
DOI: 10.1007/s00145-015-9218-0
J Cryptol (2017) 30:152–190

Bounded Tamper Resilience: How to Go Beyond the
Algebraic Barrier

Ivan Damgård · Pratyay Mukherjee
Department of Computer Science, Aarhus University, Aarhus, Denmark

Sebastian Faust
Horst Görtz Institute, Ruhr-University Bochum, Bochum, Germany

Daniele Venturi
Department of Computer Science, Sapienza University of Rome, Rome, Italy

venturi@di.uniroma1.it

Communicated by Hugo Krawczyk.

Received 18 April 2014
Online publication 30 September 2015

Abstract. Related key attacks (RKAs) are powerful cryptanalytic attacks where an
adversary can change the secret key and observe the effect of such changes at the output.
The state of the art in RKA security protects against an a-priori unbounded number of
certain algebraic induced key relations, e.g., affine functions or polynomials of bounded
degree. In this work, we show that it is possible to go beyond the algebraic barrier and
achieve security against arbitrary key relations, by restricting the number of tampering
queries the adversary is allowed to ask for. The latter restriction is necessary in case
of arbitrary key relations, as otherwise a generic attack of Gennaro et al. (TCC 2004)
shows how to recover the key of almost any cryptographic primitive. We describe our
contributions in more detail below. (1) We show that standard ID and signature schemes
constructed from a large class of �-protocols (including the Okamoto scheme, for
instance) are secure even if the adversary can arbitrarily tamper with the prover’s state
a bounded number of times and obtain some bounded amount of leakage. Interestingly,
for the Okamoto scheme we can allow also independent tampering with the public
parameters. (2)We show a bounded tamper and leakage resilient CCA-secure public key
cryptosystem based on theDDH assumption.We first define aweaker CCA-like security
notion that we can instantiate based on DDH, and then we give a general compiler that
yields CCA security with tamper and leakage resilience. This requires a public tamper-
proof common reference string. (3) Finally, we explain how to boost bounded tampering
and leakage resilience [as in (1) and (2) above] to continuous tampering and leakage
resilience, in the so-called floppy model where each user has a personal hardware token
(containing leak- and tamper-free information) which can be used to refresh the secret
key. We believe that bounded tampering is a meaningful and interesting alternative to
avoid known impossibility results and can provide important insights into the security
of existing standard cryptographic schemes.

© International Association for Cryptologic Research 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-015-9218-0&domain=pdf

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 153

Keywords. Related key security, Bounded tamper resilience, Public key encryption,
Identification schemes.

1. Introduction

Related key attacks (RKAs) are powerful cryptanalytic attacks against a cryptographic
implementation that allow an adversary to change the key and subsequently observe the
effect of such modification on the output. In practice, such attacks can be carried out,
e.g., by heating up the device or altering the internal power supply or clock [8,15] and
may have severe consequences for the security of a cryptographic implementation. To
illustrate such key tampering, consider a digital signature schemeSignwith public/secret
key pair (pk, sk). The tampering adversary obtains pk and can replace sk with T (sk)
where T is some arbitrary tampering function. Then, the adversary gets access to an
oracle Sign(T (sk), ·), i.e., to a signing oracle running with the tampered key T (sk).
As usual the adversary wins the game by outputting a valid forgery with respect to the
original public key pk. Notice that T may be the identity function, in which case we get
the standard security notion of digital signature schemes.
Bellare and Kohno [12] pioneered the formal security analysis of cryptographic

schemes in the presence of related key attacks. In their setting an adversary tampers
continuously with the key by applying functions T chosen from a set of admissible
tampering functions T . In the signature example from above, each signing query for
message m would be accompanied with a tampering function T ∈ T and the adversary
obtains Sign(T (sk),m). Clearly, a result in the RKA setting is stronger if the class of
admissible functions T is larger, and hence several recent works have focussed on further
broadening T . The current state of the art (see discussion in Sect. 1.2) considers certain
algebraic relations of the key, e.g., T is the set of all affine functions or all polynomials
of bounded degree. A natural question that arises from these works is if we can fur-
ther broaden the class of tampering functions—possibly showing security for arbitrary
relations. In this work, we study this question and show that under certain assumptions
security against arbitrary key relations can be achieved.

Is tamper resilience against arbitrary attacks possible? Unfortunately, the answer to
the above question in its most general form is negative. As shown by Gennaro et al. [46],
it is impossible to protect any cryptographic scheme against arbitrary key relations. In
particular, there is an attack that allows to recover the secret key of most stateless crypto-
graphic primitives after only a few number of tampering queries.1 To prevent this attack
the authors propose to use a self-destruct mechanism. That is, before each execution of
the cryptographic scheme the key is checked for its validity. In case the key was changed
the device self-destructs. In practice, such self-destruct can for instance be implemented
by overwriting the secret keywith the all-zero string, or by switching to a special mode in
which the device outputs⊥.2 In this work, we consider an alternative setting to avoid the
impossibility results of [46] and assume that an adversary can only carry out a bounded

1 The impossibility result of [46] leaves certain loopholes, which, however, seem very hard to exploit.
2 We notice that the self-destruct has to be permanent as otherwise the attack of [46] may still apply.

154 I. Damgård et al.

number of (say t) tampering queries. To explain our setting consider again the example
of a digital signature scheme. In our model, we give the adversary access to t tampered
signing oracles Sign(Ti (sk), ·), where Ti can be an arbitrary adaptively chosen tamper-
ing function. Notice that of course each of these oracles can be queried a polynomial
number of times, while t is typically linear in the security parameter.

Is security against bounded tampering useful? Besides from being a natural and
non-trivial security notion, we believe that our adversarial model of arbitrary, bounded
tampering is useful for a number of reasons:

1. It is a natural alternative to continuous restricted tampering: our security notion of
bounded, arbitrary tampering is orthogonal to the traditional setting of RKA security
where the adversary can tamper continuously but is restricted to certain classes of
attacks. Most previous work in the RKA setting considers algebraic key relations that
are tied to the scheme’s algebra and may not reflect attacks in practice. For instance,
it is not clear that heating up the device or shooting with a laser on the memory
can be described by, e.g., an affine function—a class that is usually considered in the
literature.We also notice that physical tampering may completely destroy the device,
or may be detected by hardware countermeasures, and hence our model of bounded
but arbitrary tampering may be sufficient in such settings.

2. It allows to analyze the security of cryptoschemes already used “in the wild”: as out-
lined above a common countermeasure to protect against arbitrary tampering is to
implement a key validity check and self-destruct (or output a special failure symbol)
in case such check fails. Unfortunately, most cryptographic implementations do not
comewith such a built-in procedure to check the validity of the key; furthermore, such
a self-destruct feature might not always be desirable, for instance in settings where
faults are not adversarial, but due to some characteristic of the environment where the
device is used (e.g., the temperature). Our notion of bounded tamper resilience allows
to make formal security statements about algorithms running directly in implemen-
tations without self-destruct, so that neither the construction, nor the implementation
needs to be specially engineered.

3. It can be a useful as a building-block: even if the restriction of bounded tamper
resilience may be too strong in some settings, it can be useful to achieve results
in the stronger continuous tampering setting (we provide some first preliminary
results on this in Sect. 5). Notice that this is similar to the setting of leakage resilient
cryptography which also started mainly with “bounded leakage” that later turned out
to be very useful to get results in the continuous leakage setting.

We believe that due to the above points the bounded tampering model is an interesting
alternative to avoid known impossibility results for arbitrary tampering attacks.

1.1. Our Contribution

We initiate a general study of schemes resilient to both bounded tampering and leakage
attacks. We call this model the bounded leakage and tampering model (BLT) model.
While our general techniques use ideas from the leakage realm, we emphasize that
bounded leakage resilience does not imply bounded tamper resilience. In fact, it is

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 155

easy to find contrived schemes that are leakage resilient but completely break for a
single tampering query. At a more technical level, we observe that a trivial strategy
using leakage to simulate, e.g., faulty signatures, has to fail as the adversary can get
any polynomial number of faulty signatures—which clearly cannot be simulated with
bounded leakage only. Nevertheless, as we show in this work, we are able to identify
certain classes of cryptoschemes for which a small amount of leakage is sufficient to
simulate faulty outputs. We discuss this in more detail below.
Our concrete schemes are proven secure under standard assumptions (DL, factoring

or DDH) and are efficient and simple. Moreover, we show that our schemes can easily
be extended to the continual setting by putting an additional simple assumption on the
hardware.We elaborate more on our main contributions in the following paragraphs (see
also Table 1 for an overview of our results). Importantly, all our results allow arbitrary
key tampering and do not need any kind of tamper detection mechanism.

Identification schemes. It is well known that the Generalized Okamoto identification
scheme [58] provides security against bounded leakage from the secret key [7,53]. In
Sect. 3, we show that additionally it provides strong security against tampering attacks.
While in general the tampered view may contain a polynomial number of faulty tran-
scripts that may potentially reveal a large amount of information about the secret key,
we can show that fortunately this is not the case for the Generalized Okamaoto scheme.
More concretely, our analysis shows that by leaking the public keys corresponding to the
modified secret keys allows, for each tampering query, to simulate any number of faulty
transcripts (under the modified keys) by running the honest-verifier zero-knowledge
simulator. Since the public key is significantly shorter than the secret key, BLT security
of the Generalized Okamoto scheme is implied by its leakage resilience.
Our results on the Okamoto identification can be further generalized to a large class

of identification schemes (and signature schemes based on the Fiat-Shamir heuristic),
namely to all �-protocols where the secret key is significantly longer than the public
key. In particular, we can instantiate our result with the generalized Guillou-Quisquater
ID scheme [49], and its variant based on factoring [44], yielding tamper resilient iden-
tification based on factoring. We give more details in Sect. 3.
Interestingly, for Okamoto identification security still holds in a stronger model where

the adversary is allowed to tamper not only with the secret key of the prover, but also

Table 1. An overview of our results for bounded leakage and tamper resilience.

Tampering model ID schemes IND-CCA PKE
�-Protocols Okamoto BHHO

Secret key ✓ ✓ ✓
Public parameters n.a. ✓ n.a.
Continuous tampering iFloppy ✓ ✓ ✓
Key length log |X | � log p � log p
Tampering queries �log |X |/ log |Y|� − 2 � − 2 � − 3

All parameters |X |, |Y| �, p and n are a function of the security parameter k. For the case of �-protocol, the
set X is the set of all possible witnesses and the set Y is the set of all possible statements for the language;
we actually achieve a slightly worse bound depending on the conditional average min-entropy of the witness
given the statement (cf. Sect. 3)

156 I. Damgård et al.

with the description of the public parameters (i.e., the generator g of a groupG of prime
order p). The only restrictions are (i) tamperingwith the public parameters is independent
from tampering with the secret key and (ii) the tampering with public parameters must
map to its domain. We also show that the latter restrictions are necessary, by presenting
explicit attacks when the adversary can tamper jointly with the secret key and the public
parameters or he can tamper the public parameters to some particular range.

Public key encryption.We show how to construct IND-CCA secure public key encryp-
tion (PKE) in the BLTmodel. To this end, we first introduce a weaker CCA-like security
notion, where an adversary is given access to a restricted (faulty) decryption oracle.
Instead of decrypting adversarial chosen ciphertexts such an oracle accepts inputs (m, r),
encrypts the message m using randomness r under the original public key, and returns
the decryption using the faulty secret key. This notion already provides a basic level
of tamper resilience for public key encryption schemes. Consider for instance a setting
where the adversary can tamper with the decryption key, but has no control over the
ciphertexts that are sent to the decryption oracle, e.g., the ciphertexts are sent over a
secure authenticated channel.
Our notion allows the adversary to tamper adaptively with the secret key; intuitively

this allows him to learn faulty decryptions of ciphertexts for which he already knows
the corresponding plaintext (under the original public key) and the randomness. We
show how to instantiate our basic tamper security notion under DDH, by proving that
the BHHO cryptosystem [16] already satisfies it. The proof uses similar ideas as in
the proof of the Okamoto identification scheme. In particular our analysis shows that
by leaking a single group element per tampering query, one can answer any number
of (restricted) decryption queries; hence restricted IND-CCA BLT security of BHHO
follows from its leakage resilience (which was proven in [57]).
We then showhow to transform the aboveweakerCCA-like notion to full-fledgedCCA

security in the BLT model. To this end, we follow the classical paradigm to transform
IND-CPA security into IND-CCA security by adding an argument of “plaintext knowl-
edge” π to the ciphertext. Our transformation requires a public tamper-proof common
reference string similar to earlier work [52]. Intuitively, this works because the argument
π enforces the adversary to submit to the faulty decryption oracle only ciphertexts for
which he knows the corresponding plaintext (and the randomness used to encrypt it). The
pairs (m, r) can then be extracted from the argument π , allowing to simulate arbitrary
decryption queries with only access to the restricted decryption oracle.

Updating the key in the iFloppy model.As mentioned earlier, if the key is not updated
BLT security is the best, we can hope for when we consider arbitrary tampering. To go
beyond the bound of |sk| tampering queries, we may regularly update the secret key
with fresh randomness, which renders information that the adversary has learned about
earlier keys useless. The effectiveness of key updates in the context of tampering attacks
has first been used in the important work of Kalai et al. [52]. We follow this idea but
add an additional hardware assumption that allows for much simpler and more efficient
key updates. More concretely, we propose the iFloppy model which is a variant of the
floppy model proposed by Alwen et al. [7] and recently studied in depth by Agrawal
et al. [6]. In the floppy model, a user of a cryptodevice possesses a so-called floppy—a

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 157

secure hardware token—that stores an update key.3 The floppy is leakage and tamper
proof and the update key that it holds is solely used to refresh the actual secret key
kept on the cryptodevice. One may think of the floppy as a particularly secure device
that the user keeps at home, while the cryptodevice, e.g., a smart-card, runs the actual
cryptographic task and is used out in the wild prone to leakage and tampering attacks.
We consider a variant called the iFloppy model (here “i” stands for individual). While in
the floppy model of [6,7] all users can potentially possess an identical hardware token,
in the iFloppy model we require that each user has an individual floppy storing some
secret key related data. We note that from a practical point of view the iFloppy model
is incomparable to the original floppy model. It may be more cumbersome to produce
personalized hardware tokens, but on the other hand, in practice one would not want to
distribute hardware tokens that all contain the same global update key as this constitutes
a single point of failure.
We show in the iFloppy model a simple compiler that “boosts” any ID scheme with

BLT security into a scheme with continuous leakage and tamper resilience (CLT secu-
rity). Similarly, we showhow to extend IND-CCABLT security to theCLT setting for the
BHHO cryptosystem (borrowing ideas from [6]). We emphasize that while the iFloppy
model puts additional requirements on the way users must behave in order to guarantee
security, it greatly simplifies cryptographic schemes and allows us to base security on
standard assumptions. Our results in the iFloppymodel are described in Sect. 5 (Sect. 5.1
for ID schemes, and Sect. 5.2 for PKE schemes).

Tamperingwith the computation via the BRM. Finally, wemake a simple observation
showing that if we instantiate the above ID compiler with an ID scheme that is secure in
the bounded retrieval model [7,25,34] we can provide security in the iFloppymodel even
when the adversary can replace the original cryptoscheme with an arbitrary adversarial
chosen functionality, i.e., we can allow arbitrary tampering with the computation (see
Sect. 6). While easy to prove, we believe this is nevertheless noteworthy: it seems to us
that results in the BRM naturally provide some form of tamper resilience and leave it as
an open question for future research to explore this direction further.

1.2. Related Work

Related key security. We already discussed the relation between BLT security and the
traditional notion of RKA security above. Below we give further details on some impor-
tant results in the RKA area. Bellare and Kohno [12] initiated the theoretical study of
related-key attacks. Their result mainly focused on symmetric key primitives (e.g. PRP,
PRF). They proposed various block-cipher-based constructions which are RKA-secure
against certain restricted classes of tampering functions. Their constructions were fur-
ther improved by [10,56]. Following these works, other cryptographic primitives were
constructed that are provably secure against certain classes of related key attacks. Most
of these works consider rather restricted tampering functions that, e.g., can be described
by a linear or affine function [9,10,12,14,56,59,62]. A few important exceptions are
described below.

3 Notice that “floppy” is just terminology and we use it for consistency with earlier works.

158 I. Damgård et al.

In [13], the authors show how to go beyond the linear barrier by extending the class
of allowed tampering functions to the class of polynomials of bounded degree for
a number of public-key primitives. Also, the work of Goyal, O’Neill and Rao [47]
considers polynomial relations that are induced to the inputs of a hash function.
Finally Bellare, Cash and Miller [11] develop a framework to transfer RKA security
from a pseudorandom function to other primitives (including many public key primi-
tives).

Tamper resilient encodings. A generic method for tamper protection has been put
forward by Gennaro et al. [46]. The authors propose a general “compiler” that trans-
forms any cryptographic device CS with secret state st, e.g., a block cipher, into a
“transformed” cryptoscheme CS′ running with state st′ that is resilient to arbitrary
tampering with st′. In their construction the original state is signed and the signature
is checked before each usage. While the above works for any tampering function, it
is limited to settings where CS does not change its state as it would need access to
the secret signing key to authenticate the new state. This drawback is resolved by the
concept of non-malleable codes pioneered by Dziembowski, Pietrzak and Wichs [37].
The original construction of [37] considers an adversary that can tamper independently
with bits, a model further explored in [22,23]. This has been extended to small size
blocks in [21], permutations [4,5], and recently to so-called split-state tampering [1–
3,18,20,35,39,55] and global tampering [19,41,51]. Recently, non-malleable codes
have also been used to protect a generic random access machine against tampering
attacks [28,40].
While the above schemes provide surprisingly strong security guarantees, they all

require certain assumptions on the hardware (e.g., the memory has to be split into two
parts that cannot be tampered with jointly), and require significant changes to the imple-
mentation for decoding, tamper detection and self-destruct.

Continuous tamper resilience via key updates. Kalai et al. [52] provide the first fea-
sibility results in the so-called continuous leakage and tampering model (CLT). Their
constructions achieve strong security requirements where the adversary can arbitrarily
tamper continuously with the state. This is achieved by updating the secret key after
each usage. While the tampering adversary considered in [52] is clearly stronger (con-
tinuous as opposed to bounded tampering), the proposed schemes are non-standard,
rather inefficient, and rely on non-standard assumptions. Moreover, the approach of key
updates requires a stateful device and large amounts of randomness which is costly in
practice. The main focus of this work are simple standard cryptosystems that neither
require randomness for key updates nor need to keep state.

Tamperingwith computation. In all the above works (including ours) it is assumed that
the circuitry that computes the cryptographic algorithm using the potentially tampered
key runs correctly and is not subject to tampering attacks. An important line of works
analyze to what extent we can guarantee security when the complete circuitry is prone
to tampering attacks [26,27,42,45,50,54]. These works typically consider a restricted
class of tampering attacks (e.g., individual bit tampering) and assume that large parts of
the circuit (and memory) remain un-tampered.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 159

Subsequent work. A preliminary version of this paper appeared as [29]. Subsequent
work [30] showshow to transforman arbitrary cryptoscheme into one satisfying a slightly
weaker form of BLT security; the number of tampering queries tolerated, however,
is significantly smaller than the one achieved by the constructions analyzed in this
paper. The transformation in [30] can be understood as applying a “non-malleable key
derivation function” [41] to the state, a paradigm that was later extended in [61].

2. Preliminaries

2.1. Basic Notation

We review the basic terminology used throughout the paper. For n ∈ N, we write
[n] := {1, . . . , n}. Given a set S, we write s ← S to denote that element s is sampled
uniformly from S. If A is an algorithm, y ← A(x) denotes an execution of A with
input x and output y; if A is randomized, then y is a random variable. Vectors are
denoted in bold. Given a vector x = (x1, . . . , x�) and some integer a, we write ax for
the vector (ax1, . . . , ax�). The inner product of x = (x1, . . . , x�) and y = (y1, . . . , y�)
is 〈x, y〉 = ∑�

i=1 xi · yi .
We denote with k the security parameter. A function δ(k) is called negligible in k

(or simply negligible) if it vanishes faster than the inverse of any polynomial in k. A
machine A is called probabilistic polynomial time (PPT) if for any input x ∈ {0, 1}∗ the
computation of A(x) terminates in at most poly(|x |) steps and A is probabilistic (i.e., it
uses randomness as part of its logic). Random variables are usually denoted by capital
letters. We sometimes abuse notation and denote a distribution and the corresponding
random variable with the same capital letter, say X .

Languages and relations.A decision problem related to a languageL ⊆ {0, 1}∗ requires
to determine if a given string y is in L or not. We can associate with any NP-language
L a polynomial-time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗ defining L itself, i.e.
L = {y : ∃x s.t. (y, x) ∈ R} for |x | ≤ poly(|y|). The string x is called a witness for
membership of y ∈ L.

Information theory. The min-entropy of a random variable X over a set X is defined
as H∞(X) := − logmaxx Pr [X = x] and measures how X can be predicted by the
best (unbounded) predictor. The conditional average min-entropy [33] of X given a ran-
dom variable Z (over a set Z) possibly dependent on X , is defined as H̃∞(X |Z) :=
− logEz←Z [2−H∞(X |Z=z)]. Following [7], we sometimes rephrase the notion of con-
ditional min-entropy in terms of predictors A that are given some information Z (pre-
sumably correlated with X), so H̃∞(X |Z) = − log(maxA Pr

[
A(Z) = X

]
). The above

notion of conditional min-entropy can be generalized to the case of interactive predictors
A, which participate in some randomized experiment E . An experiment is modeled as
interaction between A and a challenger oracle E(·) which can be randomized, stateful
and interactive.

Definition 2.1. ([7]) The conditional min-entropy of a random variable X , conditioned
on the experiment E is H̃∞(X |E) = − log(maxA Pr

[
AE(·)() = X

]
). In the special case

160 I. Damgård et al.

that E is a non-interactive experiment which simply outputs a random variable Z , then
H̃∞(X |Z) can be written to denote H̃∞(X |E) abusing the notation.

We will rely on the following basic properties (see [33, Lemma 2.2]).

Lemma 2.1. For all random variables X, Z and � over sets X , Z and {0, 1}λ such
that H̃∞(X |Z) ≥ α, we have

H̃∞(X |Z ,�) ≥ H̃∞(X |Z) − λ ≥ α − λ.

2.2. Hard Relations

LetR be a relation for someNP-languageL. We assume the existence of a probabilistic
polynomial time algorithmSetup, called the setup algorithm, which on input 1k outputs
the description of public parameters pp for the relationR. Furthermore, we say that the
representation problem is hard forR if for all PPT adversariesA there exists a negligible
function δ : N → [0, 1] such that

Pr
[
x	 �= x; (y, x), (y, x) ∈ R : (y, x, x) ← A(pp); pp ← Setup(1k)

]
≤ δ(k).

Representation problem based on discrete log. Let Setup be a group generation
algorithm that upon input 1k outputs (G, g, p), where G is a group of prime order p
with generator g. The Discrete Log assumption states that for all PPT adversaries A,
there exists a negligible function δ : N → [0, 1] such that

Pr
[
y = gx : x ← A(G, g, p, y), y ← G, (G, g, p) ← Setup(1k)

]
≤ δ(k).

Let � ∈ N be a function of the security parameter. Given a vector α ∈ Z
�
p, define g

α =
(g1, . . . , g�) and let x = (x1, . . . , x�) ← Z

�
p. Define y = ∏�

i=1 g
xi
i ; the vector x is called

a representation of y. We let RDL be the relation corresponding to the representation
problem, i.e. (y, x) ∈ RDL if and only if x is a representation of y with respect to
(G, g, gα).We say that the �-representationproblem is hard inG if for all PPTadversaries
A there exists a negligible function δ : N → [0, 1] such that

P
[
x	 �= x; (y, x), (y, x) ∈ RDL :

(y, x, x) ← A(G, g, gα, p); (G, g, p) ← Setup(1k);α ← Z
�
p] ≤ δ(k).

The �-representation problem is equivalent to the Discrete Log problem [7, Lemma4.1].

Representation problem based on RSA. Let Setup be a group generation algorithm
that upon input 1k outputs (N , e, d), where N = p · q such that p and q are two primes
and also ed ≡ 1 mod ((p − 1)(q − 1)). The RSA assumption states that for all PPT
adversaries A there exists a negligible function δ : N → [0, 1] such that

Pr
[
y = xe mod N : x ← A(N , e, y), y ← Z

∗
N , (N , e, d) ← Setup(1k)

]
≤ δ(k).

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 161

Let � ∈ N be a function of the security parameter. Given a vector α ∈ Z
�
e, define

gα = (g1, . . . , g�) and let x = (x1, . . . , x�) ← Z
�
e and ρ ← Z

∗
N . Define y = ∏�

i=1 g
xi
i ·

ρe mod N ; the pair (x, ρ) is a representation of y with respect to (N , e, g, gα). We let
RRSA be the relation corresponding to the representation problem, i.e. (y, (x, ρ)) ∈
RRSA if and only if (x, ρ) is a representation of y with respect to (N , e, g, gα). We say
that the �-representation problem is hard in ZN if for all PPT adversaries A there exists
a negligible function δ : N → [0, 1] such that

P
[
(x	, ρ) �= (x, ρ); (y, (x, ρ)), (y, (x	, ρ)) ∈ RRSA :

(y, (x, ρ), (x	, ρ)) ← A(N , e, g, gα); (N , e, d) ← Setup(1k);
g ← Z

∗
N ;α ← Z

�
e

] ≤ δ(k).

The �-representation problem in ZN is equivalent to the RSA problem (see [44,58]).

Decisional Diffie Hellman. Let Setup be a group generation algorithm that upon input
1k outputs (G, g, p), where G is a group of prime order p with generator g. The Deci-
sional Diffie Hellman (DDH) assumption states that for all PPT adversaries A there
exists a negligible function δ : N → [0, 1] such that

∣
∣
∣Pr

[
A(g, gx , gy, gxy) = 1 : x, y ← Zp, (G, g, p) ← Setup(1k)

]

−Pr
[
A(g, gx , gy, gz) = 1 : x, y, z ← Zp, (G, g, p) ← Setup(1k)

] ∣
∣
∣ ≤ δ(k).

2.3. Signature Schemes

A signature scheme is a triple of algorithms SIG = (KGen,Sign,Vrfy) such that: (1)
KGen takes the security parameter k as input and outputs a key pair (pk, sk); (2) Sign
takes as input amessagem and the secret key sk, and outputs a signature σ ; (3)Vrfy takes
as input a message-signature pair (m, σ) together with the public key pk and outputs a
decision bit (indicating whether (m, σ) is a valid signature with respect to pk).
We require that for all messages m and for all keys (pk, sk) ← KGen(1k), algo-

rithmVrfy(pk,m,Sign(sk,m)) outputs 1 with all but negligible probability. A signature
scheme SIG is existentially unforgeable against chosen message attacks (EUF-CMA),
if for all PPT adversaries A there exists a negligible function δ : N → [0, 1] such that
Pr

[
A wins

] ≤ δ(k) in the following game:

1. The challenger samples (pk, sk) ← KGen(1k) and gives pk to A.
2. The adversary is given oracle access to Sign(sk, ·).
3. Eventually A outputs a forgery (m	, σ) and wins if Vrfy(pk, (m	, σ)) = 1 and

m	 was not asked to the signing oracle before.

2.4. �-Protocols

�-protocols [24] are a special class of interactive proof systems for membership in a
languageL,where a proverP = (P0,P1)wants to convince a verifierV = (V0,V1) (both
modeled as PPT algorithms) that it possesses a witness to the fact that a given element y

162 I. Damgård et al.

is in some languageL. Denote with x the witness corresponding to y, and let pp be public
parameters. The protocol proceeds as follows: (1) The prover computes a ← P0(pp)
and sends it to the verifier; (2) The verifier chooses c ← V0(pp, y), uniformly at random
from some challenge spaceS and sends it to the prover; (3) The prover answers with z ←
P1(pp, (a, c, x)); (4) The verifier outputs a resultV1(pp, y, (a, c, z)) ∈ {accept, reject}.
We call this a public-coin three round interactive proof system. A formal definition of
�-protocols can be found below.

Definition 2.2. (�-protocol) A �-protocol (P,V) for a relation R is a three round
public-coin interactive proof system with the following properties.

Completeness. WheneverP andV follow the protocol on common input y, public
parameters pp and private input x to P such that (y, x) ∈ R, the
verifier V accepts with all but negligible probability.

Special
soundness.

From any pair of accepting conversations on public input y,
namely (a, c, z), (a, c′, z′) such that c �= c′, one can efficiently
compute x such that (y, x) ∈ R.

Perfect Honest
Verifier Zero
Knowledge (HVZK).

There exists a PPT simulator M, which on input y and a ran-
dom c outputs an accepting conversation of the form (a, c, z),
with exactly the same probability distribution as conversations
between the honest P, V on input y.

Note that Definition 2.2 requires perfect HVZK, whereas in general one could ask for a
weaker requirement, namely that the HVZK property holds only computationally.

2.5. True-Simulation Extractability

We recall the notion of true-simulation extractable (tSE) NIZKs [32]. This notion is
similar to the notion of simulation-sound extractable NIZKs [48], with the difference
that the adversary has oracle access to simulated proofs only of true statements (and not
of arbitrary ones).
Let R be an NP relation on pairs (y, x) with corresponding language L = {y :

∃x s.t. (y, x) ∈ R}. A tSE NIZK proof system for R is a triple of algorithm
(Gen,Prove,Verify) such that: (1) Algorithm Gen takes as input 1k and generates
a common reference string ω, a trapdoor tk and an extraction key ek; (2) Algorithm
Proveω takes as input a pair (y, x) and produces an argument π which proves that
(y, x) ∈ R; (3) Algorithm Verifyω takes as input a pair (y, π) and checks the cor-
rectness of the argument π with respect to the public input y. Moreover, the following
properties are satisfied:

Completeness. For all pairs (y, x) ∈ R, if (ω, tk,ek) ← Gen(1k) and π ←
Proveω(y, x) then Verifyω(y, π) = 1.

Composable
non-interactive
zero knowledge.

There exists a PPT simulator S such that, for any PPT adversary
A, there exists a negligible function δ : N → [0, 1] such that
|Pr [A wins

] − 1
2 | ≤ δ(k) in the following game:

1. The challenger samples (ω, tk,ek) ← Gen(1k) and gives ω to
A.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 163

2. A chooses (y, x) ∈ R and gives these to the challenger.
3. The challenger samples π0 ← Proveω(y, x), π1 ← S(y, tk),

b ∈ {0, 1} and gives πb to A.
4. A outputs a bit b′ and wins iff b′ = b.

Strong
true-simulation
extractability.

Define a simulation oracle S′
tk(·, ·) that takes as input a pair (y, x),

checks if (y, x) ∈ R and then it either outputs a simulated argument
π ← S(y, tk) (ignoring x) in case the check succeeds or it outputs
⊥ otherwise. There exists a PPT algorithm Ext(y, π,ek) such that,
for all PPT adversaries A, there exists a negligible function δ : N →
[0, 1] such that Pr [A wins

] ≤ δ(k) in the following game:

1. The challenger samples (ω, tk,ek) ← Gen(1k) and gives ω

to A.
2. AS′

tk(·) can adaptively access the simulation oracle S′
tk(·, ·).

3. Eventually A outputs a pair (y	, π).
4. The challenger runs x	 ← Ext(y	, π	,ek).
5. A wins if: (a) (y	, π) �= (y, π) for all pairs (y, π) returned by

the simulation oracle; (b)Verifyω(y	, π) = 1; (c) (y	, x) �∈ R.

In case A is given only one query to S′
tk(·), we speak of one-time strong tSE.

2.6. A Note on Deterministic Versus Probabilistic Tampering

In this paper we assume the tampering functions chosen by the adversary to be determin-
istic. This is without loss of generality as the adversary can always hard-wire the “best”
randomness into the function. Here, the best randomness refers to some specific choice
of the random coins which would maximize the adversary’s advantage. Moreover, in
this work we model tampering functions by polynomial size circuits with an identical
input/output domain.

3. ID Schemes with BLT Security

In an identification scheme a prover tries to convince a verifier of its identity (corre-
sponding to its public key pk). Formally, an identification scheme is a tuple of algorithms
ID = (Setup,Gen,P,V) defined as follows:

pp ← Setup(1k): Algorithm Setup takes the security parameter as input and out-
puts public parameters pp. The set of all public parameters is
denoted by PP .

(pk, sk) ← Gen(1k): Algorithm Gen outputs the public key and the secret key corre-
sponding to the prover’s identity. The set of all possible secret
keys is denoted by SK.

(P,V): We let (P(pp, sk) � V(pp, pk)) denote the interaction between
prover P (holding sk) and verifier V (holding pk) on common
input pp. Such interaction outputs a result in {accept, reject},
where accept means P’s identity is considered as valid.

164 I. Damgård et al.

Definition 3.1. Let λ = λ(k) and t = t (k) be parameters, and let T be some set
of functions such that T ∈ T has a type T : SK × PP → SK × PP . We say
that ID is bounded λ-leakage and t-tamper secure (in short (λ, t)-BLT secure) against
impersonation attacks with respect to T if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k) and (pk, sk) ← Gen(1k) we have that
(P(pp, sk) � V(pp, pk)) outputs accept.

(ii) Security. For all PPT adversariesA, there exists a negligible function δ : N → [0, 1],
such that Pr

[
A wins

] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk, sk) ← Gen(1k) and gives
(pp, pk) to A.

2. The adversary is given oracle access toP(pp, sk) that outputs polynomiallymany
proof transcripts with respect to secret key sk.

3. The adversary may adaptively ask t tampering queries. During the i th query,
A chooses a function Ti ∈ T and gets oracle access to P(p̃pi , s̃ki), where
(s̃ki , p̃pi) = Ti (sk, pp). The adversary can interact with the oracle P(p̃pi , s̃ki)
a polynomially number of times, where the prover uses the tampered secret key
s̃ki and the public parameter p̃pi .

4. The adversary may adaptively ask leakage queries. In the j th query, A chooses
a function L j : {0, 1}∗ → {0, 1}λ j and receives back the output of the function
applied to sk.

5. The adversary loses access to all other oracles and interacts with an honest
verifier V (holding pk). We say that A wins if (A(pp, pk) � V(pp, pk)) outputs
accept and

∑
j λ j ≤ λ.

Notice that in the above definition the leakage is from the original secret key sk. This
is without loss of generality as our tampering functions are modeled as deterministic
circuits.
In a slightly more general setting, one could allow A to leak on the original secret key

also in the last phase where it has to convince the verifier. In the terminology of [7] this
is reminiscent of so-called anytime leakage attacks. Our results can be generalized to
this setting; however, we stick to Definition 3.1 for simplicity.
The rest of this section is organized as follows. In Sect. 3.1 we prove that a large class

of �-protocols are secure in the BLT model, where the tampering function is allowed
to modify the secret state of the prover but not the public parameters. In Sect. 3.2 we
look at a concrete instantiation based on the Okamoto ID scheme and prove that this
construction is secure in a stronger model where the tampering function canmodify both
the secret state of the prover and the public parameters (but independently). Finally, in
Sect. 3.3 we illustrate that the latter assumption is necessary, as otherwise the Okamoto
ID scheme can be broken by (albeit contrived) attacks.

3.1. �-Protocols are Tamper Resilient

It is well known that �-protocols (see Sect. 2.4) are a natural tool to design ID schemes.
The construction is depicted in Fig. 1. We restrict our analysis to �-protocols for so-
called complete relations R such that for each possible witness x ∈ X , there is always

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 165

Fig. 1. ID scheme based on �-protocol for relation R.

a corresponding statement y ∈ Y such that (y, x) ∈ R. As discussed later, the relations
considered to instantiate our result satisfy this property.
Consider now the class of tampering functions Tsk ⊂ T such that T ∈ Tsk has the

following form: T = (T sk, IDpp) where T sk : SK → SK is an arbitrary polynomial
time computable function and IDpp : PP → PP is the identity function. This models
tampering with the secret state of Pwithout changing the public parameters (these must
be hard-wired into the prover’s code). The proof of the following theorem uses ideas
of [7], but is carefully adjusted to incorporate tampering attacks.

Theorem 3.1. Let k ∈ N be the security parameter and let (P,V) be a �-protocol, for
a complete relationR, with challenge space S of size O(klog k), such that the represen-
tation problem is hard forR (cf. Sect. 2.2). Assume that conditioned on the distribution
of the public input y ∈ Y , the witness x ∈ X has average min entropy at least β,
i.e., H̃∞(X |Y) ≥ β. Then, the ID scheme of Fig. 1 is (λ(k), t (k))-BLT secure against
impersonation attacks with respect to Tsk, where

λ ≤ β − t log |Y| − k and t ≤
⌊

β

log |Y|
⌋

− 1.

Proof. Assume that there exists a polynomial p(·) and an adversary A that succeeds
in the BLT experiment (cf. Definition 3.1) with probability at least δ(k) := 1/p(k), for
infinitely many k ∈ N. Then, we construct an adversaryB (usingA as a subroutine) such
that:

Pr
[
x	 �= x; (y, x), (y, x) ∈ R : (y, x, x) ← B(pp); pp ← Setup(1k)

]

≥ δ2 − |S|−1 − 2−k .

Since |S| is super-polynomial in k, this contradicts the assumption that the representation
problem is hard for R (cf. Sect. 2.2).
Adversary B works as follows. It first samples (y, x) ← Gen(1k), then it uses these

values to simulate the entire experiment for A. This includes answers to the leakage
queries and access to the oracles P(pp, x), P(pp, x̃i) where x̃i = Ti (x) = Ti (sk) = s̃ki

166 I. Damgård et al.

for all i ∈ [t]. During the impersonation stage, B chooses a random challenge c ∈ S
which results in a transcript (a, c, z). At this point B rewinds A to the point after it chose
a, and selects a different challenge c′ ∈ S resulting in a transcript (a, c′, z′). Whenever
the two transcripts are accepting and c′ �= c, the special soundness property ensures that
adversary B has extracted successfully some value x	 such that (y, x) ∈ R. Let us call
the event described above E1, and the event x = x	 is denoted by E2. Clearly,

Pr
[
B succeeds

] = Pr
[
x	 �= x; (y, x), (y, x) ∈ R : (y, x, x) ← B(pp); pp ← Setup(1k)

]

= Pr [E1 ∧ ¬E2] . (1)

Claim 1. The probability of event E1 is Pr [E1] ≥ δ2 − |S|−1.

Proof. The proof is identical to the proof of [7, Claim 4.1]. We repeat it here for
completeness.
Denote with V the random variable corresponding to the view of A in one exe-

cution of the BLT game up to the challenge phase; this includes the public values
(pp, y), the coins ofA, the leakage, and the transcripts obtained via the oraclesP(pp, x),
P(pp, x̃1), . . . ,P(pp, x̃t). Notice that B is essentially playing the role of the challenger
for A (as it knows a correctly distributed pair (y, x)), but at the end of the execution it
rewinds A after it already sent the value a in the challenge phase, and samples a new
challenge c′ ← S hoping that c′ �= c (where c ← S is the challenge sampled in the first
run of A). Hence, the probability space of the event E1 includes the randomness of the
BLT game, the coins of A, and the randomness used to sample c′ ∈ S.
LetW be an indicator randomvariable, such thatW = 1whenAwins in one execution

of the BLT game (and W = 0 otherwise). By definition, E[W] := δ. Notice that
Pr [E1|V = v] ≥ Pr

[
W 2 = 1|V = v

] − |S|−1, since the probability that c = c′ is at
most |S|−1 and this probability is independent of the fact that the two conversations
(a, c, z) and (a, c′, z′) are accepting. Therefore,

Pr [E1] =
∑

v

Pr [E1|V = v] Pr [V =v] ≥
∑

v

Pr
[
W 2 = 1|V = v

]
Pr [V = v]−|S|−1

= E[W 2] − |S|−1 ≥ (E[W])2 − |S|−1 = δ2 − |S|−1 (2)

where the first inequality of Eq. (2) follows by Jensen’s inequality. This concludes the
proof of the claim. �

Claim 2. The probability of event E2 is Pr [E2] ≤ 2−k .

Proof. We prove the claim holds even in case the adversary is unbounded. Consider an
experiment E0 which is similar to the experiment of Definition 3.1, except that now the
adversary does not get access to the leakage oracle. Consider an adversary A trying to
predict the value of x given the view in a run ofE0; such view contains polynomiallymany
transcripts (for the initial secret key and for each of the tampered secret keys) together

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 167

with the original public input y and the public parameters pp (which are tamper-free), i.e.,
viewE0

A = {�,�1, . . . ,� t }∪ {y, pp}. The vector � and each of the vectors � i contains
polynomially many transcripts of the form (a, c, z), corresponding (respectively) to the
original key and to the i th tampered secret key.
We now move to experiment E1, which is the same as E0 with the modification that

we add to A’s view, for each tampering query, the public value ỹi ∈ Y corresponding
to the tampered witness x̃i = Ti (x) ∈ X ; note that such value always exists, by our
assumption that the relation R is complete. Hence, viewE1

A = viewE0
A ∪ {(ỹ1, . . . , ỹt)}.

Clearly,

H̃∞(X |E0) ≥ H̃∞(X |E1). (3)

Next, we consider experiment E2 where A is given only the values (ỹ1, . . . , ỹt), i.e.,
viewE2

A = {ỹ1 . . . , ỹt }∪ {y, pp}. We claim that conditioning on E1 or on E2 has the same
effect on the min-entropy of X . This is because the values {�,� i }i∈[t] can be computed
as a deterministic function of (y, ỹ1, . . . , ỹt) as follows: For a randomly chosen challenge
c run the HVZK simulatorM upon input (pp, ỹi , c) and append the output (a, c, z) to� i .
(The same can be done to simulate �, by running M(pp, y, c).) It follows from perfect
HVZK that this generates an identical distribution to that of experiment E1 and thus

H̃∞(X |E1) = H̃∞(X |E2). (4)

Since the public parameters are tamper-free and are chosen independently of X , we
can remove them from the view and write

H̃∞(X |E2) = H̃∞(X |Ỹ1, . . . , Ỹt ,Y) ≥ H̃∞(X |Y)−|(Ỹ1, . . . , Ỹt)| ≥ β−t log |Y|, (5)

where we used Lemma 2.1 together with the fact that the joint distribution (Ỹ1, . . . , Ỹt)
can take at most (|Y|)t values, and our assumption on the conditional min-entropy of X
given Y .
Consider now the full experiment described in Definition 3.1 and call it E3. Note that

this experiment is similar to the experiment E0, with the only addition that here A has
also access to the leakage oracle. Hence, we have viewE3

A = viewE0
A ∪ viewleak

A . Denote
with � ∈ {0, 1}λ the random variable corresponding to viewleak

A . Using Lemma 2.1 and
combining Eqs. (3)–(5) we get

H̃∞(X |E3) = H̃∞(X |E0,�) ≥ H̃∞(X |E0) − λ ≥ β − t log |Y| − λ ≥ k,

where the last inequality comes from the value of λ in the theorem statement. We
can thus bound the probability of E2 as Pr [E2] ≤ 2−H̃∞(X |E3) ≤ 2−k . The claim
follows. �

Combining Claim 1 and Claim 2 together with Eq. (1) yields

Pr
[
B succeeds

] = Pr [E1 ∧ ¬E2] ≥ Pr [E1] − Pr [E2] ≥ δ2 − |S|−1 − 2−k,

168 I. Damgård et al.

which contradicts our assumption on the hardness of the representation problem for R.
This finishes the proof. �

Instantiations. Below, we discuss a number of concrete instantiations for Theorem 3.1
based on standard hardness assumptions:

• Generalized Okamoto. This instantiation is described in detail in Sect. 3.2, where
we additionally show that the generalized Okamoto ID scheme [58] remains secure
also in case the public parameters (and not only the secret key) are subject to
tampering.

• Generalized Guillou-Quisquater. Consider the relation RRSA of Sect. 2.2. The
relation is easily seen to be complete. Hardness of the �-representation problem
forRRSA follows from the RSA assumption and was shown in [58]. A suitable �-
protocol is described in [49]. A variant based on factoring can be obtained following
Fischlin and Fischlin [44].

3.2. Concrete Instantiation with More Tampering

We extend the power of the adversary by allowing him to tamper not only with the
witness, but also with the public parameters (used by the prover to generate the tran-
scripts). However the tampering has to be independent on the two components. This is
reminiscent of the so-called split-state model (considered for instance in [55]), with the
key difference that in our case the secret state does not need to be split into two parts.
We model this through the following class of tampering functions Tsplit: We say that

T ∈ Tsplit if we canwrite T = (T sk, T pp)where T sk : SK → SK and T pp : PP → PP
are arbitrary polynomial time computable functions. Recall that the input/output domains
of T sk, T pp are identical; hence, the size of the witness and the public parameters cannot
be changed. As we show in the next section, this restriction is necessary. Note also that
Tsk ⊆ Tsplit ⊆ T .

GeneralizedOkamoto.Consider the generalizedversionof theOkamoto IDscheme [58],
depicted in Fig. 2. The underlying hard relation here is the relation RDL and the repre-
sentation problem for RDL is the �-representation problem in a group G (cf. Sect. 2.2).
As proven in [7], this problem is equivalent to the Discrete Log problem in G.
We first argue that the protocol is BLT-secure against impersonation attacks with

respect to Tsk. This follows immediately from Theorem 3.1 as the relation RDL is
complete, and the protocol of Fig. 2 is a �-protocol which satisfies perfect HVZK;
moreover |Y| = |S| = p and the size of prime p is super-polynomial in k to ensure
hardness of the Discrete Log problem. Observing that the secret key x, conditioned
on the public key y, is uniform in a subspace of dimension � − 1, i.e., H∞(X |Y) ≥
(� − 1) log p = β, we obtain parameters λ ≤ (� − 1 − t) log(p) − k and t ≤ � − 2.

Next, we show that the generalized Okamoto ID scheme is actually secure for Tsplit
(with the same parameters).

Theorem 3.2. Let k ∈ N be the security parameter and assume the Discrete Log
problem is hard in G. Then, the generalized Okamoto ID scheme is (λ(k), t (k))-BLT
secure against impersonation attacks with respect to Tsplit, where

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 169

Fig. 2. Generalized Okamoto identification scheme.

λ ≤ (� − 1 − t) log(p) − k and t ≤ � − 2.

Proof (Sketch).. The proof follows closely the proof of Theorem 3.1, with the key
difference that we also have to take care of tamperingwith respect to pp = (G, g, gα, p).
We sketch how this can be done below.
Given an adversaryAwinning theBLTsecurity experimentwith non-negligible advan-

tage δ(k), consider the same reduction B outlined in the proof of Theorem 3.1, attacking
the �-representation problem in G. Notice that the reduction can, as before, perfectly
simulate the environment for A as it knows honestly generated parameters (pp, pk, sk).
In particular, Claim 1 still holds here with |S| = p.

It remains to prove Claim 2. To do so, we modify the view of the adversary in the
proof of Theorem 3.1 such that it contains also the tampered public parameters p̃pi for
all i ∈ [t]. In particular, the elements (a, c, z) contained in each vector � i in the view of
experiment E0 are now sampled from P(p̃pi , x̃i), where x̃i = T sk

i (x) and p̃pi = T pp
i (pp)

for all i ∈ [t]. We then modify E1 and E2 by additionally including the values of the
tampered public parameters {p̃pi }i∈[t].

We claim that H̃∞(X |E1) = H̃∞(X |E2), in particular the view ofA in E1 can be simu-
lated given only {p̃ki , p̃pi }i∈[t]. This follows from the fact that the generalized Okamoto
ID scheme maintains the completeness and perfect HVZK properties even when the
transcripts are computed using tampered public parameters p̃p = (G̃, g̃, g̃1, . . . , g̃�, p̃).
(Of course in this case the protocol is not sound.) The HVZK simulator M(p̃p, ỹ, c)
works as follows: Choose z1, . . . , z� at random in Z p̃ and if ỹ �= 0 mod p̃, then com-

pute a = (
∏�

i=1 g̃
zi
i)/ỹc mod p̃. In case ỹ = 0 mod p̃, then just set a = 0.4 For any

(x̃, p̃p) = (T sk(x), T pp(pp)), the distributions M(p̃p, ỹ, c) and (P(p̃p, x̃) � V(p̃p, ỹ))
are both uniformly random over all values (a, c, z = (z1, . . . , z�)) such that

∏�
i=1 g̃

zi
i =

a ỹc mod p̃.

4 Note that ỹ = 0 mod p̃ implies that for at least one of the generators gi ’s we get g̃i = 0 mod p̃, so that
a = ∏�

i=1 g̃
ri
i = 0 mod p̃.

170 I. Damgård et al.

Therefore the simulation perfectly matches the honest conversation. This proves
Eq. (4). Now Eq. (5) follows from the fact that the tampering functions T pp cannot
depend on sk. The rest of the proof remains the same. �

3.3. Some Attacks

We show that for the Okamoto scheme it is hard to hope for BLT security beyond the
class of tampering functions Tsplit. We illustrate this by concrete attacks which work in
case one tries to extend the power of the adversary in two different ways: (1) AllowingA
to tamper jointly with the witness and the public parameters; (2) Allowing A to tamper
independently with the witness and with the public parameters, but to increase their size.

Tampering jointly with the public parameters. Consider the class of functions T
introduced in Definition 3.1.

Claim 3. The generalized Okamoto ID scheme is not BLT-secure against imperson-
ation attacks with respect to T .

Proof. The attack uses a single tampering query. Define the tampering function
T (x, pp) = (x̃, p̃p) to be as follows:

• The witness is unchanged, i.e., x = x̃.
• The value p̃ is some prime of size | p̃| ≈ |p| such that the Discrete Log problem is
easy in the corresponding group G̃. (This can be done efficiently by choosing p̃ − 1
to be the product of small prime (power) factors [60].)

• Let g̃ be a generator of G̃ (which exists since p̃ is a prime) and define the new
generators as g̃i = g̃xi mod p̃.

Consider now a transcript (a, c, z) produced by a run of P(p̃p, x). We have a =
g̃

∑�
i=1 xi ri mod p̃ for random ri ∈ Z p̃. By computing the Discrete Log of a in base

g̃ (which is easy by our choice of G̃), we get one equation
∑�

i=1 xiri = logg̃(a) mod p̃.
Asking for polynomially many transcripts, yields � linearly independent equations (with
overwhelming probability) and thus allows to solve for (x1, . . . , x�). (Note here that with
high probability xi mod p = xi mod p̃ since |p| ≈ | p̃|.) �

Tampering by “inflating” the prime p. Consider the following class of tampering
functions Tsplit ⊆ T ∗

split: We say that T ∈ T ∗
split if T = (T sk, T pp), where T sk : SK →

{0, 1}∗ and T pp : PP → {0, 1}∗.

Claim 4. The generalized Okamoto ID scheme is not BLT-secure against imperson-
ation attacks with respect to T ∗

split.

Proof. The attack uses a single tampering query. Consider the following tampering
function T = (T sk, T pp) ∈ T ∗

split:

• Choose p̃ to be a prime of size | p̃| = �(�|p|), such that the Discrete Log problem
is easy in G̃. (This can be done as in the proof of Claim 3.)

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 171

• Choose a generator g̃ of G̃; define g̃1 = g̃ and g̃ j = 1 for all j = 2, . . . , �.
• Define thewitness to be x̃ such that x̃1 = x1|| . . . ||x� and x̃ j = 0 for all j = 2, . . . , �.

Given a single transcript (a, c, z) the adversary learns a = g̃r1 for some r1 ∈ Z p̃. Since
the Discrete Log is easy in this group, A can find r1. Now the knowledge of c and
z1 = r1 + cx̃1, allows to recover x̃1 = (x1, . . . , x�). �

3.4. BLT-Secure Signatures

It is well known that every �-protocol can be turned into a signature scheme via the
Fiat-Shamir heuristic [43]. By applying the Fiat-Shamir transformation to the protocol
of Fig. 1, we get efficient BLT-secure signatures in the random oracle model.

4. IND-CCA PKE with BLT Security

We start by defining IND-CCA public key encryption (PKE) with BLT security. A PKE
scheme is a tuple of algorithms PKE = (Setup,KGen,Enc,Dec) defined as follows.
(1) AlgorithmSetup takes as input the security parameter and outputs the description of
public parameters pp; the set of all public parameters is denoted by PP . (2) Algorithm
KGen takes as input the security parameter and outputs a public/secret key pair (pk, sk);
the set of all secret keys is denoted by SK and the set of all public keys by PK. (3)
The randomized algorithm Enc takes as input the public key pk, a message m ∈ M and
randomness r ∈ R and outputs a ciphertext c = Enc(pk,m; r); the set of all ciphertexts
is denoted by C. (4) The deterministic algorithmDec takes as input the secret key sk and
a ciphertext c ∈ C and outputs m = Dec(sk, c) which is either equal to some message
m ∈ M or to an error symbol ⊥.

Definition 4.1. Let λ = λ(k) and t = t (k) be parameters, and let Tsk be some set of
functions such that T ∈ Tsk has a type T : SK → SK. We say that PKE is IND-CCA
(λ(k), t (k))-BLT secure with respect to Tsk if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk, sk) ← KGen(1k) we have that
Pr[Dec(sk,Enc(pk,m)) = m] = 1 (where the randomness is taken over the
internal coin tosses of algorithm Enc).

(ii) Security. For all PPT adversaries A, there exists a negligible function δ(k) : N →
[0, 1], such that Pr

[
A wins

] ≤ 1
2 + δ(k) in the following game:

1. The challenger runs pp ← Setup(1k), (pk, sk) ← KGen(1k) and gives
(pp, pk) to A.

2. The adversary is given oracle access to Dec(sk, ·). This oracle outputs poly-
nomially many decryptions of ciphertexts using secret key sk.

3. The adversary may adaptively ask t tampering queries. During the i th query, A
chooses a function Ti ∈ Tsk and gets oracle access toDec(s̃ki , ·), where s̃ki =
Ti (sk). This oracle outputs polynomiallymany decryptions of ciphertexts using
secret key s̃ki .

4. The adversary may adaptively ask polynomially many leakage queries. In the
j th query, A chooses a function L j : {0, 1}∗ → {0, 1}λ j and receives back the
output of the function applied to sk.

172 I. Damgård et al.

5. The adversary outputs two messages of the same length m0,m1 ∈ M and the
challenger computes cb ← Enc(pk,mb) where b is a uniformly random bit.

6. The adversary keeps access to Dec(sk, ·) and outputs a bit b′. We say A wins
if b = b′,

∑
j λ j ≤ λ and cb has not been queried for to the decryption oracle.

In case t = 0 we get, as a special case, the notion of semantic security against a-
posteriori chosen-ciphertext λ(k)-key-leakage attacks from [57]. Notice that A is not
allowed to tamper with the secret key after seeing the challenge ciphertext. As we show
in Sect. 4.4, this restriction is necessary because otherwise A could overwrite the secret
key depending on the plaintext encrypted in cb , and thus gain some advantage in guessing
the value of b by asking additional decryption queries.
We build an IND-CCA BLT-secure PKE scheme in two steps. In Sect. 4.1 we define a

weaker notion which we call restricted IND-CCA BLT security. In Sect. 4.2 we show a
general transformation from restricted IND-CCABLT security to full-fledged IND-CCA
BLT security relying on tSE NIZK proofs [31] in the common reference string (CRS)
model. The CRS is supposed to be tamper-free and must be hard-wired into the code
of the encryption algorithm; however tampering and leakage can depend adaptively on
the CRS and the public parameters. Finally, in Sect. 4.3, we prove that a variant of the
BHHO encryption scheme [57] satisfies our notion of restricted IND-CCABLT security.

4.1. Restricted IND-CCA BLT Security

The main idea of our new security notion is as follows. Instead of giving A full access
to a tampering oracle (as in Definition 4.1), we restrict his power by allowing him to see
the output of the (tampered) decryption oracle only for ciphertexts c for whichA already
knows both the corresponding plaintext m and the randomness r used to generate c (via
the real public key). Essentially this restricts A to submit to the tampering oracle only
“well-formed” ciphertexts.

Definition 4.2. Let λ = λ(k) and t = t (k) be parameters, and let Tsk be some set
of functions such that T ∈ Tsk has a type T : SK → SK. We say that PKE is
restricted IND-CCA (λ(k), t (k))-BLT secure with respect to Tsk if it satisfies property
(i) of Definition 4.1 and property (ii) is modified as follows:

(ii) Security. For all PPT adversaries A, there exists a negligible function δ(k) : N →
[0, 1], such that Pr

[
A wins

] ≤ 1
2 + δ(k) in the following game:

1. The challenger runs pp ← Setup(1k), (pk, sk) ← KGen(1k) and gives
(pp, pk) to A.

2. The adversary may adaptively ask t tampering queries. During the i th query,
A chooses a function Ti ∈ Tsk and gets oracle access to Dec∗(s̃ki , ·, ·), where
s̃ki = Ti (sk). This oracle answers polynomially many queries of the following
form: Upon input a pair (m, r) ∈ M × R, compute c ← Enc(pk,m; r) and
output a plaintext m̃ = Dec(s̃ki , c) using the current tampered key.

3. The adversary may adaptively ask leakage queries. In the j th query, A chooses
a function L j : {0, 1}∗ → {0, 1}λ j and receives back the output of the function
applied to sk.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 173

4. The adversary outputs two messages of the same length m0,m1 ∈ M and the
challenger computes cb ← Enc(pk,mb) where b is a uniformly random bit.

5. The adversary loses access to all oracles and outputs a bit b′. We say that A
wins if b = b′ and

∑
j λ j ≤ λ.

We note that, by setting t = 0, we recover the original notion of semantic security under
λ-key-leakage attacks for public key encryption, as defined in [57].

4.2. A General Transformation

We compile an arbitrary restricted IND-CCA BLT-secure encryption scheme into a full-
fledged IND-CCA BLT-secure one by appending to the ciphertext c an argument of
“plaintext knowledge” π computed through a (one-time, strong) tSE NIZK argument
system (cf. Sect. 2.5). The same construction has been already used by Dodis et al. [31]
to go from IND-CPA security to IND-CCA security in the context of memory leakage.
The intuition why the transformation works is fairly simple: The argument π enforces

the adversary to submit to the tampered decryption oracle only ciphertexts for which
he knows the corresponding plaintext (and the randomness used to encrypt it). In the
security proof the pair (m, r) can indeed be extracted from such argument, allowing to
reduce IND-CCA BLT security to restricted IND-CCA BLT security.

Theorem 4.1. Let k ∈ N be the security parameter. Assume that PKE is a restricted
IND-CCA (λ(k), t (k))-BLT secure encryption scheme and that (Gen,Prove,Verify) is
a one-time strong tSE NIZK argument system for relation RPKE. Then, the encryption
scheme PKE ′ of Fig. 3 is IND-CCA (λ(k), t (k))-BLT secure.

Proof. We prove the theorem by a series of games. All games are a variant of the IND-
CCABLTgameand in all games the adversary gets correctly generated public parameters
(pp, ω, pk). Leakage and tampering queries are answered using the corresponding secret
key sk. The games will differ only in the way the challenge ciphertext is computed or in
the way the decryption oracles work.

Game G1. This is the IND-CCA BLT game of Definition 4.1 for the scheme PKE ′.
Note in particular that all decryption oracles expect to receive as input a
ciphertext of the form (c, π) and proceed to verify the proof π before

Fig. 3. How to transform a restricted IND-CCA BLT-secure PKE into an IND-CCA BLT-secure PKE.

174 I. Damgård et al.

decrypting the ciphertext (and output ⊥ if such verification fails). The
challenge ciphertext is a pair (cb, πb) such that cb = Enc(pk,mb; r) and
πb ← Proveω((pk, cb), (mb, r)), where mb ∈ {m0,m1} for a uniformly
random bit b. Our goal is to upper bound |Pr [A wins in G1

] − 1/2|.
Game G2. In this game we change the way the challenge ciphertext is computed by

replacing the argument πb with a simulated argument πb ← S((pk, cb), tk).
It follows from the composable NIZK property of the argument system that
G1 andG2 are computationally close. In particular, there exists a negligible
function δ1(k) such that |Pr [A wins in G1

] − Pr
[
A wins in G2

] | ≤ δ1(k).
Game G3. We change the way decryption queries are handled. Queries (c, π) to

Dec(sk, ·) (such that π accepts) are answered by running the extractor Ext
on π , yielding (m, r) ← Ext((pk, c), π,ek), and returning m.
Queries (c, π) toDec(s̃ki , ·) (such that π accepts) are answered as follows.
We first extract (m, r) ← Ext((pk, c), π,ek) as above. Then, instead of
returningm, we recompute c = Enc(pk,m; r) and return m̃ = Dec(s̃ki , c).
It follows from one-time strong tSE that G2 and G3 are computationally
close. The reason for this is that A gets to see only a single simulated proof
for a true statement (i.e., the pair (pk, cb)) and thus cannot produce a pair
(c, π) �= (cb, πb) such that the proof π accepts and Ext fails to extract the
corresponding plaintext m. In particular, there exists a negligible function
δ2(k) such that |Pr [A wins in G2

] − Pr
[
A wins in G3

] | ≤ δ2(k).
Game G4. In the last gamewe replace the ciphertext cb in the challenge with an encryp-

tion of 0|mb|, whereas we still compute the proof as πb ← S((pk, cb), tk).
We claim that G3 and G4 are computationally close. This follows from
restricted IND-CCA BLT security of PKE . Assume there exists a distin-
guisher D betweenG3 andG4. We build an adversary B breaking restricted
IND-CCA BLT security for PKE . The adversary B uses D as a black-box
as follows.

ReductionBD:

1. Receive (pp, pk) from the challenger, sample (ω, tk,ek) ← Gen(1k) and give
pp′ = (pp, ω) and pk′ = pk to A.

2. Upon input a normal decryption query (c, π) from A, run the extractor to compute
(m, r) ← Ext((pk, c), π,ek) and return m.

3. Upon input a tampering query Ti ∈ Tsk, forward Ti to the tampering oracle
for PKE . To answer a query (c, π), run the extractor to compute (m, r) ←
Ext((pk, c), π,ek). Submit (m, r) to oracleDec∗(s̃ki , ·, ·) and receive the answer
m̃. Return m̃ to A.

4. Upon input a leakage query L j , forward L j to the leakage oracle for PKE .
5. When A outputs m0,m1 ∈ M, sample a random bit b′ and output (mb′, 0|mb′ |).

Let cb be the corresponding challenge ciphertext. Compute πb ← S((pk, cb), tk)
and forward (cb, πb) to A. Continue to answer normal decryption queries (c, π)

from A as above.
6. Output whatever D does.

Notice that the reduction perfectly simulates the environment for A; in particular cb
is either the encryption of randomly chosen message among (m0,m1) (as in G3) or an

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 175

encryption of zero (as in G4). Since PKE is restricted IND-CCA (λ, t)-BLT secure,
it must be |Pr [A wins in G3

] − Pr
[
A wins in G4

] | ≤ δ3(k) for a negligible function
δ3 : N → [0, 1].
As clearly Pr

[
A wins in G4

] = 1/2, we have obtained:

|Pr [A wins in G1
] − 1/2| = |Pr [A wins in G1

] − Pr
[
A wins in G4

] |
≤ |Pr [A wins in G1

] − Pr
[
A wins in G2

] |
+ |Pr [A wins in G2

]

− Pr
[
A wins in G3

] | + |Pr [A wins in G3
]

− Pr
[
A wins in G4

] |
≤ δ1(k) + δ2(k) + δ3(k) = negl(k).

This concludes the proof. �

4.3. Instantiation from BHHO

We show that the variant of the encryption scheme introduced by Boneh et al. [16] used
in [57] is restricted IND-CCA BLT-secure. The proof relies on the observation that one
can simulate polynomially many decryption queries for a given tampered key by only
leaking a bounded amount of information from the secret key. Hence, security follows
from leakage resilience of BHHO (which was already proven in [57]).
The BHHO PKE scheme works as follows: (1) Algorithm Setup chooses a group G

of prime order p with generator g and let pp = (G, g, p); (2) Algorithm KGen samples
random vectors x,α ∈ Z

�
p, computes gα = (g1, . . . , g�) and let sk := x = (x1, . . . , x�)

and pk := (h, gα) where h = ∏�
i=1 g

xi
i ; (3) Algorithm Enc takes as input pk and

a message m ∈ M, samples a random r ∈ Zp and returns c = Enc(pk,m; r) =
(gr1, . . . , g

r
�, h

r · m); (4) Algorithm Dec parses c = (gc0 , c1) and outputs m = c1 ·
g−〈c0,x〉, where 〈c0, x〉 denotes the inner product of c0 and x.

Proposition 4.1. Let k ∈ N be the security parameter and assume that the DDH
assumption holds in G (cf. Sect. 2.2). Then, the BHHO encryption scheme is restricted
IND-CCA (λ(k), t (k))-BLT secure, where

λ ≤ (� − 2 − t) log p − ω(log k) and t ≤ � − 3.

Proof. Naor and Segev [57, Section 5.2] showed that BHHO is restricted IND-CCA
(λ′, 0)-BLT secure up to λ′ ≤ (� − 2) log p − ω(log k).5 Assume there exists an
adversary A which breaks restricted IND-CCA (λ, t)-BLT security with probability
δ(k) = 1/p(k), for some polynomial p(·) and infinitely many values of k ∈ N. We build
an adversaryBwhich breaks restricted IND-CCA (λ′, 0)-BLT security of the encryption
scheme, with the same advantage, yielding a contradiction.

5 Recall that for t = 0 no decryption query is allowed, and thus restricted IND-CCA (λ′, 0)-BLT security
collapses to the notion of semantic security against λ′–key-leakage attacks from [57].

176 I. Damgård et al.

Adversary B uses A as a black-box and is described below.

ReductionBA :
1. Receive (pp, pk) from the challenger and forward these values to A.
2. Whenever A asks for a leakage query, submit this query to the leakage oracle and

return the answer to A.
3. Upon input a tampering query Ti ∈ Tsk, submit a leakage query in order to retrieve

the value h̃i = ∏�
j=1 g

−x̃ j,i
j , where x̃i = Ti (x) = (x̃1,i , . . . , x̃�,i). When A asks

for a decryption query (m, r), return m̃ = (hr · m) · h̃ri .
4. Whenever A outputs m0,m1 ∈ M, forward m0,m1 to the challenger. Let cb be

the corresponding challenge ciphertext; forward cb to A.
5. Output whatever A does.

Note that for each of A’s tampering queries B has to leak one element in Zp. Using
the value of λ′ from above, this gives λ = λ′ − t log p = (� − 2 − t) log p − ω(log k).
Moreover, B produces the right distribution since

m̃ = (hr · m) · h̃ri = c1 ·
⎛

⎝
�∏

j=1

g
−x̃ j,i
j

⎞

⎠

r

= c1 ·
�∏

j=1

g
−r ·x̃ j,i
j = c1 · g−∑�

j=1 rα j ·x̃ j,i

= c1 · g〈c0,x̃i 〉,

where (gc0 , c1) = ((grα1, . . . , grα�), hr ·m) is an encryption of m using randomness r
and public key h. This simulates perfectly the answer of oracle Dec∗(s̃ki , ·, ·). Hence,
B has the same advantage as A which concludes the proof. �

We remark that efficient proofs of plaintext knowledge for the BHHO PKE scheme
(to use within the transformation of Fig. 3) are already known (see, e.g., [17,38]).

4.4. Impossibility of “Post-challenge” IND-CCA BLT Security

Previous definitions of related-key security for IND-CCA PKE allow the adversary to
issue tampering queries even after seeing the challenge ciphertext [13,62]. The reason
why the schemes of [13,62] can achieve this stronger flavor is that the class of tampering
functions is too limited to cause any harm. In fact, as we argue below,when the tampering
function can be an arbitrary polynomial time function (as is the case in our schemes),
no PKE scheme can be secure if such “post-challenge” tampering queries are allowed.

Proposition 4.2. No one-bit PKE scheme can be “post-challenge” IND-CCA (0, 1)-
BLT secure.

Proof. We build a polynomial time adversary A breaking IND-CCA BLT security. A
will ask a single tampering query after seeing the challenge ciphertext cb (corresponding
to mb ∈ {0, 1}) and then make a single decryption query to the tampered decryption
oracle, to learn the bit b with probability negligibly close to 1. Given the public key pk
and challenge ciphertext cb, adversary A proceeds as follows:

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 177

1. Sample m∗ ∈ {0, 1} uniformly at random and compute c∗ ← Enc(pk,m∗).
2. Define the following tampering query Tcb,c∗,m∗(sk):

• Run mb = Dec(sk, cb). In case mb = 0, let s̃k = sk.
• In case mb = 1, sample (pk∗, sk∗) ← KGen(1k) until Dec(sk∗, c∗) �= m∗.
When this happens, let s̃k = sk∗.

3. Query the decryption oracleDec(s̃k, ·)with c∗. In case the answer from the oracle
is m∗ output 0 and otherwise output 1.

For the analysis, assume first that A runs in polynomial time. In this case it is easy to
see that the attack is successful with overwhelming probability. In fact, c∗ �= cb with
overwhelming probability and the answer from the tampered decryption oracle clearly
allows to recover b.
We claim that A runs in expected polynomial time. This is because if one tries to

decrypt c∗ using an independent freshly generated secret key sk∗, the resulting plaintext
will be uncorrelated, up to a small bias, to the plaintextm∗, for otherwise the underlying
PKE scheme would not even be IND-CPA secure. (Recall that c∗ is an encryption ofm∗
under the original public key pk.) This shows that Pr

[
Dec(sk∗, c∗) �= m∗] ≈ 1/2 and

thus the loop ends on average after 2 attempts.
If one insists on the tampering function being polynomial time (and not expected

polynomial time) we can just put an upper bound on the number of pairs (pk∗, sk∗) that
the function can sample in the loop. This comes at the expense of a negligible error
probability. �

5. Updating the Key in the iFloppy Model

We complement the results from the previous two sections by showing how to obtain
security against an unbounded number of tampering queries in the floppymodel of [6,7].
Recall that in this model we assume the existence of an external tamper-free and leakage-
free storage (the floppy), which is needed to refresh the secret key on the tamperable
device. An important difference between the floppy model considered in this paper and
the model of [6] is that in our case the floppy can contain “user-specific” information,
whereas in [6] it contains a unique master key which in principle could be equal for all
users. To stress this difference, we refer to our model as the iFloppymodel.
Clearly, the assumption of a unique master key makes production easier but it is also

a single point of failure in the system since in case the content of the floppy is published
(e.g., by a malicious user) the entire system needs to be re-initialized.6 A solution for
this is to assume that each floppy contains a different master key as is the case in the
iFloppy model, resulting in a trade-off between security and production cost.
For simplicity, we consider a model with polynomially many updates where, between

eachupdate, the adversary is allowed to leak and tamper only once.However, the schemes
in this section can be proven secure in the strongermodel where between two key updates

6 We note that in the schemes of [6] making the content of the floppy public does not constitute a total
breach of security; however the security proof completely breaks down, leaving no security guarantee for the
schemes at hand.

178 I. Damgård et al.

the attacker is allowed to leak adaptively λ bits from the current secret key and tamper
with it for some bounded number of times.

5.1. ID Schemes in the iFloppy Model

An identification scheme ID = (Setup,Gen,P,V,Refresh) in the iFloppy model
is defined as follows. (1) Algorithm Setup is defined as in a standard ID scheme. (2)
Algorithm Gen outputs an update key uk together with an initial public/secret key pair
(pk, sk). (3) Algorithms P and V are defined as in a standard ID scheme. (4) Algorithm
Refresh takes as input the update key uk and outputs a new key sk′ for the same public
key pk.

Definition 5.1. Let λ = λ(k) be a parameter, and let Tsk be some set of functions
such that T ∈ Tsk has a type T : SK → SK. We say that ID is (λ(k), 1)-CLT secure
against impersonation attacks with respect to Tsk in the iFloppy model, if the following
properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk, sk, uk) ← Gen(1k) we have that:

(P(pp, sk) � V(pp, pk)) = (P(pp,Refresh(uk)) � V(pp, pk)) = accept.

(ii) Security. For all PPT adversaries A, there exists a negligible function δ : N →
[0, 1], such that Pr

[
A wins

] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk, sk, uk) ← Gen(1k), and gives
(pp, pk) to A; let sk1 = sk.

2. The adversary is given oracle access to P(pp, sk1).
3. The adversary may adaptively ask leakage and tampering queries. During the

i th query:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li (ski).
(b) A specifies a function Ti : SK → SK and is given oracle access to

P(pp, s̃ki), where s̃ki = Ti (ski).
(c) The challenger updates the secret key, ski+1 ← Refresh(uk).

4. The adversary loses access to all oracles and interacts with an honest verifier
V (holding public key pk). We say that A wins if (A(pp, pk) � V(pp, pk))
outputs accept.

Remark 1. One could also consider a more general definition where between two key
updates A is allowed to ask multiple leakage queries with output size λ j , as long as∑

j λ j ≤ λ. Similarly, we could allow A to tamper in each round for t times with the
secret key ski . The constructions in this section can be proven secure in this extended
setting, but we stick to Definition 5.1 for simplicity.

A general compiler. We now describe a compiler to boost any (λ, t)-BLT secure ID
scheme (P,V), to a (λ, t)-CLT secure ID scheme (P′,V′). The compiler is based upon
a standard (not necessarily leakage or tamper resilient) signature scheme SIG, and is
described in Fig. 4.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 179

Fig. 4. Boosting BLT security to CLT security for ID schemes.

The basic idea is as follows. We generate the key pair (mpk,msk) using the key
generation algorithm of the underlying signature scheme. We store msk in the floppy
and publish mpk as P’s identity. We also sample a key pair (pk, sk) for ID (which we
call the temporary keys) andwe provide the prover with a value helpwhich is a signature
of pk under the master secret key msk. Whenever P wants to prove its identity, it first
sends the temporary pk together with the helper value and V verifies this signature using
mpk.7 If the verification succeeds, P and V run an execution of ID where P proves
it knows the secret key sk corresponding to pk. At the end of each authentication the
prover updates its pair of temporary keys using the floppy, using the update key msk to
sign the new public key pk′ that is freshly generated. We prove the following result.

Theorem 5.1. If SIG is EUF-CMA and ID is (λ, 1)-BLT secure against imperson-
ation attacks with respect to Tsk, then the scheme ID′ output by the compiler of Fig. 4
is (λ, 1)-CLT secure against impersonation attacks with respect to Tsk in the iFloppy
model.

Proof. We show that if there exists a PPT adversaryAwhowins the CLT security game
against ID′ with non-negligible probability, then we can build either of two reductions
B or C violating BLT security of ID or EUF-CMA of SIG (respectively) with non-
negligible probability. Let us assume that Pr

[
A wins

] ≥ δ(k), where δ(k) = 1/p(k)
for some polynomial p(·) and infinitely many k ∈ N. The CLT experiment for ID′ is
specified below:

CLT Experiment:

1. The challenger runs pp ← Setup′(1k) and (mpk,msk) ← KGen(1k) and gives
(pp,mpk) to A.

7 Alternatively P can send (pk, help) together with the first message of the identification scheme, in order
to keep the same round complexity as in ID.

180 I. Damgård et al.

2. For each i = 1, . . . , q(k) (where q(k) is some polynomial in the security parame-
ter), the challenger does the following:

– During round i sample (pki , ski) ← Gen(1k) and compute helpi ←
Sign(msk, pki) .

– Give A oracle access to P′((pp, pki ,helpi), ski)).
– Answer the leakage and tampering query from A using key ski . The leakage
query consists of a function Li : {0, 1}∗ → {0, 1}λ; the tamperingquery consists
of a tampering function Ti : SK → SK.

3. During the impersonation stage, the challenger (playing now the role of the verifier
V′) receives the pair (pk	,help) from A; if Vrfy(mpk, (pk	,help)) outputs 0,
the challenger outputs reject. Otherwise, it runs (A(pp, pk) � V(pp, pk)) and
outputs whatever V does.

Let Fresh be the following event: The event becomes true if the pair (pk	,help) used
by A during the impersonation stage of the above experiment is equal to one of the pairs
A has seen during the learning phase (i.e., one of the pairs (pki ,helpi)). We have

Pr
[
A wins

] = Pr
[
A wins ∧ Fresh

] + Pr
[
A wins ∧ Fresh

]
, (6)

where all probabilities are taken over the randomness space of the CLT experiment and
over the randomness of A. We now describe a reduction B (using A as a black-box)
which breaks BLT security of ID.

ReductionBA:

1. Receive pp ← Setup(1k) from the challenger. Sample (mpk,msk) ← KGen(1k)
and forward (pp,mpk) to A.

2. Choose an index j ← [q] uniformly at random.
3. For all i = 1, . . . , q, simulate the learning stage of A as follows.

(a) During all rounds i such that i �= j :

– Sample (pki , ski) ← Gen(1k) and compute helpi ← Sign(msk, pki).
Give A oracle access to P′((pp,helpi , pki), ski).

– Simulate A’s leakage and tampering query by using key ski .

(b) During round j :

– Receive the public key pk from the challenger and use this key as the j th
temporary public key. Compute help ← Sign(msk, pk).

– Simulate oracle P′((pp,help, pk), sk) by forwarding (pk,help) to A and
using the target oracle P(pp, sk).

– Simulate leakage query L j and tampering query Tj by submitting the same
functions to the target oracle.

4. Simulate the impersonation stage for A as follows:

(a) Receive (pk	,help) from A. If pk	 �= pk (i.e., B’s guess is wrong) abort the
execution. Otherwise, run Vrfy(mpk, (pk	,help)) and output reject if verifi-
cation fails.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 181

(b) Run (A(pp, pk) � V(pp, pk)) and use the messages from A in the imper-
sonation stage, to answer the challenge from the target oracle.

Note that B’s simulation is perfect, since it simulates all rounds using honestly gen-
erated keys, whereas round j is simulated using the target oracle which allows for one
tampering query and λ bits of leakage from sk. Denote with Guess the event that B
guesses the index j correctly. Since Bwins whenever A is successful and Fresh occurs,
and moreover event Guess is independent of all other events, we get

Pr
[
B wins

] = Pr
[
B wins ∧ Guess

] + Pr
[
B wins ∧ Guess

]

≥ Pr
[
B wins ∧ Guess

] = 1

q(k)
Pr

[
A wins ∧ Fresh

]
.

(7)

We now describe a second reduction C (using A as a black-box), breaking existential
unforgeability of SIG.

ReductionCA:

1. Run pp ← Setup(1k), receive the public keympk from the challenger and forward
(pp,mpk) to A. Denote with msk the secret key corresponding to mpk (which of
course is not known to C).

2. For all i = 1, . . . , q, simulate the learning stage of A as follows:

(a) Sample (pki , ski) ← Gen(1k). Forward pki to the target signing oracle and
receive back the corresponding signature helpi ← Sign(msk, pki). Simulate
oracle access to P′((pp,helpi , pki), ski) using knowledge of key ski .

(b) Simulate the leakage and tampering query using knowledge of key ski .

3. During the impersonation stage:

(a) Receive (pk	,help) (which is a message-signature pair) fromA and verify the
signature with public key mpk. If verification fails, output some random guess
and abort. (In that caseA loses andC can only win with negligible probability.)

(b) Otherwise, run (A(pp, pk) � V(pp, pk)) and return to A whatever V does.
(c) Output forgery (m	 = pk	, σ 	 = help).

Whenever Fresh occurs, the pair (pk	,help) returned by A is such that this pk	 is
different from all the pki ’s it has seen during the learning phase. In this case, whenever
A wins, the forgery (m	, σ) output by C is a valid forgery. Hence,

Pr
[
C wins

] ≥ Pr
[
A wins ∧ Fresh

]
. (8)

Combining Eqs. (6)–(8), we obtain:

q(k) · Pr [B wins
] + Pr

[
C wins

] ≥ Pr
[
A wins ∧ Fresh

]

+Pr
[
Awins ∧ Fresh

] = Pr
[
A wins

] ≥ δ(k).

Hence either Pr
[
B wins

] ≥ δ/(2q) or Pr
[
C wins

] ≥ δ/2, which are both non-
negligible. �

182 I. Damgård et al.

Remark 2. Assuming factoring or DL is hard, we can instantiate Theorem 5.1 with
our schemes from Sect. 3 resulting into tamper resilient identification schemes in the
iFloppy model under polynomial many tampering and leakage attacks.

5.2. PKE Schemes in the iFloppy Model

A PKE scheme PKE = (Setup,KGen,Enc,Dec,Refresh) in the iFloppy model is
defined as follows. (1) Algorithm Setup is defined as in a standard PKE scheme. (2)
Algorithm KGen outputs an update key uk together with an initial public/secret key
pair (pk, sk). (3) Algorithm Enc and Dec are defined as in a standard PKE scheme. (4)
Algorithm Refresh takes as input the update key uk and outputs a new key sk′ for the
same public key pk.

Definition 5.2. Let λ = λ(k) be a parameter, and let Tsk be some set of functions such
that T ∈ Tsk has a type T : SK → SK. We say that PKE is IND-CCA (λ(k), 1)-CLT
secure with respect to Tsk in the iFloppy model, if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk, sk, uk) ← Gen(1k) we have that:

Pr
[
Dec(Refresh(uk),Enc(pk,m)) = m

] = 1.

(ii) Security. For all PPT adversaries A, there exists a negligible function δ : N →
[0, 1], such that Pr

[
A wins

] ≤ 1/2 + δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk, sk, uk) ← Gen(1k), and gives
(pp, pk) to A; let sk1 = sk.

2. The adversary is given oracle access to Dec(sk1, ·).
3. The adversary may adaptively ask leakage and tampering queries. During the

i th query:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li (ski).
(b) A specifies a function Ti : SK → SK and is given oracle access to

Dec(s̃ki , ·), where s̃ki = Ti (ski).
(c) The challenger updates the secret key, ski+1 ← Refresh(uk).

4. The adversary outputs two messages of the same length m0,m1 ∈ M and the
challenger computes cb ← Enc(pk,mb) where b is a uniformly random bit.

5. The adversary outputs a bit b′ and wins if b = b′.

The same considerations of Remark 1 hold here.

Construction from BHHO. As noted in [6], the BHHO PKE scheme (cf. Sect. 4.3)
allows for a very simple update mechanism. When we plug this encryption scheme
in the construction of Fig. 3, we obtain the following scheme. (1) Algorithm Setup
chooses a groupG of prime order p with generator g, runs (ω, tk,ek) ← Gen(1k) and
lets pp = (G, g, p, ω). (2) Algorithm KGen samples random vectors α, x ∈ Z

�
p and

sets uk = (α, x); furthermore, it chooses sk = x1 = x + β (where β ← ker(α)) and
lets pk = (h, gα) for h = g〈α,x〉. (3) Algorithm Enc takes as input pk and a message
m ∈ M, samples a random r ∈ Zp and returns c = (grα, hr · m) together with a proof

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 183

π ← Proveω((pk, c), (m, r)) for ((pk, c), (m, r)) ∈ RPKE (cf. Fig. 3). (4) Algorithm
Dec parses c = (gc0 , c1), runsVerifyω((pk, c), π) and outputsm = c1 ·g−〈c0,x1〉 in case
the verification succeeds and⊥ otherwise. (5) AlgorithmRefresh samplesβ i ← ker(α)

and outputs xi = x + β i .
The theorem below shows that the above scheme is IND-CCA CLT-secure in the

iFloppy model. One would expect that a proof of this fact is simple, since the keys
after each update are completely fresh and independent (given the public key) and thus
security should follow from BLT security of the underlying scheme. However, it is easy
to see that such a proof strategy does not work directly (at least in a black-box way).8

Unfortunately this requires us to make the proof from scratch. Since the proof relies on
ideas already introduced in this paper or borrowed from [6], we give only a sketch here.

Theorem 5.2. Let k ∈ N be the security parameter. Assume that the DDH assumption
holds in G. Then, the PKE scheme described above is IND-CCA (λ(k), 1)-CLT secure
with respect to Tsk in the iFloppy model, where λ ≤ (� − 3) log p − ω(log k).

Proof (sketch).. We define a series of games (starting with the original IND-CCA CLT
game) and prove that they are all close to each other.

Game G1. This is the IND-CCA CLT game. In particular the challenge cipher-
text is a pair of the form (c∗ = (grα, hr · mb), π

∗) where π∗ ←
Proveω((pk, c∗), (mb, r)), for mb ∈ {m0,m1} and b ← {0, 1}. Our goal
is to bound |Pr [A wins in G1

] − 1/2|.
Game G2. In this game we change the way the challenge ciphertext is com-

puted by replacing the argument π∗ with a simulated argument π∗ ←
S((pk, c∗), tk). It follows from the composable NIZK property of the argu-
ment system that G1 and G2 are computationally close.

Game G3. In this game we change the way decryption queries are handled. Queries
(c, π) to Dec(xi , ·) (such that π accepts) are answered by running the
extractor Ext on π , yielding (m, r) ← Ext((pk, c), π,ek), and return-
ing m. Queries (c, π) to Dec(x̃i , ·) (such that π accepts) are answered as
follows. We first extract (m, r) ← Ext((pk, c), π,ek) as above. Then,
instead of returning m, we recompute c = Enc(pk,m; r) and return
m̃ = Dec(x̃i , c). As argued in the proof of Theorem 4.1, G2 and G3 are
computationally close by the one-time strong tSE property of the argument
system.

Game G4. In this game we change the way the secret keys are refreshed. The chal-
lenger first chooses a random (� − 2)-dimensional subspace S ⊂ ker(α)

and samples the new keys xi from the affine subspace x + S. We prove
that G3 and G4 are statistically close by a hybrid argument. Assume there
are q = poly(k) updates and define for each i = 0, . . . , q the following
hybrid distribution:

Game G3,i . Sample at the beginning a random (� − 2)-dimensional subspace S ⊂
ker(α) and modify the refreshing of the key as follows.

8 We stress that in the PKE case we cannot apply the same trick as for the compiler of Fig. 4, since that
would require to make the scheme interactive.

184 I. Damgård et al.

• For every 1 < j ≤ q − i , let x j = x + β j where β j ← ker(α).
• For every q − i < j ≤ q, let x j = x + s j where s j ← S.

Note that G3 = G3,0 and G4 = G3,q . As argued in [6, Theorem 13] it follows from
the affine version of the subspace hiding lemma (see [6, Corollary 8]) that as long as
the leakage is bounded an adversary cannot distinguish leakage on β i ← ker(α) from
leakage on si ← S (and this holds even if α is public and known at the beginning
of the experiment and S becomes known after the leakage occurs). We do loose an
additional factor log p in the leakage boundhere, due to the fact thatwe use one additional
leakage query to leak the group element h̃i needed to simulate the tampered decryption
oracle Dec(x̃i , ·) (as we do in the proof of Proposition 4.1). This yields the bound
λ ≤ (� − 3) log p − ω(log k) on the tolerated leakage.

Game G5. In this game we compute the component c∗ of the challenge ciphertext
(c∗, π∗) as

c∗ = (gc0 = grα, c1 = g〈c0,x〉 · mb). (9)

This is only a syntactical change since g〈c0,x〉 ·mb = (g〈α,x〉)r ·mb = hr ·mb.
Game G6. In this game the challenger chooses α, x as before and in addition samples

a vector c0 ← Z
�
p and sets S to be the (� − 2)-dimensional subspace

S = ker(α, c0). The secret keys xi are chosen as in the previous game from
S. The component c∗ of the challenge ciphertext (c∗, π∗) is computed as in
Eq. (9) using the above vector c0. As shown in [6, Theorem 13],G5 andG6
are computationally close by the extended rank-hiding assumption (which
is equivalent to DDH).

Game G7. In this game we change again the way the keys are refreshed, namely
each key xi is sampled from the full original (� − 1)-dimensional space
x + ker(α). As before, the last two games are close by the affine subspace
hiding lemma.

Game G8. In the last game we change the way the challenge ciphertext is chosen.
Namely, we choose a random v ← Zp and let c∗ = (gc0 , gv). Game G8
and G7 are statistically close since G7 does not reveal anything about x
beyond 〈α, x〉 from the public key, and thus 〈c0, x〉 are statistically close
to uniform.
Note that the second element is now independent of the message. Hence,
the probability that A wins in G8 is 1/2 concluding the proof.

6. Tampering with the Computation in the iFloppy Model

We finally consider the question of tampering with the computation for ID schemes in
the iFloppy model. In particular, we allow the adversary A to tamper in an arbitrary
way with the algorithm of the prover P as long as the interfaces of the algorithm stay
unchanged (input/output domain consistency) and the adversary can run the tampered
algorithm only a bounded number of times between two key updates. To model the

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 185

input/output consistency, we let A replace the algorithm P with an arbitrarily different
algorithm P̃ as long as P and P̃ have the same input/output domain.
Formally, we model such arbitrary tampering with the computation by an adversary

that corrupts the prover P, and we denote the adversarial controlled prover by P̃. Of
course, P cannot be corrupted by the adversary A itself as this would enable A to learn
the entire secret key and completely break security of the identification scheme. We
follow Dziembowski et al. [36] and consider a big adversary A and a small adversary B,
where we can think of B as a “virus” that corrupts the prover, while A is the adversary
that observes (possibly corrupted) protocol executions with P̃. Notice that the only way
in whichB can “communicate” with the big adversaryA is via the output of the tampered
prover P̃.

We formally describe security with respect to tampering with the computation in the
definition below. For simplicity, we assume that the adversary only gets a single protocol
transcript after each tampering query. This can be generalized to an arbitrary constant
number but we omit the details here.

Definition 6.1. Let λ = λ(k) be the leakage parameter. We say that ID is a λ-
continuous leakage and tampering with computation (CLTC) secure identification
scheme in the iFloppymodel if additionally to correctness (cf.Definition 5.1), the scheme
satisfies the following property:
CLTC Security: For all PPT adversaries A there exists a negligible function δ : N →
[0, 1] such that Pr

[
A wins

] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk, sk, uk) ← Gen(1k), and gives
(pp, pk) to A. Let sk1 = sk and uk be stored on the floppy.

2. We repeat the following steps a polynomial number of times, where the adversary
may adaptively ask leakage and tampering queries and each round is completed
with an update of the secret key using the floppy. More precisely, in the i th round
the following happens:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li (ski).
(b) A specifies an algorithm P̃i and obtains the faulty transcript (P̃i (pp, ski) �

V(pp, pk)).
(c) The challenger updates the secret key, ski+1 ← Refresh(uk).

3. The adversary loses access to all oracles and interacts with an honest verifier V
(holding pk). We say that A wins if (A(pp, pk) � V(pp, pk)) outputs accept.

In the theorem below we show that when we instantiate the general compiler from Fig. 4
with an appropriate identification schemewith key size k � s+ssig (s is the length of the
transcript, and ssig is the length of a message/signature pair) and security against s+ ssig
bits of leakage, we can achieve security with respect to Definition 6.1. Identification
schemes that are secure in the Bounded Retrieval Model (BRM) satisfy these conditions
and have been constructed, e.g., by Alwen et al. [7] based on the Generalized Okamoto
ID scheme.

Theorem 6.1. Let SIG = (KGen,Sign,Vrfy) be an EUF-CMA secure signature
scheme with message/signature pairs of size ssig, and ID = (Setup,Gen,P,V) be

186 I. Damgård et al.

an (s + ssig + λ)-leakage and 0-tamper resilient identification scheme with transcript
length s. Then, ID′ from Fig. 4 is a λ-CLTC secure identification scheme in the iFloppy
model.

The proof is similar to the proof of Theorem 5.1; hence, we provide only a sketch
here. The only difference is in the reduction to the security of the underlying identifica-
tion scheme ID. While in Theorem 5.1 we simulate the tampering with access to the
tampering oracle, we now simulate the tampering queries P̃′

i , i.e., the faulty transcript

(P̃′
i ((pp, pki ,helpi), ski) � V′(pp,mpk)) with access to the leakage oracle. As the

transcript has length s + ssig, we can learn the entire faulty transcript from the leak-
age oracle. This is where we loose s + ssig bits in the leakage bound compared to the
underlying identification scheme.

Proof (sketch). We show that if there exists a PPT adversary A who wins the CLTC
security game against ID′ with non-negligible probability, then we can build either
of two reductions B or C violating leakage resilience of ID or EUF-CMA of SIG
(respectively) with non-negligible probability. Let us assume that Pr

[
A wins

] ≥ δ(k),
where δ(k) = 1/p(k) for some polynomial p(·) and infinitely many k. The CLTC
experiment for ID′ is specified below:

CLTC Experiment:

1. The challenger runs pp ← Setup′(1k) and (mpk,msk) ← KGen(1k) and gives
(pp,mpk) to A.

2. For each i = 1, . . . , q(k) (where q(k) is some polynomial in the security parame-
ter), the challenger does the following:

– During round i sample (pki , ski) ← Gen(1k) and compute helpi ←
Sign(msk, pki) .

– Give A oracle access to P′((pp,helpi , pki), ski).
– Answer the leakage and tampering query from A using key ski . The leak-
age query consists of a function Li : {0, 1}∗ → {0, 1}λ, yielding Li (ski);
the tampering query consists of a modified algorithm P̃′

i (with the same
input/output domain as the honest prover algorithm P′), yielding a transcript
from (P̃′

i ((pp, pki ,helpi), ski) � V′(pp,mpk)).
3. During the impersonation stage, the challenger (playing now the role of the verifier

V′) receives the pair (pk	,help) from A; if Vrfy(mpk, (pk	,help)) outputs 0,
the challenger outputs reject. Otherwise, it runs (A(pp, pk) � V(pp, pk)) and
outputs whatever V does.

Let Fresh be the same event as defined in the proof of Theorem 5.1. We have

Pr
[
A wins

] = Pr
[
A wins ∧ Fresh

] + Pr
[
A wins ∧ Fresh

]
,

where all probabilities are taken over the randomness space of the CLTC experiment
and over the randomness of A. We now describe a reduction B (using A as a black-box)
which breaks leakage resilience of ID.

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 187

ReductionBA :
1. Receive pp ← Setup(1k) from the challenger. Sample (mpk,msk) ← KGen(1k)

and forward (pp,mpk) to A.
2. Choose an index j ← [q] uniformly at random.
3. For all i = 1, . . . , q, simulate the learning stage of A as follows.

(a) During all rounds i such that i �= j :

– Sample (pki , ski) ← Gen(1k) and compute helpi ← Sign(msk, pki).
Give A oracle access to P′((pp,helpi , pki), ski).

– Simulate A’s leakage and tampering query by using key ski .

(b) During round j :

– Receive the public key pk from the challenger and use this key as the j th
temporary public key. Compute help ← Sign(msk, pk).

– Simulate oracle P′((pp,help, pk), sk) by forwarding (pk,help) to A and
using the target oracle P(pp, sk).

– Simulate leakage query L j by submitting the same function to the target
leakage oracle.

– Simulate tampering query P̃′
j by submitting the leakage function corre-

sponding to P̃′
j ((pp,help, pk), ·) to the target leakage oracle, obtaining

the corresponding modified transcript.9

4. Simulate the impersonation stage for A as follows:

(a) Receive (pk	,help) from A. If pk	 �= pk (i.e., B’s guess is wrong) abort the
execution. Otherwise, run Vrfy(mpk, (pk	,help)) and output reject if verifi-
cation fails.

(b) Run (A(pp, pk) � V(pp, pk)) and use the messages from A in the imper-
sonation stage, to answer the challenge from the target oracle.

Note thatB’s simulation is perfect, since it simulates all rounds using honestly generated
keys, whereas round j is simulated using the target prover oracle and the leakage oracle
which allows for simulatingA’s leakage and tampering queries using a total ofλ+s+ssig
bits of leakage from sk (i.e., λ bits for A’s leakage queries, and (s + ssig) bits for the

faulty transcript P̃′
j � V′ corresponding to A’s tampering query). Denote with Guess

the same event as in the proof of Theorem 5.1. As before, we have

Pr
[
B wins

] ≥ 1

q(k)
Pr

[
A wins ∧ Fresh

]
.

Finally, consider the same reduction C defined in the proof of Theorem 5.1, trying to
break existential unforgeability of SIG usingA as a black-box. Notice that the reduction

9 Here is how B simulates the transcript with more details. Without loss of generality, assume that a basic
interaction P � V consists of μ messages for odd μ ∈ N; recall that the interaction P′ � V′ also consists
of μ messages, where the pair (pk, help) is appended to the first message sent by P. Thus, the i th message
of the interaction P̃′

j � V′, for i ∈ [μ] can be simulated by a leakage query hard-wiring a description of P̃′
j

together with (m1, . . . ,mi−1, pp, pk, help), where (m1, . . . ,mi−1) is the current partial transcript.

188 I. Damgård et al.

can still perfectly simulate all of A’s queries, because it knows all the pairs (pki , ski)
for all i ∈ [q]. Hence, as in the proof of Theorem 5.1,

Pr
[
C wins

] ≥ Pr
[
A wins ∧ Fresh

]
.

Combining the previous equations, we obtain q(k) · Pr [B wins
] + Pr

[
C wins

] ≥
Pr

[
A wins

] ≥ δ(k). A contradiction. �
We note that the above result seemingly achieves a stronger security notion than

Theorem 5.1 (tampering with the computation vs. tampering only with the state) while
not requiring a bounded tamper resilient identification scheme as the underlying prim-
itive. The fundamental difference between the two theorems comes from the fact that
in the theorem above we can only use the identification scheme a bounded number of
times between each two key updates, while when we tamper only with the secret state
Theorem 5.1 does not set any such usage restriction.

Acknowledgements

This work was done while the last author was a postdoc at the Computer Science Depart-
ment of Aarhus University, supported by the Danish Council for Independent Research
(under the DFF Starting Grant 10-081612). Ivan Damgård acknowledges support from
the Danish National Research Foundation, the National Science Foundation of China
(under the Grant 61061130540), and also from the CFEM research center. Sebastian
Faust was partially funded by the above grants. Pratyay Mukherjee’s work at Aarhus
University was supported by a European Research Commission Starting Grant (no.
279447) and the above grants. Part of this work was done while this author was at the
University of Warsaw and was supported by the WELCOME/2010-4/2 Grant founded
within the framework of the EU Innovative Economy Operational Programme.

References

[1] D. Aggarwal, Y. Dodis, T. Kazana, M. Obremski, Non-malleable reductions and applications, in STOC
(2015)

[2] D. Aggarwal, Y. Dodis, S. Lovett, Non-malleable codes from additive combinatorics, in STOC, (2014),
pp. 774–783

[3] D. Aggarwal, S. Dziembowski, T. Kazana, M. Obremski, Leakage-resilient non-malleable codes, in
TCC, (2015), pp. 398–426

[4] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran, Explicit non-malleable codes against
bit-wise tampering and permutations, in CRYPTO, (2015), pp 538–557.

[5] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran, A rate-optimizing compiler for non-
malleable codes against bit-wise tampering and permutations, in TCC, (2015), pp. 375–397

[6] S. Agrawal, Y. Dodis, V. Vaikuntanathan, D.Wichs, On continual leakage of discrete log representations,
in ASIACRYPT, (2013), pp. 401–420

[7] J. Alwen, Y.Dodis, D.Wichs, Leakage-resilient public-key cryptography in the bounded-retrievalmodel,
in CRYPTO, (2009), pp. 36–54

[8] R. Anderson, M. Kuhn, Tamper resistance: a cautionary note, in WOEC’96: Proceedings of the 2nd
conference on Proceedings of the Second USENIXWorkshop on Electronic Commerce, (USENIX Asso-
ciation, Berkeley, 1996), p. 1

Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier 189

[9] B. Applebaum, D. Harnik, Y. Ishai, Semantic security under related-key attacks and applications, in ICS,
(2011), pp. 45–60

[10] M. Bellare, D. Cash, Pseudorandom functions and permutations provably secure against related-key
attacks, in CRYPTO, (2010), pp. 666–684

[11] M. Bellare, D. Cash, R. Miller, Cryptography secure against related-key attacks and tampering. In
ASIACRYPT, (2011), pp. 486–503

[12] M. Bellare, T. Kohno, A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications, in EUROCRYPT, (2003), pp. 491–506

[13] M. Bellare, K.G. Paterson, S. Thomson. RKA security beyond the linear barrier: IBE, encryption and
signatures, in ASIACRYPT, (2012), pp. 331–348

[14] R. Bhattacharyya, A. Roy, Secure message authentication against related key attack, in FSE (2013)
[15] D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of eliminating errors in cryptographic compu-

tations. J. Cryptol., 14(2):101–119 (2001)
[16] D. Boneh, S. Halevi, M. Hamburg, R. Ostrovsky, Circular-secure encryption from decision diffie-

hellman, in CRYPTO, (2008), pp. 108–125
[17] J. Camenisch, N. Chandran, V. Shoup, A public key encryption scheme secure against key dependent

chosen plaintext and adaptive chosen ciphertext attacks, in EUROCRYPT, (2009), pp. 351–368
[18] E. Chattopadhyay, D. Zuckerman. Non-malleable codes against constant split-state tampering, in FOCS,

(2014), pp. 306–315
[19] M.Cheraghchi,V.Guruswami, Capacity of non-malleable codes, in Innovations in Theoretical Computer

Science, ITCS, (2014), pp. 155–168
[20] M. Cheraghchi, V. Guruswami, Non-malleable coding against bit-wise and split-state tampering, in TCC,

(2014), pp. 440–464
[21] S.G. Choi, A. Kiayias, T. Malkin, BiTR: Built-in tamper resilience, in ASIACRYPT, (2011), pp. 740–758
[22] S. Coretti, Y. Dodis, B. Tackmann, D. Venturi, Non-malleable encryption: simpler, shorter, stronger.

IACR Cryptol. ePrint Archive, 772 (2015)
[23] S. Coretti, U. Maurer, B. Tackmann, D. Venturi, From single-bit to multi-bit public-key encryption via

non-malleable codes, in TCC, (2015), pp. 532–560
[24] R. Cramer,Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, University of

Amsterdam, (1996)
[25] G. Di Crescenzo, R.J. Lipton, S. Walfish, Perfectly secure password protocols in the bounded retrieval

model, in TCC, (2006), pp. 225–244
[26] D. Dachman-Soled, Y.T. Kalai, Securing circuits against constant-rate tampering, in CRYPTO, (2012),

pp. 533–551
[27] D. Dachman-Soled, Y.T. Kalai, Securing circuits and protocols against 1/poly(k) tampering rate, in TCC,

(2014), pp. 540–565
[28] D. Dachman-Soled, F.-H. Liu, E. Shi, H.-S. Zhou, Locally decodable and updatable non-malleable codes

and their applications, in TCC, (2015), pp. 427–450
[29] I. Damgård, S. Faust, P. Mukherjee, D. Venturi, Bounded tamper resilience: How to go beyond the

algebraic barrier, in ASIACRYPT, (2013), pp. 140–160
[30] I. Damgård, S. Faust, P.Mukherjee, D. Venturi, The chaining lemma and its application, in ICITS, (2015),

pp. 181–196
[31] Y. Dodis, K. Haralambiev, A. López-Alt, D. Wichs, Cryptography against continuous memory attacks,

in FOCS, (2010), pp. 511–520
[32] Y. Dodis, K. Haralambiev, A. López-Alt, D. Wichs, Efficient public-key cryptography in the presence

of key leakage, in ASIACRYPT, (2010), pp. 613–631
[33] Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from

biometrics and other noisy data. SIAM J. Comput.38(1), 97–139 (2008)
[34] S. Dziembowski, Intrusion-resilience via the bounded-storage model, in TCC, (2006), pp. 207–224
[35] S. Dziembowski, T. Kazana, M. Obremski, Non-malleable codes from two-source extractors, in

CRYPTO, (2013), pp. 239–257
[36] S. Dziembowski, T. Kazana, D. Wichs, One-time computable self-erasing functions, in TCC, (2011),

pp. 125–143
[37] S. Dziembowski, K. Pietrzak, D. Wichs, Non-malleable codes, in ICS, (2010), pp. 434–452

190 I. Damgård et al.

[38] S. Faust, M. Kohlweiss, G.A. Marson, D. Venturi, On the non-malleability of the fiat-shamir transform,
in INDOCRYPT, (2012), pp. 60–79

[39] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi, Continuous non-malleable codes, in TCC (2014)
[40] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi, A tamper and leakage resilient von Neumann architec-

ture, in PKC, (2015), pp. 579–603
[41] S. Faust, P. Mukherjee, D. Venturi, D. Wichs, Efficient non-malleable codes and key-derivation for

poly-size tampering circuits, in EUROCRYPT, (2014), pp. 111–128
[42] S. Faust, K. Pietrzak, D. Venturi, Tamper-proof circuits: How to trade leakage for tamper-resilience. In

ICALP (1), (2011), pp. 391–402
[43] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems,

in CRYPTO, (1986), pp. 186–194
[44] M. Fischlin, R. Fischlin, The representation problem based on factoring, in CT-RSA, (2002), pp. 96–113
[45] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, E. Tromer, Circuits resilient to additive attacks with

applications to secure computation, in STOC, (2014), pp. 495–504
[46] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, Algorithmic tamper-proof (ATP) security:

theoretical foundations for security against hardware tampering, in TCC, (2004), pp. 258–277
[47] V. Goyal, A. O’Neill, V. Rao, Correlated-input secure hash functions, in TCC, (2011), pp. 182–200
[48] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in

ASIACRYPT, (2006), pp. 444–459
[49] L.C. Guillou, J.-J. Quisquater, A “paradoxical” identity-based signature scheme resulting from zero-

knowledge, in CRYPTO, (1988), pp. 216–231
[50] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner, Private circuits II: keeping secrets in tamperable circuits,

in EUROCRYPT, (2006), pp. 308–327
[51] Z. Jafargholi, D. Wichs, Tamper detection and continuous non-malleable codes, in TCC, (2015), pp.

451–480,
[52] Y.T. Kalai, B. Kanukurthi, A. Sahai, Cryptography with tamperable and leaky memory, in CRYPTO,

(2011), pp. 373–390
[53] J. Katz, V. Vaikuntanathan, Signature schemes with bounded leakage resilience, In ASIACRYPT, (2009),

pp. 703–720
[54] A. Kiayias, Y. Tselekounis, Tamper resilient circuits: the adversary at the gates, in ASIACRYPT, (2013),

pp. 161–180
[55] F.-H. Liu, A. Lysyanskaya, Tamper and leakage resilience in the split-state model, in CRYPTO, (2012),

pp. 517–532
[56] S. Lucks, Ciphers secure against related-key attacks, in FSE, (2004), pp. 359–370
[57] M. Naor, G. Segev, Public-key cryptosystems resilient to key leakage, in CRYPTO, (2009), pp. 18–35
[58] T. Okamoto, Provably secure and practical identification schemes and corresponding signature schemes,

in CRYPTO, (1992), pp. 31–53
[59] K. Pietrzak, Subspace LWE, in TCC, (2012), pp. 548–563
[60] S. Pohlig, M. Hellman, An improved algorithm for computing logarithms over and its cryptographic

significance. IEEE Trans. Inform. Theory, 24(1), 106–110 (1978)
[61] B. Qin, S. Liu, T.H. Yuen, R.H. Deng, K. Chen, Continuous non-malleable key derivation and its

application to related-key security, in PKC, (2015), pp. 557–578
[62] H. Wee, Public key encryption against related key attacks, in PKC, (2012), pp. 262–279

	Bounded Tamper Resilience: How to Go Beyond the Algebraic Barrier
	1. Introduction
	1.1. Our Contribution
	1.2. Related Work

	2. Preliminaries
	2.1. Basic Notation
	2.2. Hard Relations
	2.3. Signature Schemes
	2.4. Σ-Protocols
	2.5. True-Simulation Extractability
	2.6. A Note on Deterministic Versus Probabilistic Tampering

	3. ID Schemes with BLT Security
	3.1. Σ-Protocols are Tamper Resilient
	3.2. Concrete Instantiation with More Tampering
	3.3. Some Attacks
	3.4. BLT-Secure Signatures

	4. IND-CCA PKE with BLT Security
	4.1. Restricted IND-CCA BLT Security
	4.2. A General Transformation
	4.3. Instantiation from BHHO
	4.4. Impossibility of ``Post-challenge'' IND-CCA BLT Security

	5. Updating the Key in the iFloppy Model
	5.1. ID Schemes in the iFloppy Model
	5.2. PKE Schemes in the iFloppy Model

	6. Tampering with the Computation in the iFloppy Model
	Acknowledgements

