with residual leakage s,
and let H : K × {0,1}k → {0,1}r be a pairwise-independent hash function. Then H is
a O(log k)-robust hardcore function for F[H] on any single-input distribution X with
min-entropy s + r + 2(log 1/ε) for negligible ε.

5.2. Putting It Together

Equipped with the above results, we describe instantiations of the Encrypt-with-
Hardcore scheme that both explain prior constructions and produce novel ones.

Using an Iterated Trapdoor Permutation The prior trapdoor-permutation-based DE
scheme of Bellare et al. [6] readily provides an instantiation of EwHCore by us-
ing an iterated trapdoor permutation as the TDF. Let F be a TDP and hc be
a hardcore bit for F . For i ∈ N denote by F i the TDP that iterates F i-many
times. Define the Blum–Micali–Yao (BMY) [10,65] hardcore function for F i via
BMY i[hc](f, x) = hc(x)‖hc(f (x))‖ . . .‖hc(f i−1). Bellare et al. [6] used the specific
choice of hc = GL (the GL bit) in their scheme, which is explained by the fact that the
latter is robust as per Proposition 5.4 and one can show that BMY iteration expands one
robust hardcore bit to many (on a non-uniform distribution, the bit should be hardcore
on all “permutation distributions” of the former).

However, due to our augmentation procedure to make any large hardcore function
robust, we are no longer bound to any specific choice of hc. For example, we may
choose hc to be a natural bit of the input in the case that the latter is hardcore. In fact,
it may often be the case that F has many simultaneously hardcore natural bits, and
therefore our construction will require fewer iterations of the TDP than the construction
of [6].
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Using a Lossy TDF Applying Proposition 5.6, we get an instantiation of the Encrypt-
with-Hardcore scheme from lossy TDFs that is an alternative to the prior scheme of
Boldyreva et al. [11] and the concurrent work of Wee [63]. Our scheme requires an
LTDF with residual leakage s ≤ H∞(X) − 2 log(1/ε) − r , where r is the number of
random bits needed in E (or the length of a seed to a pseudorandom generator that
can be used to obtain those bits). Thus the LTDF should lose a constant fraction of its
input. To compare, the prior scheme of [11] encrypts under (an augmented version of)
the LTDF directly and does not use the “outer” encryption scheme at all. Its analysis
requires the ‘Crooked” LHL of Dodis and Smith [21] rather than the standard LHL but
gets rid of r in the above bound leading to a better requirement on lossiness or input
entropy.

Using 2-Correlated Product TDFs Hemenway et al. [35] show a construction of DE
from a decisional 2-correlated product TDF, namely where F has the property that
f1(x), f2(x) is indistinguishable from f1(x1), f2(x2) where x1, x2 are sampled inde-
pendently (in both cases for two independent public instances f1, f2 of F ). (This prop-
erty is a strengthening of the notion of security under correlated products introduced
in [55].) They show such a trapdoor function is a secure DE scheme for uniform mes-
sages. To obtain an instantiation of EwHCore under the same assumption, we can use
F as the TDF, and an independent instance of the TDF as hc. When a randomness
extractor is applied to the latter, robustness follows from Lemma 5.1, taking into ac-
count Remark 5.2.

Using any TDF with a Large HCF Our most novel instantiations in the single-message
case come from considering TDFs that have a sufficiently large HCF but are not neces-
sarily lossy or an iterated TDP. Let us first consider instantiations on the uniform mes-
sage distribution (an important special case as highlighted in [6]). It was recently shown
by Freeman et al. [27] that the Niederreiter TDF [45] has linearly many (simultaneous)
hardcore bits under the “Syndrome Decoding Assumption (SDA)” and “Indistinguisha-
bility Assumption (IA)” as defined in [27, Sect. 7.2], which are already needed to show
the TDF is one-way. Furthermore, the RSA [54] and Paillier [47] TDPs have linearly
many hardcore bits under certain computational assumptions, namely the “Small Solu-
tions RSA (SS-RSA) Assumption” [59] and the “Bounded Computational Composite
Residuosity (BCCR) Assumption” [13], respectively. Because these hardcore functions
are sufficiently long, they can be made robust via Lemma 5.1 and give us a linear number
of robust hardcore bits—enough to use as randomness for E (expanded by a pseudoran-
dom generator if necessary). (Here the “outer” encryption scheme can be instantiated
under the same assumptions.) Thus, by Theorem 4.2, we obtain:

Corollary 5.7. Under SDA+IA for the Niederreiter TDF, DE for the uniform message
distribution exists. Similarly, under SS-RSA the RSA TDP or BCCR for the Paillier TDP,
respectively, DE for the uniform message distribution exists.

In particular, the first statement provides the first DE scheme without random oracles
based on the hardness of syndrome decoding. (A scheme in the random oracle model
follows from [4].) Moreover, the schemes provided by the second statement are nearly
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as efficient as the ones obtained from lossy TDFs (since they do not use iteration), and
the latter typically requires decisional assumptions (in contrast to the computational
assumptions used here).

If we do not wish to rely on specific assumptions, we can also get DE from strong
but general assumptions. Specifically, for general F , we can obtain a large enough HCF
by using enough GL bits and assuming the TDF is sufficiently hard to invert.18 If F is
s-hard on X then, by [31], it has an HCF on X with almost log s bits of output. Note we
can trade hardness of the TDF for greater hardness of an underlying PRG used to expand
the HCF, which can be built from a one-way function without a trapdoor. For example,
we can assume a TDF F that is quasi-polynomially hard to invert, which yields a GL
HCF with poly-logarithmic output length, and expand it via a PRG with sub-exponential
hardness (which could be built assuming a sub-exponentially hard one-way function).

To obtain instantiations on message distributions of less than maximal entropy, we
can use a technical lemma [26, Lemma 4] saying that every distribution with min-
entropy α less than maximal can be viewed as an α-induced distribution of the uniform
distribution, and take into account Remark 5.2. By Corollary 3.9, we know the HILL
entropy of a HCF on such a distribution degrades in quantity by α and in quality poly-
nomially in 2α . Thus, assuming the HCF is sufficiently long and sufficiently hard to
distinguish from uniform, it can still be turned into a robust HCF using Remark 5.2 For
example, if α = O(log(k)), a standard hardness assumption suffices. We thus obtain
the analog of Corollary 5.7 for distributions whose min-entropy is logarithmically away
from maximal under the same assumptions.

For any α = o(k), we can obtain DE for distributions of min-entropy α away from
maximal by assuming sub-exponential hardness of simultaneous hardcore bits. That is,
the analog of Corollary 5.7 holds under sub-exponential hardness of the assumptions.

6. Bounded Multi-message Security and Its Instantiations

6.1. The New Notion and Variations

The New Notion The notion of q-bounded multi-message security (or just q-bounded
security) for DE is quite natural, and parallels the treatment of “bounded” security in
other contexts (e.g. [16]). In a nutshell, it asks for security on up to q arbitrarily corre-
lated but high-entropy messages (where we allow the public-key size to depend on q).
More formally, fix an encryption scheme Π = (K,E,D). For q = q(k) and μ = μ(k),
let Mq,μ be the class of distributions on message vectors Mμ,q = (M

μ,q

1 , . . . ,M
μ,q
q )

where H∞(M
μ,q
i ) ≥ μ and for all 1 ≤ i ≤ q and M

μ
1,q , . . . ,M

μ
q,q are distinct with prob-

ability 1. We say that Π is q-bounded multi-message PRIV (resp. IND) secure for μ-
sources if it is PRIV (resp. IND) secure for Mq,μ. We note that Theorem 3.1 (combined
with Lemma 5.5) tells us that PRIV on M

q,μ is equivalent to IND on M
q,μ−2.

Unbounded Multi-message Security for q-Block Sources We also consider unbounded
multi-message security for what we call a q-block source, a generalization of a block-
source [14] where every qth message introduces some “fresh” entropy. More formally,

18 For very long messages, on the uniform distribution we can actually apply any TDF block-wise to
collect a large hardcore function from individual GL bits, but this does not extend to lower entropy messages.
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fix an encryption scheme Π = (K,E,D). For q = q(k), n = n(k), and μ = μ(k), let
M

q,n,μ be the class of distributions on message vectors Mq,n,μ = (M
q,n,μ
1 , . . . ,M

q,n,μ
qn )

such that H∞(Xqi+j | X1 = x1, . . . ,Xqi−1 = xqi−1) ≥ μ for all 1 ≤ i ≤ n, all
0 ≤ j ≤ q − 1, and all outcomes x1, . . . , xqi−1 of X1, . . . ,Xqi−1. We say that Π is
q-bounded multi-message PRIV (resp. IND) secure for (μ,n)-block-sources if Π is
PRIV (resp. IND) secure on M

q,n,μ. Using a similar argument to [11, Theorem 4.2],
one can show equivalence of PRIV on M

q,n,μ to IND on M
q,n,μ.

6.2. Our Basic Scheme

Note that we cannot trivially achieve q-bounded security by running, say, q copies of
a scheme secure for one message in parallel (and encrypting the ith message under the
ith public key), since this approach would lead to a stateful scheme. The main technical
tool we use to achieve the notion is Lemma 3.10. Combined with Lemma 2.1, this tells
us that a 2q-wise independent hash function is robust on correlated input distributions
of sufficient min-entropy:

Proposition 6.1. For any q , let LTDF = (F ,F ′) be an LTDF generator with input
length n and residual leakage s, and let H : K×D → R where r = log |R| be a 2q-wise
independent hash function. Then H is a 2-robust hardcore function for F on any input
distribution X = (X1, . . . ,Xq) such that H∞(X) ≥ q(s + r) + 2 logq + 2 log(1/ε) − 2
for negligible ε.

Thus, by Theorem 4.2 we obtain a q-bounded multi-message secure DE scheme
based on lossy trapdoor functions. Note that since we require

(
H∞(X) − 2 logq − log(1/ε)

)
/q − r ≥ s

(where r is the number of random bits needed in E , or the length of a seed to a pseu-
dorandom generator that can be used to obtain those bits) the lossy trapdoor function
must lose a 1 − O(1/q) fraction of its input. The DDH-based construction of Peikert
and Waters [48], the Paillier-based one of [11,27], and the one from d-linear of [27] can
all satisfy this requirement for any polynomial q .

6.3. Our Optimized Scheme

We show that by extending some ideas of [11], we obtain a more efficient DE scheme
meeting q-bounded security that achieves better parameters.

Intuition and Preliminaries Intuitively, for the optimized scheme we modify the
scheme of [11] to first pre-process an input message using a 2q-wise independent per-
mutation (instead of pairwise as in [11]). However, there are two issues to deal with here.
First, for q > 1 such a permutation is not known to exist (in an explicit and efficiently
computable sense). Second, Lemma 3.10 applies to t-wise independent functions rather
than permutations. (In the case t = 2 as considered in [11] the difference turns out to be
immaterial.)
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To solve the first problem, we turn to 2q-wise “δ-dependent” permutations (as con-
structed in e.g. [38]). Namely, say that a collection of permutations over D keyed by K,
H : K × D → D, is t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

�
((

H(K,x1), . . . ,H(K,xt )
)
, (P1, . . . ,Pt )

) ≤ δ,

where K
$←K and P1, . . . ,Pt are defined iteratively by taking P1 to be uniform on D

and, for all 2 ≤ i ≤ t , taking Pi to be uniform on R \ {p1, . . . , pi−1} where p1, . . . , pi−1

are the outcomes of P1, . . . ,Pi−1, respectively.
To solve the second problem, we use the following lemma, which says that a t-wise

δ-dependent permutation is a t-wise δ′-dependent function where δ′ is a bit bigger
than δ.

Lemma 6.2. Suppose H : K× D → D is a t-wise δ-dependent permutation for some
t ≥ 1. Then H is a t-wise δ-dependent function for δ′ = δ + t2/|D|.

The proof uses the fact that the distribution of (P1, . . . ,Pt ) equals the distribution of
(U1, . . . ,Ut ) | DIST where DIST is the event that U1, . . . ,Ut are all distinct and then ap-
plies a union bound. It will be useful to now restate Lemma 3.10 in terms of δ-dependent
permutations, which follows by combining Lemma 3.10 and Lemma 6.2, and observing
that 1/|D| ≤ 2−μ.

Lemma 6.3 (CLHL for Correlated Sources with Permutations). Let H : K × D → D

be a δ-dependent 2t-wise permutation for some t > 0 with range R, where δ = t22−μ.
Let f : R → S be a function (we assume S contains no more than the image of f , i.e.,
f maps onto all of S). Let X = (X1, . . . ,Xt ) where the Xi are random variables over
D such that H∞(Xi) ≥ μ for all 1 ≤ i ≤ n and, moreover, Pr[Xi = Xj ] = 0 for all
1 ≤ i �= j ≤ t . Then

�
((

K,f
(
H(K,X)

))
,
(
K,f (U)

)) ≤ 2
√

|S|t t22−μ (16)

where K
$←K and U = (U1, . . . ,Ut ) where the Ui are all uniform and independent

over D (recall that functions operate on vectors component-wise).

It is interesting to note here that the bound in Equation (16) is essentially as good as
the one in Equation (7) with δ = 0 (just a factor of 4 worse). At first one might not expect
this to be the case. Indeed, when the classical LHL is extended to “imperfect” hash
functions [19,58], the error probability must be taken much smaller than 1/|R|, where
R is the range of the hash function. But in Lemma 3.10 we have δ = t2/2−μ ≥ t2/|D|,
which is large compared to 1/|D| (where D the range of the hash function in our case
as it is a permutation). The reason we can tolerate this is that it is enough for t2/|D| to
be much smaller than 1/|S| (where S is the image of f ), which is indeed the case in
applications. In other words, the Crooked LHL turns out to be more tolerant than the
classical one in this respect.
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The Construction We now detail our construction. Let LTDF = (F ,F ′) be an LTDF
and let P : K × {0,1}k → {0,1}k be an efficiently invertible family of permuta-
tions on k bits. Define the associated deterministic encryption scheme Π[LTDF,P] =
(DK,DE,DD) with plaintext-space PtSp = {0,1}k via

Algorithm DK(1k):

(f,f −1)
$←F(1k) ; K

$←K
Return ((f,K), (f −1,K))

Algorithm DE((f,K), x):
c ← f (P(K,x))

Return c

Algorithm DD((sk, f −1), c):
x ← f −1(P−1(K, c))

Return x

We have the following result.

Theorem 6.4. Suppose LTDF is a lossy trapdoor function on {0,1}n with residual
leakage s, and let q, ε > 0. Suppose P is a 2q-wise δ-dependent permutation on {0,1}n
for δ = q2/2n. Then for any q-message IND adversary B ∈ DMq,μ with min-entropy
μ ≥ qs + 2 logq + 2 log(1/ε) + 2, there is a LTDF distinguisher D such that for all
k ∈N,

Advind
Π [LTDF,P],B(k) ≤ Advltdf

LTDF,D(k) + ε.

Furthermore, the running-time of D is the time to run B .

Proof. The first step in the proof is to switch the HCF experiment to execute not

(f,f −1)
$←F(1k) but f ′ ← F ′(1k). We can conclude by applying Lemma 6.3 with

t = q and H = P . �

An efficiently invertible 2q-wise δ-dependent permutation on {0,1}n for δ = t2/2n

can be obtained from [38] using key length nt + log(1/δ) = n(t + 1) − 2t .
Now, combining Theorem 6.4 with Theorem 3.1 and Lemma 5.5 (extended to mes-

sage vectors rather than single-input distributions) gives us bounded multi-message
PRIV (rather than IND) security for any distribution on message vectors of size q with
sufficient entropy. We make explicit the following corollary.

Corollary 6.5. Suppose LTDF is a lossy trapdoor function on {0,1}n with residual
leakage s. Then we obtain a q-bounded multi-message PRIV secure DE scheme for the
class of distributions on {0,1}n with min-entropy μ ≥ qs + 2 logq + 2 log(1/ε) + 4 for
negligible ε.

Comparing to Proposition 6.1, we see that we have dropped the r in the entropy
bound (indeed, there is no hardcore function here). This translates to savings on the
input entropy or lossiness requirement on the trapdoor function. Namely, while we still
need to lose a 1 − O(1/q) fraction of the input, we get rid of the factor 2 on q . We also
note that we can prove that the optimized scheme meets our notion of unbounded multi-
message PRIV security on q-block sources of the same entropy directly by using our
precise definitional equivalence, as follows. First, its IND security on q-block sources
follows by extending Lemma 3.10 to q-block sources by a hybrid argument as in the
case of the original LHL [66]. Then, its PRIV security on q-block sources (of 2 bits
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greater entropy) follows by Theorem 3.1 after extending Lemma 5.5 to show that a 2-
induced distribution of a q-block source with min-entropy μ is a q-block source with
min-entropy μ − 2.
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Appendix A. Proof of Theorem 3.1

Following [6], the high-level intuition for the proof is as follows. For the given distribu-
tion M on message vectors, we first show that it suffices to consider PRIV adversaries
for which A2 outputs (x, t) where t is boolean. Now, we would like to use the fact if
t is easy to guess from the encryption of x then the encryption of x conditioned on (1)
the output (x, t) of A2 being such that t = 1, or (2) the output (x, t) of A2 being such
that t = 0 are easy to distinguish; indeed, these are induced distributions of M (view-
ing the binary t as the random variable indicating the event E). However, one of these
distributions may be hard to sample from and have low entropy. Therefore, we show it
additionally suffices to consider PRIV adversaries on M for which t is not just boolean
but also balanced, meaning the probability it is 0 or 1 is about the same. Then, we can
easily sample from the above-mentioned distributions by repeatedly running A. In this
section, we assume PRIV adversaries have an empty A0 and accept 1k as input (the
“best” state is hardwired) though we describe the A0’s of some adversaries for clarity.

Reduction to the Boolean Case Call a PRIV adversary A boolean if it outputs test
strings of length 1. We first show that is suffices to consider boolean PRIV adversaries
(this was previously shown in both [6] and [11]).

Proposition A.1. Let Π = (K,E,D) be an encryption scheme and A ∈AM be a PRIV
adversary that outputs test strings of length �. Then there is a boolean PRIV adversary
B ∈ AM such that

Advpriv
Π,A(k) ≤ 2 · Advpriv

Π,B(k).

Furthermore, the running-time of B is the time to run A plus O(�).
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Proof. The proof is identical to an argument in [18] for the information-theoretic set-
ting. Adversary B works as follows:

Algorithm B0(1k):

r
$← {0,1}�

Return r

Algorithm B1(r):

(x, t)
$← A1(1k)

Return (x, 〈t, r〉)

Algorithm B2(pk, c, r):

g
$← A2(pk, c)

Return 〈g, r〉
For d ∈ {0,1}, let EA

d denote the event Exppriv-d
Π,A (k) = 1 and similarly EB

d denote

Exppriv-d
Π,B (k) = 1. Then

Advpriv
Π,B(k) = Pr

[
EB

1

] − Pr
[
EB

0

]

=
(

Pr
[
EA

1

] + 1

2
· (1 − Pr

[
EA

1

])
)

−
(

Pr
[
EA

0

] + 1

2
· (1 − Pr

[
EA

0

])
)

= 1

2
· (Pr

[
EA

1

] − Pr
[
EA

0

])

= 1

2
· Advpriv

Π,A(k)

where in the second step we use that if t �= g then 〈t, r〉 = 〈g, r〉 with probability 1/2
over the choice of r . The claimed running-time of B is easy to verify. �

Reduction to the Balanced Boolean Case As in [6] the next step is to show that it
in fact suffices to consider boolean PRIV adversaries that are balanced, meaning the
probability the partial information is 1 or 0 is approximately 1/2. Namely, call a boolean
PRIV adversary A = (A0,A1,A2) δ-balanced [6] if for all b ∈ {0,1}

∣
∣
∣
∣Pr

[
t = b : (x, t)

$← A1(state)
] − 1

2

∣
∣
∣
∣ ≤ δ

for all state output by A0 on input 1k .

Proposition A.2. Let Π = (K,E,D) be an encryption scheme and B ∈ AM be a
boolean PRIV adversary. Then for any 0 ≤ δ < 1/2 there is a δ-balanced boolean PRIV
adversary C ∈AM such that

Advpriv
Π,B(k) ≤

(
2

δ
+ 1

)2

· Advpriv
Π,C(k).

Furthermore, the running-time of C is the time to run B plus O(1/δ).

Proof. As compared to [6] we give a simplified proof due to [17] (which also leads to
better concrete security), where for simplicity we assume 1/δ is an integer. Adversary
C works as follows:
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Algorithm C1(1k):

(x, t)
$← B1(1k)

i
$← {1, . . . ,2(1/δ) + 1}

If i ≤ 1/δ then return (x,0)

Else if i ≤ 2(1/δ) then return (x,1)

Else return (x, t)

Algorithm C2(pk, c):

g
$← B2(pk, c)

j
$← {1, . . . ,2(1/δ) + 1}

If j ≤ 1/δ then return 0
Else if j ≤ 2(1/δ) then return 1
Else return g

Note that C is δ-balanced, since for all b ∈ {0,1}
∣
∣
∣
∣Pr

[
t = b : (x, t)

$← C1
(
1k

)] − 1

2

∣
∣
∣
∣ ≤ 1

2/δ + 1
.

As before, for d ∈ {0,1}, let Bd denote the event Exppriv-d
Π,B (k) = 1 and similarly Cd

denote Exppriv-d
Π,C (k) = 1. We define the event E to be the event that i = j = 2/δ + 1.

Then

Advpriv
Π,C(k) = Pr[C1] − Pr[C0]

= Pr[C1 | E]Pr[E] − Pr[C0 | E]Pr[E] + Pr[C1 | E]Pr[E] − Pr[C0 | E]Pr[E]
= Pr[C1 | E]Pr[E] − Pr[C0 | E]Pr[E] + 1

2
− 1

2

=
(

1

2/δ + 1

)2

· Advpriv
Π,B(k).

As before, the claimed running-time of C is easy to verify. �

Reduction to Distribution Hiding Similarly to [6] the final component for the proof is
as follows.

Proposition A.3. Let Π = (K,E,D) be an encryption scheme and C ∈ AM be a
δ-balanced boolean PRIV adversary. Then there is an IND adversary
D ∈DM∗[log(1/(1/2−δ))] such that

Advpriv
Π,C(k) ≤ Advind

Π,D(k) +
(

1

2
+ δ

)k

.

In particular, D samples from message distributions that are statistically 2Ω(k)-close to
complementary log(1/(1/2 − δ))-induced message distributions of C. Furthermore, the
running-time of D is the time for at most k executions of C.

Proof. Adversary D works as follows:
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Algorithm D1(b):
For i = 1 to k do:

(x, t)
$← B1(1k)

If t = b then return x
Return x

Algorithm D2(pk, c):

g
$← B2(pk, c)

Return g

For the analysis, let BAD denote the event that the final return statement is executed. Let
CORRECTD be the event that b = d when D is executed in the PRIV experiment with
Π and similarly let CORRECTB denote the event that t = g when B is executed in the
PRIV experiment with Π . Then

Advpriv
Π,D(k) = Pr

[
CORRECTD

∣
∣ b = 1

] + Pr
[
CORRECTD

∣
∣ b = 0

]

≥ (
Pr

[
CORRECTD

∣
∣ b = 1 ∧ BAD

] + Pr
[
CORRECTD

∣
∣ b = 0 ∧ BAD

])

· Pr[BAD]
= (

Pr
[
CORRECTB

∣
∣ t = 1

] + Pr
[
CORRECTB

∣
∣ t = 0

]) · Pr[BAD]
= Advpriv

Π,B(k) · Pr[BAD]

≥ Advpriv
Π,B(k)

(

1 −
(

1

2
+ δ

)k)

≥ Advpriv
Π,B(k) −

(
1

2
+ δ

)k

,

where the second-to-last line uses that B is δ-balanced. The claimed running-time of D

is easy to verify. It remains to argue that D ∈ DM∗[log(1/(1/2−δ))]. Let MD,i be the mes-
sage distribution sampled by D1 on input b = i for i ∈ {0,1} and similarly let MC,i be
the message distribution sampled by C1 when t = i in its output for i ∈ {0,1}. Observe
that MC,0 and MC,1 are complementary log(1/(1/2 − δ))-induced distributions of the
message distribution of C, with corresponding events t = 0 and t = 1, respectively.
Furthermore, we have MD,i | BAD = MC,i for i ∈ {0,1}. Since Pr[BAD] ≤ (1/2 + δ)k ,
it follows that MD,i | BAD is statistically 2−Ω(k)-close to MC,i for i ∈ {0,1}, which
concludes the proof.19 �

Theorem 3.1 follows by combining Propositions A.1, A.2, and A.3 with δ = 1/4. �

Appendix B. Comparison to Other Computational Entropy Leakage Lemmas

Previous works have considered the question of measuring conditional computational
entropy under a wide array of applications and settings. Dziembowski and Pietrzak [25]
show that the output of a pseudorandom generator still has entropy conditioned on func-
tions of the seed:

19 Note that as compared to [6] our approach avoids having to analyze the min-entropy of D, which is
more involved.
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Lemma B.1 [25, Lemma 3]. Let prg : {0,1}n → {0,1}ν and f : {0,1}n :→ {0,1}λ
(where 1 ≤ λ < n < ν) be any functions. If prg is a (εprg, s)-secure pseudorandom-
generator, then for any ε1, ε2,� > 0 satisfying εprg ≤ ε1ε2/2λ − 2−�, we have with
X ∼ Un,

Pr
y:=f (X)

[
HMetric∗

ε1,s
′

(
prg(X)|f (X) = y

) ≥ ν − �
] ≥ 1 − ε2 (B.1)

where s′ ≈ s.

Our results improve the parameters and simplify the exposition. Our result considers
any random variables X,Y (not just pseudorandom X) and gives simpler statements,
such as Theorem 3.8. To make the quantitative comparison, we present the following
alternative formulation of our result, in the style of [25, Lemma 3]:

Lemma B.2. Let X,Y be discrete random variables with |Y | ≤ 2λ and
HMetric∗

εent,s
(X) ≥ ν, then for any ε1, ε2,� > 0 satisfying εent ≤ ε1ε2/2λ and

2−� ≤ ε2/2λ,

Pr
y∈Y

[
HMetric∗

ε1,s
′ (X|Y = y) ≥ ν − �)

] ≥ 1 − ε2

where s′ ≈ s.

To compare the bounds, observe that we have removed ε1 from 2−�, because the
constraint εprg ≤ ε1ε2/2λ − 2−� implies that εprg ≤ ε1ε2/2λ and ε1ε2/2λ ≥ 2−�.

The question has also been considered by [51] in the language of the dense model
theorem. Their main result, restated in our language is:

Lemma B.3 [51, Theorem 1.3]. Let X,Y be discrete random variables. Then

HHILL
ε′,s′ (X|Y = y) ≥ HHILL

ε,s (X) − log 1/PY (y) (B.2)

where ε′ = Ω(ε/PY (y)), and s′ = s/poly(PY (y)/ε, log 1/PY (y)).

Note that the quantity loss is the same as in Lemma 3.2; however, the losses in the
circuit size and distinguishing advantage are different, because Lemma 3.2 separates the
conditioning step and the conversion back to HILL entropy. This separation allows us set
conversion parameters separately (which is needed when ε is smaller than 1/s). It also
allows paying for the conversion step only once in case of repeated leakage, enabling
the proof of a limited chain rule for repeated conditioning (see [29, Theorem 3.6]).

Recent work concurrent with ours [15,30] has shown results on information leak-
age when the starting distribution is already conditional. This is a significantly harder
as the auxiliary information may shape the original distribution or its condition. Both
works are able to achieve this “chain-rule” but must introduce significant restrictions.
Since these works are both average-case formulations, we first present an average case
formulation of Corollary 3.9:
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Corollary B.4. Let X,Y be discrete random variables over χ1, χ2, respectively. Then

HHILL
ε′,s′ (X|Y) ≥ HHILL

ε,s (X) − log |Y |

where ε′ = ε|Y | + 3
√

log |χ1|
s

, s′ = Ω( 3
√

s
log |χ1| ).

This corollary follows by Theorem 3.8, Theorem 2.9, and setting εHILL = 3
√

log |χ1|
s

.
Gentry and Wichs consider indistinguishability with auxiliary information in their

work on succinct argument systems [30, Lemma 3.1]. Their result is below (restated in
our language):

Lemma B.5 [30, Lemma 3.1]. Let X,Y,Z be discrete random variables with
H∞(Z) ≥ k and Y ranges over {0,1}λ. If ∀D ∈Drand,{0,1}

s , δD(X,Z) ≤ ε, then ∃Y ′ such

that ∀D̃ ∈Drand,{0,1}
s′ , δD̃((X,Y ), (Z,Y ′)) ≤ ε′ where ε′ = 2ε and s′ = s ·poly(ε/|Y |).

This lemma is related to entropy as follows: X has HILL entropy k, and it can be
said that, since (X,Y ) is indistinguishable from (Z,Y ′), that computational entropy of
X | Y is at least H̃∞(Z | Y ′), which is at least k − λ by Lemma 2.1. Note, however, that
this lemma requires a different definition of entropy from ours, in which the condition
itself may also be replaced. It is unclear the implications of this change and where it
would better or worse than conditional HILL entropy. The advantage of this lemma is
that it handles the case when X is already a conditional distribution (we can only handle
this when the conditional distribution decomposes “nicely” into distributions for each
value of the condition [29, Theorem 3.6]). The disadvantage, however, is that the lemma
inherently talks about the average case Y and not a single event y. For our application in
the current paper, we need to condition on a particular event y and not the distribution
of events.

Chung et al. in their work on memory delegation need indistinguishability in the
presence of a single bit of auxiliary information. They formulate the problem in the
asymptotic setting:

Lemma B.6 [15, Lemma 16]. Let k be a security parameter and n, l, t be any pa-
rameters such that n ≤ poly(k), l = O(log k), and t = ω(logk). Let (X,C) be a joint
distribution over {0,1}∗ × {0,1}∗ of poly(k) length. If HHILL(X|C) ≥ n w.r.t. sam-
plable distributions, then for any distribution B = B(X,C) over {0,1}l , we have

HHILL(X|C,B) ≥ n − t.

It is important to note that in this lemma, the “conditional HILL entropy” is differ-
ent from our notion: it means indistinguishability against distributions of worst-case
conditional min-entropy, whereas here we define conditional HILL entropy as indistin-
guishability against distributions of average min-entropy (see the precise definitions in
Sect. 2). In addition, this lemma imposes a samplability condition that we do not.
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Appendix C. Support Preserving Extension to Theorem 2.5

Theorem C.1. Let X be a discrete distribution over a s finite set χ . For every ε,
εHILL > 0, ε′ ≥ ε + εHILL, k and s, if HMetric∗

ε,s (X) ≥ k then HHILL
ε′,sHILL(X) ≥ k where

sHILL = Ω(ε2
HILLs/ log |χ |). The reduction is support preserving.20

Proof. This proof closely follows the proof from [3, Theorem 5.2]. For a set X (such
as a set of distinguishers or distributions with a certain property) we will use X̂ to rep-
resent the set of distributions over that set. A game is simply a function from finite sets
A,B to an outcome space R, that is, g : A×B → R. We similarly define ĝ : Â × B̂ → R

as a function from distributions, a ← Â, b ← B̂ to outcome space R.
We let ζ be the support of random variable Z that is indistinguishable from X.

The proof proceeds similarly to the case where ζ = χ [3, Theorem 5.2]. We will as-
sume that HHILL

ε′,sHILL(X) < k and seek to show that HMetric∗
ε,s (X) < k. Assume that

HHILL
ε′,sHILL(X) < k. That is, ∀Z′′ ⊂ ζ with H∞(Z′′) ≥ k there exists D ∈ Ddet,{0,1}

sHILL such

that δD(X,Z′′) ≥ ε′. Recall that the definition for HHILL is for randomized {0,1} dis-
tinguishers, however as noted after Definition 2.3, drawing from deterministic {0,1}
distinguishers is essentially equivalent (by selecting the “best” randomness). We begin
by showing a change of quantifiers similar to [3, Lemma 5.3]:

Claim C.2. Let X be a distribution over χ . Let C be a class that is closed under
complement. If for every Z′′ ⊂ ζ with H∞(Z′′) ≥ k there exists a D ∈ C such that
δD(X,Z′′) ≥ ε′, then there is a distribution D̂ over C such that for every Z′ ⊂ ζ with
H∞(Z′) ≥ k

E

D←D̂

[
D(X) − D

(
Z′)] ≥ ε′.

Proof. We use the minimax theorem of [62]:

Theorem C.3 ([62]). For every game g there is a value v such that

max
â∈Â

min
b∈B

ĝ(â, b) = v = min
b̂∈B̂

max
a∈A

ĝ(a, b̂).

We will use the minimax theorem to change the order of quantifiers. We de-

fine our game as follows: let A
def= C, let B

def= {Z′′|H∞(Z′′) ≥ k,Z′′ ⊆ ζ } and let

g(D,Z)
def= [D(X) − D(Z)]. The convex combination of distributions with min-

entropy k has min-entropy at least k (this is easily seen by considering the max-
imum probability event), thus ∀b̂ ∈ B̂,H∞(b̂) ≥ k. Thus, both B and B̂ are the

20 “Support preserving” here means the following. The definition of Metric∗ entropy of X calls for

an indistinguishable from X distribution ZD with true entropy for every distinguisher D ∈ Ddet,[0,1]
s . The

definition of HILL entropy of X calls for a single distribution Z that is indistinguishable from X. Support-
preserving means that support of Z is no greater than the union of supports of ZD .
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sets of all distributions with min-entropy at least k. Then by assumption, ∀Z′′ ∈ B̂,

∃D ∈ A such that |D(X) − D(Z′′)| ≥ ε′. Because C is closed under comple-
ment, there must ∃D ∈ A such that D(X) − D(Z′′) ≥ ε′. Now we know that
min

b̂∈B̂
maxa∈A ĝ(a, b̂) = minZ′′∈B maxD∈C(D(X) − D(Z′′)) ≥ ε′. Then by Theo-

rem C.3: max
â∈Â

minb∈B ĝ(â, b) ≥ ε′. That is, there is a distribution D̂ over the class
of distinguishers C such that for every Z′′ ∈ B , ED←D̂

D(X) − D(Z′′) ≥ ε′. This com-
pletes the proof of the claim. �

Our remaining task is to approximate a distribution of distinguishers D̂ by several dis-
tinguishers in its support where the resulting distinguisher still has advantage at least ε.
Define n = log |χ | and choose t = 8n/ε2

HILL samples D1, . . . ,Dt from D̂ and define

D′
D1,...,Dt

(x) = 1/t

t∑

i=1

Di(x).

Then by Chernoff’s inequality

∀x ∈ χ, Pr
D1,...,Dt←D̂

[∣
∣
∣D′

D1,...,Dt
(x) − E

D←D̂

(x)

∣
∣
∣ ≥ εHILL/2

]
< 2−2n. (C.1)

Claim C.4. There exists D1, . . . ,Dt such that

∀x,

∣
∣
∣D′

D1,...,Dt
(x) − E

D←D̂

D(x)

∣
∣
∣ ≤ εHILL/2.

Proof. Suppose not, that is

∀D1, . . . ,Dt ,∃x′ ∈ χ,

∣
∣
∣D′

D1,...,Dt
− E

D←D̂

D(x)

∣
∣
∣ > εHILL/2.

For a particular, D1, . . . ,Dt we denote x′ as x′
D1,...,Dt

. This implies that,

Pr
D1,...,Dt ,x

[∣
∣
∣D′

D1,...,Dt
(x) − E

D←D̂

(x)

∣
∣
∣ > εHILL/2

]

≥ Pr
D1,...,Dt

[∣
∣
∣D′

D1,...,Dt
(x) − E

D←D̂

(x)

∣
∣
∣ > εHILL/2|X = x′

D1,...,Dt

]
Pr

[
X = x′

D1,...,Dt

]

≥ Pr
[
X = x′

D1,...,Dt

]

≥ 1/|χ | = 2−n.

However, this implies that ∃x ∈ χ such that

Pr
D1,...,Dt

[∣
∣
∣D′

D1,...,Dt
(x) − E

D←D̂

(x)

∣
∣
∣ > εHILL/2

]
≥ 1/22n

(since there are 2n possible x). This is a contradiction of Equation (C.1). �
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Fix one such D1, . . . ,Dt . Because it holds for every x, it also holds for all dis-
tributions, and thus for the distribution X, |D′

D1,...,Dt
(X) −ED←D̂

D(X)| ≤ εHILL/2,
and for every distribution Z′ ⊂ ζ , |D′

D1,...,Dt
(Z′) −ED←D̂

D(Z′)| ≤ εHILL/2. There-
fore, subtracting these inequalities from the inequality of Claim C.2, and recalling that
|a| ≥ |a + b + c| − |b| − |c|, we get

D′
D1,...,Dt

(X) − D′
D1,...,Dt

(
Z′)

≥
∣
∣
∣ E

D←D̂

[
D(X) − D

(
Z′)]

∣
∣
∣ −

∣
∣
∣D′

D1,...,Dt
(X) − E

D←D̂

D(X)

∣
∣
∣

−
∣
∣
∣D′

D1,...,Dt

(
Z′) − E

D←D̂

D
(
Z′)

∣
∣
∣

≥ ε′ − εHILL/2 − εHILL/2

≥ ε.

Lastly, D′
D1,...,Dt

is of size

O
(
log |χ |sHILL/ε2

HILL

) = s.

This completes the proof. �

Appendix D. Proof of Lemma 3.10

For random variables X and Y , we define D(X,Y ) = ∑
x(PX(x) − PY (x))2. Then,

writing Ek for the expectation over the choice of k according to the distribution of K , it
follows that

�
((

K,f
(
H(K,X)

))
,
(
K,f (U)

)) = E
k

[
�

(
f

(
H(k,X)

)
, f (U)

)]

≤ 1

2
E
k

[√|S|t · D(
f

(
H(k,X)

)
, f (U)

)]

≤ 1

2

√
|S|t ·E

k

[
D

(
f

(
H(k,X)

))
, f (U))

]

where the first inequality is by Cauchy–Schwarz and the second inequality is due to
Jensen’s inequality. We will show that

E
k

[
D

(
f

(
H(k,X)

)
, f (U)

)] ≤ t22−μ + 6t22−r + 3δ,

which completes the proof (after rearranging and plugging in δ = t2/|D|). Write Y =
H(k,X) for an arbitrary but fixed k. Then

D
(
f (Y), f (U)

)
) =

∑

s

(
Pf (Y)(s) − Pf (U)(s)

)2

=
∑

s

Pf (Y)(s)2 − 2
∑

s

Pf (Y)(s)Pf (U)(s) + Col
(
f (U)

)
.
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For a set Z ⊆ Rt (here exponentiation denotes Cartesian product), define δr,Z to be 1 if
r ∈ Z and else 0. For s ∈ St we can write Pf (Y)(s) = ∑

x PX(x)δH(k,x),f −1(s) and thus

∑

s

Pf (Y)(s)2 =
∑

s

(∑

x

PX(x)δH(k,x),f −1(s)

)(∑

x′
PX

(
x′)δH(k,x′),f −1(s)

)

=
∑

s,x,x′
PX(x)PX

(
x′)δH(k,x),f −1(s)δH(k,x′),f −1(s),

so that

E
k

[∑

s

Pf (Y)(s)2
]

=
∑

s

∑

x,x′
PX(x)PX

(
x′)

E
k
[δH(k,x),f −1(s)δH(k,x′),f −1(s)]

=
∑

s

∑

x,x′
∃i,j, x[i]=x′[j ]

PX(x)PX
(
x′)

+
∑

s

∑

x,x′
∀i,j, x[i]�=x′[j ]

PX(x)PX
(
x′)

E
k
[δH(k,x),f −1(s)δH(k,x′),f −1(s)]

≤ t22−μ + Col
(
f (U)

) + t22−r + δ

where the first term is by a union bound over all 1 ≤ i, j ≤ t and for the remaining terms
we use the 2t-wise δ-dependence of H and note that

Ek[δH(k,x),f −1(s)δH(k,x′),f −1(s)] = Pr
[
f

(
H(K,x)

) = f
(
H

(
K,x′))].

Similarly,

∑

s

Pf (Y)(s)Pf (U)(s) =
∑

s

(∑

x

PX(x)δH(k,x),f −1(s)

)(
1

|R|
∑

u

δu,f −1(s)

)

= 1

|R|
∑

s

∑

u,x

PX(x)δH(k,x),f −1(s)δu,f −1(s)

so that

E
k

[∑

s

Pf (Y)(s)Pf (U)(s)
]

= 1

|R|
∑

s

∑

u,x

PX(x) E
k
[δH(k,x),f −1(s)δu,f −1(s)]

≥ Col
(
f (U)

) − δ

using δ-almost t-wise independence of H. By combining the above, it follows that

E
k

[
D

(
f (Y), f (U)

)] ≤ t22−μ + 3δ

which was to be shown. �
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