
DOI: 10.1007/s00145-014-9193-x
J Cryptol (2016) 29:243–282

Automata Evaluation and Text Search Protocols
with Simulation-Based Security∗

Rosario Gennaro
City College of New York, New York City, NY, USA

rosario@ccny.cuny.edu

Carmit Hazay
Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

carmit.hazay@gmail.com; carmit.hazay@biu.ac.il

Jeffrey S. Sorensen
Google, New York, NY, USA

sorenj@google.com

Communicated by Tatsuaki Okamoto.

Received 3 June 2010
Online publication 12 February 2015

Abstract. This paper presents efficient protocols for securely computing the follow-
ing two problems: (1) The fundamental problem of pattern matching. This problem is
defined in the two-party setting, where party P1 holds a pattern and party P2 holds a
text. The goal of P1 is to learn where the pattern appears in the text, without reveal-
ing it to P2 or learning anything else about P2’s text. This problem has been widely
studied for decades due to its broad applicability. We present several protocols for sev-
eral notions of security. We further generalize one of our solutions to solve additional
pattern matching-related problems of interest. (2) Our construction from above, in the
malicious case, is based on a novel protocol for secure oblivious automata evaluation
which is of independent interest. In this problem, party P1 holds an automaton and party
P2 holds an input string, and they need to decide whether the automaton accepts the
input, without learning anything else. Our protocol obtains full security in the face of
malicious adversaries.

Keywords. Text search, Oblivious automata evaluation, Simulation-based security.

1. Introduction

Secure two-party computation is defined as joint computation of some function over
private inputs. This joint computation must satisfy at least privacy (no other information

∗An extended abstract of this paper was published in the proceedings of PKC 2010.

© International Association for Cryptologic Research 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9193-x&domain=pdf

244 R. Gennaro et al.

is revealed beyond the output of the function) and correctness (the correct output is
computed). In order to achieve this, the parties engage in a communication protocol.
Today’s standard definition (cf. [7] following [4,12,30]) formalizes security by com-
paring the execution of such protocol to an “ideal execution” where a trusted third
party helps the parties compute the function. Specifically, in the ideal world, the par-
ties just send their inputs over perfectly secure communication lines to a trusted party,
who then computes the function honestly and sends the output to the designated party.
Informally, the real protocol is defined to be secure if all adversarial attacks on a real
protocol can also be carried out in the ideal world; of course, in the ideal world, the
adversary can do almost nothing and this guarantees that the same is also true in the real
world. This definition of security is often called simulation-based because security is
demonstrated by showing that a real protocol execution can be “simulated” in the ideal
world.
Secure two-party computation has been extensively studied, and it is known that any

efficient two-party functionality can be securely computed [14,17,36]. However, these
are just feasibility results that demonstrate secure computation is possible, in principle,
though not necessarily in practice. One reason is that the results mentioned above are
generic, i.e., they do not exploit any structural properties of the specific function being
computed.A long series of research efforts has been focusedonfinding efficient protocols
for specific functions; and constructing such protocols is crucial if secure computation
is ever to be used in practice.

1.1. Text Search

In this work, we consider the classic problem of pattern matching. In this problem,
one party holds a text T of length � whereas the other party holds a pattern p of
length m, where these lengths are mutually known. The aim is for the party hold-
ing the pattern to learn all the locations of the pattern in the text (and there may be
many), while the other party learns nothing about the pattern. Pattern matching has
been widely studied for decades due to its broad applicability, but rarely in a secure
context.
Earlier text search algorithms were sequential, where the text is searched by scan-

ning for all occurrences of a particular pattern. Efficient variants of this approach
analyze the pattern string to enable O(�) scanning to skip regions of text whenever
possible matches are provably not possible. Included in this category are the widely
studied Knuth–Morris–Pratt [27] that uses automata evaluation, which we implement
here securely (but less efficiently), Boyer–Moore [6] and more recently, Factor Ora-
cle [1]-based algorithms. Algorithms based instead upon the analysis of the text to
be searched are categorized as index-based, including suffix tree-based algorithms
which build a data structure in O(�) time and storage [31]. Nevertheless, these algo-
rithms do not appear to be amendable to secure computation with reasonable com-
putational properties. Finally, for completeness, algorithms used frequently for nat-
ural languages use partial inverted indexes such as n-grams, and were suggested in
[15] in a similar security context. However, the probabilistic properties of these tech-
niques cannot be easily bounded in running time or in security properties for general
texts.

Automata Evaluation and Text Search Protocols 245

1.2. Our Contribution

1.2.1. Secure Text Search

1. Secure text search with honest-but-curious and one-sided simulatability Our start-
ing point is an efficient protocol (cf. Sect. 3.1) that computes the pattern matching
function in the “honest-but-curious” setting over a binary alphabet.1 This solution
offers linear communication in the input lengths and computation complexity of
O(m + �) modular exponentiations and O(m�) modular multiplications. Infor-
mally, our protocol instructs the party that inputs the pattern to prepare two lists of
ciphertexts so that one list is associated with zero and the other is associated with
one. For each pattern location i , an encryption of zero is placed in the i th position
of the list for which the current pattern bit pi matches the value that is associated
with that list. The other party then uses these lists in order to generate for each text
location, an encryption of the Hamming distance between the pattern and the text
starting from this location. These are used to determine the matched text positions.
We then demonstrate how the security of this solution can be extended to the case
of one-sided simulation (with similar costs), where full simulation is provided
for one of the malicious corruption cases, while only privacy (via computational
indistinguishability) is guaranteed for the other corruption case.2 For example,
the secrecy of the inputs is always guaranteed, but in one of the corruption cases,
the adversary can behave inappropriately causing the honest party to output an
incorrect value. The workload of P1 in our protocols is O(m + �) modular expo-
nentiations, whereas the workload of P2 is O(m + �) exponentiations and O(m�)

modular multiplications.
2. In Sect. 3.2, we consider solutions (using our protocol from Item 1), for three

generalizations of the pattern matching problem:

(i) Approximate text search Recent applications e.g., computational biology, text
editing, meteorology andmore, have shown that a more generalized theoretical
notion of string matching is required. In approximate matching, one defines a
distance metric between the strings and finds all the text locations where the
pattern matches the text by a pre-specified distance. For example, an additional
public parameter ρ, which determines the number of differences that can be
tolerated, is introduced (where a difference is defined by the specified metric).
The most natural metric is the Hamming distance that counts the number of
mismatches between two strings. The best algorithm for solving text search
with mismatches in an insecure setting is the solution by Amir et al. [2], which
introduces a solution in O(�

√
ρ log ρ) time. We show how to adapt our one-

sided simulation solution for this problem, obtainingO(m+�) exponentiations,
O(m�) modular multiplications and O(ρ�) communication.

(ii) Text searchwithwildcardsThis variantwas developedwith the aim to introduce
improved algorithms for approximate text search. Here, a wildcard symbol
is introduced in the pattern, so that it matches against any character when

1 In this setting, an adversary follows the protocol specification but may try to examine the messages it
receives to learn more than it should about the honest party’s input.

2 In the malicious setting, an adversary follows an arbitrary polynomial-time attack strategy.

246 R. Gennaro et al.

comparing against the text. In an insecure setting, this problem can be solved
in time that is linear in the lengths of the text and pattern and the number of
occurrences [32]. Our solution obtains similar costs to the overhead introduced
by our one-sided simulation protocol since essentially the protocols are almost
identical.

(iii) Text search with larger alphabet We further extend our basic protocol to deal
with a larger alphabet Σ as in the DNA example from below. In an insecure
setting, this problem can be solved in O(|Σ |�) time by extending the binary
solutions. Our solution inflates the costs of our protocols from the binary case
by a multiplicative factor |Σ |.

3. Secure text search against malicious adversaries Trying to adapt our solution for
the malicious setting introduces quite a few subtleties and requires the use of a
different technique. The main difficulty is with respect to the party that inputs the
text. Since it must be ensured that a well-defined text is used during the protocol
execution. Although this can always be achieved using generic zero-knowledge
proofs to demonstrate correct behavior, it is not immediately clear how to do so
efficiently.
To achieve full simulation,we introduce a second independent protocol (cf. Sect. 5),
which employs several other novel sub-protocols, including a protocol to prove that
a correct pattern-specific automaton was constructed. Specifically, our protocol
securely implements the [27] protocol that reduces the pattern matching problem
to the composition of a pattern-specific automaton with the text T . The commu-
nication complexity of our protocol is O(m�), and the round complexity is O(�),
where the round complexity is derived from the fact that the automaton must be
evaluated sequentially.3 In addition, the number of exponentiations induced by our
protocol is O(m�). This result is based on our contribution in the following section
regarding oblivious automata evaluation.

1.2.2. Oblivious Automata Evaluation

We develop a protocol for two parties (one holding an automaton Γ and another holding
an input text T) to securely compute the evaluation of Γ on T with full simulation in
the presence of malicious behavior. This protocol can be of independent interest beyond
the pattern matching application and can be considered an extension of the work by
Ishai and Paskin [24], which considered the model of obliviously evaluating branching
programs (a deterministic automaton is a special case of a branching program). In the
model of [24], the communication is proportional to the input for the branching program
and independent of the description of the program. Still, only privacy is guaranteed,
and not correctness nor independence of inputs. In contrast, our protocol achieves full
security but the amount of communication is proportional to the size of the automaton’s
description times the length of the input to the automaton. Similarly, the number of
exponentiations is a factor of these two parameters. We provide a detailed analysis
below in Sect. 1.5.

3 We use standard techniques to reduce this round complexity into O(m) by partitioning the text into
substrings of length 2m.

Automata Evaluation and Text Search Protocols 247

1.3. Motivation

Secure pattern matching has many potential applications. Consider, for example, the
hypothetical case of a hospital holding a DNA database of all the participants in a
research study, and a researcher wanting to determine the frequency of the occurrence
of a specific gene. This is a classical pattern matching application, which is, however,
complicated by privacy considerations. The hospital may be forbidden from releasing
the DNA records to a third party. Likewise, the researcher may not want to reveal what
specific gene she is working on nor trust the hospital to perform the search correctly.
It would seem that existing honest-but-curious solutions would work here. However,

the parties may be motivated to produce invalid results, so a proof of accurate output
might be as important as the output itself. Moreover, there is also a need to make sure
that the data on which the protocol is run is valid. For example, a rogue hospital could
sell “fake” DNA databases for research purposes. Perhaps some trusted certification
authorities might one day pre-certify a database as being valid for certain applications.
Then, the security properties of our protocol could guarantee that only valid data is used
in the pattern matching protocol. (The first step of our protocol is for the hospital to
publish an encryption of the data, this could be replaced by publication of encrypted
data that was certified as correct.)

1.4. Related Work

The idea to use oblivious automata evaluation, and also the study of secure pattern
matching, originated in [34]. In this paper, the authors present secure protocols in the
honest-but-curious setting and require linear communication complexity, and multi-
plicative computation complexity (in the number of states and the input length for the
automaton). We note that adapting these constructions to the malicious setting is much
more challenging. First, due to the requirement that the automatonmust be valid (accord-
ing to some specifications described in Sect. 5). Furthermore, the parties’ inputs to the
oblivious transfers must be consistent. We thus take a different approach and show how
to tolerate malicious behavior.
The problem of secure pattern matching was also studied by Hazay and Lindell [18],

who used oblivious pseudorandom function (PRF) to evaluate every block of size m
bits from the text. Their protocol achieves the weaker notion of one-sided simulation
and requires O(�) exponentiations and O(m�) multiplications for both parties. It is
not immediately clear how to efficiently extend their solution so that it achieves fully
simulatable security, since the inputs to the PRF must be consistent in the sense that
every two consecutive blocks overlap inm−1 bits. We further note that this approach is
not useful in solving the first two generalizations specified in Item 1.2.1, since the PRF
evaluations of any two strings that their Hamming distance is small (say the two strings
differ in only one bit) yield two strings that look independent.
In [26], Katz and Malka considered a generalization of the basic pattern matching

problem, denoted text processing. For example, the party who holds the pattern has
some additional information y with the aim to learn a function of the text and y, for
the text locations where the pattern matches. They showed how to modify Yao’s gar-
bled circuit approach to obtain a protocol where the size of the garbled circuit is linear

248 R. Gennaro et al.

in the number of occurrences of p in T (rather than linear in the length of T). The
costs of their constructions are dominated by the size of the circuit times the num-
ber of occurrences u. Moreover, they assume a common input of some threshold on
the number of occurrences. Their solutions are applied in the one-sided simulation
setting.
In a follow-up work [22], Hazay and Toft presented an improved protocol that solves

the basic pattern matching problem in the malicious setting with O(m�) multiplica-
tions. This analysis holds also for the honest-but-curious setting, as well as with one-
sided simulation. Their solution takes a different approach by converting the binary
representation of the pattern and the text into field elements. Hazay and Toft fur-
ther presented solutions for approximate text search and text search with wildcards
that incur O(m�) modular exponentiations (in both honest-but-curious and malicious
settings).
The works by Jarrous and Pinkas [25] and by Vergnaud [35] solve variants of the basic

problem. In the former work, the authors solve the hamming distance problem for two
equal length strings against malicious adversaries. Their protocol requires a committed
oblivious transfer for each bit. Moreover, the costs of their protocol are inflated by a
statistical parameter s for running a subprotocol for the oblivious polynomial evaluation
functionality [19] (namely, the protocol requires O(sd) exponentiations, where d is the
degree of the polynomial, i.e., the input length). In the context of approximate pattern
matching, their protocol requires O(sm�) exponentiations. The latter work solves the
problem of pattern matching with wildcards in the presence of malicious adversaries by
taking a different approach of Fast Fourier Transform and implementing this technique
securely. This paper presents protocols that exhibit linear communication andO(� logm)

modular exponentiations.
Finally, a more recent paper by Baron et al. [3] studies the problem of text search

with wildcards in a more general sense of non-binary alphabet, implementing a different
algorithm based on linear algebra formulation and additive homomorphic encryption.
This protocol requires O(m + �) communication complexity and O(m�) modular mul-
tiplications in the malicious setting.

1.5. Efficiency Comparison

The state-of-the-art generic construction for secure two-party computation is a recent
work by Lindell and Pinkas [29]. They propose a protocol that follows the methodology
Yao’s protocol and is secure in the presence of malicious adversaries under the DDH
assumption. In order to cope with malicious behavior, this protocol carries out a basic
cut-and-choose test on the garbled Boolean circuit construction of Yao. This means
that a party P1 has to construct s copies of a garbled circuit, sending them to P2, who
then asks P1 to open half of them in order to verify their correctness. For example,
the computation/communication costs are inflated by this security parameter s. Recent
developments [28] reduce the cut-and-choose parameter into 40 (with some additional
overhead).We thus compare our protocols that compute the oblivious automaton evalua-
tion and pattern matching functionalities with the [28] generic two-party constant round
protocol.

Automata Evaluation and Text Search Protocols 249

oblivious automata evaluation We note that a circuit that computes the oblivious
automaton evaluation functionality would require O(�Q log Q) gates for a Q-states
automaton evaluated over a binary input of length �.4 Notably, it is possible to generate
a circuit of size O(�Q) that computes this functionality but this circuit depends on the
automaton’s description (and leaks information about its structure). Now, since we need
to preserve the secrecy of the automaton, we need to consider a circuit that operates as
a universal circuit, in the sense that it takes these inputs and evaluates the automaton
on the input string. This accounts for an extra log Q factor and implies that the num-
ber of multiplications in [28] is dominated by O(s�Q log Q). Moreover, the number of
exponentiations used in this protocol is dominated by 24.5s� + 18�+5,520s.

On the other hand, our protocol for oblivious automata evaluation does not apply a cut-
and-choose strategy. Having P1, P2 hold inputs of lengths �, Q, and our protocol incurs
communication and computation costs of O(�Q), where this constant mostly depends
on the overhead of randomly permuting the automaton. By the analysis of [13], we get
that this overhead of the ZK proof for shuffling is dominated by 30Q exponentiations
(for permuting a pair of vectors each time). Thus, overall cost is dominated by 120�Q
exponentiations and O(�Q) multiplications. Nevertheless, the round complexity of our
protocol is O(�) since the automaton must be evaluated sequentially, while the round
complexity of [29] is constant.

Text search We conclude with a discussion of our solutions for the basic pattern match-
ing problem and its variants. The best known circuit that computes the classic pattern
matching functionality requires O(nm) gates since the circuit compares the pattern
against every text location. In the honest-but-curious setting, Yao’s technique induces a
protocol that uses O(nm) symmetrical key operations and O(m) exponentiations that
can be made independent of the input length (where the later is obtained by employing
the ideas of extended oblivious transfer [23], but also requires an additional assumption
on the hash function). In the malicious setting, this overhead grows by a factor of a sta-
tistical parameter s (see the analysis in the previous section). Our constructions for the
honest-but-curious and one-sided simulation settings require O(m + �) modular expo-
nentiations for party P1 and O(m�) modular multiplications and O(�) exponentiations
for party P2. Our protocols achieve better overhead than the protocols of [34] and [18],
where the former requires O(m�) exponentiations and the later requires O(m+�) expo-
nentiations and O(m�) multiplications for both parties. Our protocol for the malicious
setting requires O(m�) exponentiations and takes a different approach than the protocol
in [22] that requires O(m�)modular multiplications and constant round complexity, and
outperforms our protocol.
Generic protocols achieve the same overhead for the pattern matching variants con-

sidered in this paper, as in the case of computing the standard pattern matching prob-
lem since circuit size is about O(m�) gates. Moreover, the protocols by Vergnaud [35]

4 Intuitively, this can be shown using the following construction. A circuit C takes a description of an
automatonΓ and �-bits input x and outputs a bit. For each iteration i of the automaton evaluation, we construct
a “sub-circuit” Ci that gets Γ, q and b as input, for (q, b) the current configuration, and outputs the next state
q ′. It is easy to verify that the description of ci requires O(Q log Q) gates. This leads to a total of O(�Q log Q)

gates for C.

250 R. Gennaro et al.

for computing approximate pattern matching and pattern matching with wildcards with
one-sided simulation require O(� logm) exponentiations (in comparison with O(m+�)

exponentiations in our protocol). The one-sided simulation variant of [22] protocols for
these problems require O(m�) exponentiations. Finally, the work of [3] studies pattern
matching with wildcards in the malicious setting that requires O(m+�) exponentiations
for non-binary alphabets.

1.6. A Road Map

In Sect. 2, we present basic definitions and useful tools that we use in our constructions.
In Sect. 3, we present a honest-but-curious secure protocol for the pattern matching
problem (cf. Sect. 3.1). We further extend this solution and show how to obtain one-
sided simulation security. In Sect. 3.2, we consider generalizations of the basic problem.
In Sect. 4, we present a protocol for the oblivious automata evaluation problem with
full security against malicious adversaries. In Sect. 5, we show how to use our protocol
from Sect. 4 within a larger protocol for the pattern matching problem in the malicious
setting.

2. Definitions and Tools

Throughout the paper, we denote the security parameter by n. Although not explicitly
specified, input lengths are always assumed to be bounded by some polynomial in n. A
probabilistic machine is said to run in polynomial-time (PPT) if it runs in time that is
polynomial in the security parameter n alone. We denote by a ← A the random choice
of a from a set A.
A function μ(·) is negligible in n if for every polynomial p(·) there exists a value N

such thatμ(n) < 1
p(n)

for all n > N ; i.e.,μ(n) = n−ω(1). Let X = {X (a, n)}a∈{0,1}∗,n∈N
and Y = {Y (a, n)}a∈{0,1}∗,n∈N be distribution ensembles. We say that X and Y are

computationally indistinguishable, denoted X
c≡ Y , if for every polynomial non-

uniform distinguisher D there exists a negligible μ(·) such that
∣
∣
∣Pr[D(X (a, n)) = 1] − Pr[D(Y (a, n)) = 1]

∣
∣
∣ < μ(n)

for every n ∈ N and a ∈ {0, 1}∗.

2.1. Secure Two-Party Computation with Malicious Adversaries

In this section, we briefly present the standard definition for secure multiparty compu-
tation and refer to [17, Chap. 7] for more details and a motivating discussion.

Two-party computation A two-party protocol can be systematically analyzed by char-
acterizing the protocol as a random process that maps pairs of inputs to pairs of outputs
(one for each party). We refer to such a process as a functionality and denote it as
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair

Automata Evaluation and Text Search Protocols 251

of inputs (x, y), the output is a random variable (f1(x, y), f2(x, y)) ranging over pairs
of strings where P1 receives f1(x, y) and P2 receives f2(x, y). We sometimes denote
such a functionality by (x, y) 	→ (f1(x, y), f2(x, y)).

Security of protocols (informal) The security of a protocol is analyzed by comparing
what an adversary can do in a real protocol execution towhat it can do in an ideal scenario
that is secure by definition. This is formalized by considering an ideal computation
involving an incorruptible trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs and returns to each party its
respective output. A protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the
above-described ideal computation.

Execution in the ideal model In an ideal execution, the parties send their inputs to
the trusted party who computes the output. An honest party just sends the input that
it received, whereas a corrupted party can replace its input with any other value of
the same length. Let f be a two-party functionality where f = (f1, f2), let A be
a non-uniform probabilistic polynomial-time machine and let I ⊆ [2] be the set of
corrupted parties (either P1 is corrupted, or P2 is corrupted, or neither). Then, the ideal
execution of f on inputs (x, y), auxiliary input z toA and security parameter n, denoted
IDEAL f,A(z),I (x, y, n), is defined as the output pair of the honest party and the adversary
A from the above ideal execution.

Execution in the real model In the real model, there is no trusted third party and the
parties interact directly. The adversary A sends all messages in place of the corrupted
party andmay followan arbitrary polynomial-time strategy. In contrast, the honest parties
follow the instructions of the specified protocol π .
Let f be as above and let π be a two-party protocol for computing f . Furthermore,

let A be a non-uniform probabilistic polynomial-time machine and let I be the set of
corrupted parties. Then, the real execution of π on inputs (x, y), auxiliary input z to
A and security parameter n, denoted REALπ,A(z),I (x, y, n), is defined as the output
vector of the honest party and the adversary A from the real execution of π .

Security as emulation of a real execution in the ideal model Having defined the ideal
and real models, we can now define the security of protocols. Loosely speaking, the
definition asserts that a secure multi-party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that adversaries in
the ideal model are able to simulate executions of the real-model protocol.

Definition 2.1. Let f and π be as above. Protocol π is said to securely compute
f with abort in the presence of malicious adversaries if for every non-uniform
probabilistic polynomial-time adversaryA for the real model, there exists a non-uniform
probabilistic polynomial-time adversary SIM for the ideal model, such that for every
I ⊆ [2],

252 R. Gennaro et al.

{

IDEAL f,SIM(z),I (x, y, n)
}

x,y,z∈{0,1}∗,n∈N

c≡ {

REALπ,A(z),I (x, y, n)
}

x,y,z∈{0,1}∗,n∈N

where |x | = |y|.

2.2. Sequential Composition

Sequential composition theorems are useful tools that help in writing proofs of security.
The basic idea behind these composition theorems is that it is possible to design a
protocol that uses an ideal functionality as a subroutine and then analyze the security
of the protocol when a trusted party computes this functionality. For example, assume
that a protocol is constructed that uses the secure computation of some functionality as
a subroutine. Then, first we construct a protocol for the functionality in question and
then prove its security. Next, we prove the security of the larger protocol that uses the
functionality as a subroutine in a model where the parties have access to a trusted party
computing the functionality. The composition theorem then states that when the “ideal
calls” to the trusted party for the functionality are replaced by real executions of a secure
protocol computing this functionality, the protocol remains secure.

The hybrid model The aforementioned composition theorems are formalized by con-
sidering a hybrid model where parties both interact with each other (as in the real model)
and use trusted help (as in the ideal model). Specifically, the parties run a protocol π

that contains “ideal calls” to a trusted party computing some functionalities f1, . . . , fm .
These ideal calls are just instructions to send an input to the trusted party. Upon receiving
the output back from the trusted party, the protocol π continues. We stress that honest
parties do not send messages in π between the time that they send input to the trusted
party and the time that they receive back output (this is because we consider sequential
composition here). Of course, the trusted party may be used a number of times through-
out the π -execution. However, each time is independent (i.e., the trusted party does not
maintain any state between these calls). We call the regular messages of π that are sent
among the parties standard messages and the messages that are sent between parties
and the trusted party ideal messages.
Let f1, . . . , fm be probabilistic polynomial-time functionalities and let π be a two-

party protocol that uses ideal calls to a trusted party computing f1, . . . , fm . Furthermore,
let A be a non-uniform probabilistic polynomial-time machine and let I be the set
of corrupted parties. Then, the f1, . . . , fm-hybrid execution of π on inputs (x, y),
auxiliary input z to A and security parameter n, denoted HYBRID f1,..., fm

π,A(z),I (x, y, n), is
defined as the output vector of the honest party and the adversary A from the hybrid
execution of π with a trusted party computing f1, . . . , fm .

Sequential modular composition Let f1, . . . , fm andπ be as above, and let ρ1, . . . , ρm
be protocols. Consider the real protocol πρ1,...,ρm that is defined as follows: all standard
messages of π are unchanged. When a party Pi is instructed to send an ideal message
αi to the trusted party to compute functionality f j , it begins a real execution of ρ j with

Automata Evaluation and Text Search Protocols 253

input αi instead. When this execution of ρ j concludes with output βi , party Pi continues
with π as if βi was the output received by the trusted party (i.e., as if it were running
in the f1, . . . , fm-hybrid model). Then, the composition theorem of [7] states that if ρ j

securely computes f j for every j ∈ {1, . . . ,m}, then the output distribution of a protocol
π in a hybrid execution with f1, . . . , fm is computationally indistinguishable from the
output distribution of the real protocol πρ1,...,ρm . This holds for security in the presence
of malicious adversaries [7] and one-sided simulation when considering the corruption
case that has a simulator (an easy corollary from [7]).

2.3. One-Sided Simulation for Two-Party Protocols

Twoof our protocols achieve a level of security thatwe call one-sided simulation. In these
protocols, P2 receives output while P1 should learn nothing. In one-sided simulation,
full simulation is possible when P2 is corrupted. However, when P1 is corrupted, we
only guarantee privacy, meaning that P1 learns nothing whatsoever about P2’s input
(this is straightforward to formalize because P1 receives no output). This is a relaxed
level of security and does not achieve everything we want; for example, independence of
inputs and correctness are not guaranteed. Nevertheless, for this level of security, we are
able to construct highly efficient protocols that are secure in the presence of malicious
adversaries.
Formally, let REALπ,A(z),i (x, y, n) denote the output of the honest party and the

adversary A (controlling party Pi) after a real execution of protocol π , where P1 has
input x, P2 has input y,A has auxiliary input z, and the security parameter is n. Let
IDEAL f,SIM(z),i (x, y, n) be the analogous distribution in an ideal execution with a
trusted party who computes f for the parties. Finally, let VIEWA

π,A(z),i (x, y, n) denote
the viewof the adversary after a real execution ofπ as above. Then,we have the following
definition:

Definition 2.2. Let f be a functionality where only P2 receives output. We say that a
protocol π securely computes f with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary A controlling P2 in the real model, there
exists a non-uniform PPT adversary SIM for the ideal model, such that

{

REALπ,A(z),2(x, y, n)
}

x,y,z∈{0,1}∗,n∈N
c≡ {

IDEAL f,SIM(z),2(x, y, n)
}

x,y,z∈{0,1}∗,n∈N

where |x | = |y|.
2. For every non-uniform PPT adversaryA controlling P1, and every polynomial p(·)

{

VIEWA
π,A(z),1(x, y, n)

}

x,y,y′,z∈{0,1}∗,n∈N
c≡

{

VIEWA
π,A(z),1(x, y

′, n)
}

x,y,y′,z∈{0,1}∗,n∈N (1)

where |x | = |y| = |y′|.

254 R. Gennaro et al.

Note that the ensembles in Eq. (1) are indexed by two different inputs y and y′ for
P2. The requirement is thatA cannot distinguish between the case that P2 used the first
input y or the second input y′ for any pair y, y′ such that |y| = |y′|.

2.4. Finite Automata

A deterministic finite automaton is described by a tuple Γ = (Q,Σ,Δ, q0, F), where
Q is the set of states, Σ is an alphabet of inputs, Δ : Q × Σ → Q denotes a state-
transition table, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final (or accepting)
states. Without loss of generality, in this work we consider only automata with complete
transition tables, where there exists a transition at each state for every input σ ∈ Σ . We
also consider the notation of Δ(q0, (σ1, . . . , σ�)) to denote the result of the automaton
evaluation on σ1, . . . , σ�, for σi ∈ Σ . Every automaton specifies a language, which is
the (potentially infinite) set of strings accepted by the automaton.

2.5. Hardness Assumptions

Our constructions rely on the DDH assumption formalized below.

Definition 2.3. (DDH) We say that the decisional Diffie–Hellman (DDH) problem
is hard relative toG = {Gn} if for all polynomial-sized circuitsA = {An} there exists
a negligible function negl such that

∣
∣
∣Pr

[A(G, q, g, gx , gy, gz) = 1
] − Pr

[A(G, q, g, gx , gy, gxy) = 1
]
∣
∣
∣ ≤ negl(n),

where q is the order of G and the probabilities are taken over the choices of g and
x, y, z ← Zq .

2.6. Public-Key Encryption Schemes

We begin by specifying the definitions of public-key encryption (PKE) and IND-CPA
security. We then describe the El Gamal PKE and conclude this section with definitions
for homomorphic PKE and threshold PKE, demonstrating that El Gamal meets these
definitions.

Definition 2.4. (PKE) We say that � = (G, E, D) is a public-key encryption
scheme if G, E, D are polynomial-time algorithms specified as follows:

• G, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a
public-key and sk is a secret key. We denote this by (pk, sk) ← G(1n).

• E , given the public-key pk and a plaintextmessagem, outputs a ciphertext c encrypt-
ing m. We denote this by c ← Epk(m); and when emphasizing the randomness r
used for encryption, we denote this by c ← Epk(m; r).

• D, given the public-key pk, secret key sk and a ciphertext c, outputs a plaintext
message m s.t. there exists randomness r for which c = Epk(m; r) (or ⊥ if no such
message exists). We denote this by m ← Dpk,sk(c).

Automata Evaluation and Text Search Protocols 255

For a public-key encryption scheme � = (G, E, D) and a non-uniform adversary
A = (A1,A2), we consider the following IND-CPA game:

(pk, sk) ← G(1n).

(m0,m1, history) ← A1(pk), s.t.|m0| = |m1|.
c ← Epk(mb), where b ← {0, 1}.
b′ ← A2(c, history).

Awins if b′ = b.

Denote by AdvCPA�,A(n) the probability that A wins the IND-CPA game.

Definition 2.5. (IND-CPA security) A public-key encryption scheme � = (G, E, D)

is IND-CPA secure, if for every non-uniform adversary A = (A1,A2) there exists a
negligible function negl such that AdvCPA�,A(n) ≤ 1

2 + negl(n).

2.6.1. The El Gamal Encryption Scheme

We consider the following modification of the El Gamal encryption scheme [11]. The
public-key is the tuple pk = 〈G, q, g, h〉 and the corresponding private key is sk =
〈G, q, g, x〉, where G is a cyclic group of prime order q with a generator g (we assume
multiplication and group membership can be performed efficiently in G). In addition, it
holds that h = gx .
Encryption of a message m ∈ {1, . . . , q ′} (with q ′ � q) is performed by choosing

r ← Zq and computing Epk(m; r) = 〈gr , hr · gm〉. Decryption of a ciphertext c =
〈c1, c2〉 is performed by computing gm = c2 · c−x

1 and then finding m by exhaustive
search. Thus, this scheme works only for small integer domains (i.e., q ′ must be small)
which is the case for our protocol. We point out that the reason we modify El Gamal
in this way (by encrypting gm rather than m) is to make it additively homomorphic.
Finally, we note that a zero encryption corresponds to a Diffie–Hellman tuple, i.e.,
Epk(0; r) = 〈gr , hr · g0〉 = 〈gr , hr 〉. The security of this scheme relies on the hardness
of solving the DDH problem specified in Definition 2.3.
We define the following two properties and show how they are easily met by the El

Gamal scheme.

Homomorphic PKE We abuse notation and use Epk(m) to denote the distribution
Epk(m; r) where r is chosen uniformly at random. Define homomorphic encryption as
follows.

Definition 2.6. A public-key encryption scheme (G, E, D) is homomorphic if, for
all n and all (pk, sk) output by G(1n), it is possible to define groups M,C such that:

• The plaintext space isM, and all ciphertexts output by Epk(·) are elements of C.
• For any m1,m2 ∈ M and c1, c2 ∈ C with m1 = Dps,sk(c1) and m2 = Dpk,sk(c2),
it holds that

256 R. Gennaro et al.

{

pk, c1, c1 · c2} ≡ {pk, Epk(m1), Epk(m1 + m2)
}

where the group operations are carried out in C and M, respectively.

Our modification of El Gamal is homomorphic with respect to component-wise mul-
tiplication (in G) of ciphertexts. We denote by c1 ·G c2 the respective multiplications of
c11 · c12 and c21 · c22 where ci = 〈c1i , c2i 〉 = Epk(mi), such that the multiplication result
yields the encryption of m1 + m2.

Threshold PKE We consider two functionalities: One for securely generating a secret
key while keeping it a secret from both parties, whereas the second functionality jointly
decrypts a given ciphertext. We denote the key generation functionality by FKEY, which
is defined as follows:

(1n, 1n) 	→ ((pk, sk1), (pk, sk2)) , (2)

where (pk, sk) ← G(1n), and sk1 and sk2 are random shares of sk. The decryption
functionality FDEC is defined by

(c, pk) 	→ (

(m : c = Epk(m)),−)

, (3)

It is well known how to design an efficient threshold El Gamal scheme in the malicious
setting based on the protocol of Diffie and Hellman [10]. Informally, generating the
shares for the key can be done by sequentially having each party Pi (starting with P1)
pick a random element xi ← Zq and publish gxi together with a zero-knowledge proof
of knowledge of xi , so that the public-key equals gx1+x2 (see Sect. 2.7 for more details
of the zero-knowledge proof). To ensure a simulation, P1 must commit to its share first
and decommit this commitment after P2 sends its share. Decryption of a ciphertext
c = 〈c1, c2〉 follows by computing c2 · (cx11 · cx21)−1, where each party sends ci to the
power of its share.We denote these protocols by πKEY and πDEC, respectively, and assume
that they can be computed with simulation-based security in the presence of malicious
attacks.

2.7. Zero-Knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behav-
ior. Before getting into more details, we formally define zero-knowledge and knowledge
extraction as stated in [16]. We then conclude with a definition of a Σ-protocol which
constitutes a zero-knowledge proof of a special type.

Definition 2.7. (Interactive proof system) A pair of ppt interactive machines (P, V)

is called an interactive proof system for a language L if there exists a negligible
function negl such that the following two conditions hold:

1. Completeness: For every x ∈ L ,

Pr[〈P, V 〉(x) = 1] ≥ 1 − negl(|x |)

Automata Evaluation and Text Search Protocols 257

2. Soundness: For every x /∈ L and every interactive ppt machine B,

Pr[〈B, V 〉(x) = 1] ≤ negl(|x |)

Definition 2.8. (Zero-knowledge) Let (P, V) be an interactive proof system for some
language L . We say that (P, V) is computational zero-knowledge if for every ppt
interactive machine V ∗ there exists a ppt algorithm M∗ such that

{〈P, V ∗〉(x)}x∈L c≡ {〈M∗〉(x)}x∈L
where the left term denotes the output of V ∗ after it interacts with P on common input
x , whereas the right term denotes the output of M∗ on x .

Definition 2.9. (Knowledge extraction) Let R be a binary relation and κ → [0, 1].
We say that an interactive function V is a knowledge verifier for the relation R with
knowledge error κ if the following two conditions holds:

Non-triviality:There exists an interactivemachine P such that for every (x, y) ∈
R, (implying that x ∈ LR), all possible interactions of V with P on common input
x and auxiliary input y are accepting.
Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle
machine K such that for every interactive function P , every x ∈ LR , and every
machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactivemachine V accepts,
on input x , when interacting with the prover specified by Px,y,r . If
p(x, y, r) > κ(|x |), then, on input x and with access to oracle Px,y,r ,
machine K outputs a solution s ∈ R(x) within an expected number of
steps bounded by

q(|x |)
p(x, y, r) − κ(|x |)

The oracle machine K is called a universal knowledge extractor.

Let R be an NP relation associated with the language LR = {x | ∃w s.t. (x, w) ∈
R}. Then, we define the zero-knowledge proof knowledge functionality for R by
FR

ZKPoK((x, w), x) 	→ (−, (x, b)) where b = 1 if R(x, w) = 1 and b = 0 if
R(x, w) = 0.

Definition 2.10. (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a
three-round public-coin protocol and the following requirements hold:

• Completeness: If P and V follow the protocol on input x and private input w to
P where (x, w) ∈ R, then V always accepts.

• Special soundness: There exists a polynomial-time algorithm A that given any x
and any pair of accepting transcripts (a, e, z), (a, e′, z′) on input x , where e �= e′,
outputs w such that (x, w) ∈ R.

258 R. Gennaro et al.

• Special honest-verifier zero knowledge:There exists a ppt algorithmM such
that

{

〈P(x, w), V (x, e)〉
}

x∈LR
≡

{

M(x, e)
}

x∈LR

where M(x, e) denotes the output of M upon input x and e, and 〈P(x, w), V (x, e)〉
denotes the output transcript of an execution between P and V , where P has input
(x, w), V has input x , and V ’s random tape (determining its query) equals e.

A generic, efficient technique that enables the transformation of anyΣ-protocol into a
zero-knowledge proof (of knowledge) can be found in [20]. This transformation requires
an additional 5 (or 6 for a proof of knowledge) exponentiations.
Next, we describe the following standard Σ-protocols used in our constructions:

Protocol Relation/language References

πDL RDL = {

((G, q, g1, g2), x) | g2 = gx1
}

[33]
πDH RDH = {

((G, q, g1, g2, g3, g4), x) | g2 = gx1 ∧ g4 = gx3 }} [9]
πNZ LNZ = {

(G, q, g, h, 〈α, β〉) | ∃ (m �= 0, r)s.t.α = gr , β = hr gm
}

[21]

All these proofs require constant round complexity and a constant number of exponen-
tiations.
We further employ the following zero-knowledge proofs in our constructions:

1. A zero-knowledge proof πENC for the following language that is associated with
a homomorphic encryption � = (G, E, D) relative to a ciphertext group C and
group operation ·. Specifically, let Ci = [ci,1, . . . , ci,Q] for i ∈ {0, 1} and C ′ =
[c′

1, . . . , c
′
Q] be three vectors of Q ciphertexts each. We want to prove that C ′

is the “re-encryption” of the same messages encrypted in either C0 or C1, or in
other words, there exists an index i ∈ {0, 1} such that for all j, c′

j was obtained by
multiplying ci, j by a random encryption of 0. More formally,

LENC =
{

(pk,C0,C1,C
′)
∣
∣∃ (i, {r j } j) s.t. for all j : c′

j = ci, j · Epk(0; r j)
}

.

In the proof, the joint statement is a collection of three vectors, and the prover
produces proofs that the third vector is a randomized version of either the first or
the second vector. When using the El Gamal encryption, the proof boils down to
proving that either C ′/C0 or C ′/C1 is a Diffie–Hellman tuple (when division is
computed component-wise). This enables us to extract the bit i , but not the entire
witness for LENC. We note that this is sufficient for our purposes. We continue with
our protocol,

Protocol 1. (πENC—A Zero-Knowledge Proof for LENC):

• Joint statement The set (G, q, g, h,C0,C1,C ′) for pk = 〈G, q, g, h〉 a public-key
for El Gamal .

Automata Evaluation and Text Search Protocols 259

• Auxiliary input for the prover An index i and a set {r j } j as in LENC.
• The protocol

(a) Let Q denote the number of elements in each vector. Then the verifier picks random
strings r0,1, . . . , r0,Q, r1,1, . . . , r1,Q ← Zq and sends these values to the prover.

(b) LetCi = [ci,1, . . . , ci,Q] for i ∈ {0, 1}andC ′ = [c′
1, . . . , c

′
Q]. Theparties compute

the sets c0 = ∏Q
j=1(c0, j ·G (1/c′

j))
r0, j and c1 = ∏Q

j=1(c1, j ·G (1/c′
j))

r1, j .
(c) The prover performs a zero-knowledge proof of knowledge proving that either

〈pk, c0〉 or 〈pk, c1〉 is a Diffie–Hellman tuple.

Note that the first message sent by the verifier is not part of the challenge but used to
reduce the size of the proven statement.

Proposition 2.1. Assume that the DDH assumption holds relative toG. Then, Protocol
1 is a statistical zero-knowledge proof for LENC with perfect completeness and negligible
soundness error. It is further a proof of knowledge of the index i within the prover’s
witness.

It is easy to verify that the verifier is always convinced by an honest prover. The
combined argument for zero-knowledge can be derived from [8].5 The fact that index i
can be extracted is due to the proof of knowledge property of the Diffie–Hellman proof
from Step 1c.

2. Let � = (G, E, D) be a homomorphic encryption relative to a ciphertext group
C and group operation ·, and let C = {ci, j } j,i and C ′ = {c′

i, j } j,i be two sets of
encryptions, where j ∈ {1, . . . , Q} and i ∈ {0, 1}. Then, we consider a zero-
knowledge proof of knowledge πPERM for proving that C and C ′ correspond to the
same decryption vector up to some permutation. Meaning that,

RPERM =
{(

pk,C,C ′),
(

π, {r j,i } j,i
)∣
∣∀ i, j, {c j,i = c′

π(j),i · Epk(0; r j,i)} j
}

where π is a one-to-one mapping over the elements {1, . . . , Q}. Specifically, we
prove that C ′ is obtained from C by randomizing all the ciphertexts and permuting
their indices. We require that the same permutation is applied for both vectors.
The problem in which a single a vector of ciphertexts is randomized and permuted
is defined by

R1
PERM =

{(

pk, (c1, . . . , cQ), (c̃1, . . . , c̃Q)
)

,
(

π, (r1, . . . , rQ)
)∣
∣∀ i, j, c̃ j = cπ(j) · Epk(0; r j)

}

.

5 This proof is a simple extension of the standard proof forRDH using a general technique. In particular, the
prover separates the challenge c, and it is given by the verifier into two values: c1 and c2 such that c = c1⊕c2.
Assume w.l.o.g. that it does not have a witness for the first statement, then it always chooses c1 in which it
knows how to complete the proof (similarly to what the simulator for πDH does), and uses its witness for the
other statement to complete the second proof on a given challenge c2. Note that the verifier cannot distinguish
whether the prover knows the first or the second witness. See [8] for more details.

260 R. Gennaro et al.

and has been widely studied in the literature. The state-of-the-art protocol is in [5].
In this work, we will use a simpler and slightly less efficient (but still good for
our purposes) protocol by Groth and Lu [13]. They presented an efficient zero-
knowledge proof of knowledge π1

PERM for R1
PERM with linear computation and

communication complexity, and constant number of rounds. The reason we use
a slightly less efficient protocol is due to the fact that it is easy to show that this
proof is applicable to the case where the same permutation is applied to more than
one vector of ciphertexts (as we require), and because it can be applied to the El
Gamal encryption scheme.

3. Secure Text Search with One-Sided Simulatability

The pattern matching problem is defined as follows: given a binary text T of length � and
a binary pattern p of length m, find all the locations in the text where pattern p appears
in the text. Stated differently, for every i = 1, . . . , � − m + 1, let Ti be the substring of
lengthm that begins at the i th position in T . Then, the basic problem of pattern matching
is to return the set {i | Ti = p}. Formally, we consider the functionality FPM defined by

((p, �), (T,m)) 	→
{

({i | Ti = p1 . . . pm},−) if |p| = m and |T | = �

(|T |, |p|) otherwise

where Ti is defined as above.
Note that P2, which holds the text, learns nothing about the pattern held by P1,

whereas the only information that P1 learns about the text is the locations where its
pattern matches. As discussed in the introduction, this problem has been intensively
studied and can be solved optimally in an insecure environment in time that is linear in
length of the text and the number of occurrences.

3.1. Secure Text Search against Honest-But-Curious Adversaries

In this section,we present an algorithm for secure text search that is secure in the presence
of honest-but-curious adversaries. Our protocol employs the properties of homomorphic
encryption to compute the sum of the differences between the pattern and the text.
Informally, party P1 computes a matrix Φ of size 2 × m that includes an encryption of
zero in the position (i, j) if p j = i , and an encryption of one otherwise. Given Φ, party
P2 creates a new encryption ek for every text location k that corresponds to the inner
product of the encryptions at locations (tk+ j−1, j) for all j ∈ {1, . . . ,m}. By definition,
ek encrypts the Hamming distance between p and Tk . Therefore, if p matches Tk, ek is a
random encryption of zero. Figure 1 illustrates the approach schematically, and Protocol
πSIMPLE introduces it formally.

Protocol 2. (πSIMPLE—Honest-But-Curious Secure Text Search)

• Inputs The input of P1 is a binary search string p = p1, . . . , pm and �, whereas
P2’s input is a binary text string T = t1, . . . , t� and m.

Automata Evaluation and Text Search Protocols 261

Fig. 1. Text search in the honest-but-curious setting.

• Conventions The parties jointly agree on a groupG of prime order q and a genera-
tor g for the El Gamal encryption. Party P1 generates a key pair (pk, sk) ← G(1n)
and publishes pk. Finally, unless written differently, j ∈ {1, . . . ,m} and i ∈ {0, 1}.

• The protocol

1. Encryption of pattern Party P1 builds a 2×m matrix of ciphertextsΦ defined
by,

Φ(i, j) =
{

Epk(0) p j = i

E pk(1) otherwise

The matrix Φ is sent to party P2.
2. Scanning of text For each offset k ∈ {1, . . . , � − m + 1}, P2 computes

ek =
m

∏

j=1

Φ
(

tk+ j−1, j
)

Note that for each offset k, it holds that Tk matches pattern p if and only if
ek = Epk(0).

3. Masking of termsDue to the fact that the decryption of ek reveals the number
of matched elements at text location k, party P2 masks this result through scalar
multiplication. In particular, P2 sends the set {e′

k = (ek)rk · Epk(0; r ′
k)}k where

rk, r ′
k are random strings chosen independently from Zq for each k.

4. Obtaining result P1 uses sk to decrypt the values of e′
k and outputs

{

k | Dpk,sk(e
′
k) = 0

}

.

Clearly, if both parties are honest then P1 outputs a correct set of indexes with over-
whelming probability (an error may occur with negligible probability if (ek)r is an
encryption of zero even though ek is not). We now state the following theorem,

262 R. Gennaro et al.

Theorem 3.1. Assume that the DDH assumption holds relative to G. Then Protocol
πSIMPLE securely computes FPM in the presence of honest-but-curious adversaries.

In case P1 is corrupted, statistical security is obtained by sending an encryption of
zero for the matched text locations, and an encryption of a random element in Zq for
all other locations. In case P2 is corrupted, security is obtained via a reduction to the
IND-CPA security of (G, E, D) by simply defining a simulator that sends encryptions
of zero. The formal proof is straightforward and is therefore omitted.
One-sided simulation security We point out that if party P1 proves that it computed
matrixΦ correctly, thenwe can also guarantee full simulationwith respect to a corrupted
P1. This can be achieved by having P1 prove, using the zero-knowledge proof of knowl-
edge πPERM (cf. Sect. 2.7), that for every j the pair Φ(0, j),Φ(1, j) is a permuted pair
of the ciphertexts Epk(0), Epk(1). In addition, we add two checks in the protocol where
the parties verify whether the vectors sizes received from the other party are consistent
with the lengths � and m, P1 and P2 are given, respectively.
Constructing a simulator for the case of a corrupted P2 is more challenging since

the protocol does not guarantee that P2 computes {e′
k}k relative to a well-defined binary

string T . In particular, P2 may compute every ciphertext e′
k using a differentm bits string.

We are not aware of any alternative for proving consistency relative to P2’s behavior,
rather than using generic zero-knowledge proofs of knowledge which do not provide an
efficient approach. Therefore, we only consider privacy for this case. Let π ′

SIMPLE denote
the modified version of πSIMPLE with the additional zero-knowledge proof of knowledge
πPERM used by P1. We conclude with the following claim,

Theorem 3.2. Assume that the DDH assumption holds relative to G. Then Protocol
π ′
SIMPLE securely computes FPM with one-sided simulation.

Proof Sketch. Assume P1 is malicious. Then, we define a simulator S that plays the
role of P2 and builds a view for P1 that is (computationally) indistinguishable from the
view of the real protocol without knowing the real input text held by P2. The crucial
point is that at the end of Step 1 (which in π ′

SIMPLE includes also the zero-knowledge
proof of knowledge πPERM), the simulator can learn the input of P1 by extracting it from
πPERM. At this point, the simulator is also given the output of the protocol by the trusted
party, i.e., S knows in which locations of the input text of P2 the pattern appears. S then
chooses a text T ′ which contains the pattern in the exact same locations but is otherwise
an arbitrary string p′ �= p. It then runs the rest of the protocol using T ′. It is easy to
verify that the view of P1 produced by S is statistically close to the real view.
In case P2 is corrupted, the privacy of P1 follows from the IND-CPA security of

El Gamal and the zero-knowledge property of πPERM. Specifically, the simulator sends
encryptions of zero and invokes the simulator for πPERM for proving the correctness ofΦ

�.

We remark that protocol π ′
SIMPLE takes a different approach than the one-sided simulat-

able protocol of [18], that computes the pattern matching functionality using oblivious
PRF evaluation. One advantage of our protocol is that it can be easily extended for
handling generalizations of the basic pattern matching problem (as shown in Sect. 3.2).

Automata Evaluation and Text Search Protocols 263

This does not seem to be the case for the [18] protocol since the PRF evaluations of two
strings that their Hamming distance is small yield two strings that look independent.
Furthermore, in order to evaluate the PRF, the [18] protocol requires � OT evaluations.
This overhead implies that both parties must compute O(�) exponentiations.

Efficiency We first note that the protocol π ′
SIMPLE is constant round. The overall com-

munication cost is O(m+�) group elements, whereas the computation cost is O(m+�)

modular exponentiations and (m�) multiplications, as P2 computes the multiplication
of m ciphertexts (component-wise) for each text location. The additional cost of πPERM

is linear in the length of the pattern.

3.2. Generalizations of the Pattern Matching Problem

In this section, we study three generalizations of the classic pattern matching problem,
to other problems of practical interest. We show how to modify our solution from the
prior section to solve these problems.

Approximate Text Search In approximate matching, one defines a distance metric
between the strings and finds all the text locations where the pattern matches the text by
a pre-specified distance. For example, an additional public parameter ρ, which deter-
mines the number of differences that can be tolerated, is introduced (where a difference
is defined by the specified metric). The most natural metric is the Hamming distance
that counts the number of mismatches between two strings. Specifically, P1 learns all
the text locations in which the Hamming distance between the pattern and the substring
at these text locations is smaller equal to ρ. More formally, we consider the functionality
for approximate text search FAPM that is defined by

((p, �, ρ), (T,m, ρ′))

	→
{

({i | d(Ti , (p1, . . . , pm)) ≤ ρ},−) if |p| = m, |T | = � and ρ = ρ′

(|T |, |p|) otherwise

where d(x, y) denotes the Hamming distance of two binary strings x and y of the same
length, and Ti is the substring of length m. The best algorithm for solving text search
with mismatches in an insecure environment is the solution by Amir et al. [2] who
introduced a solution whose time complexity is O(�

√
ρ log ρ). We show that a simple

modification to our protocol yields a protocol that computes this functionality as well.
Upon completing its computations and before masking the terms as in Step 3 of π ′

SIMPLE

and condition that ρ = ρ′, party P2 produces ρ + 1 ciphertexts from each ciphertext
ek by subtracting from its plaintext all values between [0, . . . , ρ]. Finally, it masks and
rerandomizes these ciphertexts and randomly shuffles the result. Denote this modified
protocol by πAPM.

Then, simulation for a corrupted P1 is not changed as now, and the simulator receives
from the trusted party all the text locations where the pattern matches with at most ρ

mismatches. The proof for the case that P2 is corrupted follows from above. Then it
holds that

264 R. Gennaro et al.

Theorem 3.3. Assume that the DDH assumption holds relative to G. Then, Protocol
πAPM securely computes FAPM with one-sided simulation.

Note that both the computation and communication complexities are O(m�). Specif-
ically, the overhead of P2 is dominated by O(m�) multiplications and O(m + �) expo-
nentiations.

Text search with wildcards This variant was developed with the aim to introduce
improved algorithms for approximate text search. Here, a wildcard symbol is intro-
duced in the pattern, so that it matches against any character when comparing against
the text. In an insecure setting, this problem can be solved in time that is linear in the
lengths of the text and pattern, and the number of occurrences [32]. We note that in pro-
tocol π ′

SIMPLE, a wildcard can be introduced by having P1 send two encryptions of zero
instead of a pair of encryptions of zero and one. By doing so, we ensure that regardless
of the text bit, P2 will not count it as a mismatch. Denote this modified protocol by πWC,
then it holds that

Theorem 3.4. Assume that the DDH assumption holds relative to G. Then, Protocol
πWC securely computes the pattern matching problem with wildcards with one-sided
simulation.

The security proof is as above except that P1 uses a slightly different proof of knowledge.
In particular, it proves the statement that for every j , the pair {Φ(0, j),Φ(1, j)} is
either a permuted pair of the encryptions {Epk(0), Epk(1)} or it corresponds to a pair
of zero encryptions. The number of exponentiations required from P2 is O(m�) and the
communication is O(m + �) group elements.

Larger alphabets Recalling that protocolπ ′
SIMPLE compares binary strings and computes

the pattern matching functionality for the binary alphabet. However, in some scenarios,
the pattern and the text are defined over a larger alphabet Σ , (e.g., when searching in a
DNA database the alphabet is of size four.)
When T and p are drawn from a |Σ |-ary alphabet, protocol πSIMPLE can be extended to

this case, where Φ is a q ×m matrix. In this case, P1 must prove that each row of Φ is a
permutation of a vector of q elements of the form {Epk(0), Epk(1), . . . , Epk(1)}, using
πPERM, with a single encryption of zero and q − 1 encryptions of one. The size of the
alphabet appears as a multiplicative cost for both the computation and communication
measures. The security proof is not appreciably different from the binary case.

4. Secure Oblivious Automata Evaluation

In this section, we present a secure protocol for oblivious automata evaluation in the
presence of malicious adversaries. In this functionality, P1 inputs a description of an
automaton Γ = (Q,Σ,Δ, q0, F), and P2 inputs a string t . The result of the protocol
is that P1 receives Γ (t), while P2 learns nothing. Formally, we define this problem via
the functionality

Automata Evaluation and Text Search Protocols 265

FAUTO : (Γ = (Q,Σ,Δ, q0, F), (t, |Q|, |F |)) 	→
{

((accept, |t |),−) ifΓ (t) ∈ F
((no-accept, |t |),−) otherwise

where Γ (t) denotes the final state in the evaluation of Γ on t . The reason we require
from the party who holds Γ to learn the outcome and not the other way around is due
to employing this protocol in our main construction for computing text search. There,
the party with the pattern designs an automaton for its specific input and should learn
outcome of the its automaton evaluation on the text. In order to enable P2 to learn the
outcome, a simple modification is required in the last step of our protocol.
W.l.o.g., we consider the following simplifying assumptions. First, we assume that

Σ = {0, 1} (our construction can be proven for any fixed alphabet) and that the transition
table is complete, where there exists a transition at each state for every input σ ∈ Σ .
To simplify the description, we assume that each row is described using three columns:
the current state denoted by column ε, the next state in case of reading a zero denoted
by column 0 and the next state in case of reading a one denoted by column 1, so that
each bit has its own column and the overall number of rows is now |Q|. We furthermore
assume that the names of the states {q0, q1, . . . , q|Q|−1} are the integers taken from
{1, . . . , |Q|}, respectively (i.e., the initial state is labeled 1). Finally, we assume that
|Q| and |F | are public (for |F | the number of states in F). For the sake of generality,
we note that keeping |F | private can be easily dealt by having P1 send a vector of
|Q| encryptions for which the i th encryption is a zero encryption only if qi /∈ F .
Otherwise, it is an encryption of qi (this can be verified using a simple zero-knowledge
proof).
Recall that our starting point is the protocol from [34]. Their idea is to have the

parties share the current machine state, such that by the end of the kth iteration,
the party with the automaton knows a random string rk , whereas the party with the
input for the automaton learns qk + rk . The parties complete each iteration by run-
ning an oblivious transfer in which the next state is now shared between them. The
fact that the parties are honest-but-curious significantly simplifies their construction.
Unfortunately, we cannot see any natural way to extend their technique to the mali-
cious adversary case (even when using oblivious transfer that is resilient to malicious
attacks). Coping with such behavior is much more challenging. First due to the require-
ment that the automaton must be valid (according to some specifications described in
Sect. 5). Furthermore, the parties’ inputs to the oblivious transfers must be consistent.
In this paper, we take a different approach to obtain security against malicious adver-
saries.

A high level description We begin by briefly motivating our construction; see
Fig. 2 as well. At the beginning of the protocol, P1 and P2 jointly generate a
public-key (G, E, D) for the threshold El Gamal encryption scheme (denoted by
the sub-protocol πKEY). Next, party P1 encrypts its transition table Δ and the
set of accepting states F , and sends it to P2. Note that this immediately allows
P2 to find the encryption of the next state cΔ(1,t1) = Δ(1, t1), by selecting it
from the encrypted matrix (since it can identify the encrypted next state associ-
ated with the specific state and bit). P2 rerandomizes this encryption and shows

266 R. Gennaro et al.

Fig. 2. Construction of determinized KMP automata for pattern 1100011001.

it to P1. The protocol continues in this fashion for � iterations (the length of the
text).6

Assume that at the outset of each iteration i , the parties know an encryption of the
current state and their goal is to find an encryption of the next state. P2 selects from
the matrix the encrypted column that corresponds to the next state according to its input
ti (as it only knows an encryption of the current state). Then, using the homomorphic
properties of El Gamal , the parties obliviously select the correct next state; this stage
involves the following computations. Let cΔ(1,tξ −1) denote an encryption of the current
state after the partial automaton evaluationΔ(1, t1, . . . , tξ−1). Then, the parties compute

first the set C = {cΔ(1,ξ−1) ·G Epk(gq j
−1; 0)} j where only one ciphertext in this set will

6 Unfortunately, these iterations are not independent and thus cannot be employed in parallel. This is due
to the fact that the parties must start every iteration with an encryption of the current state. Looking ahead, in
Sect. 5.2, we show how to minimize the number of rounds into O(m) when performing a secure text search,
which is typically quite small.

Automata Evaluation and Text Search Protocols 267

be an encryption of 0, indicating the position of the current state. In order to learn
the encryption of the next state, the parties have to randomly permute the transition
table and mask column C , so that when being decrypted, it will not reveal any useful
information about the secret inputs of the parties. The protocol concludes by the parties
jointly checking if the encrypted state that is produced within the final iteration is in the
encrypted list of accepting states.
More specifically, there are several technical challenges in constructing such a secure

protocol. In particular, the identification of the next encrypted state without leaking
additional information requires a couple of rounds of interaction between the parties
in which they mask and permute the ciphertext vector containing all possible states, in
order to “destroy any link” between their input and the next encrypted state. Moreover,
in order to protect against malicious behavior, zero-knowledge proofs are included at
each step to make sure the parties behave according to the protocol specifications.
We are now ready to present a formal description of our protocol.

Protocol 3. (πAUTO—Secure Oblivious Automata Evaluation)

• Inputs The input of P1 is a description of an automaton Γ = (Q, {0, 1},Δ, q0, F),
and the input of P2 is a binary string t = t1, . . . , t�.

• Auxiliary Inputs |Q| and |F | for P2 and the security parameter 1n for both.
• ConventionsWe assume that the parties jointly agree on a groupG of prime order
q and a generator g for the threshold El Gamal encryption scheme. Both parties
check every received ciphertext for validity and abort if an invalid ciphertext is
received.
We further assume that the description of the automaton does not include unreach-
able states.
Finally, unless written differently, j ∈ {1, . . . , |Q|} and i ∈ {0, 1}.

• The protocol:

1. El Gamal key setup The parties engage in an execution of protocol πKEY and
generate a public-key pk and two shares x1 for P1 and x2 for P2.

2. Encrypting P1’s transition table and accepting states

(a) P1 encrypts each entry in its transition table Δ under pk component-wise.
Denote this set of ciphertexts by EΔ = (Cε,C0,C1), denoting columns ε, 0
and 1, respectively. P1 also sends the list of encrypted accepting states denoted
by EF = {Epk(f)} f ∈F . For simplicity, we assume that the randomness of the
ciphertexts encrypting column Cε is known (note that this column “encrypts”
the publicly known states {1, . . . , |Q|} in some fixed order).

(b) For every encryption 〈c1, c2〉 ∈ EΔ ∪ EF , P1 proves the knowledge of logg c1
using πDL.

(c) Proving the validity of the encrypted transition matrix P1 proves that EΔ

is a set of encryptions for values from the set {1, . . . , |Q|}. It first sorts the
ciphertexts within columns C0 and C1 according to their plaintexts (i.e., in a
non-decreasing order), denotes the sorted vector by c1, . . . , c2·|Q|. P1 multi-
plies every encryption in this set with a random encryption of 0, sends it to
P2 and proves: (1) firstly that this vector is a permutation of C0 and C1 using
πPERM. (2) That c̃τ = cτ /cτ−1 ∈ {Epk(0), Epk(1)} for τ ∈ {2, . . . , 2|Q|}

268 R. Gennaro et al.

using πDH. For example, by proving that either (pk, c̃τ) or (pk, c̃τ /Epk(1))
is a Diffie–Hellman tuple and finally, (3) that c1 and c2·|Q| encrypt plaintexts
from {1, . . . , |Q|} (to ensure that P1 does not use states taken from a differ-
ent range) by running a combined argument for πDH (see Footnote 5 for more
details about such an argument).

3. First iteration

(a) P2 chooses the encryption of the next state cΔ(1,t1) = Epk(Δ(1, t1)). It then
defines c1 = cΔ(1,t1)·GEpk(0; r) for a freshuniformr, i.e., a randomencryption
of the next state and sends it to P1.

(b) P2 proves that Dpk,sk(c1) ∈ {Dpk,sk(cΔ(1,0)), Dpk,sk(cΔ(1,1))} using the zero-
knowledge proof of knowledge πENC.

4. Iterations {2, . . . , �} for every ξ ∈ {2, . . . , �}, let cΔ(1,tξ−1) denote the encryption
of the current state after the partial automaton evaluation Δ(1, (t1, . . . , tξ−1)).
Then, the parties continue as follows:

(a) Subtracting columnCε fromthe current stateTheparties compute the vector
of encryptions C = {cΔ(1,ξ−1)/c j,ε} j for every ciphertext c j,ε ∈ Cε . Note that
only one ciphertext will denote an encryption of zero, and that indicates the
position corresponding to the current state.

(b) Picking columnCtξ : P2 sends P1 a randomized version of columnCtξ , denoted
Btξ , and proves correctness using the zero-knowledge proof of knowledge πENC.

(c) P2 permutes columns C and Btξ : P2 chooses a random permutation π over
{1, . . . , |Q|} and sends P1 a randomized version of the permuted columns
(Cπ ,Cπ,tξ) = (π(C), π(Btξ)). P2 proves its computations using a zero-
knowledge proof of knowledge πPERM.

(d) P1 permutes columnsCπ andCπ,tξ : If P1 accepts the proofπPERM, it continues
similarly by randomizing and permuting (Cπ ′ ,Cπ ′,tξ) = (π ′(Cπ), π ′(Cπ,tξ))

using a new random permutation π ′. P1 proves its computations using a zero-
knowledge proof of knowledge πPERM.

(e) Masking column Cε The parties take turns in masking Cπ ′ (a permutation
over column Cε).

(i.) More specifically, for every cπ ′ ∈ Cπ ′ , P2 chooses x, r ← Z
∗
q and com-

putes c′
π ′ = cx

π ′ ·Epk(0; r) (component-wise). It then proves that (cπ ′ , c′
π ′)

forms a Diffie–Hellman tuple using πDH. Notice that the ciphertext that
denotes an encryption of zero will not be influenced by the masking, while
the others are mapped to a random value.

(ii.) P1 repeats this step and masks the result yielding a new vector C̄.

(f) Decrypting column C̄ The parties decrypt vector C̄ by running πDEC on each
element c̄ ∈ C̄, where P2 decrypts using its share first.

The parties choose the j th ciphertext to be cΔ(1,tξ) ∈ Cπ ′,tξ for which Dpk,sk(c̄ j) =
0 (with high probability there will be only one such ciphertext).

5. Verifying output Upon completing the �th iteration the parties hold a ciphertext
cΔ(1,t�) that denotes the encryption of Δ(1, t). To check if this is an accepting state
the parties do the following:

Automata Evaluation and Text Search Protocols 269

(a) They compute the ciphertext vector CF = {cΔ(1,t�)/c}c∈EF . Notice thatΔ(1, t)
is accepting if and only if one of these ciphertexts is an encryption of zero.

(b) P2 masks CF as in Step 4e and proves correctness using πDL. Let C ′
F be the

result vector.
(c) P2 permutes C ′

F and proves correctness using π1
PERM. Let CF,π be the resulting

vector.
(d) The parties run πDEC to decrypt all the ciphertexts in CF,π , where P2 decrypts

using its share first and the result going only to P1 that outputs accept if and
only if one of the plaintexts equals zero.

We continue with the following claim,

Theorem 4.1. Assume that the DDH assumption holds relative to G. Then πAUTO

securely computes FAUTO in the presence of malicious adversaries.

Intuitively it should be clear from the IND-CPA security of the encryption scheme
that the automaton and the text remain secret. Consider first the case in which P1
is corrupted, and we need to simulate the role of P2. The simulator is going to
choose an arbitrary input and run P2’s code on it (while forcing a correct out-
come for P1). Then, to prove that this view is indistinguishable from a real view,
we need to show a reduction to the encryption scheme. In particular, our reduction
should enable the simulator to decrypt without actually knowing the secret key, since
the parties must run a decryption in each iteration in order to locate the encryp-
tion of the next state. Moreover, decryptions must be computed for the ciphertexts
received from the challenger during the reduction, for which the simulator has no con-
trol.
We approach this technicality via a sequence of hybrid games in which indistinguish-

able changes are introduced to the way the simulator works, but still allowing it to
complete the simulated execution. More specifically, we first instruct the simulator to
decrypt without using its share (but still introducing the same view) and then show how
to create a view that is independent of the honest party’s input. This enables us to replace
the simulated input with a real one. As for the case that P2 is corrupted, the proof follows
the same outline mainly because, even though P2 does not receive an output, it still sees
intermediate decryptions of column C̄ . Our goal is to prove that these decryptions do
not contribute any information about P1’s input.

4.1. Proof of Theorem 4.1

We separately prove security in the case that P1 is corrupted and the case that P2 is
corrupted. Our proof is in a hybrid model where a trusted party implements the rela-
tions RDL,RDH,RPERM and R1

PERM (namely, the zero-knowledge proof of knowledge
functionality that corresponds to these relations).

Party P1 is corrupted Let A denote an adversary controlling P1. We construct a
simulator SIM as follows,

1. SIM is given a description of an automaton Γ = (Q, {0, 1},Δ, q0, F) and A’s
auxiliary input and invokes A on these values.

270 R. Gennaro et al.

2. SIM invokes the simulator for πKEY and extracts the adversary’s share x1. SIM
records this value, picks x2 ← Zq and completes the execution of πKEY with this
share. Let pk = gx1+x2 denote the public-key generated in this execution.

3. SIM receives from A ciphertexts EΔA and EFA and verifies the proofs for a
valid automaton. If the verification fails SIM sends ⊥ to the trusted party for
FAUTO and halts. SIM decrypts EΔA and records the transition matrix ΔA. If
the recorded set ΔA does not constitute a valid transition matrix SIM outputs
fail. SIM similarly computes the set of accepting states FA (as A may send
encryptions of invalid accepting states, SIM records only the valid states that
correspond to values within {1, . . . , Q}).

4. SIM sends ΓA = (Q, {0, 1},ΔA, q0, FA) to its trusted party. If it receives back
the message “accept” and �, it chooses an arbitrary string t ′ = t ′1 . . . t ′� for which
ΓA(t ′) ∈ FA. Else, it chooses a string t ′ = t ′1 . . . t ′� such that ΓA(t ′) is not an
accepting state. This is done by mapping the automaton into a graph and then
searching for a path from the initial state to each one of the accepting/non-accepting
states of length �.

5. SIM completes the execution as the honest P2 would on this input. Specifically, in
the first iteration, SIM chooses cΔA(1,t ′1) and sendsA ciphertext c1 = cΔA(1,t ′1) ·
Epk(0). It then invokes the simulator for πENC while playing the role of the prover,
for proving that it computed cΔA(1,t ′1) correctly.

6. In every iteration ξ,SIM plays the role of the honest P2 on its input determined
above, emulating the ideal computations ofRPERM andRDH. It further invokes the
simulator for the zero-knowledge proof πENC when required in the protocol.

7. SIM outputs whatever A does.

We first note that SIM outputs fail with negligible probability due to the fact that in
the real execution P2 accepts an invalid automaton description only with a negligible
probability due to the negligible soundness error of πPERM and πDL. In particular, if
A sends an encryption of a value not in {1, . . . , Q}, then the proof fails since either
there exists an index τ in which c̃i is not an encryption of zero or one, or c1 and
c2·|Q| are not encryptions of an element from {1, . . . , 2|Q|}. Next, we show that the
output distribution ofA in the hybrid and the simulated executions are computationally
indistinguishable. Recall that SIM plays against A with input t ′ so that ΓA(t) ∈ FA
if and only if ΓA(t ′) ∈ FA where t is the input of the real P2. The intuition of the
proof follows from the security of El Gamal, where the adversary should not be able
to distinguish between an encrypted path of the automaton that was computed relative
to t or t ′. Formally, we define a sequence of hybrid games and denote by the random
variable HA(z)

� (Γ = (Q, {0, 1},Δ, q0, F), t, n) (for a fixed n) the output ofA in hybrid
game H�.

Formally, we consider the following sequence of games.

Game H0 The simulated execution as described above.

Game H1 In this game, we define a simulator SIM1 similarly to simulator SIM with
the following modifications.

Automata Evaluation and Text Search Protocols 271

1. In Step 3a (i.e., in the first iteration), SIM1 sends an encryption to a random
plaintext instead of cΔA(1,t ′1), for t

′ = t ′1, . . . , t ′� the arbitrary input picked by the
simulator. SIM1 then invokes the simulator for the proof πENC.

2. Next, for each iteration 2 ≤ ξ ≤ �,SIM1 does not send a random permutation of
columns C,Ct ′ξ in Step 4c. Instead, SIM1 sends two vectors of |Q| ciphertexts
encrypting random plaintexts. Moreover, in Step 4f, SIM1 decrypts column C̄
as follows. It picks a random index k ∈ {1, . . . , |Q|} and forces the decryption of
c̄k = 〈c̄k1 , c̄k2〉 ∈ C̄ into zero by sending

e2 = c̄k2
(

c̄x1k1 · gm
) = c̄k2

(

c̄x1k1 · g0
) = c̄k2

c̄x1k1
,

for m = 0 and x1 the adversary’s secret key share. Note that if the adversary
decrypts correctly then the outcome is g0 since it computes c̄k2/(c̄

x1
k1

· e2) = g0.
3. Similarly, in Step 5c, SIM1 sends a random vector of ciphertexts rather than the

permuted outcome CF,π and forces the decryption of one of these ciphertexts into
zero as done in the previous step.

We claim that the adversary’s views in the games H0 and H1 are computationally
indistinguishable due to the IND-CPA security of the El Gamal scheme. For example,
a distinguisher DE can be constructed as follows. Upon receiving public-key pk from
its oracle, DE invokes the simulator for πKEY and forces the shared public-key to be pk.
It further records the adversary secret key share x1 and the transition table it extracts in
Step 2b. Next, in the first iteration DE outputs messages ΔA(1, tc1) and s for s ← Zq ,
receiving back from its oracle ciphertext e.7 DE forwardsA in Step 3a ciphertext e and
invokes the simulator for πENC. Then, in each iteration 2 ≤ ξ ≤ �, DE sends to its oracle
two vectors of size 2|Q|: (i) the first vector corresponds to a random permutation π of
columns Cε,Ctcξ . (ii) The second vector corresponds to a set of random plaintexts. DE

forwards A the oracle’s response and emulates the ideal calls for the zero-knowledge
proofs. Finally, in the decryption of Step 4f, DE decrypts ciphertext c̄k as in game
H1 except that it picks index k ∈ {1, . . . , |Q|} to be the index that would have been
decrypted by simulator SIM when running on input t ′ (i.e., the index that corresponds
to plaintext ΔA(1, t ′ξ) if the oracle indeed encrypts the second set of messages. Clearly,
DE does not know that, but pretends that this is the case). We recall that DE extracts
the permutations applied by the adversary in Step 4d, so it is able to compute this index
efficiently. Similarly in Step 5d, DE decrypts the ciphertext that corresponds to the final
state ΔA(1, t ′) (again, assuming that the oracle encrypts the second set of messages.)
We now prove that A’s view distributes either according to game H0 with SIM

or according to game H1 with SIM1. Note first that the differences between the two
executions are with respect to the permuted ciphertexts and the way decryption follows.
For example, if DE receives from its oracle encryptions of ΔA(1, t ′1) and the permuted
columns Cε,Ct ′ξ , then the result is a view as in the simulation with SIM. To see this,

7 We extend the standard IND-CPA game where the adversary outputs two messages and consider a game
where the adversary outputs two vector of messages where one of these vectors is encrypted. For simplicity,
we split the challenge phase into two phases.

272 R. Gennaro et al.

note that the ciphertexts received from DE ’s oracle distribute as in game H0 since they
correspond to the encryptions of the evaluation of the automaton on t ′. In addition, DE

decrypts the ciphertexts that correspond to {ΔA(1, t ′ξ)}ξ by sending c̄k2/(c̄
x1
k1

· g0) in
each iteration. Now, since DE decrypts as if the oracle sends these sets of encryptions,
it holds that DE decrypts correctly (without knowing). For example, it sends

c̄k2
c̄x1k1 · g0 = c̄xk1 · g0

c̄x1k1 · g0 = c̄x2k1

for x = x1 + x2, which distributes identically to SIM’s decryption message in the
execution of πDEC.
On the other hand, the result is a view with ciphertexts that encrypt random plaintexts

as required in game H1. Here, we need to ensure that the view distributes as in game H1.
Note that the only difference with respect to the views generated by DE and SIM1 is
regarding the way index k is picked, since DE does not pick it uniformly. Nevertheless,
since the index of ΔA(1, t ′ξ) is randomly permuted within column Ct ′ξ using a fresh
permutation π , it amounts to picking this index at random.

Game H2 In this game, there is no trusted party and no honest P2. Instead, we define a
simulator SIM2 that uses the real input t instead of the simulated input t ′. For example,
this game is identical to game H0 with SIM except that SIM2 does not interact with
a trusted party and plays the role of SIM with input t rather than with t ′. The proof
for which the views generated within games H1 and H2 are computationally indistin-
guishable follows the same argument from the proof that demonstrates computational
indistinguishabilitywith respect to the simulated viewwithSIM and the viewgenerated
in game H1.

GameH3 In this game, we define a simulator SIM3 that uses its share of the secret key
to decrypt correctly. We claim that the adversary’s views generated in games H2 and H3
are identical. This is due to the fact that the simulator decrypts correctly in both games.
Specifically, in gameH2, the simulator decrypts the ciphertexts it picks in Steps 4f and 5d
correctly, since it knows the plaintexts.

GameH4 In this game, we define a simulator that invokes the real prover forπENC instead
of the simulator. Computational indistinguishability follows straightforwardly due to the
zero-knowledge property of πENC.
Finally, note that the distribution induced by game H4 is identical to the distribution

generated in the hybrid execution. This concludes the proof for the case when P1 is
corrupted.
Party P2 is corruptedLetA denote an adversary controlling P2, we construct a simulator
SIM for P1 as follows.

1. SIM is given a string t1, . . . , t� and A’s auxiliary input (|Q|, |F |), and invokes
A on these values.

2. SIM picks x1 ← Zq and invokes the simulator for πKEY. SIM extracts the
adversary’s share x2 and records this value. It then completes the execution of

Automata Evaluation and Text Search Protocols 273

πKEY with its share. Let pk = gx1+x2 denote the public-key generated in this
execution.

3. SIM encrypts an arbitrary automaton Γ ′ = (Q′, {0, 1},Δ′, q0, F ′) with |Q′| =
|Q| and |F ′| = |F | and sends its encryption. It emulates the ideal calls for RPERM

and RDH approving the validity of the description of the automaton.
4. In every iteration ξ,SIM records tξA by extracting it from the proof πENC thatA

runs in Step 4b (for the first iteration SIM extracts t1A in Step 3b). SIM sends
t1A , . . . , t�A to the trusted party.

5. SIM completes the execution as the honest P1 would on this input Γ ′ while
emulating the ideal calls for RPERM,R1

PERM,RDL and RDH.
6. SIM outputs whatever A does.

Note that the difference between this simulated and the hybrid executions is within
the fact that the simulation runs on an arbitrary encrypted automaton. Therefore, the
reduction follows from the security of the El Gamal encryption scheme. More formally,
recall that P2 does not receive any output, thus it only learns the decryption results
in Step 4f. Therefore, our goal is to prove that privacy is preserved in spite of these
decryptions. The proof follows similarly to the proof of the prior corruption case. We
denote by the random variable HA(z)

� (Γ = (Q, {0, 1},Δ, q0, F), t, n) (for a fixed n) the
view of A in the hybrid game H�.

Game H0 The simulated execution.

Game H1 In this game, we define a simulator SIM1 similarly to simulator SIM with
the following modifications.

1. In Step 2,SIM1 sends ciphertexts that encrypt randomplaintexts rather than using
the fake automaton Γ ′ = (Q′, {0, 1},Δ′, q0, F ′) the fake input that SIM inputs
in game H0. SIM1 emulates the ideal calls in Step 2c, approving the validity of
the description of the automaton.

2. For each iteration 2 ≤ ξ ≤ �,SIM1 continues as simulator SIM does. For
example, follows the protocol instructions until Step 4f, where SIM1 decrypts
column C̄ as follows. It picks a random index k ∈ {1, . . . , |Q|} and forces the
decryption of c̄k = 〈c̄k1 , c̄k2〉 ∈ C̄ into zero by sending

c̄k2
(

c̄x1k1 · gm
) = c̄k2

(

c̄x1k1 · g0
) = c̄k2

c̄x1k1
,

for m = 0 and x1 is the adversary’s secret key share. Note that if the adversary
decrypts correctly then the outcome is g0 since it computes c̄k2/(c̄

x1
k1

· e2) = g0.
3. The rest of the simulation is as in game H0.

We claim that the adversary’s views in games H0 and H1 are computationally indis-
tinguishable due to the IND-CPA security of the El Gamal scheme. For example, a
distinguisher DE can be constructed as follows. Upon receiving public-key pk from its
oracle, DE invokes the simulator for πKEY and forces the shared public-key to be pk.
It further records the adversary secret key share x2. DE sends to its oracle two vectors
of size 2|Q| + |F |: (i) The first vector corresponds to the fake automaton description

274 R. Gennaro et al.

Γ ′ = (Q′, {0, 1},Δ′, q0, F ′). (ii) The second vector corresponds to a random set of
plaintexts. DE forwards the adversary the oracle’s response and emulates the ideal calls
for RPERM and RDH approving the validity of the description of the automaton. Next, in
each iteration 1 ≤ ξ ≤ �, DE extracts tξA and verifies the proofs πENC, and aborts if
verification fails. It then permutes columns Cπ and Cπ,tξ correctly.
Finally, in the decryption of Step 4f, DE decrypts ciphertext c̄k as in game H1 except

that it picks index k ∈ {1, . . . , |Q|} to be the index that would have been decrypted by
simulator SIM when running on input Δ′ (i.e., the index that corresponds to plaintext
Δ′(1, tξA) if the oracle indeed encrypts the first set of messages. Clearly, DE does not
know that, but pretends that this is the case). We recall that DE extracts the permutations
applied by the adversary in Step 4c so it is able to compute this index efficiently. The
rest of the proof follows similarly as in the former corruption case.
Game H2 In this game, there is no trusted party and no honest P1. Instead, we define
a simulator SIM2 that uses the real input Γ = (Q, {0, 1},Δ, q0, F) instead of the
simulated input Γ ′ = (Q′, {0, 1},Δ′, q0, F ′). For example, this game is identical to
game H0 with SIM except that SIM2 does not interact with a trusted party and plays
the role of SIM with input Γ = (Q, {0, 1},Δ, q0, F) rather than with a fake input
Γ ′ = (Q′, {0, 1},Δ′, q0, F ′). The proof for which the views generated within games
H1 and H2 are computationally indistinguishable follows the same argument from the
proof that demonstrates computational indistinguishability with respect to the simulated
view with SIM and the view generated in game H1.

GameH3 In this game, we define a simulator SIM3 that uses its share of the secret key
to decrypt correctly. We claim that the adversary’s views generated in games H2 and H3
are identical. This is due to the fact that the simulator decrypts correctly in both games.
Specifically, in gameH2, the simulator decrypts the ciphertexts it picks in Steps 4f and 5d
correctly, since it knows the plaintexts.
Finally, note that the distribution induced by game H3 is identical to the distribution

generated in the hybrid execution. This concludes the proof for the case when P2 is
corrupted.

4.2. Efficiency

We present a brief analysis of our protocol; a comprehensive analysis can be found in
the introduction. Our protocol runs O(�) rounds where � is the length of the text. This
round complexity is inherent from the fact that the parties cannot initiate a new iteration
before visiting the previous one. Looking ahead, when using this protocol for text search
the round complexity can be reduced into O(m) (i.e., the length of the pattern) using
standard techniques of splitting the text into blocks of size 2m; see Sect. 5.2 for more
details. We note that the length of the pattern is typically very small, usually a constant.
Moreover, the overall number of exponentiations in protocol πVALIDAUTO is O(m�).

4.3. Dealing with an Arbitrary Size Alphabet

ProtocolπAUTO can be naturally extended to dealingwith arbitrary size alphabet by simply
have P1 send a larger table with a column for each symbol. The rest of the protocol is

Automata Evaluation and Text Search Protocols 275

adapted similarly. Note that this will introduce a multiplicative factor |Σ | within the
overhead of the communication and computation costs, where Σ is the alphabet.

5. Secure Text Search Against Malicious Adversaries

In this section, we present a secure version of the KMP algorithm [27] for computing
the text search functionality in the presence of malicious adversaries. A toy example of
the KMP algorithm is demonstrated in Fig. 3. Loosely speaking, the KMP algorithm
searches for occurrences of a pattern p of length m within a text T of length �, by
employing the observation that when a mismatch occurs, the pattern itself embodies
sufficient information to determine where the next match could begin, thus bypassing
reexamination of previously matched characters. More formally, P1, whose input is a
pattern p, first constructs an automaton Γp for p as follows. Let p〈 j〉 denote the length
j prefix p1, . . . , p j of p. P1 constructs a table ϒ with m entries where its j th entry
contains a pointer to the last bit of the largest prefix of p that matches a suffix of p〈 j−1〉.
For example, the j th entry points to the largest prefix p〈 j ′〉 that matches a proper suffix
of p〈 j−1〉. The intuition behind this construction captures the following idea. Assume
that one has already successfully compared the first j − 1 bits of p against the text,
yet encountered a mismatch when compared the j th bit of p. Then, the automaton
encodes the appropriate transition to the next potential match instead of comparing p
naively against the next text location. We remark that ϒ can be easily constructed in
time O(m2) by comparing p against itself at every alignment.
Next, P1 constructs its automaton Γp = (Q,Σ,Δ, q0, F) based on ϒ . It first

sets |Q| = m + 1 and constructs the transition table Δ as follows: for all j ∈
{1, . . . ,m},Δ(q j−1 × p j) → q j (i.e., moving forwards) and Δ(q j−1 × (1 − p j)) →
ϒ(j) (i.e., moving backwards), whereϒ(j) denotes the j th entry inϒ . In case we found
a match and the automaton reaches the last state qm , it can only go backwards, since the
algorithm finds the largest prefix that matches a proper suffix of the pattern.
We denote the labels of the states q0, . . . , qm ∈ Q by the sequential integers starting

from 0 to m. This way, if there is no matching prefix for p1, . . . , p j , the automaton
goes back to the initial state q0 and ϒ(j) = 0. P1 concludes the construction by setting
F = qm . If state qm is ever reached then there is a match. In order to ensure that P1 and
P2 jointly evaluate the automaton on P2’s text such that no information is revealed about
either the text or the automaton (besides knowing if the final state is accepting or not),
we use protocol πAUTO from Sect. 4. This, however, is insufficient since P1 must prove
first that it constructed the automaton correctly according to the KMP specifications.
In Sect. 5.1, we present a zero-knowledge proof of knowledge for proving that the
automaton P1 constructs is a correct KMP automaton. In Sect. 5.2, we give our complete
construction for text search in the presence of malicious adversaries.

276 R. Gennaro et al.

Fail Γ(qi, j)
State Prefix Υ(qi) State j = 0 j = 1

q1 q1 q1 q2
q2 1 q1 Γ(q1, 0) q3
q3 11 1 q2 q4 Γ(q2, 1)
q4 110 q1 q5 Γ(q1, 1)
q5 1100 q1 q6 Γ(q1, 1)
q6 11000 q1 Γ(q1, 0) q7
q7 110001 1 q2 Γ(q2, 0) q8
q8 1100011 11 q3 q9 Γ(q3, 1)
q9 11000110 110 q4 q10 Γ(q4, 1)
q10 110001100 1100 q5 Γ(q5, 0) q11
q11 1100011001 1 q2 Γ(q2, 0) Γ(q2, 1)

Fig. 3. A high-level diagram of πAUTO .

5.1. A Zero-Knowledge Proof of Knowledge for a Valid KMP Automaton

In this section,wepresent an efficient zero-knowledgeproof of knowledge for the relation
RVALIDAUTO defined by:

Automata Evaluation and Text Search Protocols 277

(({

Qi, j , ri, j
}

i, j

)

,
({

ci, j
}

i, j , pk
))

	→

⎧

⎪⎨

⎪⎩

(−, 1) ∀i, j ci, j = Epk(Qi, j ; ri, j) and
{Qi, j }i, j is a validKMP automaton

(−, 0) otherwise

where i ∈ {0, 1}, j ∈ {1, . . . , |Q|}, |Q| is the number of states in Q, and a valid KMP
automaton is as specified above. This proof is needed in protocol πPM from Sect. 5.2
to ensure the validity of the encrypted automaton that P1 sends. We remark that it is
unnecessary for this proof to be a proof of knowledge, as the knowledge extraction of
the automaton can be performed within protocol πAUTO. Nevertheless, for the sake of
modularity, we consider this property here as well. Our proof uses a zero-knowledge
proof for the following language,

LNZ = {

(G, g, q, h, h1, h2) | ∃ (m �= 0, r) s.t.α = gr , β = hr gm
}

.

An efficient constant round proof πNZ with constant number of exponentiations, can be
found in [21].
Our proof shows that an automaton Γ corresponds to a well-defined string p =

p1, . . . , p|Q|−1 and is computed correctly according to table ϒ defined above. Recall
that we assume w.l.o.g., that the transition table Δ is complete and that it contains two
columns corresponding to zero or one (i.e., whether the next bit from the input string
is zero or one). Then, for every j ∈ {0, 1, . . . ,m}, there exists an entry in Δ with two
ciphertexts c0, j , c1, j , so that there exists an index i in which ci, j denotes the encryption
of state q j and ci, j denotes an encryption of qϒ(j). In order to ensure that the proof
does not leak any information about p, these checks must be performed obliviously,
independent of the prefix. We therefore conduct a brute force search on the matched
prefix against every suffix in which ultimately, the verifier accepts only if the conditions
forRVALIDAUTO are met. For simplicity, our proof is not optimized; we give more details
below how to improve it. We now continue with the formal description of our proof
πVALIDAUTO and its proof of security.

Protocol 4. (πVALIDAUTO—A Zero-Knowledge Proof of Knowledge forRVALIDAUTO):

• Joint statement A public-key pk and a collection {ci, j }i, j of |Q| sets, each set is
of size 2 which corresponds to a row in the transition matrix Δ.

• Auxiliary input for the prover A collection {Qi, j , ri, j }i, j of |Q| sets, each set is
of size 2, such that ci, j = Epk(Qi, j ; ri, j) for all i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.

• Convention We assume that the parties jointly agree on a group G of prime order
q and a generator g for the threshold El Gamal encryption scheme. Both parties
check every received ciphertext for validity, and abort if an invalid ciphertext is
received.
Finally, unless written differently, i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.

• The protocol

1. For every ci, j = 〈αi, j , βi, j 〉, the prover P proves the knowledge of logg αi, j using
πDL.

278 R. Gennaro et al.

2. For every row Δ j = {c0, j , c1, j }|Q|
j=4 in the transition matrix P proves the follow-

ing:8

(a) P randomly permutes each entry in Δ It first randomly permutes c0, j and
c1, j and employs πPERM to prove its computations.

(b) P proves a forwards path It proves that there exists b ∈ {0, 1} in which
cb, j = Epk(j + 1) by proving that (pk, cb, j/Epk(j + 1)) is a Diffie–Hellman
tuple.

(c) P proves abackwardspath P proves the correctness of c1−b, j in two steps: (1)
It first proves that c1−b, j is a valid entry inϒ . (2) It then proves the maximality
of this prefix.
In order to prove this, we define a string p = p1, . . . , p|Q|−1, induced by the
description of the automaton, as follows. Define (the encryption) p j by the
(encrypted) column in which cb, j belongs to. For example, we let the prover
permute the encryptions of the columns names zero/one, using the same per-
mutation, and then take the column’s name associated with cb, j to be the
encryption of p j . Then, to complete the check, P proves that c1−b, j encrypts
r , so that p〈r〉 corresponds to a suffix of p〈 j−1〉. (Recall that p〈r〉 denotes the
rth length prefix p1, . . . , pr of p1, . . . , p j−1.)

(d) V sends a challenge The verifier V chooses j random elements u1, . . . , u j−1

← Z
∗
q and sends {uα} j−1

α=1 to P.

(e) Public computationNext, the parties compute ciphertextsvα′ = Epk(
∑α′

k=1 uk· pk) for all α′ ∈ {1, . . . , j − 1}.
(f) Proving a valid entry inϒ P proves that there exists 1 ≤ k ≤ j −2 for which

v′
k is a ciphertext that encrypts zero and is defined as follows:

v′
k = (

v j−k−1, j−1
/

v1,k
) ·

(

c j,1−b/g
k
)

.

The parties essentially compute the linear combination of all potential prefixes
of p1, . . . , p j−1 and compare them against a suffix of this string. The mul-
tiplication with (c j,1−b/gk) is to ensure that such a prefix is consistent with
whatever is encrypted in the transition table.
For k = 0, the parties set v′

0 = c j,1−b, Since if there is no matching prefix for
any suffix of p〈 j−1〉, this means that c j,1−b denotes an encryption of the initial
state q0 which equals zero.

(g) Proving Dpk,sk(c1−b, j) is maximal
Next P proves that there does not exist an index Dpk,sk(c j,1−b) < Γ ≤ j − 2
in which

v j−Γ −1, j−1
/

v1,Γ = 0

yet c j,1−b/gΓ �= 0, as this would imply that there exists a larger prefix p〈Γ 〉
that matches a suffix of p〈 j−1〉 yet, Dpk,sk(c j,1−b) �= Γ .

8 We remind the reader that in iteration j the algorithm checks the prefixes with respect to substring
p1, . . . , p j−1.

Automata Evaluation and Text Search Protocols 279

For every 1 ≤ k ≤ j−3 and 2 ≤ k′ ≤ j−2 the parties compute the ciphertext
v′
k · (v j−k′−1, j−1/v1,k′) for which P then proves that ek,k′ is not an encryption
of zero using πNZ.

3. Output If all the proofs are successfully completed, V outputs 1. Otherwise it
outputs 0.

Theorem 5.1. Assume that the DDH assumption holds relative toG. Then, πVALIDAUTO

is a computational zero-knowledge proof of knowledge forRVALIDAUTO with perfect com-
pleteness.

Proof. Wefirst showperfect completeness. This is derived from the fact thatwe conduct
a brute force search for the matched prefix of every suffix.

Zero Knowledge Let V ∗ be an arbitrary probabilistic polynomial-time strategy for
V . Then, a simulator SIMVALIDAUTO for this proof can be constructed using the sim-
ulators SIMDL,SIMPERM,SIMDH and SIMNZ from the corresponding proofs of
πDL, πPERM, πDH and πNZ. That is, SIMVALIDAUTO invokes V ∗ and plays the role of the
honest prover, except that in every zero-knowledge invocation it invokes the appropriate
simulator. The executions are computationally indistinguishable via standard reductions
to the security of the zero-knowledge proofs.

Knowledge Extraction We show the existence of a knowledge extractor K . Let P∗
x,ζ,ρ

be an arbitrary prover machine where x = ({ci, j }i, j , pk), ζ is an auxiliary input and
ρ is P∗’s random tape. Basically, the extractor K extracts P∗’s input from the zero-
knowledge proof πDL at the beginning of the protocol. In particular, for all i, j, P∗
proves the knowledge of the randomness ri, j used for the computation of the ciphertext
ci, j . This, in turn, enables K to recover the plaintext Qi, j as well. It then continues
playing the role of the honest verifier and aborts the execution if the honest verifier does.
The fact that we perform a brute force search, combinedwith the fact that the randomness
{uα}α incorporated by the verifier, precludes the event in which equality does not hold
yet the sum of the encryptions amount to zero. �

Efficiency Note first that the round complexity of πVALIDAUTO is constant, as the zero-
knowledge proofs can be implemented in constant rounds and run in parallel for all j .
As for the number of asymmetric computations, we note that an optimized construction
achieves computation cost of O(m2) operations. This is due to the fact that there are m
distinct prefixes of p for which their encryptions can be computed once for the entire
execution. Moreover, for every j , there are j−2 prefixes to check against p1, . . . , p j−1.
Therefore, the overall number of exponentiations is O(m2).

5.2. Text Search Protocol with Simulation-Based Security

In this section, we present our complete construction for securely evaluating the pat-
tern matching functionality. Recall that our construction is presented in the malicious
setting with full simulatability and is modular in the sub-protocols πAUTO (cf. Sect. 4)

280 R. Gennaro et al.

and πVALIDAUTO (cf. Sect. 5.1). Having described the sub-protocols incorporated in the
our scheme, we are now ready to describe it formally. Our protocol is comprised out of
two main phases: (i) the parties first engage in an execution of πVALIDAUTO for which
P1 proves that it sent a valid KMP automaton. (ii) The parties run protocol πAUTO

which evaluates automaton Γ on P2’s private input. In order to reduce the round com-
plexity of our protocol (which depends on the input length to the automaton), long
texts are partitioned into 2m pieces and are handled separately so that the KMP algo-
rithm is employed on each block independently (thus all these executions can be exe-
cuted in parallel). That is, let T = t1, . . . , t� then the text is partitioned into blocks
(t1, . . . , t2m), (tm+1, . . . , t3m), (t2m, . . . , t4m) and so on, such that every two consecu-
tive blocks overlap in m bits. This ensures that all the matches will be found. Therefore,
the total number of blocks is ��/m�. Details follow,

Protocol 5. π PM—Secure Text Search

• Inputs The input of P1 is a binary pattern p = p1, . . . , pm, and the input of P2 is
a binary string T = t1, . . . , t�.

• Auxiliary Inputs The security parameter 1n and the input sizes � and m.
• The Protocol

1. Preparing a KMP automaton P1 constructs an automaton Γ = (Q,Σ,Δ,

q0, F) according to the KMP specifications based on its input p and sends P2
encryptions of the transition matrixΔ and the accepting states, denoted by EΔ

and EF , respectively (recall that by our conventions q0 = 0,Σ = {0, 1}, Q =
[0, . . . ,m], and F = {qm}).

2. Validating correctness of the automaton The parties engage in an execution
of the zero-knowledge proof πVALIDAUTO for which P1 proves that Γ was con-
structed correctly. That is, P1 proves that the set EΔ corresponds to a valid
KMP automaton for a well-defined input string of length m. If P2’s output from
this execution is 1 the parties continue to the next step. Otherwise P2 aborts.

3. Partitioning the text P2 sends encryptions of the bits of T to P1 and the parties
partition the encrypted bits into �/m blocks of length 2m in which every two
consecutive blocks overlap in m bits.

4. Evaluating the automaton on the textThe parties engage in �/m parallel exe-
cutions of πAUTO on these blocks.9 For every 1 ≤ i ≤ ��/m�, let {outputij}m+1

j=1
denotes the set of outputs returned by P1 upon completing the i th execution of
πAUTO. Then P1 returns { j | outputij=“‘accept”}��/m�,m+1

i=1, j=1 .

Theorem 5.2. Assume that theDDHassumption holds relative toG. ThenπPM securely
computes FPM in the presence of malicious adversaries.

The security proof for πPM follows immediately from the proofs described for πAUTO

(cf. Sect. 4.1) and πVALIDAUTO (cf. Sect. 5.1).

9 The parties run a slightly modified version of πAUTO where they carry out Step 5 for verifying acceptance
m + 1 times for all m length substrings within the block. This is due to the fact that each block potentially
contains m + 1 matches.

Automata Evaluation and Text Search Protocols 281

Efficiency we refer the reader to the analysis presented in the introduction and in Sect. 4
since the costs of protocol πPM are dominated by the costs ofπVALIDAUTO. The overall costs
are amount to O(m · � + m2) which typically amounts to O(m · �) since in most cases
m � �.

References

[1] C. Allauzen, M. Crochemore, M. Raffinot, Factor oracle: a new structure for pattern matching, in SOF-
SEM, pp. 295–310 (1999)

[2] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with k mismatches, in SODA,
pp. 794–803 (2000)

[3] J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky, E. Tressler, 5 pm: secure pattern matching, in
SCN, pp. 222–240 (2012)

[4] D. Beaver, Foundations of secure interactive computing, in CRYPTO, pp. 377–391 (1991)
[5] S. Bayer, J. Groth, Efficient zero-knowledge argument for correctness of a shuffle, in EUROCRYPT, pp.

263–280 (2012)
[6] R.S. Boyer, J.S. Moore, A fast string searching algorithm. Commun. ACM20(10), 762–772 (1977)
[7] R. Canetti, Security and composition of multi-party cryptographic protocols. J. Cryptol.13, 2000 (1998)
[8] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness

hiding protocols, in CRYPTO, pp. 174–187 (1994)
[9] D. Chaum, T.P. Pedersen, Wallet databases with observers, in CRYPTO, pp. 89–105 (1992)

[10] W.Diffie,M.E. Hellman, New directions in cryptography. IEEETrans. Inf. Theory22(6), 644–654 (1976)
[11] T.ElGamal,Apublic key cryptosystemand a signature schemebased ondiscrete logarithms, inCRYPTO,

pp. 10–18 (1984)
[12] S. Goldwasser, L.A. Levin, Fair computation of general functions in presence of immoral majority, in

CRYPTO, pp. 77–93 (1990)
[13] J. Groth, S. Lu, Verifiable shuffle of large size ciphertexts, in Public key cryptography, pp. 377–392

(2007)
[14] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a completeness theorem for

protocols with honest majority, in STOC, pp. 218–229 (1987)
[15] E.-J. Goh, Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.iacr.org/

2003/216/
[16] O. Goldreich,Foundations of Cryptography: Basic Tools, vol. 1 (CambridgeUniversity Press, NewYork,

2001)
[17] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2 (Cambridge University Press,

New York, 2004)
[18] C. Hazay, Y. Lindell, Efficient protocols for set intersection and pattern matching with security against

malicious and covert adversaries, in TCC, pp. 155–175 (2008)
[19] C. Hazay, Y. Lindell, Efficient oblivious polynomial evaluation with simulation-based security. IACR

Cryptol. ePrint Arch.2009, 459 (2009)
[20] C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols—Techniques and Constructions (Springer,

Berlin, 2010)
[21] C. Hazay, K. Nissim, Efficient set operations in the presence of malicious adversaries. J. Cryptol.25(3),

383–433 (2012)
[22] C. Hazay, T. Toft, Computationally secure pattern matching in the presence of malicious adversaries, in

ASIACRYPT, pp. 195–212 (2010)
[23] Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending oblivious transfers efficiently, in CRYPTO, pp.

145–161 (2003)
[24] Y. Ishai,A. Paskin, Evaluating branching programson encrypted data, inTCC,LectureNotes inComputer

Science, vol. 4392 (Springer, Berlin, 2007), pp. 575–594
[25] A. Jarrous, B. Pinkas, Secure hamming distance based computation and its applications, in ANCS, vol.

5536, pp. 107–124 (2009)

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/

282 R. Gennaro et al.

[26] J. Katz, L.Malka, Secure text processingwith applications to privateDNAmatching, inACMConference
on Computer and Communications Security, pp. 485–492 (2010)

[27] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings. SIAM J. Comput.6(2), 323–350
(1977)

[28] Y. Lindell, Fast cut-and-choose based protocols for malicious and covert adversaries, in CRYPTO (2),
pp. 1–17 (2013)

[29] Y. Lindell, B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer, in TCC, pp.
329–346 (2011)

[30] S. Micali, P. Rogaway, Secure computation (abstract), in CRYPTO, pp. 392–404 (1991) (this is prelimi-
nary version of unpublished 1992 manuscript)

[31] G. Navarro, V. Mäkinen, Compressed full-text indexes. ACM Comput. Surv.39(1) (2007)
[32] M.S. Rahman, C.S. Iliopoulos, Pattern matching algorithms with don’t cares, in SOFSEM (2), pp. 116–

126 (2007)
[33] C.-P. Schnorr, Efficient identification and signatures for smart cards, in CRYPTO, pp. 239–252 (1989)
[34] J.R. Troncoso-Pastoriza, S. Katzenbeisser, M.U. Celik, Privacy preserving error resilient dna searching

through oblivious automata, in ACM Conference on Computer and Communications Security, pp. 519–
528 (2007)

[35] D. Vergnaud, Efficient and secure generalized pattern matching via fast fourier transform, in
AFRICACRYPT, pp. 41–58 (2011)

[36] A.C.-C. Yao, How to generate and exchange secrets (extended abstract), in FOCS, pp. 162–167 (1986)

	Automata Evaluation and Text Search Protocols with Simulation-Based Security
	1. Introduction
	1.1. Text Search
	1.2. Our Contribution
	1.2.1. Secure Text Search
	1.2.2. Oblivious Automata Evaluation

	1.3. Motivation
	1.4. Related Work
	1.5. Efficiency Comparison
	1.6. A Road Map

	2. Definitions and Tools
	2.1. Secure Two-Party Computation with Malicious Adversaries
	2.2. Sequential Composition
	2.3. One-Sided Simulation for Two-Party Protocols
	2.4. Finite Automata
	2.5. Hardness Assumptions
	2.6. Public-Key Encryption Schemes
	2.6.1. The El Gamal Encryption Scheme

	2.7. Zero-Knowledge Proofs and Proofs of Knowledge

	3. Secure Text Search with One-Sided Simulatability
	3.1. Secure Text Search against Honest-But-Curious Adversaries
	3.2. Generalizations of the Pattern Matching Problem

	4. Secure Oblivious Automata Evaluation
	4.1. Proof of Theorem 4.1
	4.2. Efficiency
	4.3. Dealing with an Arbitrary Size Alphabet

	5. Secure Text Search Against Malicious Adversaries
	5.1. A Zero-Knowledge Proof of Knowledge for a Valid KMP Automaton
	5.2. Text Search Protocol with Simulation-Based Security

	References

