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Abstract. This paper presents efficient protocols for securely computing the follow-
ing two problems: (1) The fundamental problem of pattern matching. This problem is
defined in the two-party setting, where party P; holds a pattern and party P, holds a
text. The goal of Py is to learn where the pattern appears in the text, without reveal-
ing it to P or learning anything else about P,’s text. This problem has been widely
studied for decades due to its broad applicability. We present several protocols for sev-
eral notions of security. We further generalize one of our solutions to solve additional
pattern matching-related problems of interest. (2) Our construction from above, in the
malicious case, is based on a novel protocol for secure oblivious automata evaluation
which is of independent interest. In this problem, party P holds an automaton and party
P> holds an input string, and they need to decide whether the automaton accepts the
input, without learning anything else. Our protocol obtains full security in the face of
malicious adversaries.

Keywords. Text search, Oblivious automata evaluation, Simulation-based security.
1. Introduction

Secure two-party computation is defined as joint computation of some function over
private inputs. This joint computation must satisfy at least privacy (no other information

* An extended abstract of this paper was published in the proceedings of PKC 2010.
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is revealed beyond the output of the function) and correctness (the correct output is
computed). In order to achieve this, the parties engage in a communication protocol.
Today’s standard definition (cf. [7] following [4,12,30]) formalizes security by com-
paring the execution of such protocol to an “ideal execution” where a trusted third
party helps the parties compute the function. Specifically, in the ideal world, the par-
ties just send their inputs over perfectly secure communication lines to a trusted party,
who then computes the function honestly and sends the output to the designated party.
Informally, the real protocol is defined to be secure if all adversarial attacks on a real
protocol can also be carried out in the ideal world; of course, in the ideal world, the
adversary can do almost nothing and this guarantees that the same is also true in the real
world. This definition of security is often called simulation-based because security is
demonstrated by showing that a real protocol execution can be “simulated” in the ideal
world.

Secure two-party computation has been extensively studied, and it is known that any
efficient two-party functionality can be securely computed [14,17,36]. However, these
are just feasibility results that demonstrate secure computation is possible, in principle,
though not necessarily in practice. One reason is that the results mentioned above are
generic, i.e., they do not exploit any structural properties of the specific function being
computed. A long series of research efforts has been focused on finding efficient protocols
for specific functions; and constructing such protocols is crucial if secure computation
is ever to be used in practice.

1.1. Text Search

In this work, we consider the classic problem of pattern matching. In this problem,
one party holds a text 7 of length ¢ whereas the other party holds a pattern p of
length m, where these lengths are mutually known. The aim is for the party hold-
ing the pattern to learn all the locations of the pattern in the text (and there may be
many), while the other party learns nothing about the pattern. Pattern matching has
been widely studied for decades due to its broad applicability, but rarely in a secure
context.

Earlier text search algorithms were sequential, where the text is searched by scan-
ning for all occurrences of a particular pattern. Efficient variants of this approach
analyze the pattern string to enable O({) scanning to skip regions of text whenever
possible matches are provably not possible. Included in this category are the widely
studied Knuth—Morris—Pratt [27] that uses automata evaluation, which we implement
here securely (but less efficiently), Boyer—Moore [6] and more recently, Factor Ora-
cle [1]-based algorithms. Algorithms based instead upon the analysis of the text to
be searched are categorized as index-based, including suffix tree-based algorithms
which build a data structure in O (¢) time and storage [31]. Nevertheless, these algo-
rithms do not appear to be amendable to secure computation with reasonable com-
putational properties. Finally, for completeness, algorithms used frequently for nat-
ural languages use partial inverted indexes such as n-grams, and were suggested in
[15] in a similar security context. However, the probabilistic properties of these tech-
niques cannot be easily bounded in running time or in security properties for general
texts.
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1.2. Our Contribution
1.2.1. Secure Text Search

1. Secure text search with honest-but-curious and one-sided simulatability Our start-
ing point is an efficient protocol (cf. Sect. 3.1) that computes the pattern matching
function in the “honest-but-curious” setting over a binary alphabet.! This solution
offers linear communication in the input lengths and computation complexity of
O (m + £) modular exponentiations and O (m£) modular multiplications. Infor-
mally, our protocol instructs the party that inputs the pattern to prepare two lists of
ciphertexts so that one list is associated with zero and the other is associated with
one. For each pattern location i, an encryption of zero is placed in the ith position
of the list for which the current pattern bit p; matches the value that is associated
with that list. The other party then uses these lists in order to generate for each text
location, an encryption of the Hamming distance between the pattern and the text
starting from this location. These are used to determine the matched text positions.
We then demonstrate how the security of this solution can be extended to the case
of one-sided simulation (with similar costs), where full simulation is provided
for one of the malicious corruption cases, while only privacy (via computational
indistinguishability) is guaranteed for the other corruption case.” For example,
the secrecy of the inputs is always guaranteed, but in one of the corruption cases,
the adversary can behave inappropriately causing the honest party to output an
incorrect value. The workload of Pj in our protocols is O (m + ¢) modular expo-
nentiations, whereas the workload of P, is O (m + £) exponentiations and O (m{)
modular multiplications.

2. In Sect. 3.2, we consider solutions (using our protocol from Item 1), for three
generalizations of the pattern matching problem:

(i) Approximate text search Recent applications e.g., computational biology, text
editing, meteorology and more, have shown that a more generalized theoretical
notion of string matching is required. In approximate matching, one defines a
distance metric between the strings and finds all the text locations where the
pattern matches the text by a pre-specified distance. For example, an additional
public parameter p, which determines the number of differences that can be
tolerated, is introduced (where a difference is defined by the specified metric).
The most natural metric is the Hamming distance that counts the number of
mismatches between two strings. The best algorithm for solving text search
with mismatches in an insecure setting is the solution by Amir et al. [2], which
introduces a solution in O (¢+/p log p) time. We show how to adapt our one-
sided simulation solution for this problem, obtaining O (m+-£) exponentiations,
O (m{) modular multiplications and O (pf) communication.

(ii) Text searchwith wildcards This variant was developed with the aim to introduce
improved algorithms for approximate text search. Here, a wildcard symbol
is introduced in the pattern, so that it matches against any character when

U In this setting, an adversary follows the protocol specification but may try to examine the messages it
receives to learn more than it should about the honest party’s input.

2 In the malicious setting, an adversary follows an arbitrary polynomial-time attack strategy.
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comparing against the text. In an insecure setting, this problem can be solved
in time that is linear in the lengths of the text and pattern and the number of
occurrences [32]. Our solution obtains similar costs to the overhead introduced
by our one-sided simulation protocol since essentially the protocols are almost
identical.

(iii) Text search with larger alphabet We further extend our basic protocol to deal
with a larger alphabet X' as in the DNA example from below. In an insecure
setting, this problem can be solved in O (| X'|¢) time by extending the binary
solutions. Our solution inflates the costs of our protocols from the binary case
by a multiplicative factor | X'|.

3. Secure text search against malicious adversaries Trying to adapt our solution for

the malicious setting introduces quite a few subtleties and requires the use of a
different technique. The main difficulty is with respect to the party that inputs the
text. Since it must be ensured that a well-defined text is used during the protocol
execution. Although this can always be achieved using generic zero-knowledge
proofs to demonstrate correct behavior, it is not immediately clear how to do so
efficiently.
To achieve full simulation, we introduce a second independent protocol (cf. Sect. 5),
which employs several other novel sub-protocols, including a protocol to prove that
a correct pattern-specific automaton was constructed. Specifically, our protocol
securely implements the [27] protocol that reduces the pattern matching problem
to the composition of a pattern-specific automaton with the text 7. The commu-
nication complexity of our protocol is O (m£), and the round complexity is O (£),
where the round complexity is derived from the fact that the automaton must be
evaluated sequentially.? In addition, the number of exponentiations induced by our
protocol is O (m£). This result is based on our contribution in the following section
regarding oblivious automata evaluation.

1.2.2. Oblivious Automata Evaluation

We develop a protocol for two parties (one holding an automaton I and another holding
an input text 7') to securely compute the evaluation of I" on T with full simulation in
the presence of malicious behavior. This protocol can be of independent interest beyond
the pattern matching application and can be considered an extension of the work by
Ishai and Paskin [24], which considered the model of obliviously evaluating branching
programs (a deterministic automaton is a special case of a branching program). In the
model of [24], the communication is proportional to the input for the branching program
and independent of the description of the program. Still, only privacy is guaranteed,
and not correctness nor independence of inputs. In contrast, our protocol achieves full
security but the amount of communication is proportional to the size of the automaton’s
description times the length of the input to the automaton. Similarly, the number of
exponentiations is a factor of these two parameters. We provide a detailed analysis
below in Sect. 1.5.

3 We use standard techniques to reduce this round complexity into O(m) by partitioning the text into
substrings of length 2m.
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1.3. Motivation

Secure pattern matching has many potential applications. Consider, for example, the
hypothetical case of a hospital holding a DNA database of all the participants in a
research study, and a researcher wanting to determine the frequency of the occurrence
of a specific gene. This is a classical pattern matching application, which is, however,
complicated by privacy considerations. The hospital may be forbidden from releasing
the DNA records to a third party. Likewise, the researcher may not want to reveal what
specific gene she is working on nor trust the hospital to perform the search correctly.

It would seem that existing honest-but-curious solutions would work here. However,
the parties may be motivated to produce invalid results, so a proof of accurate output
might be as important as the output itself. Moreover, there is also a need to make sure
that the data on which the protocol is run is valid. For example, a rogue hospital could
sell “fake” DNA databases for research purposes. Perhaps some trusted certification
authorities might one day pre-certify a database as being valid for certain applications.
Then, the security properties of our protocol could guarantee that only valid data is used
in the pattern matching protocol. (The first step of our protocol is for the hospital to
publish an encryption of the data, this could be replaced by publication of encrypted
data that was certified as correct.)

1.4. Related Work

The idea to use oblivious automata evaluation, and also the study of secure pattern
matching, originated in [34]. In this paper, the authors present secure protocols in the
honest-but-curious setting and require linear communication complexity, and multi-
plicative computation complexity (in the number of states and the input length for the
automaton). We note that adapting these constructions to the malicious setting is much
more challenging. First, due to the requirement that the automaton must be valid (accord-
ing to some specifications described in Sect. 5). Furthermore, the parties’ inputs to the
oblivious transfers must be consistent. We thus take a different approach and show how
to tolerate malicious behavior.

The problem of secure pattern matching was also studied by Hazay and Lindell [18],
who used oblivious pseudorandom function (PRF) to evaluate every block of size m
bits from the text. Their protocol achieves the weaker notion of one-sided simulation
and requires O (£) exponentiations and O (m¥f) multiplications for both parties. It is
not immediately clear how to efficiently extend their solution so that it achieves fully
simulatable security, since the inputs to the PRF must be consistent in the sense that
every two consecutive blocks overlap in m — 1 bits. We further note that this approach is
not useful in solving the first two generalizations specified in Item 1.2.1, since the PRF
evaluations of any two strings that their Hamming distance is small (say the two strings
differ in only one bit) yield two strings that look independent.

In [26], Katz and Malka considered a generalization of the basic pattern matching
problem, denoted text processing. For example, the party who holds the pattern has
some additional information y with the aim to learn a function of the text and y, for
the text locations where the pattern matches. They showed how to modify Yao’s gar-
bled circuit approach to obtain a protocol where the size of the garbled circuit is linear
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in the number of occurrences of p in T (rather than linear in the length of 7'). The
costs of their constructions are dominated by the size of the circuit times the num-
ber of occurrences u. Moreover, they assume a common input of some threshold on
the number of occurrences. Their solutions are applied in the one-sided simulation
setting.

In a follow-up work [22], Hazay and Toft presented an improved protocol that solves
the basic pattern matching problem in the malicious setting with O (m¢) multiplica-
tions. This analysis holds also for the honest-but-curious setting, as well as with one-
sided simulation. Their solution takes a different approach by converting the binary
representation of the pattern and the text into field elements. Hazay and Toft fur-
ther presented solutions for approximate text search and text search with wildcards
that incur O (m{) modular exponentiations (in both honest-but-curious and malicious
settings).

The works by Jarrous and Pinkas [25] and by Vergnaud [35] solve variants of the basic
problem. In the former work, the authors solve the hamming distance problem for two
equal length strings against malicious adversaries. Their protocol requires a committed
oblivious transfer for each bit. Moreover, the costs of their protocol are inflated by a
statistical parameter s for running a subprotocol for the oblivious polynomial evaluation
functionality [19] (namely, the protocol requires O (sd) exponentiations, where d is the
degree of the polynomial, i.e., the input length). In the context of approximate pattern
matching, their protocol requires O (sm{) exponentiations. The latter work solves the
problem of pattern matching with wildcards in the presence of malicious adversaries by
taking a different approach of Fast Fourier Transform and implementing this technique
securely. This paper presents protocols that exhibit linear communication and O (£ log m)
modular exponentiations.

Finally, a more recent paper by Baron et al. [3] studies the problem of text search
with wildcards in a more general sense of non-binary alphabet, implementing a different
algorithm based on linear algebra formulation and additive homomorphic encryption.
This protocol requires O (m + £) communication complexity and O (mf) modular mul-
tiplications in the malicious setting.

1.5. Efficiency Comparison

The state-of-the-art generic construction for secure two-party computation is a recent
work by Lindell and Pinkas [29]. They propose a protocol that follows the methodology
Yao’s protocol and is secure in the presence of malicious adversaries under the DDH
assumption. In order to cope with malicious behavior, this protocol carries out a basic
cut-and-choose test on the garbled Boolean circuit construction of Yao. This means
that a party P; has to construct s copies of a garbled circuit, sending them to P,, who
then asks P; to open half of them in order to verify their correctness. For example,
the computation/communication costs are inflated by this security parameter s. Recent
developments [28] reduce the cut-and-choose parameter into 40 (with some additional
overhead). We thus compare our protocols that compute the oblivious automaton evalua-
tion and pattern matching functionalities with the [28] generic two-party constant round
protocol.
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oblivious automata evaluation We note that a circuit that computes the oblivious
automaton evaluation functionality would require O(£Q log Q) gates for a Q-states
automaton evaluated over a binary input of length £.* Notably, it is possible to generate
a circuit of size O (£Q) that computes this functionality but this circuit depends on the
automaton’s description (and leaks information about its structure). Now, since we need
to preserve the secrecy of the automaton, we need to consider a circuit that operates as
a universal circuit, in the sense that it takes these inputs and evaluates the automaton
on the input string. This accounts for an extra log Q factor and implies that the num-
ber of multiplications in [28] is dominated by O (s£Q log Q). Moreover, the number of
exponentiations used in this protocol is dominated by 24.5s¢ + 18+ 5,520s.

On the other hand, our protocol for oblivious automata evaluation does not apply a cut-
and-choose strategy. Having P;, P, hold inputs of lengths £, Q, and our protocol incurs
communication and computation costs of O(£Q), where this constant mostly depends
on the overhead of randomly permuting the automaton. By the analysis of [13], we get
that this overhead of the ZK proof for shuffling is dominated by 30Q exponentiations
(for permuting a pair of vectors each time). Thus, overall cost is dominated by 120¢Q
exponentiations and O (¢ Q) multiplications. Nevertheless, the round complexity of our
protocol is O(£) since the automaton must be evaluated sequentially, while the round
complexity of [29] is constant.

Text search  We conclude with a discussion of our solutions for the basic pattern match-
ing problem and its variants. The best known circuit that computes the classic pattern
matching functionality requires O(nm) gates since the circuit compares the pattern
against every text location. In the honest-but-curious setting, Yao’s technique induces a
protocol that uses O (nm) symmetrical key operations and O (m) exponentiations that
can be made independent of the input length (where the later is obtained by employing
the ideas of extended oblivious transfer [23], but also requires an additional assumption
on the hash function). In the malicious setting, this overhead grows by a factor of a sta-
tistical parameter s (see the analysis in the previous section). Our constructions for the
honest-but-curious and one-sided simulation settings require O (m + £) modular expo-
nentiations for party Py and O (m{) modular multiplications and O (£) exponentiations
for party P,. Our protocols achieve better overhead than the protocols of [34] and [18],
where the former requires O (m£) exponentiations and the later requires O (m 4+ £) expo-
nentiations and O (m{) multiplications for both parties. Our protocol for the malicious
setting requires O (m{) exponentiations and takes a different approach than the protocol
in [22] that requires O (m{) modular multiplications and constant round complexity, and
outperforms our protocol.

Generic protocols achieve the same overhead for the pattern matching variants con-
sidered in this paper, as in the case of computing the standard pattern matching prob-
lem since circuit size is about O (m¥f) gates. Moreover, the protocols by Vergnaud [35]

4 Intuitively, this can be shown using the following construction. A circuit C takes a description of an
automaton /™ and £-bits input x and outputs a bit. For each iteration i of the automaton evaluation, we construct
a “sub-circuit” C; that gets I', ¢ and b as input, for (g, b) the current configuration, and outputs the next state
q'. Itis easy to verify that the description of ¢; requires O (Q log Q) gates. This leads to a total of O (£Q log Q)
gates for C.
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for computing approximate pattern matching and pattern matching with wildcards with
one-sided simulation require O (£ log m) exponentiations (in comparison with O (m +¢)
exponentiations in our protocol). The one-sided simulation variant of [22] protocols for
these problems require O (mf) exponentiations. Finally, the work of [3] studies pattern
matching with wildcards in the malicious setting that requires O (m + £) exponentiations
for non-binary alphabets.

1.6. A Road Map

In Sect. 2, we present basic definitions and useful tools that we use in our constructions.
In Sect. 3, we present a honest-but-curious secure protocol for the pattern matching
problem (cf. Sect. 3.1). We further extend this solution and show how to obtain one-
sided simulation security. In Sect. 3.2, we consider generalizations of the basic problem.
In Sect. 4, we present a protocol for the oblivious automata evaluation problem with
full security against malicious adversaries. In Sect. 5, we show how to use our protocol
from Sect. 4 within a larger protocol for the pattern matching problem in the malicious
setting.

2. Definitions and Tools

Throughout the paper, we denote the security parameter by n. Although not explicitly
specified, input lengths are always assumed to be bounded by some polynomial in n. A
probabilistic machine is said to run in polynomial-time (PPT) if it runs in time that is
polynomial in the security parameter n alone. We denote by a <— A the random choice
of a from a set A.

A function 1(-) is negligible in n if for every polynomial p(-) there exists a value N
such that u(n) < ﬁ foralln > Njie.,un) = n=®W LetX = {X(a, n)}aeto, 1y nen
and Y = {Y(a, n)}ae(o,1)*,nen be distribution ensembles. We say that X and Y are
computationally indistinguishable, denoted X = Y, if for every polynomial non-
uniform distinguisher D there exists a negligible 1 () such that

Pr[D(X(a,n)) = 1] —Pr[D(Y(a,n)) = 1]| < u(n)
foreveryn € N and a € {0, 1}*.

2.1. Secure Two-Party Computation with Malicious Adversaries

In this section, we briefly present the standard definition for secure multiparty compu-
tation and refer to [17, Chap. 7] for more details and a motivating discussion.

Two-party computation A two-party protocol can be systematically analyzed by char-
acterizing the protocol as a random process that maps pairs of inputs to pairs of outputs
(one for each party). We refer to such a process as a functionality and denote it as
f {0, 1} x {0, 1}* — {0, 1}* x {0, 1}*, where f = (f1, f2). That is, for every pair
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of inputs (x, y), the output is a random variable (fi(x, y), f2(x, y)) ranging over pairs
of strings where Pj receives fi(x, y) and P, receives f>(x, y). We sometimes denote
such a functionality by (x, y) — (fi1(x, y), fa(x, y)).

Security of protocols (informal) The security of a protocol is analyzed by comparing
what an adversary can do in areal protocol execution to what it can do in an ideal scenario
that is secure by definition. This is formalized by considering an ideal computation
involving an incorruptible trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs and returns to each party its
respective output. A protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the
above-described ideal computation.

Execution in the ideal model In an ideal execution, the parties send their inputs to
the trusted party who computes the output. An honest party just sends the input that
it received, whereas a corrupted party can replace its input with any other value of
the same length. Let f be a two-party functionality where f = (fi, f2), let A be
a non-uniform probabilistic polynomial-time machine and let / < [2] be the set of
corrupted parties (either P is corrupted, or P; is corrupted, or neither). Then, the ideal
execution of f oninputs (x, y), auxiliary input z to .A and security parameter n, denoted
IDEAL ¢ 4(;),1(x, y, n),is defined as the output pair of the honest party and the adversary
A from the above ideal execution.

Execution in the real model In the real model, there is no trusted third party and the
parties interact directly. The adversary .4 sends all messages in place of the corrupted
party and may follow an arbitrary polynomial-time strategy. In contrast, the honest parties
follow the instructions of the specified protocol 7.

Let f be as above and let = be a two-party protocol for computing f. Furthermore,
let A be a non-uniform probabilistic polynomial-time machine and let / be the set of
corrupted parties. Then, the real execution of 7 on inputs (x, y), auxiliary input z to
A and security parameter n, denoted REAL, 4(;).;(x, y, n), is defined as the output
vector of the honest party and the adversary A from the real execution of 7.

Security as emulation of a real execution in the ideal model Having defined the ideal
and real models, we can now define the security of protocols. Loosely speaking, the
definition asserts that a secure multi-party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that adversaries in
the ideal model are able to simulate executions of the real-model protocol.

Definition 2.1. Let f and 7 be as above. Protocol 7 is said to securely compute
f with abort in the presence of malicious adversaries if for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a non-uniform
probabilistic polynomial-time adversary SZM for the ideal model, such that for every
I <2,
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{IDEALJ‘ESIM(ZM(X» Y ”)}x,y,ze{o,r}*,ne N

C
= {REALH,A(Z)J()" Y ”)}x,y,ze{o,l}*,nem

where |x| = |y|.

2.2. Sequential Composition

Sequential composition theorems are useful tools that help in writing proofs of security.
The basic idea behind these composition theorems is that it is possible to design a
protocol that uses an ideal functionality as a subroutine and then analyze the security
of the protocol when a trusted party computes this functionality. For example, assume
that a protocol is constructed that uses the secure computation of some functionality as
a subroutine. Then, first we construct a protocol for the functionality in question and
then prove its security. Next, we prove the security of the larger protocol that uses the
functionality as a subroutine in a model where the parties have access to a trusted party
computing the functionality. The composition theorem then states that when the “ideal
calls” to the trusted party for the functionality are replaced by real executions of a secure
protocol computing this functionality, the protocol remains secure.

The hybrid model The aforementioned composition theorems are formalized by con-
sidering a hybrid model where parties both interact with each other (as in the real model)
and use trusted help (as in the ideal model). Specifically, the parties run a protocol
that contains “ideal calls” to a trusted party computing some functionalities fi, ..., f.
These ideal calls are just instructions to send an input to the trusted party. Upon receiving
the output back from the trusted party, the protocol 7 continues. We stress that honest
parties do not send messages in 7w between the time that they send input to the trusted
party and the time that they receive back output (this is because we consider sequential
composition here). Of course, the trusted party may be used a number of times through-
out the w-execution. However, each time is independent (i.e., the trusted party does not
maintain any state between these calls). We call the regular messages of 7 that are sent
among the parties standard messages and the messages that are sent between parties
and the trusted party ideal messages.

Let f1, ..., fm be probabilistic polynomial-time functionalities and let 7 be a two-
party protocol that uses ideal calls to a trusted party computing f1, ..., fp.Furthermore,
let A be a non-uniform probabilistic polynomial-time machine and let / be the set
of corrupted parties. Then, the fl, ..., fm-hybrid execution of 71 on inputs (x, y)
defined as the output vector of the honest party and the adversary A from the hybrrd
execution of 7 with a trusted party computing fi, ..., fi.

Sequential modular composition Let f1, ..., f, and 7w be as above, and let py, ..., om
be protocols. Consider the real protocol ”!~#m that is defined as follows: all standard
messages of 7 are unchanged. When a party P; is instructed to send an ideal message
a; to the trusted party to compute functionality f;, it begins a real execution of p; with



Automata Evaluation and Text Search Protocols 253

input «; instead. When this execution of p; concludes with output 8;, party P; continues
with 7 as if B; was the output received by the trusted party (i.e., as if it were running
inthe f1, ..., fi,-hybrid model). Then, the composition theorem of [7] states that if p;
securely computes f; forevery j € {1, ..., m}, then the output distribution of a protocol
7 in a hybrid execution with f1, ..., f;, is computationally indistinguishable from the
output distribution of the real protocol 7 ”1--~#m This holds for security in the presence
of malicious adversaries [7] and one-sided simulation when considering the corruption
case that has a simulator (an easy corollary from [7]).

2.3. One-Sided Simulation for Two-Party Protocols

Two of our protocols achieve a level of security that we call one-sided simulation. In these
protocols, P, receives output while P; should learn nothing. In one-sided simulation,
full simulation is possible when P, is corrupted. However, when Pj is corrupted, we
only guarantee privacy, meaning that P; learns nothing whatsoever about P»’s input
(this is straightforward to formalize because P; receives no output). This is a relaxed
level of security and does not achieve everything we want; for example, independence of
inputs and correctness are not guaranteed. Nevertheless, for this level of security, we are
able to construct highly efficient protocols that are secure in the presence of malicious
adversaries.

Formally, let REAL 4 ;(x, y,n) denote the output of the honest party and the
adversary A (controlling party P;) after a real execution of protocol 7, where P; has
input x, P> has input y, A has auxiliary input z, and the security parameter is n. Let
IDEAL ¢ ST M(r),i (x, ¥, 1) be the analogous distribution in an ideal execution with a
trusted party who computes f for the parties. Finally, let VIEWA A (Y1) denote
the view of the adversary after a real execution of 7 as above. Then we have the following
definition:

Definition 2.2. Let f be a functionality where only P, receives output. We say that a
protocol 7 securely computes f with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary A controlling P; in the real model, there
exists a non-uniform PPT adversary SZM for the ideal model, such that

{REALH,A@,Z(X’ Y ”)}x,y,ze{o,l}*,neN
C
= {IDEAL ;. s7Mm(p) 2(x, 3, n)}x,y,zE{O,l}*,nEN

where |x| = |y|.
2. For every non-uniform PPT adversary .A controlling Py, and every polynomial p(-)

VIEWA v, }
{ ”'A(Z)’l(x Y, m) x,y,y',z€{0,1}*,neN

e

VIEWA .y, } !
{ rA@A Y] ot en W

where |x| = [y| = [y'|.
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Note that the ensembles in Eq. (1) are indexed by two different inputs y and y’ for
P;. The requirement is that A cannot distinguish between the case that P, used the first
input y or the second input y’ for any pair y, y" such that |y| = |y’|.

2.4. Finite Automata

A deterministic finite automaton is described by a tuple I’ = (Q, ¥, A, qo, F), where
Q is the set of states, X' is an alphabet of inputs, A : QO x ¥ — Q denotes a state-
transition table, go € Q is the initial state, and F' C Q is the set of final (or accepting)
states. Without loss of generality, in this work we consider only automata with complete
transition tables, where there exists a transition at each state for every inputo € X'. We
also consider the notation of A(qg, (o1, ..., 0¢)) to denote the result of the automaton
evaluation on o1, ..., oy, for o; € X'. Every automaton specifies a language, which is
the (potentially infinite) set of strings accepted by the automaton.

2.5. Hardness Assumptions

Our constructions rely on the DDH assumption formalized below.

Definition 2.3. (DDH) We say that the decisional Diffie—Hellman (DDH) problem
is hard relative to G = {G,,} if for all polynomial-sized circuits A = {4, } there exists
a negligible function negl such that

‘Pr [AG.q.8.8.8".8°) =1] —Pr[AG.q.g8.8%. 8. ¢") = 1] ’ < negl(n),

where ¢ is the order of G and the probabilities are taken over the choices of g and
X,y,2 < Zy.

2.6. Public-Key Encryption Schemes

We begin by specifying the definitions of public-key encryption (PKE) and IND-CPA
security. We then describe the El Gamal PKE and conclude this section with definitions
for homomorphic PKE and threshold PKE, demonstrating that E1 Gamal meets these
definitions.

Definition 2.4. (PKE) We say that [T = (G, E, D) is a public-key encryption
scheme if G, E, D are polynomial-time algorithms specified as follows:

e G, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a
public-key and sk is a secret key. We denote this by (pk, sk) < G(17).

e E, giventhe public-key pk and a plaintext message m, outputs a ciphertext c encrypt-
ing m. We denote this by ¢ < E,(m); and when emphasizing the randomness r
used for encryption, we denote this by ¢ <= E i (m; r).

e D, given the public-key pk, secret key sk and a ciphertext ¢, outputs a plaintext
message m s.t. there exists randomness r for which ¢ = Ep;(m; r) (or L if no such
message exists). We denote this by m < Dy s (c).
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For a public-key encryption scheme I1 = (G, E, D) and a non-uniform adversary
A = (A1, Ay), we consider the following IND-CPA game:

(pk, sk) < G(1").

(mo, my, history) < Aj(pk), s.t.mg| = |m].
¢ < Epr(mp), whereb < {0, 1}.

b <« As(c, history).

Awinsif b’ = b.

Denote by AdvCPA 4 (n) the probability that .4 wins the IND-CPA game.

Definition 2.5. (IND-CPA security) A public-key encryption scheme IT = (G, E, D)
is IND-CPA secure, if for every non-uniform adversary A = (Aj, A;) there exists a
negligible function negl such that AAVCPA[ 4 (n) < % + negl(n).

2.6.1. The El Gamal Encryption Scheme

We consider the following modification of the El Gamal encryption scheme [11]. The
public-key is the tuple pk = (G, ¢, g, h) and the corresponding private key is sk =
(G, q, g, x), where G is a cyclic group of prime order ¢ with a generator g (we assume
multiplication and group membership can be performed efficiently in G). In addition, it
holds that h = g*.

Encryption of a message m € {1, ..., q’} (with ¢’ < ¢q) is performed by choosing
r < Z4 and computing Epi(m;r) = (g",h" - g"). Decryption of a ciphertext ¢ =
(c1, ¢2) is performed by computing g” = ¢ - ¢; and then finding m by exhaustive
search. Thus, this scheme works only for small integer domains (i.e., ¢’ must be small)
which is the case for our protocol. We point out that the reason we modify El Gamal
in this way (by encrypting g rather than m) is to make it additively homomorphic.
Finally, we note that a zero encryption corresponds to a Diffie—-Hellman tuple, i.e.,
Ep(O;r) =(g", h"- g% = (g",h"). The security of this scheme relies on the hardness
of solving the DDH problem specified in Definition 2.3.

We define the following two properties and show how they are easily met by the El
Gamal scheme.

Homomorphic PKE We abuse notation and use E,;(m) to denote the distribution
E pi(m; r) where r is chosen uniformly at random. Define homomorphic encryption as
follows.

Definition 2.6. A public-key encryption scheme (G, E, D) is homomorphic if, for
all n and all (pk, sk) output by G(1"), it is possible to define groups M, C such that:

o The plaintext space is M, and all ciphertexts output by E . (-) are elements of C.
e Forany mi,my € Mand ¢, c; € Cwithm| = D s (c1) and mp = D pg sk (c2),
it holds that
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{pk,c1,c1 - ca} = (pk, Epi(m1), Epi(my +m2)}

where the group operations are carried out in C and M, respectively.

Our modification of El Gamal is homomorphic with respect to component-wise mul-
tiplication (in G) of ciphertexts. We denote by ¢ - c2 the respective multiplications of
1 12

- cé and c% . c% where ¢; = (c;, ¢;) = Epr(m;), such that the multiplication result

yields the encryption of m| + my.

Threshold PKE We consider two functionalities: One for securely generating a secret
key while keeping it a secret from both parties, whereas the second functionality jointly
decrypts a given ciphertext. We denote the key generation functionality by Fygy, which
is defined as follows:

(1", 1%) = ((pk, sk1), (pk, sk2)) , 2

where (pk, sk) < G(1™), and sk and sk, are random shares of sk. The decryption
functionality Fpgc is defined by

(¢, pk) = ((m : ¢ = Epr(m)), =), 3)

It is well known how to design an efficient threshold El Gamal scheme in the malicious
setting based on the protocol of Diffie and Hellman [10]. Informally, generating the
shares for the key can be done by sequentially having each party P; (starting with Pp)
pick a random element x; < Z, and publish g/ together with a zero-knowledge proof
of knowledge of x;, so that the public-key equals g*17*2 (see Sect. 2.7 for more details
of the zero-knowledge proof). To ensure a simulation, P; must commit to its share first
and decommit this commitment after P, sends its share. Decryption of a ciphertext
¢ = {(c1, ¢z) follows by computing c; - (c)f1 . cfz)_l, where each party sends c¢; to the
power of its share. We denote these protocols by mggy and mpgc, respectively, and assume
that they can be computed with simulation-based security in the presence of malicious
attacks.

2.77. Zero-Knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behav-
ior. Before getting into more details, we formally define zero-knowledge and knowledge
extraction as stated in [16]. We then conclude with a definition of a X'-protocol which
constitutes a zero-knowledge proof of a special type.

Definition 2.7. (Interactive proof system) A pair of PPT interactive machines (P, V)
is called an interactive proof system for a language L if there exists a negligible
function negl such that the following two conditions hold:

1. CoMPLETENESS: For every x € L,

Pr[(P, V)(x) = 1] = 1 — negl(|x])
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2. SOouNDNESs: For every x ¢ L and every interactive PPT machine B,
Pr[(B, V)(x) = 1] < negl(|x|)

Definition 2.8. (Zero-knowledge) Let (P, V) be an interactive proof system for some
language L. We say that (P, V) is computational zero-knowledge if for every ppT
interactive machine V* there exists a PPT algorithm M* such that

(P, VF)(X)hver = {M*)(0)}rer

where the left term denotes the output of V* after it interacts with P on common input
x, whereas the right term denotes the output of M* on x.

Definition 2.9. (Knowledge extraction) Let R be a binary relation and « — [0, 1].
We say that an interactive function V is a knowledge verifier for the relation R with
knowledge error « if the following two conditions holds:

NoN-TRIVIALITY: There exists an interactive machine P such that for every (x, y) €
‘R, (implying that x € L), all possible interactions of V with P on common input
x and auxiliary input y are accepting.
VALIDITY (WITH ERROR « ): There exists a polynomial g (-) and a probabilistic oracle
machine K such that for every interactive function P, every x € Lp, and every
machine K satisfies the following condition:
Denote by p(x, y, r) the probability that the interactive machine V accepts,
on input x, when interacting with the prover specified by Py, ,. If
p(x,y,r) > k(|x]), then, on input x and with access to oracle Py y ,,
machine K outputs a solution s € R(x) within an expected number of
steps bounded by

q(|x|)
px,y,r) —K(|x])

The oracle machine K is called a universal knowledge extractor.

Let R be an NP relation associated with the language Lr = {x| 3w s.t. (x, w) €
R}. Then, we define the zero-knowledge proof knowledge functionality for R by
f;ﬁpuK((x,w),x) = (—,(x,b)) where b = 1 if R(x,w) = 1 and b = 0 if
Rx,w) =0.

Definition 2.10. (X-protocol) A protocol 7 is a X-protocol for relation R if it is a
three-round public-coin protocol and the following requirements hold:

e CoMPLETENESS: If P and V follow the protocol on input x and private input w to
P where (x, w) € R, then V always accepts.

e SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x
and any pair of accepting transcripts (a, ¢, z), (a, €', z’) on input x, where e # ¢/,
outputs w such that (x, w) € R.
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e SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm M such
that

{(P(x, w),V(x,e))} = {M(x,e)}
xeLg xeLg

where M (x, e) denotes the output of M upon input x and e, and (P (x, w), V (x, e))

denotes the output transcript of an execution between P and V, where P has input

(x, w), V has input x, and V’s random tape (determining its query) equals e.

A generic, efficient technique that enables the transformation of any X -protocol into a
zero-knowledge proof (of knowledge) can be found in [20]. This transformation requires
an additional 5 (or 6 for a proof of knowledge) exponentiations.

Next, we describe the following standard X'-protocols used in our constructions:

Protocol Relation/language References
7oL RoL = {((G.q.21.82).%) | &2 = g1} [33]

TDH Ron = {((G. q. 81.82.83.84). ) | g2 = g} A ga = g3}} [9]

Nz Lz ={(G,q, g h, (. B)) [3(m #0,r)sta=g", p=h"g"} [21]

All these proofs require constant round complexity and a constant number of exponen-
tiations.
We further employ the following zero-knowledge proofs in our constructions:

1. A zero-knowledge proof mgyc for the following language that is associated with
a homomorphic encryption IT = (G, E, D) relative to a ciphertext group C and
group operation -. Specifically, let C; = [¢; 1,...,¢; gl fori € {0, 1} and C' =
[}, ..., c/Q] be three vectors of Q ciphertexts each. We want to prove that C’
is the “re-encryption” of the same messages encrypted in either Co or Cy, or in
other words, there exists an index i € {0, 1} such that for all j, c;. was obtained by
multiplying ¢; ; by a random encryption of 0. More formally,

Lexe = {(pk, Co, €1, CH[F G rjh s forallj s ¢ =cij - Epe0: 7))

In the proof, the joint statement is a collection of three vectors, and the prover
produces proofs that the third vector is a randomized version of either the first or
the second vector. When using the El Gamal encryption, the proof boils down to
proving that either C’/Cy or C’/C| is a Diffie-Hellman tuple (when division is
computed component-wise). This enables us to extract the bit i, but not the entire
witness for Lgyc. We note that this is sufficient for our purposes. We continue with
our protocol,

Protocol 1. (wene—A Zero-Knowledge Proof for Liyc):

o Joint statement The set (G, q, g, h, Co, C1, C') for pk = (G, q, g, h) a public-key
for El Gamal .
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o Auxiliary input for the prover An index i and a set {r;}; as in Lgxc.
e The protocol

(a) Let Q denote the number of elements in each vector. Then the verifier picks random
SIiNgs ro 1, ..., 10,0, 71,1, - - - 71,0 < Zgq and sends these values to the prover.
(b) LetC; = [ci 1, ..., ci,glfori € {0,1}andC" =[c}, ..., ’Q] The parties compute

the sets co = H _l(CO i G (l/c NS and ¢ = H,—1(Cl i G (1/c )L,
(¢) The prover performs a zero- knowledge proof of knowledge provmg that either
(pk, co) or (pk, c1) is a Diffie—Hellman tuple.

Note that the first message sent by the verifier is not part of the challenge but used to
reduce the size of the proven statement.

Proposition 2.1.  Assume that the DDH assumption holds relative to G. Then, Protocol
1 is a statistical zero-knowledge proof for Lgnc with perfect completeness and negligible
soundness error. It is further a proof of knowledge of the index i within the prover’s
witness.

It is easy to verify that the verifier is always convinced by an honest prover. The
combined argument for zero-knowledge can be derived from [8].°> The fact that index i
can be extracted is due to the proof of knowledge property of the Diffie—Hellman proof
from Step lc.

2. Let IT = (G, E, D) be a homomorphic encryption relative to a ciphertext group
C and group operation -, and let C = {c; j};; and C" = {c] ]}j, be two sets of
encryptions, where j € {1,..., Q} and i € {0, 1}. Then, we consider a zero-
knowledge proof of knowledge 7perm fOr proving that C and C’ correspond to the
same decryption vector up to some permutation. Meaning that,

Reerm = {(Pk’ C, C/)’ (777 {rj,i}j,i)|v i, J, {Cj,i = C;-[(j),,' : Epk((); "j,i)}j}

where 7 is a one-to-one mapping over the elements {1, ..., Q}. Specifically, we
prove that C’ is obtained from C by randomizing all the ciphertexts and permuting
their indices. We require that the same permutation is applied for both vectors.
The problem in which a single a vector of ciphertexts is randomized and permuted
is defined by

Ry = {(pk, (1. ....co). (51,...,5Q)),

(TL’, (r1, ...,FQ))|Vi,j, Ej =Cr(j) - Epk(o; rj)} .

5 This proofis a simple extension of the standard proof for R py using a general technique. In particular, the
prover separates the challenge ¢, and it is given by the verifier into two values: ¢ and ¢ such that ¢ = ¢1 @ ¢;.
Assume w.l.o.g. that it does not have a witness for the first statement, then it always chooses ¢ in which it
knows how to complete the proof (similarly to what the simulator for 7py does), and uses its witness for the
other statement to complete the second proof on a given challenge ¢;. Note that the verifier cannot distinguish
whether the prover knows the first or the second witness. See [8] for more details.
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and has been widely studied in the literature. The state-of-the-art protocol is in [5].
In this work, we will use a simpler and slightly less efficient (but still good for
our purposes) protocol by Groth and Lu [13]. They presented an efficient zero-
knowledge proof of knowledge 7Ly, for Rl Wwith linear computation and
communication complexity, and constant number of rounds. The reason we use
a slightly less efficient protocol is due to the fact that it is easy to show that this
proof is applicable to the case where the same permutation is applied to more than
one vector of ciphertexts (as we require), and because it can be applied to the El
Gamal encryption scheme.

3. Secure Text Search with One-Sided Simulatability

The pattern matching problem is defined as follows: given a binary text 7' of length ¢ and
a binary pattern p of length m, find all the locations in the text where pattern p appears
in the text. Stated differently, foreveryi =1, ..., ¢ —m + 1, let T; be the substring of
length m that begins at the ith position in 7'. Then, the basic problem of pattern matching
is to return the set {i | 7; = p}. Formally, we consider the functionality Fpy defined by

(i1 Ti=p1...pm},—) if[pl=mand|T| =¢

((p, ), (T, m)) [ AT, Iph otherwise

where 7; is defined as above.

Note that P, which holds the text, learns nothing about the pattern held by Py,
whereas the only information that P; learns about the text is the locations where its
pattern matches. As discussed in the introduction, this problem has been intensively
studied and can be solved optimally in an insecure environment in time that is linear in
length of the text and the number of occurrences.

3.1. Secure Text Search against Honest-But-Curious Adversaries

In this section, we present an algorithm for secure text search that is secure in the presence
of honest-but-curious adversaries. Our protocol employs the properties of homomorphic
encryption to compute the sum of the differences between the pattern and the text.
Informally, party P; computes a matrix @ of size 2 x m that includes an encryption of
zero in the position (7, j) if p; = 7, and an encryption of one otherwise. Given @, party
P, creates a new encryption ¢, for every text location k that corresponds to the inner
product of the encryptions at locations (x4 1, j) forall j € {1, ..., m}. By definition,
ey encrypts the Hamming distance between p and 7. Therefore, if p matches Ty, e is a
random encryption of zero. Figure 1 illustrates the approach schematically, and Protocol
TsiveLe introduces it formally.

Protocol 2. (7 spvipr—Honest-But-Curious Secure Text Search)

e Inputs The input of P1 is a binary search string p = pi, ..., pm and £, whereas
P>’s input is a binary text string T =t1, ..., t, and m.
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Pi(p, 1) Py(T,m)
(pk, sk) + G(1™)

Forall i € {0,1},
jed{l,....m}:

®(i,j) = Epr(0) for i = p;
D(1—14,7) = Epi(1)

Forallk e {1,...,0 —m+1}:
& =Ty [© (a1, )™ - Epr(0;7%,)

output {k | Dy sx(e},) = 0}

Fig. 1. Text search in the honest-but-curious setting.

e Conventions The parties jointly agree on a group G of prime order q and a genera-
tor g for the El Gamal encryption. Party P\ generates a key pair (pk, sk) <— G(1")
and publishes pk. Finally, unless written differently, j € {1, ..., m}andi € {0, 1}.

e The protocol

1. Encryption of pattern Party Py builds a 2 x m matrix of ciphertexts @ defined

by,
DG, j) = Ep(0) pj=i
' Epi(1) otherwise
The matrix @ is sent to party P;.
2. Scanning of text For each offset k € {1, ...,¢ —m + 1}, P, computes
m
e = H D (trtj—1. J)
j=1

Note that for each offset k, it holds that Ty matches pattern p if and only if
ex = Epr(0).

3. Masking of terms Due to the fact that the decryption of ey reveals the number
of matched elements at text location k, party Py masks this result through scalar
multiplication. In particular, P, sends the set {e; = (ex)"™* - E pi (0; r,i)}k where
rk, 1}, are random strings chosen independently from Z for each k.

4. Obtaining result Py uses sk to decrypt the values of e; and outputs

{k | Dpk,xk(e;c) = O}
Clearly, if both parties are honest then P; outputs a correct set of indexes with over-

whelming probability (an error may occur with negligible probability if (ex)” is an
encryption of zero even though ¢y is not). We now state the following theorem,
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Theorem 3.1. Assume that the DDH assumption holds relative to G. Then Protocol
TsivpLg Securely computes Fpy in the presence of honest-but-curious adversaries.

In case P; is corrupted, statistical security is obtained by sending an encryption of

zero for the matched text locations, and an encryption of a random element in Z, for
all other locations. In case P, is corrupted, security is obtained via a reduction to the
IND-CPA security of (G, E, D) by simply defining a simulator that sends encryptions
of zero. The formal proof is straightforward and is therefore omitted.
One-sided simulation security 'We point out that if party P; proves that it computed
matrix @ correctly, then we can also guarantee full simulation with respect to a corrupted
P;. This can be achieved by having P prove, using the zero-knowledge proof of knowl-
edge mppry (cf. Sect. 2.7), that for every j the pair @ (0, j), @ (1, j) is a permuted pair
of the ciphertexts E ¢ (0), Epi(1). In addition, we add two checks in the protocol where
the parties verify whether the vectors sizes received from the other party are consistent
with the lengths ¢ and m, P; and P, are given, respectively.

Constructing a simulator for the case of a corrupted P, is more challenging since
the protocol does not guarantee that P> computes {e; }; relative to a well-defined binary
string T'. In particular, P, may compute every ciphertext e; using a different m bits string.
We are not aware of any alternative for proving consistency relative to P»’s behavior,
rather than using generic zero-knowledge proofs of knowledge which do not provide an
efficient approach. Therefore, we only consider privacy for this case. Let 74, ; denote
the modified version of mgpp g With the additional zero-knowledge proof of knowledge
mperm Used by P1. We conclude with the following claim,

Theorem 3.2. Assume that the DDH assumption holds relative to G. Then Protocol
TmeLs Securely computes Foy with one-sided simulation.

Proof Sketch. Assume Pj is malicious. Then, we define a simulator S that plays the
role of P, and builds a view for Pj that is (computationally) indistinguishable from the
view of the real protocol without knowing the real input text held by P,. The crucial
point is that at the end of Step 1 (which in g, includes also the zero-knowledge
proof of knowledge mpgry), the simulator can learn the input of Py by extracting it from
7perm- At this point, the simulator is also given the output of the protocol by the trusted
party, i.e., S knows in which locations of the input text of P, the pattern appears. S then
chooses a text T’ which contains the pattern in the exact same locations but is otherwise
an arbitrary string p’ # p. It then runs the rest of the protocol using 7’. It is easy to
verify that the view of Pj produced by S is statistically close to the real view.

In case P, is corrupted, the privacy of P; follows from the IND-CPA security of
El Gamal and the zero-knowledge property of mprry- Specifically, the simulator sends
encryptions of zero and invokes the simulator for wpggy for proving the correctness of @

0.

We remark that protocol 74, , takes a different approach than the one-sided simulat-
able protocol of [18], that computes the pattern matching functionality using oblivious
PRF evaluation. One advantage of our protocol is that it can be easily extended for
handling generalizations of the basic pattern matching problem (as shown in Sect. 3.2).
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This does not seem to be the case for the [18] protocol since the PRF evaluations of two
strings that their Hamming distance is small yield two strings that look independent.
Furthermore, in order to evaluate the PRF, the [18] protocol requires £ OT evaluations.
This overhead implies that both parties must compute O (£) exponentiations.

Efficiency We first note that the protocol g, is constant round. The overall com-
munication cost is O (m + £) group elements, whereas the computation costis O (m 4+ £)
modular exponentiations and (m¢) multiplications, as P> computes the multiplication
of m ciphertexts (component-wise) for each text location. The additional cost of mpgry
is linear in the length of the pattern.

3.2. Generalizations of the Pattern Matching Problem

In this section, we study three generalizations of the classic pattern matching problem,
to other problems of practical interest. We show how to modify our solution from the
prior section to solve these problems.

Approximate Text Search In approximate matching, one defines a distance metric
between the strings and finds all the text locations where the pattern matches the text by
a pre-specified distance. For example, an additional public parameter p, which deter-
mines the number of differences that can be tolerated, is introduced (where a difference
is defined by the specified metric). The most natural metric is the Hamming distance
that counts the number of mismatches between two strings. Specifically, P; learns all
the text locations in which the Hamming distance between the pattern and the substring
at these text locations is smaller equal to p. More formally, we consider the functionality
for approximate text search Fpy that is defined by

(p. L, p), (T, m, p"))
ATl Iph otherwise

where d(x, y) denotes the Hamming distance of two binary strings x and y of the same
length, and 7; is the substring of length m. The best algorithm for solving text search
with mismatches in an insecure environment is the solution by Amir et al. [2] who
introduced a solution whose time complexity is O (£/plog p). We show that a simple
modification to our protocol yields a protocol that computes this functionality as well.
Upon completing its computations and before masking the terms as in Step 3 of 7{p 5
and condition that p = p/, party P, produces p + 1 ciphertexts from each ciphertext
ey by subtracting from its plaintext all values between [0, ..., p]. Finally, it masks and
rerandomizes these ciphertexts and randomly shuffles the result. Denote this modified
protocol by mpy-

Then, simulation for a corrupted P; is not changed as now, and the simulator receives
from the trusted party all the text locations where the pattern matches with at most p
mismatches. The proof for the case that P> is corrupted follows from above. Then it
holds that
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Theorem 3.3. Assume that the DDH assumption holds relative to G. Then, Protocol
T apm Securely computes Fppy With one-sided simulation.

Note that both the computation and communication complexities are O (m{). Specif-
ically, the overhead of P, is dominated by O (m{) multiplications and O (m + £) expo-
nentiations.

Text search with wildcards This variant was developed with the aim to introduce
improved algorithms for approximate text search. Here, a wildcard symbol is intro-
duced in the pattern, so that it matches against any character when comparing against
the text. In an insecure setting, this problem can be solved in time that is linear in the
lengths of the text and pattern, and the number of occurrences [32]. We note that in pro-
tocol 74 - @ Wildcard can be introduced by having P; send two encryptions of zero
instead of a pair of encryptions of zero and one. By doing so, we ensure that regardless
of the text bit, P, will not count it as a mismatch. Denote this modified protocol by myc,
then it holds that

Theorem 3.4. Assume that the DDH assumption holds relative to G. Then, Protocol
Twe securely computes the pattern matching problem with wildcards with one-sided
simulation.

The security proof is as above except that Pj uses a slightly different proof of knowledge.
In particular, it proves the statement that for every j, the pair {@ (0, j), @(1, j)} is
either a permuted pair of the encryptions {E (0), Epi (1)} or it corresponds to a pair
of zero encryptions. The number of exponentiations required from P, is O (m{) and the
communication is O (m + £) group elements.

Largeralphabets  Recalling that protocol g,  compares binary strings and computes
the pattern matching functionality for the binary alphabet. However, in some scenarios,
the pattern and the text are defined over a larger alphabet X, (e.g., when searching in a
DNA database the alphabet is of size four.)

When T and p are drawn from a | X'|-ary alphabet, protocol msyp g can be extended to
this case, where @ is a ¢ x m matrix. In this case, P; must prove that each row of @ is a
permutation of a vector of g elements of the form { £, (0), Epx (1), ..., Epr (1)}, using
TeermM, With a single encryption of zero and ¢ — 1 encryptions of one. The size of the
alphabet appears as a multiplicative cost for both the computation and communication
measures. The security proof is not appreciably different from the binary case.

4. Secure Oblivious Automata Evaluation

In this section, we present a secure protocol for oblivious automata evaluation in the
presence of malicious adversaries. In this functionality, P; inputs a description of an
automaton I = (Q, X, A, qo, F), and P, inputs a string ¢. The result of the protocol
is that P receives I"(¢), while P, learns nothing. Formally, we define this problem via
the functionality
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((accept, |t]), —) iflr'(t) e F

fAUTO : (F = (Q7 Ea Av qo’ F)’ (ta |Q|7 |F|)) = [ ((nO-accept, |t|), _) OtherWise

where I (¢) denotes the final state in the evaluation of I" on ¢. The reason we require
from the party who holds I" to learn the outcome and not the other way around is due
to employing this protocol in our main construction for computing text search. There,
the party with the pattern designs an automaton for its specific input and should learn
outcome of the its automaton evaluation on the text. In order to enable P, to learn the
outcome, a simple modification is required in the last step of our protocol.

W.l.o.g., we consider the following simplifying assumptions. First, we assume that
X = {0, 1} (our construction can be proven for any fixed alphabet) and that the transition
table is complete, where there exists a transition at each state for every input o € X.
To simplify the description, we assume that each row is described using three columns:
the current state denoted by column ¢, the next state in case of reading a zero denoted
by column 0 and the next state in case of reading a one denoted by column 1, so that
each bit has its own column and the overall number of rows is now | Q|. We furthermore
assume that the names of the states {go, g1, ..., q)g|-1} are the integers taken from
{1,...,]Ql}, respectively (i.e., the initial state is labeled 1). Finally, we assume that
|Q| and | F| are public (for | F'| the number of states in F). For the sake of generality,
we note that keeping | F| private can be easily dealt by having P; send a vector of
| Q| encryptions for which the ith encryption is a zero encryption only if g; ¢ F.
Otherwise, it is an encryption of ¢; (this can be verified using a simple zero-knowledge
proof).

Recall that our starting point is the protocol from [34]. Their idea is to have the
parties share the current machine state, such that by the end of the kth iteration,
the party with the automaton knows a random string ry, whereas the party with the
input for the automaton learns g; + rx. The parties complete each iteration by run-
ning an oblivious transfer in which the next state is now shared between them. The
fact that the parties are honest-but-curious significantly simplifies their construction.
Unfortunately, we cannot see any natural way to extend their technique to the mali-
cious adversary case (even when using oblivious transfer that is resilient to malicious
attacks). Coping with such behavior is much more challenging. First due to the require-
ment that the automaton must be valid (according to some specifications described in
Sect. 5). Furthermore, the parties’ inputs to the oblivious transfers must be consistent.
In this paper, we take a different approach to obtain security against malicious adver-
saries.

A high level description We begin by briefly motivating our construction; see
Fig. 2 as well. At the beginning of the protocol, P; and P, jointly generate a
public-key (G, E, D) for the threshold El Gamal encryption scheme (denoted by
the sub-protocol mygy). Next, party P; encrypts its transition table A and the
set of accepting states F, and sends it to P,. Note that this immediately allows
P, to find the encryption of the next state cac,) = A(l, 1), by selecting it
from the encrypted matrix (since it can identify the encrypted next state associ-
ated with the specific state and bit). P, rerandomizes this encryption and shows
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PI(Q7{071}>A7QO7F) P2(t17tl>|Q‘7‘F|)
1" — — 1"
(pk, sky = x1) ¢— — (pk, ska = x2)
forall j € {1,...,|Q|}
and ¢ € {0,1}
En, ER

—>| ZKPOK of En, Ep |—>

For every iteration ¢ :
let CA(lyﬁfl) = Epk(A(l, (tl, cee ,tf_l)))

ANC ={cane-1)/cjcti
A s.t. cj ¢ is from column e

C7T7 Cﬂ,tE

chooses a permutation 7
where Cy, is column t¢

Crr, C7rﬂ,tg

chooses a permutation 7’

<> masking C/ <>

threshold decryption
of C,-r/

finds encryption c¢ of next state

If & = ¢, verify if ¢,
is an accepting state

Fig. 2. Construction of determinized KMP automata for pattern 1100011001.

it to P;. The protocol continues in this fashion for ¢ iterations (the length of the
text).6

Assume that at the outset of each iteration i, the parties know an encryption of the
current state and their goal is to find an encryption of the next state. P> selects from
the matrix the encrypted column that corresponds to the next state according to its input
t; (as it only knows an encryption of the current state). Then, using the homomorphic
properties of El Gamal , the parties obliviously select the correct next state; this stage
involves the following computations. Let c (1,1, —1) denote an encryption of the current
state after the partial automaton evaluation A(1, 1, ..., tz_1). Then, the parties compute

first the set C = {caq,e—1) "G Epk (gqf*1 ; 0)}; where only one ciphertext in this set will

6 Unfortunately, these iterations are not independent and thus cannot be employed in parallel. This is due
to the fact that the parties must start every iteration with an encryption of the current state. Looking ahead, in
Sect. 5.2, we show how to minimize the number of rounds into O (m) when performing a secure text search,
which is typically quite small.
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be an encryption of 0, indicating the position of the current state. In order to learn
the encryption of the next state, the parties have to randomly permute the transition
table and mask column C, so that when being decrypted, it will not reveal any useful
information about the secret inputs of the parties. The protocol concludes by the parties
jointly checking if the encrypted state that is produced within the final iteration is in the
encrypted list of accepting states.

More specifically, there are several technical challenges in constructing such a secure
protocol. In particular, the identification of the next encrypted state without leaking
additional information requires a couple of rounds of interaction between the parties
in which they mask and permute the ciphertext vector containing all possible states, in
order to “destroy any link” between their input and the next encrypted state. Moreover,
in order to protect against malicious behavior, zero-knowledge proofs are included at
each step to make sure the parties behave according to the protocol specifications.

We are now ready to present a formal description of our protocol.

Protocol 3. (7 ,yro—Secure Oblivious Automata Evaluation)

e Inputs The input of P is a description of an automaton I' = (Q, {0, 1}, A, qo, F),
and the input of Py is a binary stringt = t1, ..., ty.

o Auxiliary Inputs |Q| and |F| for P> and the security parameter 1" for both.

e Conventions We assume that the parties jointly agree on a group G of prime order
q and a generator g for the threshold El Gamal encryption scheme. Both parties
check every received ciphertext for validity and abort if an invalid ciphertext is
received.
We further assume that the description of the automaton does not include unreach-
able states.
Finally, unless written differently, j € {1,...,|Q|}andi € {0, 1}.

e The protocol:

1. El Gamal key setup The parties engage in an execution of protocol mxey and
generate a public-key pk and two shares x| for Py and x» for P;.
2. Encrypting P;’s transition table and accepting states

(a) Py encrypts each entry in its transition table A under pk component-wise.
Denote this set of ciphertexts by Ex = (Ce, Co, C1), denoting columns €, 0
and 1, respectively. Py also sends the list of encrypted accepting states denoted
by Erp = (Epi(f)} rer. For simplicity, we assume that the randomness of the
ciphertexts encrypting column C¢ is known (note that this column “encrypts”
the publicly known states {1, ..., |Q|} in some fixed order).

(b) For every encryption (c1, c2) € Ea U Ef, Py proves the knowledge of log, ci
USing mpy.

(c) Proving the validity of the encrypted transition matrix P; proves that E 5
is a set of encryptions for values from the set {1,...,|Q|}. It first sorts the
ciphertexts within columns Co and Cy| according to their plaintexts (i.e., in a
non-decreasing order), denotes the sorted vector by ci, ..., c2. . P1 multi-
plies every encryption in this set with a random encryption of 0, sends it to
P> and proves: (1) firstly that this vector is a permutation of Co and C1 using
7eerm- (2) That ¢ = co/cr—1 € {Ep(0), Epr (D} for T € {2,...,2|0[}
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using mpy. For example, by proving that either (pk,c.) or (pk, c¢/Epi(1))
is a Diffie-Hellman tuple and finally, (3) that ¢\ and c3.|g| encrypt plaintexts
from {1, ...,]0|} (to ensure that Py does not use states taken from a differ-
ent range) by running a combined argument for mpy (see Footnote 5 for more
details about such an argument).

3. First iteration

(a) P, chooses the encryption of the next state ca1,4) = Epk(A(1,11)). It then
definescy = ca(1,) G Epk(0; 1) forafreshuniformr, i.e., arandom encryption
of the next state and sends it to P;.

(b) P> proves that Dy sk (c1) € {Dpk,sk(ca(1,0)), Dpk,sk(cac,1))} using the zero-
knowledge proof of knowledge mgxc.

. Iterations {2, ..., £} forevery & € {2, ..., ¢}, let CA(Ltz_1) denote the encryption

of the current state after the partial automaton evaluation A(1, (ty, ..., 1z_1)).
Then, the parties continue as follows:

(a) Subtracting column C, from the current state The parties compute the vector
of encryptions C = {caq1,6-1)/¢j,e}j for every ciphertext c; € Ce. Note that
only one ciphertext will denote an encryption of zero, and that indicates the
position corresponding to the current state.

(b) Picking column C ) sends Py a randomized version of column C, tes denoted
By, and proves correctness using the zero-knowledge proof of knowledge mgxc.

(c) P, permutes columns C and By, : P, chooses a random permutation & over
{L,...,|Ql|} and sends P\ a randomized version of the permuted columns
(Cx, Cry) = (@(C), 7 (By)). Po proves its computations using a zero-
knowledge proof of knowledge mpgry-

(d) Py permutes columns C;; and Cr, ;. : If Py accepts the proof weery, it continues
similarly by randomizing and permuting (Cr', Cy/ 1) = ('(Cr), ' (Cr )
using a new random permutation 7'. P proves its computations using a zero-
knowledge proof of knowledge mwpgry.

(e) Masking column C. The parties take turns in masking Cy (a permutation
over column Cy).

(i.) More specifically, for every ¢y € Cypr, Py chooses x,r < 7% and com-
putes c;T, = cfr, -E ik (0; 1) (component-wise). It then proves that (¢, C;T,)
forms a Diffie—Hellman tuple using mpy. Notice that the ciphertext that
denotes an encryption of zero will not be influenced by the masking, while
the others are mapped to a random value.

(ii.) Py repeats this step and masks the result yielding a new vector C.

(f) Decrypting column C The parties decrypt vector C by running mpsc on each
element ¢ € C, where P> decrypts using its share first.

The parties choose the jth ciphertext to be CA(L) € C,Tr,,E forwhich Dy s (cj) =
0 (with high probability there will be only one such ciphertext).

. Verifying output Upon completing the Lth iteration the parties hold a ciphertext

CA(1,1) that denotes the encryption of A(1, t). To check if this is an accepting state
the parties do the following:
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(a) They compute the ciphertextvector Cr = {ca(1,1,)/C}ceEr- Notice that A(1, 1)
is accepting if and only if one of these ciphertexts is an encryption of zero.

(b) P, masks Cr as in Step 4e and proves correctness using mpy. Let C ’F be the
result vector.

(¢) P permutes C'. and proves correctness using o Let Cr 5 be the resulting
vector.

(d) The parties run mpgc to decrypt all the ciphertexts in Cr 5, where Py decrypts
using its share first and the result going only to Py that outputs accept if and
only if one of the plaintexts equals zero.

We continue with the following claim,

Theorem 4.1. Assume that the DDH assumption holds relative to G. Then mwayro
securely computes Furo in the presence of malicious adversaries.

Intuitively it should be clear from the IND-CPA security of the encryption scheme
that the automaton and the text remain secret. Consider first the case in which P;
is corrupted, and we need to simulate the role of P,. The simulator is going to
choose an arbitrary input and run P,’s code on it (while forcing a correct out-
come for Pp). Then, to prove that this view is indistinguishable from a real view,
we need to show a reduction to the encryption scheme. In particular, our reduction
should enable the simulator to decrypt without actually knowing the secret key, since
the parties must run a decryption in each iteration in order to locate the encryp-
tion of the next state. Moreover, decryptions must be computed for the ciphertexts
received from the challenger during the reduction, for which the simulator has no con-
trol.

We approach this technicality via a sequence of hybrid games in which indistinguish-
able changes are introduced to the way the simulator works, but still allowing it to
complete the simulated execution. More specifically, we first instruct the simulator to
decrypt without using its share (but still introducing the same view) and then show how
to create a view that is independent of the honest party’s input. This enables us to replace
the simulated input with a real one. As for the case that P; is corrupted, the proof follows
the same outline mainly because, even though P, does not receive an output, it still sees
intermediate decryptions of column C. Our goal is to prove that these decryptions do
not contribute any information about P;’s input.

4.1. Proof of Theorem 4.1

We separately prove security in the case that P; is corrupted and the case that P, is
corrupted. Our proof is in a hybrid model where a trusted party implements the rela-
tions Rpr, Rou, Reerm and R}]’ERM (namely, the zero-knowledge proof of knowledge
functionality that corresponds to these relations).

Party Py is corrupted Let A denote an adversary controlling P;. We construct a
simulator SZM as follows,

1. STM is given a description of an automaton I" = (Q, {0, 1}, A, g9, F) and A’s
auxiliary input and invokes A on these values.
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2. ST M invokes the simulator for rygy and extracts the adversary’s share x;. SZM
records this value, picks x, < Z, and completes the execution of ggy with this
share. Let pk = g*11*2 denote the public-key generated in this execution.

3. SIM receives from A ciphertexts E4 , and Er, and verifies the proofs for a
valid automaton. If the verification fails SZM sends L to the trusted party for
Fauro and halts. STM decrypts E4 , and records the transition matrix A 4. If
the recorded set A 4 does not constitute a valid transition matrix SZM outputs
fail. SZM similarly computes the set of accepting states F4 (as A may send
encryptions of invalid accepting states, SZM records only the valid states that
correspond to values within {1, ..., O}).

4. STMsends I'y = (Q, {0, 1}, A4, qo, F.4) toits trusted party. If it receives back
the message “accept” and ¢, it chooses an arbitrary string " = ¢; .. . 7, for which
IA(t") € F4. Else, it chooses a string ' = ] ...t, such that I'4(t) is not an
accepting state. This is done by mapping the automaton into a graph and then
searching for a path from the initial state to each one of the accepting/non-accepting
states of length £.

5. SZM completes the execution as the honest P> would on this input. Specifically, in
the first iteration, SZ.M chooses CALLL) and sends A ciphertext ¢; = CALLE)
E p(0). It then invokes the simulator for 7rgne While playing the role of the prover,
for proving that it computed ¢4 , (1, 1) correctly.

6. In every iteration &, SZM plays the role of the honest P, on its input determined
above, emulating the ideal computations of Rpgry and Rpy. It further invokes the
simulator for the zero-knowledge proof mgyc when required in the protocol.

7. ST M outputs whatever A does.

We first note that SZM outputs fail with negligible probability due to the fact that in
the real execution P, accepts an invalid automaton description only with a negligible
probability due to the negligible soundness error of mpgry and mpp. In particular, if
A sends an encryption of a value not in {1, ..., @}, then the proof fails since either
there exists an index t in which ¢; is not an encryption of zero or one, or ¢; and
¢2.|g| are not encryptions of an element from {1, ..., 2|Ql}. Next, we show that the
output distribution of .4 in the hybrid and the simulated executions are computationally
indistinguishable. Recall that SZM plays against A with input ¢’ so that I'4(¢) € F4
if and only if I'4(¢t') € F 4 where ¢ is the input of the real P,. The intuition of the
proof follows from the security of El Gamal, where the adversary should not be able
to distinguish between an encrypted path of the automaton that was computed relative
to ¢ or ¢’. Formally, we define a sequence of hybrid games and denote by the random
variable H'® (I" = (Q, {0, 1}, A, qo, F), ¢, n) (for a fixed n) the output of A in hybrid
game Hy.
Formally, we consider the following sequence of games.

Game Hy The simulated execution as described above.

Game H In this game, we define a simulator SZM similarly to simulator SZM with
the following modifications.
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1. In Step 3a (i.e., in the first iteration), SZM sends an encryption to a random
plaintext instead of ¢, ,(1.4/), for t" =1t{,...,t, the arbitrary input picked by the
simulator. STM | then invokes the simulator for the proof mwgxc.

2. Next, for each iteration 2 < & < £, SZM does not send a random permutation of
columns C, Cté in Step 4c. Instead, STM sends two vectors of | Q| ciphertexts

encrypting random plaintexts. Moreover, in Step 4f, STM decrypts column C
as follows. It picks a random index k € {1, ..., |Q|} and forces the decryption of
Cr = (Ck,» Ck,) € C into zero by sending

Cky Cky Chky
ey = = =

_ - il
(Cz.l .gm) (C;;l _go) &
for m = 0 and x; the adversary’s secret key share. Note that if the adversary
decrypts correctly then the outcome is g° since it computes Cky/ (Ej;l e7) = g0,
3. Similarly, in Step 5S¢, SZM | sends a random vector of ciphertexts rather than the

permuted outcome Cr , and forces the decryption of one of these ciphertexts into
zero as done in the previous step.

We claim that the adversary’s views in the games Hy and H; are computationally
indistinguishable due to the IND-CPA security of the EI Gamal scheme. For example,
a distinguisher D can be constructed as follows. Upon receiving public-key pk from
its oracle, Dg invokes the simulator for gy and forces the shared public-key to be pk.
It further records the adversary secret key share x; and the transition table it extracts in
Step 2b. Next, in the first iteration Dg outputs messages A 4(1, r¢1) and s for s < Zg,
receiving back from its oracle ciphertext e.” D forwards A in Step 3a ciphertext e and
invokes the simulator for gyc. Then, in each iteration 2 < & < £, D sends to its oracle
two vectors of size 2| Q|: (i) the first vector corresponds to a random permutation 7 of
columns Ce, Cre, - (i1) The second vector corresponds to a set of random plaintexts. Dg
forwards A the oracle’s response and emulates the ideal calls for the zero-knowledge
proofs. Finally, in the decryption of Step 4f, Dg decrypts ciphertext ¢; as in game
Hj except that it picks index k € {1,...,]|Q]|} to be the index that would have been
decrypted by simulator SZM when running on input ¢’ (i.e., the index that corresponds
to plaintext A 4(1, té) if the oracle indeed encrypts the second set of messages. Clearly,
Dpg does not know that, but pretends that this is the case). We recall that Dg extracts
the permutations applied by the adversary in Step 4d, so it is able to compute this index
efficiently. Similarly in Step 5d, Dg decrypts the ciphertext that corresponds to the final
state A 4(1,¢") (again, assuming that the oracle encrypts the second set of messages.)

We now prove that A’s view distributes either according to game Hy with STM
or according to game H; with ST M. Note first that the differences between the two
executions are with respect to the permuted ciphertexts and the way decryption follows.
For example, if D receives from its oracle encryptions of A 4(1, r{) and the permuted
columns C, C i then the result is a view as in the simulation with SZM. To see this,

7 We extend the standard IND-CPA game where the adversary outputs two messages and consider a game
where the adversary outputs two vector of messages where one of these vectors is encrypted. For simplicity,
we split the challenge phase into two phases.
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note that the ciphertexts received from Dpg’s oracle distribute as in game Hy since they
correspond to the encryptions of the evaluation of the automaton on ¢'. In addition, Dg
decrypts the ciphertexts that correspond to {A 4(1, té)}é by sending cy,/ (E;:l‘ - g% in
each iteration. Now, since D decrypts as if the oracle sends these sets of encryptions,
it holds that Dg decrypts correctly (without knowing). For example, it sends

- =X 0

Cky Sk 8 P
X1 ,0 T X ,0 T Tk
€k, " 8 €k, - 8

for x = x; + x2, which distributes identically to SZM’s decryption message in the
execution of mpgc.

On the other hand, the result is a view with ciphertexts that encrypt random plaintexts
as required in game Hj. Here, we need to ensure that the view distributes as in game Hj.
Note that the only difference with respect to the views generated by Dg and ST M is
regarding the way index k is picked, since D does not pick it uniformly. Nevertheless,
since the index of A 4(1, té) is randomly permuted within column Cté using a fresh

permutation s, it amounts to picking this index at random.

Game H; In this game, there is no trusted party and no honest P,. Instead, we define a
simulator SZ.M, that uses the real input ¢ instead of the simulated input #’. For example,
this game is identical to game Hy with SZM except that SZM> does not interact with
a trusted party and plays the role of SZM with input ¢ rather than with ¢’. The proof
for which the views generated within games H; and H, are computationally indistin-
guishable follows the same argument from the proof that demonstrates computational
indistinguishability with respect to the simulated view with SZ.M and the view generated
in game Hj.

Game Hj3 In this game, we define a simulator SZM3 that uses its share of the secret key
to decrypt correctly. We claim that the adversary’s views generated in games Hp and H3
are identical. This is due to the fact that the simulator decrypts correctly in both games.
Specifically, in game Hj, the simulator decrypts the ciphertexts it picks in Steps 4f and 5d
correctly, since it knows the plaintexts.

Game Hy In this game, we define a simulator that invokes the real prover for ¢ instead
of the simulator. Computational indistinguishability follows straightforwardly due to the
zero-knowledge property of mgyc.

Finally, note that the distribution induced by game Hy is identical to the distribution
generated in the hybrid execution. This concludes the proof for the case when P; is
corrupted.

Party P, is corrupted Let A denote an adversary controlling P, we construct a simulator
ST M for P; as follows.

1. STM is given a string tq, ..., ty and A’s auxiliary input (|Q|, | F|), and invokes
A on these values.

2. SIM picks x| < Z, and invokes the simulator for mxpy. SZM extracts the
adversary’s share xp and records this value. It then completes the execution of
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mxey With its share. Let pk = g*'™2 denote the public-key generated in this

execution.
3. SZM encrypts an arbitrary automaton I = (Q’, {0, 1}, A’, qo, F’) with |Q’| =
|Q| and | F’| = | F| and sends its encryption. It emulates the ideal calls for Rpgrm

and Rpy approving the validity of the description of the automaton.

4. In every iteration £, STM records #¢ , by extracting it from the proof muyc that A
runs in Step 4b (for the first iteration STM extracts #1 , in Step 3b). ST M sends
f1 45 ---»tey to the trusted party.

5. SIM completes the execution as the honest P; would on this input I"" while
emulating the ideal calls for Rpgry, RéERM, Ror and Rpy.

6. SZM outputs whatever A does.

Note that the difference between this simulated and the hybrid executions is within
the fact that the simulation runs on an arbitrary encrypted automaton. Therefore, the
reduction follows from the security of the El Gamal encryption scheme. More formally,
recall that P, does not receive any output, thus it only learns the decryption results
in Step 4f. Therefore, our goal is to prove that privacy is preserved in spite of these
decryptions. The proof follows similarly to the proof of the prior corruption case. We
denote by the random variable HZA(Z) (I' =(0,{0, 1}, A, qo, F), t, n) (for a fixed n) the
view of A in the hybrid game H,.

Game Hy The simulated execution.

Game H; In this game, we define a simulator SZM similarly to simulator SZM with
the following modifications.

1. InStep 2, STM | sends ciphertexts that encrypt random plaintexts rather than using
the fake automaton I’ = (Q’, {0, 1}, A’, qo, F’) the fake input that STM inputs
in game Ho. ST M emulates the ideal calls in Step 2c, approving the validity of
the description of the automaton.

2. For each iteration 2 < & < ¢,SZM, continues as simulator SZM does. For
example, follows the protocol instructions until Step 4f, where STM decrypts
column C as follows. It picks a random index k € {1,...,|Q]|} and forces the
decryption of ¢y = (Ck,, Ck,) € C into zero by sending

Chy Ck, Cky

= = =
~X1 ~X1 C
(Ckl . gm) (ckl . gO) ki

for m = 0 and x; is the adversary’s secret key share. Note that if the adversary
decrypts correctly then the outcome is g° since it computes Chy/ (51:11 er) = g°.
3. The rest of the simulation is as in game Hp.

We claim that the adversary’s views in games Hyg and H; are computationally indis-
tinguishable due to the IND-CPA security of the El Gamal scheme. For example, a
distinguisher Df can be constructed as follows. Upon receiving public-key pk from its
oracle, Df invokes the simulator for mygy and forces the shared public-key to be pk.
It further records the adversary secret key share x». Dg sends to its oracle two vectors
of size 2| Q| + | F|: (i) The first vector corresponds to the fake automaton description
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' = (Q,{0,1}, A", qo, F’). (ii) The second vector corresponds to a random set of
plaintexts. D forwards the adversary the oracle’s response and emulates the ideal calls
for Rpgrm and Rpy approving the validity of the description of the automaton. Next, in
each iteration 1 < & < {, D extracts f;, and verifies the proofs mexc, and aborts if
verification fails. It then permutes columns C, and C, . correctly.

Finally, in the decryption of Step 4f, Dg decrypts ciphertext ci as in game H; except

that it picks index k € {1, ..., |Q]|} to be the index that would have been decrypted by
simulator SZM when running on input A’ (i.e., the index that corresponds to plaintext
A'(1, t ) if the oracle indeed encrypts the first set of messages. Clearly, D does not
know that, but pretends that this is the case). We recall that D extracts the permutations
applied by the adversary in Step 4c so it is able to compute this index efficiently. The
rest of the proof follows similarly as in the former corruption case.
Game H; In this game, there is no trusted party and no honest P;. Instead, we define
a simulator SZM, that uses the real input I" = (Q, {0, 1}, A, qo, F) instead of the
simulated input I’ = (Q’, {0, 1}, A’, qo, F’). For example, this game is identical to
game Hp with STM except that SZM; does not interact with a trusted party and plays
the role of SZM with input I" = (Q, {0, 1}, A, qgo, F) rather than with a fake input
' = (Q',{0, 1}, A’, qo, F’). The proof for which the views generated within games
H; and H, are computationally indistinguishable follows the same argument from the
proof that demonstrates computational indistinguishability with respect to the simulated
view with SZM and the view generated in game Hj.

Game Hj3 In this game, we define a simulator SZM3 that uses its share of the secret key
to decrypt correctly. We claim that the adversary’s views generated in games Hp and H3
are identical. This is due to the fact that the simulator decrypts correctly in both games.
Specifically, in game H», the simulator decrypts the ciphertexts it picks in Steps 4f and 5d
correctly, since it knows the plaintexts.

Finally, note that the distribution induced by game Hj3 is identical to the distribution
generated in the hybrid execution. This concludes the proof for the case when P is
corrupted.

4.2. Efficiency

We present a brief analysis of our protocol; a comprehensive analysis can be found in
the introduction. Our protocol runs O (£) rounds where £ is the length of the text. This
round complexity is inherent from the fact that the parties cannot initiate a new iteration
before visiting the previous one. Looking ahead, when using this protocol for text search
the round complexity can be reduced into O(m) (i.e., the length of the pattern) using
standard techniques of splitting the text into blocks of size 2m; see Sect. 5.2 for more
details. We note that the length of the pattern is typically very small, usually a constant.
Moreover, the overall number of exponentiations in protocol myappauro 1S O (mf).

4.3. Dealing with an Arbitrary Size Alphabet

Protocol ay1o can be naturally extended to dealing with arbitrary size alphabet by simply
have P; send a larger table with a column for each symbol. The rest of the protocol is
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adapted similarly. Note that this will introduce a multiplicative factor | X| within the
overhead of the communication and computation costs, where X is the alphabet.

5. Secure Text Search Against Malicious Adversaries

In this section, we present a secure version of the KMP algorithm [27] for computing
the text search functionality in the presence of malicious adversaries. A toy example of
the KMP algorithm is demonstrated in Fig. 3. Loosely speaking, the KMP algorithm
searches for occurrences of a pattern p of length m within a text 7 of length ¢, by
employing the observation that when a mismatch occurs, the pattern itself embodies
sufficient information to determine where the next match could begin, thus bypassing
reexamination of previously matched characters. More formally, P;, whose input is a
pattern p, first constructs an automaton I, for p as follows. Let p(;, denote the length
J prefix py,..., pj of p. P| constructs a table Y with m entries where its jth entry
contains a pointer to the last bit of the largest prefix of p that matches a suffix of p(;_1).
For example, the jth entry points to the largest prefix p(;. that matches a proper suffix
of p(j—1y. The intuition behind this construction captures the following idea. Assume
that one has already successfully compared the first j — 1 bits of p against the text,
yet encountered a mismatch when compared the jth bit of p. Then, the automaton
encodes the appropriate transition to the next potential match instead of comparing p
naively against the next text location. We remark that Y can be easily constructed in
time O (m?) by comparing p against itself at every alignment.

Next, P; constructs its automaton I, = (Q, X, A, qo, F) based on Y. It first
sets |Q| = m + 1 and constructs the transition table A as follows: for all j €
{L,...,m}, A(gj—1 x pj) — q; (i.e., moving forwards) and A(g;—1 x (1 — p;)) —
Y (j) (i.e., moving backwards), where Y (j) denotes the jth entry in Y. In case we found
a match and the automaton reaches the last state g,,, it can only go backwards, since the
algorithm finds the largest prefix that matches a proper suffix of the pattern.

We denote the labels of the states qo, ..., g» € QO by the sequential integers starting
from O to m. This way, if there is no matching prefix for pi,..., p;, the automaton
goes back to the initial state gg and Y (j) = 0. P concludes the construction by setting
F = qp,. If state g,, is ever reached then there is a match. In order to ensure that P; and
P> jointly evaluate the automaton on P>’s text such that no information is revealed about
either the text or the automaton (besides knowing if the final state is accepting or not),
we use protocol mayro from Sect. 4. This, however, is insufficient since P; must prove
first that it constructed the automaton correctly according to the KMP specifications.
In Sect. 5.1, we present a zero-knowledge proof of knowledge for proving that the
automaton Pj constructs is a correct KMP automaton. In Sect. 5.2, we give our complete
construction for text search in the presence of malicious adversaries.
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Fail I'(qi, J)

State Prefix Y(q;) State j=20 j=1
q1 q1 q1 q2
q2 1 q1 I'(q1,0) q3
q3 11 1 q2 q4 I'(g2,1)
q4 110 q1 a5 I'(q1,1)
a5 1100 q1 a6 I'(q1,1)
a6 11000 q1 I'(q1,0) qr
q7 110001 1 q2 '(q2,0) qs
qs 1100011 11 qs q9 I'(qs, 1)
q9 11000110 110 qa q10 I'(q4,1)
q10 110001100 1100 qs I'(gs,0) q11
q11 1100011001 1 q2 F(qg, O) I'(g2,1)

Fig. 3. A high-level diagram of wayTO -

5.1. A Zero-Knowledge Proof of Knowledge for a Valid KMP Automaton

In this section, we present an efficient zero-knowledge proof of knowledge for the relation
RvaLmauvto defined by:
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(=, 1) Vi, jci,j=Ep(Qij:rij)and
(({Q,-,j, rl-,j}l. j) s ({Ci»f}i Ix pk)) — {Qi,;}i,j isavalid KMP automaton

(—,0) otherwise

where i € {0, 1}, j € {1,...,]Q|}, Q] is the number of states in Q, and a valid KMP
automaton is as specified above. This proof is needed in protocol mpy from Sect. 5.2
to ensure the validity of the encrypted automaton that P; sends. We remark that it is
unnecessary for this proof to be a proof of knowledge, as the knowledge extraction of
the automaton can be performed within protocol mayro. Nevertheless, for the sake of
modularity, we consider this property here as well. Our proof uses a zero-knowledge
proof for the following language,

Lv = {(G.g.q.h hi.hy) |3 (m #0.r)sta=g", p=hg"}.

An efficient constant round proof my, with constant number of exponentiations, can be
found in [21].

Our proof shows that an automaton I" corresponds to a well-defined string p =
D1, -, P|o|—1 and is computed correctly according to table Y defined above. Recall
that we assume w.l.0.g., that the transition table A is complete and that it contains two
columns corresponding to zero or one (i.e., whether the next bit from the input string
is zero or one). Then, for every j € {0, 1, ..., m}, there exists an entry in A with two
ciphertexts co,j, c1, j, so that there exists an index i in which c¢; ; denotes the encryption
of state ¢g; and ¢; ; denotes an encryption of g ;). In order to ensure that the proof
does not leak any information about p, these checks must be performed obliviously,
independent of the prefix. We therefore conduct a brute force search on the matched
prefix against every suffix in which ultimately, the verifier accepts only if the conditions
for RyaLpauto are met. For simplicity, our proof is not optimized; we give more details
below how to improve it. We now continue with the formal description of our proof
TyaLibauto and its proof of security.

Protocol 4. (7 yaLpauTo—A Zero-Knowledge Proof of Knowledge for Ryaiipavto)-

o Joint statement A public-key pk and a collection {c; j}; ; of | Q| sets, each set is
of size 2 which corresponds to a row in the transition matrix A.

o Auxiliary input for the prover A collection {Q; ;, ri j}i,j of |Q| sets, each set is
of size 2, such that c; j = Epi(Q; j;ri,j) foralli € {0,1} and j € {1, ..., |Ql}.

e Convention We assume that the parties jointly agree on a group G of prime order
q and a generator g for the threshold El Gamal encryption scheme. Both parties
check every received ciphertext for validity, and abort if an invalid ciphertext is
received.
Finally, unless written differently, i € {0, 1} and j € {1,...,|Q0]|}.

e The protocol

1. Forevery ci,j = (ai,j, Pi,j), the prover P proves the knowledge of log, a;, j using
TTpL.
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2. For every row A; = {co,j, c1, j}.liQ=|4 in the transition matrix P proves the follow-

ing:

8

(a) P randomly permutes each entry in A It first randomly permutes co,j and

c1,j and employs Tpery t0 prove its computations.

(b) P proves a forwards path It proves that there exists b € {0, 1} in which

(c

)

(d)

(e

~

cp,j = Epi(j + 1) by proving that (pk, cp,j/ Epi(j + 1)) is a Diffie-Hellman
tuple.

P proves abackwards path P proves the correctness of c1—p, j intwo steps: (1)
It first proves that c1—p, j is a valid entry in Y. (2) It then proves the maximality
of this prefix.

In order to prove this, we define a string p = pi, ..., p|g|-1, induced by the
description of the automaton, as follows. Define (the encryption) p; by the
(encrypted) column in which cp,_j belongs to. For example, we let the prover
permute the encryptions of the columns names zero/one, using the same per-
mutation, and then take the column’s name associated with cp j to be the
encryption of pj. Then, to complete the check, P proves that c1—p,j encrypts
r, so that p( corresponds to a suffix of p(j—1). (Recall that py denotes the
rth length prefix p1, ..., prof p1,..., pj—1.)

V sends a challenge The verifier V chooses j random elements uy, ..., uj_

j—1
<~ ZZ and sends {uw}(jx=1 to P.

Public computation Next, the parties compute ciphertexts vy = Epi (Zz/zl Uk
cpr) foralla’ € {1,...,j—1}.

Proving a valid entry in Y P proves that there exists 1 < k < j —2 for which
vy is a ciphertext that encrypts zero and is defined as follows:

v = (vjk—1,j=1/vi) - (Cj,l—b/gk) :

The parties essentially compute the linear combination of all potential prefixes
of p1,..., pj—1 and compare them against a suffix of this string. The mul-
tiplication with (¢ 1-p/ gX) is to ensure that such a prefix is consistent with
whatever is encrypted in the transition table.

For k = 0, the parties set v, = c 1_p, Since if there is no matching prefix for
any suffix of p(j—1y, this means that ¢ 1—p denotes an encryption of the initial
state qo which equals zero.

(g) Proving Dy s (c1—p, ;) is maximal

Next P proves that there does not exist an index D py s (cj1—p) < T < j—2
in which

vji—r—1,j—1/vi,r =0

yet cj,l_b/gr # 0, as this would imply that there exists a larger prefix p(r)
that matches a suffix of p(j—1y yet, Dpi sik(cj1-p) # I

8 We remind the reader that in iteration J the algorithm checks the prefixes with respect to substring
Pls--sPj—1-
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Foreveryl <k < j—3and2 < k' < j—2 the parties compute the ciphertext
vy - (Vj_pr—1,j—1/Vv1x) for which P then proves that ey i is not an encryption
of zero using 1.

3. Output If all the proofs are successfully completed, V outputs 1. Otherwise it
outputs 0.

Theorem 5.1. Assume that the DDH assumption holds relative to G. Then, 7tyaipauto
is a computational zero-knowledge proof of knowledge for RyaLipauto With perfect com-
pleteness.

Proof. We first show perfect completeness. This is derived from the fact that we conduct
a brute force search for the matched prefix of every suffix.

Zero Knowledge Let V* be an arbitrary probabilistic polynomial-time strategy for
V. Then, a simulator SZ Myapauto for this proof can be constructed using the sim-
ulators SZMpy, ST Mpery, ST Mpy and ST My, from the corresponding proofs of
7oL, TpErM» Tpn and 7wz, That is, ST Myamauro invokes V* and plays the role of the
honest prover, except that in every zero-knowledge invocation it invokes the appropriate
simulator. The executions are computationally indistinguishable via standard reductions
to the security of the zero-knowledge proofs.

Knowledge Extraction  'We show the existence of a knowledge extractor K. Let P t.p
be an arbitrary prover machine where x = ({¢; ;}; j, pk), ¢ is an auxiliary input and
p is P*’s random tape. Basically, the extractor K extracts P*’s input from the zero-
knowledge proof mp. at the beginning of the protocol. In particular, for all i, j, P*
proves the knowledge of the randomness 7; ; used for the computation of the ciphertext
¢;,j. This, in turn, enables K to recover the plaintext Q; ; as well. It then continues
playing the role of the honest verifier and aborts the execution if the honest verifier does.
The fact that we perform a brute force search, combined with the fact that the randomness
{uq}o incorporated by the verifier, precludes the event in which equality does not hold
yet the sum of the encryptions amount to zero. (]

Efficiency Note first that the round complexity of 7yarpauto 1S constant, as the zero-
knowledge proofs can be implemented in constant rounds and run in parallel for all ;.
As for the number of asymmetric computations, we note that an optimized construction
achieves computation cost of O (m?) operations. This is due to the fact that there are m
distinct prefixes of p for which their encryptions can be computed once for the entire
execution. Moreover, for every j, there are j —2 prefixes to check against py, ..., pj_1.
Therefore, the overall number of exponentiations is O (m?).

5.2. Text Search Protocol with Simulation-Based Security

In this section, we present our complete construction for securely evaluating the pat-
tern matching functionality. Recall that our construction is presented in the malicious
setting with full simulatability and is modular in the sub-protocols myro (cf. Sect. 4)
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and myapavto (cf. Sect. 5.1). Having described the sub-protocols incorporated in the
our scheme, we are now ready to describe it formally. Our protocol is comprised out of
two main phases: (i) the parties first engage in an execution of myapauro for which
Py proves that it sent a valid KMP automaton. (ii) The parties run protocol mayro
which evaluates automaton I” on P,’s private input. In order to reduce the round com-
plexity of our protocol (which depends on the input length to the automaton), long
texts are partitioned into 2m pieces and are handled separately so that the KMP algo-
rithm is employed on each block independently (thus all these executions can be exe-
cuted in parallel). That is, let T = ¢, ..., t; then the text is partitioned into blocks
t1y -y tom), Gm+1s - -+ B3m), (B2m, - - -, tam) and so on, such that every two consecu-
tive blocks overlap in m bits. This ensures that all the matches will be found. Therefore,
the total number of blocks is [£/m]. Details follow,

Protocol 5. mpy—Secure Text Search

e Inputs The input of P is a binary pattern p = p1, ..., pm, and the input of P is
a binary string T =11, ..., 1.

o Auxiliary Inputs The security parameter 1" and the input sizes £ and m.

e The Protocol

1. Preparing a KMP automaton P; constructs an automaton I’ = (Q, X, A,
qo, F) according to the KMP specifications based on its input p and sends P>
encryptions of the transition matrix A and the accepting states, denoted by E 5
and E, respectively (recall that by our conventions go = 0, ¥ = {0, 1}, O =
[0,...,m], and F = {qgn}).

2. Validating correctness of the automaton The parties engage in an execution
of the zero-knowledge proof mwyaLipauto for which Py proves that I" was con-
structed correctly. That is, P proves that the set E o corresponds to a valid
KMP automaton for a well-defined input string of length m. If P>’s output from
this execution is 1 the parties continue to the next step. Otherwise P> aborts.

3. Partitioning the text P, sends encryptions of the bits of T to Py and the parties
partition the encrypted bits into £/m blocks of length 2m in which every two
consecutive blocks overlap in m bits.

4. Evaluating the automaton on the text The parties engage in £ /m parallel exe-
cutions of Tauro on these blocks.® For every 1 <i < [£/m], let {Ou'(putj'}'}irl1

denotes the set of outputs returned by Py upon completing the ith execution of

T auto- Then Py returns {j | Output} = “‘accept ”}iri/lrf’}’:'qlﬂ

Theorem 5.2. Assume that the DDH assumption holds relative to G. Then mpy; securely

computes Fpy in the presence of malicious adversaries.

The security proof for mpy follows immediately from the proofs described for mwayTo
(cf. Sect. 4.1) and s pauto (cf. Sect. 5.1).

9 The parties run a slightly modified version of wauTo Where they carry out Step 5 for verifying acceptance
m 4+ 1 times for all m length substrings within the block. This is due to the fact that each block potentially
contains m + 1 matches.
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Efficiency werefer the reader to the analysis presented in the introduction and in Sect. 4
since the costs of protocol 7y are dominated by the costs of 7y pauto- The overall costs
are amount to O (m - £ + m?) which typically amounts to O (m - £) since in most cases
m <KX,
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