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Abstract. Anon-interactive zero-knowledge (NIZK) proof can be used to demonstrate
the truth of a statement without revealing anything else. It has been shown under stan-
dard cryptographic assumptions that NIZK proofs of membership exist for all languages
in NP. While there is evidence that such proofs cannot be much shorter than the corre-
spondingmembershipwitnesses, all knownNIZKproofs for NP languages are consider-
ably longer than the witnesses. Soon after Gentry’s construction of fully homomorphic
encryption, several groups independently contemplated the use of hybrid encryption
to optimize the size of NIZK proofs and discussed this idea within the cryptographic
community. This article formally explores this idea of using fully homomorphic hybrid
encryption to optimize NIZK proofs and other related cryptographic primitives. We
investigate the question of minimizing the communication overhead of NIZK proofs for
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NP and show that if fully homomorphic encryption exists then it is possible to get proofs
that are roughly of the same size as the witnesses. Our technique consists in construct-
ing a fully homomorphic hybrid encryption scheme with ciphertext size |m| + poly(k),
where m is the plaintext and k is the security parameter. Encrypting the witness for an
NP-statement allows us to evaluate the NP-relation in a communication-efficient man-
ner.We apply this technique to both standard non-interactive zero-knowledge proofs and
to universally composable non-interactive zero-knowledge proofs. The technique can
also be applied outside the realm of non-interactive zero-knowledge proofs, for instance
to get witness-size interactive zero-knowledge proofs in the plain model without any
setup or to minimize the communication in secure computation protocols.

Keywords. Non-interactive zero-knowledge proofs, Fully homomorphic encryption,
Hybrid encryption, Secure function evaluation, Minimizing communication.

1. Introduction

Non-interactive zero-knowledge (NIZK) proof systems [2] yield proofs that can convince
others about the truth of a statement without revealing anything but this truth. We will
consider statements of the form x ∈ L , where L can be an arbitrary language in NP. We
require that the NIZK proof be complete, sound, and zero-knowledge.

Completeness:Given a witnessw for the statement x ∈ L there is an efficient algorithm
to construct a convincing proof π .

Soundness: A malicious prover cannot convince the verifier that a false statement is
true.
We focus on unconditional soundness, where even an adversary with infinite com-
puting power cannot create a convincing proof π for x /∈ L .

Zero-knowledge: A malicious verifier learns nothing but the truth of the statement. In
particular, the proof π does not reveal the witness w that the prover used when
constructing the proof π .

Only languages in BPP have NIZK proofs in the plain model without any setup [19,20,
36]. Blum, Feldman and Micali [2] therefore suggested the common reference string
model, where the prover and the verifier have access to a bit-string that is assumed to
have been generated honestly according to a specific distribution. The common reference
string can for instance be generated by a trusted third party or by a set of parties executing
a multi-party computation protocol. Groth and Ostrovsky [25] has as an alternative
suggested NIZK proofs in themulti-stringmodel, wheremany parties generate a random
string and the security of theNIZKproof relies on amajority of the strings being honestly
generated.

1.1. Related Work

NIZK proofs have many applications, ranging from early chosen-ciphertext secure
public-key encryption schemes [13] to advanced signature schemes [7,9]. There is there-
fore a significant body of research dealing with NIZK proofs.
Blum, Feldman and Micali [2] proposed an NIZK proof for all of NP based on a

number theoretic assumption related to factoring. Feige, Lapidot and Shamir [14] gave
an NIZK proof for all of NP based on the existence of trapdoor permutations.
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While these results established the existence ofNIZKproofs based on general assump-
tions, other works have aimed at defining stronger security properties such as non-
malleability [39], robustness [11] and universal composability [8,27].
There has been significant progress in reducing the complexity of NIZK proofs based

on general assumptions [10,12,24,32] and Groth, Ostrovsky and Sahai [23,26,27] have
constructed practical NIZK proofs using techniques from pairing-based cryptography.
Recently Gentry [15,16] proposed a fully homomorphic encryption scheme and

demonstrated that fully homomorphic encryption can be used to construct NIZK proofs
whose size depends only on the size of the witness and on the security parameter, but
not on the size of the circuit used to verify the witness. However, the ratio between the
proof size and the witness size in this construction grows polynomially with the security
parameter.
Soon after Gentry’s construction of fully homomorphic encryption, several groups

independently contemplated the use of hybrid encryption to optimize the size of NIZK
proofs and other related cryptographic primitives (e.g. [29,37]). This article formally
explores the idea of using fully homomorphic encryption to minimize communication.

1.2. Our Contribution

We construct NIZK proofs for arbitrary NP-languages in which the size of the common
reference string is poly(k) and the size of the proof is essentially the same as the witness,
i.e., |π | = |w|+poly(k)where k is the security parameter. This is essentially the best one
could hope for given our current knowledge on the complexity of decidingmembership of
NP-languages. Indeed, any interactive proof system for NP in which the communication
from the prover to the verifier is substantially smaller than the witness size would imply
a breakthrough in complexity theory [18,21].
In Table 1, we compare our NIZK proofs with the current state of the art NIZK proofs

for Circuit Satisfiability based on, respectively, trapdoor permutations [24] and specific
cryptographic assumptions [15,24,27]. All of these NIZK proofs are publicly verifiable
given the common reference string, the statement and the proof.
Our result is quite general and applies not only to standard NIZK proofs, but also to

NIZK proofs with stronger security properties such as simulation soundness and non-
malleability [39] as well as universal composability [8]. Universally composable NIZK
proofs have the property that they retain their security properties in any environment,
even an environment where arbitrary protocols are running concurrently with the NIZK
proof. We propose a universally composable NIZK proof that is secure against adaptive

Table 1. Comparison of NIZK proofs with security parameter k, circuit size |C | and witness size |w|.
CRS size Proof size Assumption

Groth [24] |C | · poly(k) |C | · poly(k) Trapdoor perm.
GOS [27] poly(k) |C | · poly(k) Pairing-based
Groth [24] |C | · polylog(k) + poly(k) |C | · polylog(k) + poly(k) Naccache-Stern
Gentry [15] poly(k) |w| · poly(k) FHE and NIZK
This work poly(k) |w| + poly(k) FHE and NIZK
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malicious adversaries assuming provers are able to erase data from their systems after
constructing their proofs. The universally composable NIZK proofs are also |w| +
poly(k) bits long.

1.3. Our Technique: Fully Homomorphic Hybrid Encryption

Our technique is based on a hybrid form of fully homomorphic encryption. A fully
homomorphic encryption scheme allows taking two ciphertexts and computing a new
ciphertext containing the sum or the product of their plaintexts even if the secret key
is unknown. More generally, we can take t ciphertexts and compute a new ciphertext
containing the evaluation of an arbitrary circuit on their plaintexts. Following the break-
through work of Gentry [16], several subsequent works improved the efficiency of fully
homomorphic encryption and the assumptions on which it can be based [3–6,40–42].

There are many applications of fully homomorphic encryption schemes. It is not
known whether they imply the existence of NIZK proofs though. However, if NIZK
proofs do exist then fully homomorphic encryption can be used to reduce the size of
the proofs. Gentry [15] showed that using fully homomorphic encryption it is possible
to get NIZK proofs where the proof size is proportional to the witness size. If we are
looking at the satisfiability of a large circuit with a few input wires, i.e., a small witness
for satisfiability, this is a significant improvement over other NIZK proofs that tend to
grow proportionally to the circuit size.
Gentry proposed to encrypt every bit of thewitness using a fully homomorphic encryp-

tion scheme. Using the operations of the fully homomorphic encryption scheme it is pos-
sible to evaluate the circuit on the plaintexts to get a ciphertext that contains the output.
Using an NIZK proof the prover then constructs a proof for the public key being valid,
the encrypted inputs being valid ciphertexts and the output ciphertext being an encryp-
tion of 1. Since the proof contains |w| ciphertexts and |w| proofs of their correctness the
total complexity is |w| · poly(k).

In this paper, we present a simple modification of Gentry’s NIZK proof that decreases
the proof size to |w| + poly(k). The idea is to construct a fully homomorphic hybrid
encryption scheme. We first encrypt the witness w using a symmetric key encryption
scheme, for instance using a one-time pad with a pseudorandom string, and then use
the fully homomorphic encryption scheme both to decrypt the symmetrically encrypted
witness and then evaluate the circuit on the witness.
More precisely, the prover will given a witness w for the satisfiability of a circuit C

construct (u, pk, s̄), where u is an encryption ofw using a symmetric encryption scheme
and pk is a public key for the fully homomorphic encryption scheme and s̄ is a fully
homomorphic encryption of the secret key s used to construct u. Now the prover gives
an NIZK proof for pk being a valid public key, s̄ being a valid encryption of a key s and
that after decrypting u using s and evaluating C on the resulting plaintext the output is 1.
The length of u is |w| and the polynomially many other components are of size poly(k)
each so the total size of the proof is |w| + poly(k).

Fully homomorphic hybrid encryption is applicable in many situations. We apply it
to non-interactive zero-knowledge proofs here, but one could for instance also use it in a
similar way to get interactive zero-knowledge proofs in the plain model with a commu-
nication complexity of |w| + poly(k). This compares favorably with the best previous
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communication-efficient interactive zero-knowledge proofs [22,30,31], in which the
communication complexity either grows linearly with the circuit size or is polynomial
in the witness size and restricted to low-depth circuits. Following a preliminary version
of our work, a similar use of fully homomorphic hybrid encryption has been used in the
context of computationally private information retrieval [4,33].
An additional application of fully homomorphic hybrid encryption is to minimizing

communication in general secure computation. For simplicity, we address here the case
of secure two-party computation in the semi-honest model (i.e., when the parties are
honest-but-curious). Concretely, consider the case where Alice and Bob hold inputs x
and y respectively and want to compute f (x, y) for a given polynomial time computable
function f . Using a fully homomorphic hybrid encryption scheme, there is a simple 2-
party protocol to accomplish this task that is secure against static honest-but-curious
adversaries: Alice encrypts x under her own key and Bob using the fully homomorphic
property evaluates the function f (·, y) on the encrypted x , which Alice can then decrypt.
The communication of this protocol is |x | + poly(k) · | f (x, y)| bits, which is optimal
for functions f (x, y) with a small output, such as the function corresponding to Yao’s
millionaires problem [43]. Using specific fully homomorphic encryption schemes [6,33]
the communication can be reduced further to be |x | + | f (x, y)| · (1 + o(1)) + poly(k),
which is useful when the output is large. We note that this approach can also be applied
in the multi-party case via the use of threshold fully homomorphic encryption [16],
and that security against malicious parties can be obtained without increasing the
asymptotic communication complexity by using sublinear-communication arguments
(cf. [34]).

2. Preliminaries

Given two functions f, g : N → [0, 1] we write f (k) ≈ g(k) when | f (k) − g(k)| =
O(k−c) for every constant c > 0. We say that f is negligible if f (k) ≈ 0 and that f is
overwhelming if f (k) ≈ 1.
We write y = A(x; r) when the algorithm A on input x and randomness r , outputs

y. We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from the set S.
We will now define non-interactive zero-knowledge proofs and describe three tools

that will be used in our constructions of minimal size NIZK proofs, namely fully homo-
morphic encryption schemes, pseudorandom generators and strong one-time signatures.

2.1. Fully Homomorphic Public-Key Encryption

A fully homomorphic bit-encryption scheme enables computation on encrypted bits.
There is an evaluation algorithm Eval that takes as input an arbitrary Boolean circuit
and an appropriate number of ciphertexts and outputs a new ciphertext containing the
output of the circuit evaluated on the plaintexts.
The encryption scheme consists of four algorithms (KFHE, E, D,Eval). The proba-

bilistic polynomial time key generation algorithm KFHE on input 1k (and randomness
ρ ← {0, 1}�KFHE (k)) outputs a public key pk and a decryption key dk. The probabilis-
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tic polynomial time encryption algorithm E given a public key pk and a bit b (and
randomness r ← {0, 1}�E (k)) outputs a ciphertext c. The deterministic polynomial time
decryption algorithm D given a public key pk and a ciphertext c returns a bit b or an error
symbol ⊥. Finally, the deterministic polynomial time evaluation algorithm Eval takes a
public key pk, a Boolean circuitC and t ciphertexts as input and returns a ciphertext. We
require that the encryption scheme be compact, which means that there is a polynomial
upper bound �Eval(k) on the size of the ciphertexts output by Eval, which is independent
of the size of the circuit C .
We will often encrypt a bit-string one bit at a time. We therefore define Epk(m)

to be the tuple (Epk(m1), . . . , Epk(m|m|)), where m1, . . . ,m|m| are the bits of
m. When being explicit about the randomness used, we define Epk(m; r̄) =
(Epk(m1; r1), . . . , Epk(m|m|; r|m|)) for r̄ = (r1, . . . , r|m|) ∈ ({0, 1}�E (k))|m|.

The properties we need from the fully homomorphic encryption scheme are correct-
ness and indistinguishability under chosen plaintext attack as defined below.

Definition 1 (Correctness) (KFHE, E, D,Eval) is (perfectly) correct if for all all inputs
m ∈ {0, 1}∗ and all Boolean circuits C with |m| input bits

Pr
[
(pk, dk) ← KFHE(1k); m̄ ← Epk(m); v = Evalpk(C; m̄) : Ddk(v) = C(m)

]
= 1.

Definition 2 (IND-CPA security) (KFHE, E, D,Eval) is indistinguishable under cho-
sen plaintext attack (IND-CPA secure) if for all non-uniform polynomial time A

Pr
[
(pk, dk) ← KFHE(1k); b ← {0, 1}; c ← Epk(b) : A(c) = b

]
≈ 1

2
.

Please note that by a standard hybrid argument the above security definition implies
IND-CPA security also when using Epk for a bit-by-bit encryption of an arbitrary
polynomial-size message m.

2.2. Pseudorandom Generators

A length-flexible pseudorandom generator is a deterministic polynomial time algorithm
G that on input (s, �), where s ∈ {0, 1}k , returns an �-bit string. Pseudorandomness
means that G’s output looks random, which we now define formally.

Definition 3 (Pseudorandom generator) G is a pseudorandom generator if for all non-
uniform polynomial time A and all polynomially bounded �

Pr
[
s ← {0, 1}k; y = G(s, �(k)) : A(y) = 1

]
≈ Pr

[
y ← {0, 1}�(k) : A(y) = 1

]
.

Length-flexible pseudorandom generators can be constructed from one-way func-
tions [28]. The existence of fully homomorphic encryption therefore implies the exis-
tence of length-flexible pseudorandom generators.
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2.3. Strong One-Time Signatures

A strong one-time signature scheme consists of three algorithms (KSIG,Sign,Vfy). The
key generation algorithm KSIG is a probabilistic polynomial time algorithm that on input
1k returns a verification key vk and a signing key sk. The signing algorithm Sign is a
probabilistic polynomial time algorithm that on input sk and an arbitrary message m
returns a signature sig. The signature verification algorithm Vfy is a deterministic poly-
nomial time algorithm that given a verification key vk, a message m and a signature sig
returns 1 (acceptance) or 0 (rejection).We require that the scheme be correct and strongly
existentially unforgeable under a single chosen message attack, where “strongly” means
that the adversary is not even allowed to obtain a different signature on the samemessage.
We give the formal definition below.

Definition 4 (Correctness) (KSIG,Sign,Vfy) is (perfectly) correct if for all m ∈
{0, 1}∗

Pr
[
(vk, sk) ← KSIG(1k); sig ← Signsk(m) : Vfyvk(m, sig) = 1

]
= 1.

Definition 5 (Strong existential unforgeability under one-time chosen message attack)
(KSIG,Sign,Vfy) is strongly existentially unforgeable under a one-time chosenmessage
attack if for all non-uniform polynomial time stateful interactive A

Pr
[
(vk, sk) ← KSIG(1k);m ← A(vk); sig ← Signsk(m); (m′, sig′) ← A(sig) :

(m′, sig′) 	= (m, sig) ∧ Vfyvk(m
′, sig′) = 1

] ≈ 0.

We will use a strong one-time signature scheme that has fixed-length signatures, i.e.,
where there is a polynomial upper bound �SIG(k) on the length of the signatures.
Fixed-length strong one-time signatures can be constructed from one-way functions

(from universal one-way hash-functions [35] and Lamport signatures used in combina-
tion with Merkle trees [38]). The existence of fully homomorphic encryption therefore
implies the existence of fixed-length strong one-time signatures.

2.4. Non-Interactive Zero-Knowledge Proofs

Let R be a polynomially bounded, polynomial time computable binary relation. For
pairs (x, w) ∈ R we call x the statement and w the witness. Let L be the NP-language
L = { x : ∃w (x, w) ∈ R }. We write R(x, w) ∈ {0, 1} (0 is no, 1 is yes) for the output
of the polynomial time decision algorithm for R on input (x, w).
We will construct NIZK proofs that have almost the same size as the witnesses.

The proofs therefore leak the length of the witnesses, so we will assume that for all
x ∈ L of the same length, all witnesses have the same length which can be efficiently
computed given 1|x |. There is only little loss of generality here, since by definition of
NP all witnesses have length polynomial in |x | and an appropriate amount of padding
could be used to ensure that all witnesses have the same length. We note that most
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popular NP-complete languages such as SAT, Circuit Satisfiability and Hamiltonicity
have statements that uniquely determine the length of potential witnesses.
An efficient-prover non-interactive zero-knowledge proof for the relation R consists of

three probabilistic polynomial time algorithms (K , P, V ). K is the common reference
string generator that takes the security parameter written in unary 1k and outputs a
common reference string σ .1 P is the prover algorithm that takes as input the common
reference string σ , a statement x and a witness w such that (x, w) ∈ R and outputs a
proof π . V is the verifier algorithm that on a common reference string σ , a statement
x and a proof π outputs 0 or 1. We interpret a verifier output of 0 as a rejection of the
proof and a verifier output of 1 as an acceptance of the proof.

Definition 6 (K , P, V ) is a non-interactive zero-knowledge proof for R if it is com-
plete, sound and zero-knowledge as described below.

Perfect completeness.Completeness means that a prover with a witness can convince
the verifier. For all adversaries A

Pr
[
σ ← K (1k); (x, w) ← A(σ );π ← P(σ, x, w) : V (σ, x, π)=1 if (x, w) ∈ R

]
=1.

Statistical soundness. Soundness means that it is impossible to convince the verifier
of a false statement. For all adversaries A

Pr
[
σ ← K (1k); (x, π) ← A(σ ) : x /∈ L and V (σ, x, π) = 1

]
≈ 0.

If the probability is exactly 0, we say (K , P, V ) is perfectly sound.
Computational zero-knowledge. (K , P, V ) is zero-knowledge if it is possible to
simulate the proof of a true statement without knowing the witness. Formally, we require
the existence of a probabilistic polynomial time simulator S = (S1, S2). S1 outputs a
simulated common reference stringσ and a simulation trapdoor τ . S2 takes the simulation
trapdoor and a statement as input and produces a simulated proof π . We require for all
non-uniform polynomial time adversaries A

Pr
[
σ ← K (1k) : AP(·,·)(σ ) = 1

]
≈ Pr

[
(σ, τ ) ← S1(1

k) : AS(·,·)(σ ) = 1
]
,

where P(·, ·) on input (x, w) ∈ R returns π ← P(σ, x, w) and S(·, ·) on input (x, w) ∈
R returns π ← S2(τ, x).

3. Minimal NIZK Proofs from Fully Homomorphic Encryption

We will now construct an NIZK proof system for an arbitrary NP-relation R. The
common reference string has length poly(k) and the proof for a statement x has size
|w| + poly(k), where |w| is the size of witnesses for x .

1Our constructions can be instantiated with a uniformly distributed σ , but other distributions are useful
for broadening the class of intractability assumptions on which our results can be based.
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Fig. 1. NIZK proof system for R.

As explained in the introduction, the idea in the proof system is to use a pseudorandom
one-time pad to encrypt the witness as u = w ⊕ G(s, |w|). This ciphertext has length
|w|. Using a fully homomorphic encryption scheme the prover encrypts the seed s for
the pseudorandom one-time pad. Both the prover and the verifier can use the evaluation
algorithm to compute a fully homomorphic encryption of R(x, u ⊕ G(s, |w|)). The
prover gives an NIZK proof for the key for the fully homomorphic encryption scheme
having been correctly generated, that a seed s has been correctly encrypted and that
the resulting encryption of R(x, u ⊕ G(s, |w|)) decrypts to 1. The fully homomorphic
encryption part and the NIZK proof have size polynomial in k, independently of the
sizes of |w| or |x |. The total size of the proof is therefore |w| + poly(k).

In order to make this more precise, define given a relation R and a pseudorandom
generatorG the deterministic polynomial time computable function f that takes as input
the security parameter k, a statement x and a string u of length |w| and outputs a Boolean
circuitCx,u with k input wires such thatCx,u(·) = R(x, u⊕G(·, |w|)). Define also given
a fully homomorphic encryption scheme (KFHE, E, D,Eval) the relation

RF = {((pk, s̄, v), (ρ, s, r̄)) : ρ ∈ {0, 1}�KFHE (k) ∧ (pk, dk)

= KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}�E (k))|s| ∧ s̄

= Epk(s; r̄) ∧ Ddk(v) = 1}.

Let (K F , PF , V F ) be an NIZK proof system for RF with zero-knowledge simulator
(SF1 , SF2 ). We can now give the detailed specification of the NIZK proof for R in Fig. 1.

Theorem 7. (K , P, V ) described in Fig. 1 is an NIZK proof system for R.

proof. Perfect completeness follows from the perfect completeness of (K F , PF , V F )

and the perfect correctness of the fully homomorphic encryption scheme. The prover
generates a valid key pair (pk, dk), makes valid encryptions of the bits in s and by
the correctness of the fully homomorphic encryption scheme v decrypts to 1 provided
w = u ⊕ G(s, |w|) is a witness for x . The statement and witness provided to PF is
therefore valid and the completeness of (K F , PF , V F ) implies that the resulting proof
π is acceptable.
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Statistical soundness follows from the statistical soundness of (K F , PF , V F ) and
the correctness of the fully homomorphic encryption scheme. To see this, consider a
proof � = (pk, s̄, u, π) for a statement x . By the statistical soundness of π there exists
ρ such that (pk, dk) = KFHE(1k; ρ) and v = Evalpk(Cx,u, s̄) decrypts to 1 under dk.
Furthermore, the statistical soundness also guarantees that s̄ = Epk(s; r̄) for some seed s
and randomness r̄ . The perfect correctness of the fully homomorphic encryption scheme
now guarantees that w = u ⊕ G(s, |w|) is a witness for x ∈ L .
Computational zero-knowledge follows from the computational zero-knowledge of

(K F , PF , V F ), the pseudorandomness ofG and the IND-CPA security of (KFHE, E, D,

Eval). Figure 1 describes a zero-knowledge simulator (S1, S2) and we will now show
that for every non-uniform polynomial time A

Pr
[
σ ← K (1k) : AP(·,·)(σ ) = 1

]
≈ Pr

[
(σ, τ ) ← S1(1

k) : AS(·,·)(σ ) = 1
]
,

where P(·, ·) on input (x, w) ∈ R returns P(σ, x, w) and S(·, ·) on input (x, w) ∈ R
returns S2(τ, x).
Consider generating the common reference string using (σ, τ ) ← SF1 (1k) instead of

using K = K F and consider a modified oracle P ′(·, ·) that on (x, w) ∈ R returns a proof
� = (pk, s̄, u, π) generated as a normal prover P(σ, x, w) would do except instead of
computing π ← PF (σ, (pk, s̄, v), (ρ, s, r̄)) it simulates π ← SF

2 (τ, (pk, s̄, v)). By
the zero-knowledge property of (K F , PF , V F )we have for all non-uniform polynomial
time A

Pr
[
σ ← K (1k) : AP(·,·)(σ ) = 1

]
≈ Pr

[
(σ, τ ) ← SF1 (1k) : AP ′(·,·)(σ ) = 1

]
.

Let P ′′ be a modification of P ′ where the responses � = (pk, s̄, u, π) are generated
by computing s̄ ← Epk(0k). By the IND-CPA security of (KFHE, E, D,Eval) a hybrid
argument gives us that for all non-uniform polynomial time A

Pr
[
(σ, τ ) ← SF1 (1k) : AP ′(·,·)(σ ) = 1

]
≈ Pr

[
(σ, τ ) ← SF1 (1k) : AP ′′(·,·)(σ ) = 1

]
.

Finally, since S1 = SF1 we can view S as a modification of P ′′ where the responses
� = (pk, s̄, u, π) are generated such that u ← {0, 1}|w|. By the pseudorandomness of
G we have for all non-uniform polynomial time A

Pr
[
(σ, τ ) ← SF1 (1k) : AP ′′(·,·)(σ ) = 1

]
≈ Pr

[
(σ, τ ) ← S1(1

k) : AS(·,·)(σ ) = 1
]
.

We conclude that (S1, S2) is a zero-knowledge simulator for (K , P, V ). �

The transformation preserves many properties of the underlying NIZK proof
(K F , PF , V F ). If K F outputs uniformly random common reference strings, then so
does K . If the underlying NIZK proof has perfect soundness, then so does (K , P, V ).
If the underlying NIZK proof is a proof of knowledge, i.e., given a secret extraction key
ξ related to the common reference string it is possible to extract the witness, then so is
the resulting witness-length NIZK proof.
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4. Universally Composable NIZK Proofs from Fully Homomorphic Encryption

Wewill nowgive anNIZKproof system that is secure in the universal composability (UC)
framework [8]. Universally composable NIZK proofs are secure even in an environment
where arbitrary other protocols are running concurrently and automatically satisfy strong
security notions such as non-malleability. The universally composable NIZK proofs we
construct are communication-efficient consisting of |w| + poly(k) bits.

In the universal composability framework the secure execution of a protocol by a
set of parties is modeled by an ideal functionality. We say a protocol is secure if it is
equivalent to the parties handing all their inputs to an honest, trusted and incorruptible
ideal functionality, which computes the corresponding protocol outputs and hands them
to the parties. The parties send their protocol inputs and receive their protocol outputs
through a secure private authenticated channel to the ideal functionality, although we
allow for the adversary to schedule or block the arrival of outputs.
We are interested in securely realizing the ideal non-interactive zero-knowledge func-

tionality F R
NIZK described in Fig. 2. The session ids sid are used to distinguish different

invocations of the same functionality, which may for instance use different common
reference strings in the underlying implementations. The functionality captures com-
pleteness by allowing a prover to compute a proof π for a statement x if it has a witness
w such that (x, w) ∈ R and will always verify such proofs as being correct. The ideal
functionality captures an ideal form of soundness, since the only way a proof π for a
statement x can be accepted is if at some point a witnessw such that (x, w) ∈ R has been
provided to the ideal functionality. The ideal functionality also captures an ideal form
of zero-knowledge, since it leaks no information about the witnesses used by honest
provers.
Let us clarify what it means to securely realize F R

NIZK. We will construct a protocol
φNIZK to be run by parties P1, . . . , Pn that receive protocol inputs and make protocol
outputs to the environment in which they are operating. We model the environment
as a non-uniform polynomial time algorithm Z . The execution of the protocol itself is
attacked by a non-uniform polynomial time adversaryA that may communicate with the
environment and corrupt parties adaptively. When corrupting a party Pi the adversary

Fig. 2. Ideal NIZK proof functionality F R
NIZK.
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learns the present state of the party and takes control over the actions of Pi . We say the
protocol φNIZK securely realizes F R

NIZK if there is a simulator S that can simulate the
protocol execution on top of the ideal functionality F R

NIZK. The simulator S runs with
dummy parties P̃1, . . . , P̃n that instead of running φNIZK simply forward their inputs to
the ideal functionality F R

NIZK and return the responses from F R
NIZK to the environment.

The simulator S has the same ability asA to corrupt dummy parties and to communicate
with the environment, but does not have access to the internals of the ideal execution
taking place inside F R

NIZK. Formally, φNIZK securely realizes F R
NIZK if for any non-

uniform polynomial time adversaryA there is a non-uniform polynomial time simulator
S such that no non-uniformpolynomial time environment can distinguish betweenφNIZK
executed by real parties P1, . . . , Pn under attack byA andF R

NIZK being used by dummy
parties P̃1, . . . , P̃n in the simulation by S.
We will present a non-interactive protocol φNIZK that securely realizes F R

NIZK for an
arbitrary NP-relation R. A proof for a statement x with witnesses of size |w| consists
of |w| + poly(k) bits. We make two assumptions, namely that a fully homomorphic
encryption scheme (KFHE, E, D,Eval) exists and that F RF

NIZK can be securely realized
for the relation

RF = {((pk, s̄, v, vk), (ρ, s, r̄)) : ρ ∈ {0, 1}�KFHE (k) ∧ (pk, dk)

= KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}�E (k))|s| ∧ s̄

= Epk(s; r̄) ∧ Ddk(v) = 1}.

We have generalized RF slightly compared to the previous section by allowing state-
ments to have an arbitrary string vk in the end. This will be used later in combination
with one-time signatures to prevent proofs from being modified.
There are several examples of protocols securely realizingF R

NIZK for Circuit Satisfia-
bility in the common reference stringmodel [11,23,27] and in themulti-stringmodel [25]
under standard cryptographic assumptions, and a related functionality has been securely
realized in the registered public key model [1]. This implies that we already have many
candidates for a secure realization of F RF

NIZK. A useful feature of the UC framework is
the universal composition theorem [8] that says if a protocol φF ′

securely realizes an
ideal functionality F in an F ′-hybrid model where it can make calls to an ideal func-
tionality F ′, then for any protocol ψ securely realizing F ′ we have that φψ securely
realizes F . Our result therefore says that any secure realization of F RF

NIZK implies a
communication-efficient secure realization of F R

NIZK if fully homomorphic encryption
exists.
The construction of our universally composable NIZK proof is quite similar to the

NIZK proof in Sect. 3 except the prover will make a strong one-time signature on each
proof in order to prevent modifications of the proof and the protocol will call F RF

NIZK
instead of using a standard NIZK proof system (K F , PF , V F ) in the construction. We
therefore proceed directly to giving the details of the protocol in Fig. 3.

Theorem 8. The protocol φNIZK in Fig. 3 securely realizesF R
NIZK in theF RF

NIZK-hybrid
model.
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Fig. 3. Universally composable NIZK proof for R.

proof. We have to show that for any adversary A there is an ideal process adversary
S such that no environment Z has more than negligible advantage in distinguishing
between φNIZK running with P1, . . . , Pn andA and F R

NIZK running with dummy parties
P̃1, . . . , P̃n andS. Our proof strategy is to startwithφNIZK runningwithA andmodifying
the experiment in steps that the environment has negligible probability of distinguishing.
For this purpose we define three additional simulators SREAL,SEXT,SSIM that are used
in intermediate steps and have the ability to control F R

NIZK in various ways. Informally,
SREAL running with the ideal functionality F R

NIZK takes full control over F R
NIZK and

makes a perfect simulation of A running with φNIZK. SEXT modifies the simulation
SREAL such that whenever an NIZK proof that has not been created byF R

NIZK is verified
as being valid it extracts the corresponding witness and inputs it to F R

NIZK. SSIM and S
complete the security proof by enabling the simulation of honest parties making NIZK
proofs without knowledge of the witnesses.
We now give the details of the simulators and the security proof.

SREAL: SREAL learns the inputs to F R
NIZK and controls the outputs. It can therefore run

a perfect simulation of P1, . . . , Pn and A running φNIZK in the F RF

NIZK-hybrid
model.
SREAL simulates A and forwards all communication between the simulated
A and the environment Z . Whenever the simulated A corrupts a simulated
Pi ,SREAL corrupts P̃i and lets it interact with the environment as A instructs
the simulated Pi to interact with the environment.
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WhenSREAL receives (prove, Pi , sid, x) fromF R
NIZK it is because an honest P̃i

has input (prove, sid, x, w) with (x, w) ∈ R. Since SREAL knows the inputs to
F R
NIZK it can simulate Pi running φNIZK in the F RF

NIZK-hybrid model including

F RF

NIZK sending (prove, (pk, s̄, v, vk)) toA and on getting the answer (prf, π)

making the signature sig to complete the proof � = (pk, s̄, u, vk, π, sig).
SREAL answers (prf,�) to F R

NIZK.
On input (verify, Pj , sid, x,�) from F R

NIZK the simulator SREAL knows
that the honest party P̃j has queried (verify, sid, x,�) to F R

NIZK, where
(sid, x,�) has not been stored before and hence not been created by an
honest party. SREAL simulates Pj running the verification protocol on input
(verify, sid, x,�). The simulator forces F R

NIZK to return the resulting answer
(verification, sid, x,�, b) and stores (sid, x,�) in F R

NIZK if b = 1.

The simulation by SREAL is exactly like running φNIZK in the F RF

NIZK-hybrid
model, except for the fact that a proof � for a statement x output by an hon-
est party P̃i is guaranteed to be accepted in the verification phase and once a
proof � for a statement x is accepted, it will always be accepted by F R

NIZK.
However, if we look at a real execution of φNIZK we see that the correctness
of the signature scheme, the correctness of the fully homomorphic encryption
scheme and the properties ofF RF

NIZK guarantees that proofs� created by honest
parties Pi are accepted and also that accepted proofs will always be accepted
again. To the environment, a real execution of φNIZK in theF RF

NIZK-hybrid model
with adversary A is perfectly indistinguishable from the simulation by SREAL
running with F R

NIZK.
SEXT: SEXT runs like SREAL when proofs are constructed, but changes the way proofs

are verified. As SREAL it simulates Pj getting input (verify, sid, x,�) in the
execution of φNIZK, but if the answer is (verification, sid, x,�, 1) then it
extracts a witness w such that (x, w) ∈ R and aborts the simulation if the
extraction fails.
More precisely, on input (verify, Pj , sid, x,�) fromF R

NIZK the simulatorSEXT
simulates the honest Pj getting input (verify, sid, x,�) in φNIZK. If Pj out-
puts (verification, sid, x,�, 0) then SEXT returns (witness,⊥) to F R

NIZK and
forwards the resulting (verification, sid, x,�, 0) message to P̃j . On the other
hand, if Pj outputs (verification, sid, x,�, 1) then SEXT will try to extract a
witness w such that (x, w) ∈ R, return (witness, w) to F R

NIZK and send the
resulting (verification, sid, x,�, 1) message to P̃j .
SEXT parses � = (pk, s̄, u, vk, π, sig). We only need to extract a witness for
�, when the signature sig on (x, pk, s̄, u, vk, π) is valid, because otherwise the
protocol φNIZK will reject the proof. Part of the verification protocol consists in
queryingF RF

NIZK on (verify, sid, (pk, s̄, v, vk), π), where v = Evalpk(Cx,u, s̄).

The simulated F RF

NIZK will only return (verification, sid, x, π, 1) if an honest
party created the proof π on (pk, s̄, v, vk) or if A supplies a witness (ρ, s, r̄)
such that (pk, dk) = KFHE(1k; ρ) and s̄ = Epk(s; r̄) and Ddk(v) = 1. In
the latter case, this tells SEXT what dk is and hence it can compute s and
w = u ⊕ G(s, |w|). The correctness of the fully homomorphic encryption
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scheme shows that in this case, the witnessw satisfies (x, w) ∈ R and therefore
SEXT can submit (witness, w) to F R

NIZK. On the other hand, if an honest party
created the proof π on (pk, s̄, v, vk) then the strong existential unforgeability of
the one-time signature scheme implies that there is negligible probability of the
adversary producing a different valid signature sig using vk. There is therefore
only negligible risk of SEXT not being able to extract a witness w.

SSIM: SEXT runs theverificationprocess ofF R
NIZK without interference, but in theproof

process it uses knowledge of the inputs the honest parties provide to F R
NIZK.

In the next couple of modifications of the simulator, we will move towards
simulating the proofs instead of using knowledge of the inputs to F R

NIZK.
Let SSIM be a modification of SEXT that instead of running a perfect simulation
ofF RF

NIZK allows simulated honest parties to submit (prove, sid, (pk, s̄, v, vk)),

⊥) even if (x, w) /∈ R. This means, F RF

NIZK may ask A for a proof π for a false
statement (pk, s̄, v, vk) and store (sid, (pk, s̄, v, vk), π) as being a valid proof
and return (prf, sid, (pk, s̄, v, vk), π) to the requesting party Pi .
SEXT can now change the way it constructs s̄ to instead set s̄ ← Epk(0k). Due to
the IND-CPA security of the fully homomorphic encryption scheme this tuple
of ciphertexts s̄ is indistinguishable from a bit-wise encryption of s. Running
F R
NIZK with SSIM is therefore computationally indistinguishable from running

F R
NIZK with SEXT.

S: We will now make a modification of SSIM to get a simulator that does not have
access to the internals of F R

NIZK. S is a modification of SSIM that simulates the
proof created by an honest party Pi by setting u ← {0, 1}|w| instead of using
u = w ⊕ G(s, |w|). Since G is a pseudorandom generator, it is not possible
for the environment to distinguish whether SSIM or S is making the simulation
with F R

NIZK.

Since S does not need to know the witness when simulating a proof for an honest party
Pi , it runs entirely without access to or control over the workings of F R

NIZK. As we have
shown S running withF R

NIZK is indistinguishable from the protocol φNIZK running with

A in the F RF

NIZK-hybrid model. The protocol φNIZK therefore securely realizes F R
NIZK in

the F RF

NIZK-hybrid model. �

We have assumed a dynamic corruption model in the construction. However, we can
also apply our construction if F RF

NIZK can be securely realized against static adversaries,
in which case we get a witness-length universally composable NIZK proof for any
NP-relation R that is secure against static adversaries.
There may be many ways to securely realize F RF

NIZK and by the universal composition
theorem [8] our result shows that all of them imply the existence of witness-length uni-
versally composable NIZK proofs if fully homomorphic encryption exists. In particular,
we get witness-length universally composable NIZK proofs in the common reference
string model, the multi-string model and under any other setup assumption under which
universally composable NIZK proofs exist.
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5. Fully Homomorphic Hybrid Encryption

We have implicitly been using a hybrid encryption approach in the construction of the
non-interactive zero-knowledge proofs. The underlying hybrid encryption scheme has
ciphertexts that are both fully homomorphic and communication-efficient: the encryption
of a plaintext m has size |m|+ poly(k). Such a scheme is useful in itself, so we will now
explicitly define fully homomorphic encryption for arbitrary length messages and show
that the construction satisfies the definition.2 We note that, unlike some definitions of
fully homomorphic encryption, we allow the encrypted output to be encoded differently
from the encrypted input.

5.1. Defining Fully Homomorphic Encryption of Arbitrary Size Messages

A fully homomorphic encryption scheme consists of four algorithms (K ∗
FHE, E∗, D∗,

Eval∗). The probabilistic polynomial time key generation algorithm K ∗
FHE on input 1k

(and randomness ρ ← {0, 1}�K∗
FHE

(k)
) outputs a public key pk and a decryption key dk.

The probabilistic polynomial time encryption algorithm E∗ given a public key pk and
a plaintext m ∈ {0, 1}∗ (and randomness r ← {0, 1}�E∗ (k)) outputs a ciphertext c. If we
have a tuple of plaintexts 
m = (m1, . . . ,mn) to encrypt, we will for simplicity write

c ← E∗

pk( 
m) when generating 
c = (c1, . . . , cn) as ci ← E∗
pk(mi ) (using randomness


r = (r1, . . . , rn) ← ({0, 1}�E∗ (k))n). The deterministic polynomial time decryption
algorithm D∗ given a public key pk and a ciphertext returns a message m or an error
symbol ⊥. Finally, the (possibly probabilistic) polynomial time evaluation algorithm
Eval∗ takes a public key pk, a Boolean circuit C and n ciphertexts as input and returns a
ciphertext. A well-formed request to Eval∗ with a circuit that has n blocks of t1, . . . , tn
input wires and tout output wires includes input ciphertexts with plaintexts of lengths
t1, . . . , tn and the output ciphertext then contains a plaintext of size tout. We require that
the encryption scheme be compact, which here means that there is a polynomial upper
bound �∗

Eval(k, tout) on the size of the ciphertexts output by Eval∗.

Definition 9 (Correctness) (K ∗
FHE, E∗, D∗,Eval∗) is (perfectly) correct if for all

Boolean circuits C and all valid inputs 
m = (m1, . . . ,mn)

Pr
[
(pk, dk) ← K ∗

FHE(1k); 
c ← E∗
pk( 
m); v ← Eval∗pk(C, 
c) :

D∗
dk(v) = C(m1, . . . ,mn)

] = 1.

Definition 10 (IND-CPA security) (K ∗
FHE, E∗, D∗,Eval∗) is indistinguishable under

chosen plaintext attack (IND-CPA secure) if for all non-uniform polynomial time (A,D)

2In fact, our non-interactive zero-knowledge proofs require a bit more than just a fully homomorphic
encryption scheme for arbitrary sizemessages. In the constructions,we used directly that one of the components
u of the hybrid encryption scheme is of the same bit-length as the witness and therefore automatically a valid
encryption of some |u|-bit witness w. This means we did not have to prove u was well-formed and kept down
the size of the NIZK proof π . For this reason, we needed to work directly with the construction instead of just
plugging in any fully homomorphic encryption scheme for witness-length messages.
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Pr
[
(pk, dk) ← K ∗

FHE(1k); (m0,m1,St) ← A(pk); b ← {0, 1}; c ← E∗
pk(mb) :

D(St, c) = b] ≈ 1

2
,

where A outputs m0,m1 of the same bit-length.

Correctness and IND-CPA security were needed in the construction of non-interactive
zero-knowledge proofs. However, in other scenarios such as secure function evaluation
it is also necessary that the evaluation algorithm hide the circuitC used by the evaluation
algorithm. Our definition of circuit privacy does not require the output of the evaluation
algorithm to look identical to a fresh encryption of the output. Instead, it only requires that
this encrypted output reveal to the decryption algorithm nomore than the plaintext output
C(m). This corresponds to the notion of “1-hop” homomorphic encryption from [17].
We require circuit privacy to hold even when the randomness used by the key generation
and by the encryption algorithm are known; this is crucial for applications in which one
party generates keys and encryptions and another evaluates C .

Definition 11 (Circuit privacy) (K ∗
FHE, E∗, D∗,Eval∗) is computationally circuit pri-

vate if for all non-uniform polynomial time (A,D)

Pr
[
ρ ← {0, 1}�K∗

FHE(k); (pk, dk) ← K ∗
FHE(1k; ρ); (C, 
m, 
r ,St) ← A(ρ);


c = E∗
pk( 
m; 
r); v ← Eval∗pk(C, 
c) : D(St, v) = 1

]

≈ Pr
[
ρ ← {0, 1}�K∗

FHE(k); (pk, dk) ← K ∗
FHE(1k; ρ); (C, 
m, 
r ,St) ← A(ρ);

v ← Eval∗pk(Id, E∗
pk(C( 
m))) : D(St, v) = 1

]
,

where A outputs consistent C and 
m = (m1, . . . ,mn) and 
r , and where Id is a circuit
that simply returns its input (with tout input and output wires).

(K ∗
FHE, E∗, D∗,Eval∗) is statistically circuit private if the above holds even for

unbounded (A,D).

Often statistical circuit privacy can be obtained by running a rerandomization algo-
rithm on the output ciphertext after completing a deterministic fully homomorphic eval-
uation of the circuit. Such a division of labor gives us the best of two worlds. In our
construction of non-interactive zero-knowledge proofs it was necessary to have a deter-
ministic evaluation algorithmsuch that the computation could be replicated by the verifier
who knew what the circuit was. In the secure function evaluation protocol in Sect. 6 on
the other hand we will need circuit privacy but are happy to have a probabilistic circuit
evaluation algorithm.

5.2. Length-Optimal Fully Homomorphic Hybrid Encryption Scheme Construction

In our constructions of non-interactive zero-knowledge proofs we implicitly used a
hybrid encryption approach where we first encrypt a symmetric encryption key and then
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Fig. 4. Fully homomorphic encryption for arbitrary size plaintexts .

use that to encrypt the plaintext. By using a pseudorandom one-time pad we made the
ciphertext have size |m| + poly(k), which is minimal except for an additive overhead.
We recap the construction in Fig. 4, which relies on a fully homomorphic bit-encryption
scheme (KFHE, E, D,Eval) and a pseudorandom generator G as defined in Sect. 2.

Lemma 12. If (KFHE, E, D,Eval) is IND-CPA secure and G is a pseudorandom gen-
erator then (K ∗

FHE, E∗, D∗,Eval∗) is IND-CPA secure.

proof. Consider the generation of s̄ ← Epk(s). By the IND-CPA security of the bit-
encryption scheme this is computationally indistinguishable from s̄ ← Epk(0k). Next,
we pick u ← {0, 1}|m| uniformly at random instead of generating it as a pseudoran-
dom one-time pad. By the pseudorandomness of G this modification only changes the
adversary’s distinguishing advantage negligibly. Now everything but the length of the
encrypted plaintext is perfectly hidden and we conclude (K ∗

FHE, E∗, D∗,Eval∗) is IND-
CPA secure. �

Lemma 13. If (KFHE, E, D,Eval) has computational (statistical) circuit privacy then
(K ∗

FHE, E∗, D∗,Eval∗) as constructed above has computational (statistical) circuit pri-
vacy.

proof. Given a circuit privacy adversary (A,D) for (K ∗
FHE, E∗, D∗,Eval∗) we can

construct a circuit privacy adversary (B,D) for (KFHE, E, D,Eval). The adversaryB(ρ)

runs (C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n),St) ← A(ρ). It then computes u1 = m1 ⊕
G(s1, |m1|), . . . , un = mn ⊕ G(sn, |mn|) and Cu = f (1k,C, u1, . . . , un). B returns
(Cu, s1, . . . , sn, r̄1, . . . , r̄n,St).

The computational (statistical) circuit privacy of (KFHE, E, D,Eval) gives us

Pr
[
ρ ← {0, 1}�K∗

FHE(k); (pk, dk) ← K ∗
FHE(1k; ρ);

(C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n),St) ← A(ρ);
ci = E∗

pk(mi ; (si , r̄i )); v ← Eval∗pk(C, c1, . . . , cn) : D(St, v) = 1
]

= Pr
[
ρ ← {0, 1}�KFHE(k); (pk, dk) ← KFHE(1k; ρ);
(Cu, s1, . . . , sn, r̄1, . . . , r̄n,St) ← B(ρ);
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s̄i = Epk(si ; r̄i ); v ← Evalpk(Cu, s̄1, . . . , s̄n) : D(St, v) = 1
]

≈ Pr
[
ρ ← {0, 1}�KFHE(k); (pk, dk) ← KFHE(1k; ρ);
(Cu, s1, . . . , sn, r̄1, . . . , r̄n,St) ← B(ρ);
v ← Evalpk(Id, Epk(Cu(s1, . . . , sn))) : D(St, v) = 1

]

= Pr
[
ρ ← {0, 1}�K∗

FHE(k); (pk, dk) ← K ∗
FHE(1k; ρ);

(C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n),St) ← A(ρ);
v ← Eval∗pk(Id, E∗

pk(C(m1, . . . ,mn))) : D(St, v) = 1
]
,

which shows (K ∗
FHE, E∗, D∗,Eval∗) has computational (statistical) circuit privacy. �

Let us call an encryption scheme length-optimal if the encryption procedure produces
ciphertexts of size |m| + poly(k), where |m| is the size of the plaintext and k is the
security parameter. The following theorem then summarizes the results of this section.

Theorem 14. If IND-CPA secure fully homomorphic public key bit-encryption schemes
exist, then length-optimal IND-CPA secure fully homomorphic public key encryption
schemes for arbitrary size plaintexts exist. If IND-CPA secure circuit private fully homo-
morphic public key bit-encryption schemes exist, then length-optimal IND-CPA secure
circuit private fully homomorphic public key encryption schemes for arbitrary size plain-
texts exist.

proof. The existence of bit-encryption implies the existence of pseudorandom genera-
tors. The construction of (K ∗

FHE, E∗, D∗,Eval∗) in Fig. 4 is perfectly correct. Since the
encryption procedure outputs ciphertexts of size |m| + poly(k) the scheme is length-
optimal. Lemma 12 shows the construction preserves IND-CPA security and Lemma 13
shows that the construction preserves circuit privacy. �

6. 2-Party Secure Function Evaluation

As an illustration of the usefulness of fully homomorphic encryption for messages of
arbitrary length, we will look at the case of 2-party secure function evaluation. Here
Alice and Bob have inputs x and y respectively and Alice wants to learn f (x, y) for a
given polynomial time computable function f .
Given a fully homomorhic encryption scheme for arbitrary size plaintexts the con-

struction of a 2-party secure function evaluation protocol is very simple. Alice encrypts
her input x under her own public key and send the ciphertext to Bob. Bob then applies a
suitable circuit to the ciphertext to compute the evaluation of f (x, y) and sends it back
to Alice. Alice can now decrypt and get the result. (A slight extension of the protocol
would allow also Bob to learn the result f (x, y) by having Alice sending the result
encrypted under Bob’s public key.) Intuitively, Alice’s input will remain private because
of the IND-CPA security of the encryption scheme while Bob’s input will remain private
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Fig. 5. Ideal 2-party secure function evaluation functionality F f
2SFE .

because of the circuit privacy of the encryption scheme. The full construction can be
found in Fig. 6.
To formalize 2-party secure function evaluation, we use the universal composability

framework [8], which we also used for non-interactive zero-knowledge proofs in Sect. 4.
Here, however, we will only consider the case of static adversaries that corrupt a fixed
set of parties from the start of the protocol and do not corrupt any more parties after
that. We will also restrict ourselves to the case of honest-but-curious adversaries. This
means corrupted parties controlled by the adversary follow the protocol honestly but
the adversary will try to learn some extra information about the honest parties private
inputs. We do not assume the parties have access to a common reference string but we
do assume their communication is authenticated. If a party Pi receives a message from
Pj it is therefore guaranteed this message did indeed originate from Pj although we can
expect the adversary to have learned the contents of the message.
The ideal 2-party secure function evaluation functionality is given in Fig. 5. Note

that the size of the input x and the size of the output z = f (x, y) are not secret but
everything else is kept secret by the ideal functionality. There is one restriction we place
on the polynomial time function f , which is that given |x | and y it should be possible
to determine uniquely the size of the output f (x, y). This restriction, which is standard
since UC protocols typically do not hide the lengths of inputs and outputs, is needed in
our construction to enable the construction of a polynomial size circuit C|x |,y(·) with a
fixed number of output wires that corresponds to the computation of f (·, y).

Theorem 15. φ2SFE in Fig. 6 securely realizes F f
2SFE against static honest-but-curious

adversaries if (K ∗
FHE, E∗, D∗,Eval∗) is an IND-CPA secure fully homomorphic encryp-

tion scheme with computational circuit privacy.

proof. S in the ideal process runs a copy of A and will try to simulate an execution
of the protocol such that A and the environment Z cannot detect that they are running
in the ideal process. S forwards all communication between the simulated A and the
environment Z and S simulates for each dummy party P̃i a corresponding real world
party Pi . SinceA is static the set of corrupted parties is fixed from the start and S has full
control over the corresponding corrupted dummy parties. Whenever a corrupted dummy
party P̃i receives an input S sends it to the ideal functionality, and whenever a simulated
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Fig. 6. Universally composable 2-party secure function evaluation for f .

party Pi makes an output to the environment, S delivers the corresponding output from
the ideal functionality to P̃i so it can output it to the environment. For each pair of parties
(Pi , Pj ) engaging in the protocol there are four options:

Pi and Pj are both corrupt: As specified above S learns the inputs x and y of the
parties and submits them to the ideal functionality on behalf of P̃i and P̃j . If A
in the protocol outputs the result to Z on behalf of Pi , then S delivers the ideal
functionality’s result to P̃i and outputs it to the environment.

Pi is corrupt and Pj is honest: In this setting S has to simulate the message
(sid, Pi , Pj , v) that Pj sends to Pi . Since P̃i is corrupted, S knows the ideal func-
tionality’s result z = f (x, y). It can therefore compute v ← Eval∗pk(Id, E∗

pk(z))
and use that in Pj ’s response to Pi .

Pi is honest and Pj is corrupt: In this setting S has to simulate the message
(sid, Pi , Pj , pk, c, |x |) that Pi sends to Pj . On input (sid, Pi , Pj , |x |) from the
ideal functionality S therefore picks (pk, dk) ← K ∗

FHE(1k) and c ← E∗
pk(0

|x |) and
instructs Pi to send (sid, Pi , Pj , pk, c, |x |) to Pj .

Pi and Pj are both honest: Here S has to simulate the entire communication between
Pi and Pj . On input (sid, Pi , Pj , |x |) from the ideal functionality S therefore
picks (pk, dk) ← K ∗

FHE(1k) and c ← E∗
pk(0

|x |) and instructs Pi to send
(sid, Pi , Pj , pk, c, |x |) to Pj . On subsequent input (sid, Pi , Pj , |z|) from the ideal
functionality S then computes v ← Eval∗pk(Id, E∗

pk(0
|z|)) and instructs Pj to send

(sid, Pi , Pj , v) to Pi .

To see this is a good simulation, observe first that sinceA is honest-but-curious it always
instructs corrupt parties Pi to act like an honest party would do, so it does for instance
output the correct protocol output in the simulation when both parties are corrupt, gen-
erates a valid key and ciphertext when Pi is corrupt, and computes v correctly on the
basis of y if Pj is corrupt. The IND-CPA security of the encryption scheme guarantees
the ciphertext c ← E∗

pk(0
|x |) in the simulation when Pi is honest cannot be distin-

guished from the correct encryptions c ← E∗
pk(x). The computational circuit privacy of

the encryption scheme guarantees that v ← Eval∗pk(Id, E∗
pk(z)) cannot be distinguished

from the correct evaluation v ← Eval∗pk(C|x |,y, c) when Pj is honest, even when given
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the randomness used for generating c. When both Pi and Pj are honest the computa-
tional circuit privacy shows the real protocol running with v ← Eval∗pk(C|x |,y, c) cannot
be distinguished from a simulated v ← Eval∗pk(Id, E∗

pk( f (x, y))). The IND-CPA secu-

rity then says this cannot be distinguished from running v ← Eval∗pk(Id, E∗
pk(0

|z|)) and
that having c ← E∗

pk(x) cannot be distinguished from c ← E∗
pk(0

|x |). This means the
simulation in the ideal process cannot be distinguished by Z from the real execution of
the protocol. �

Using the hybrid encryption scheme (K ∗
FHE, E∗, D∗,Eval∗) from Sect. 5 Alice’s

(Pi ’s) communication is |x | + poly(k) bits. For small output sizes |z| = O(1) this gives
an overall communication of |x | + poly(k) so there is only an additive overhead.

For large output sizes, the existence of fully homomorphic bit-encryption only guaran-
tees a total communication of |x |+poly(k)|z| bits. However, using specific cryptographic
assumptions it is possible to get a communication complexity of |x | + |z| · (1+ o(1)) +
poly(k). This follows from Lipmaa’s [33] method to batch many ciphertexts into one in
the fully homomorphic encryption scheme byBrakerski, Gentry andVaikuntanathan [6].
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