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Abstract. Oblivious transfer (OT) is one of the most fundamental primitives in cryp-
tography and is widely used in protocols for secure two-party and multi-party computa-
tion. As secure computation becomes more practical, the need for practical large-scale
OT protocols is becoming more evident. OT extensions are protocols that enable a
relatively small number of “base-OTs” to be utilized to compute a very large number
of OTs at low cost. In the semi-honest setting, Ishai et al. (Advances in cryptology—
CRYPTO’03, vol 2729 of LNCS, Springer, 2003) presented an OT extension protocol
for which the cost of each OT (beyond the base-OTs) is just a few hash function oper-
ations. In the malicious setting, Nielsen et al. (Advances in cryptology—CRYPTO’12,
vol 7417 of LNCS, Springer, 2012) presented an efficient OT extension protocol for the
setting of malicious adversaries that is secure in a random oracle model. In this work,
we improve OT extensions with respect to communication complexity, computation
complexity, and scalability in the semi-honest, covert, and malicious model. Further-
more, we show how to modify our maliciously secure OT extension protocol to achieve
security with respect to a version of correlation robustness instead of the random or-
acle. We also provide specific optimizations of OT extensions that are tailored to the
use of OT in various secure computation protocols such as Yao’s garbled circuits and
the protocol of Goldreich–Micali–Wigderson, which reduce the communication com-
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plexity even further. We experimentally verify the efficiency gains of our protocols and
optimizations.
Keywords. Cryptographic protocols, Oblivious transfer extension, Implementation.

1. Introduction

In the setting of secure two-party computation, two parties P0 and P1 with respective in-
puts x and ywish to compute a joint function f on their inputswithout revealing anything
but the output f (x, y). This captures a large variety of tasks, includingprivacy-preserving
data mining, anonymous transactions, private database search, and many more.
Protocols for secure computation provide security in the presence of adversarial be-

havior. A number of adversary models have been considered in the literature. The most
common adversaries are as follows: passive or semi-honest adversaries who follow the
protocol specification but attempt to learn more than allowed by inspecting the protocol
transcript, and active or malicious adversaries who run any arbitrary strategy in an at-
tempt to break the protocol. In both these cases, the security of a protocol guarantees that
nothing is learned by an adversary beyond its legitimate output. Another notion is that
of security in the presence of covert adversaries; in this case, the adversary may follow
any arbitrary strategy, but is guaranteed to be caught with good probability if it attempts
to cheat. The ultimate goal in designing efficient protocols is to construct protocols that
are secure against strong (active or covert) adversaries while adding very little overhead
compared to the passive variant. Within this goal, optimizing the efficiency of protocols
in the semi-honest model serves as an important stepping stone. In our paper, we opti-
mize protocols in the semi-honest model and show how to achieve covert and malicious
security at low additional cost.

Practical SecureComputationSecure computation has been studied since themid-1980s,
when powerful feasibility results demonstrated that any efficient function can be com-
puted securely [25,65]. However, until recently, the bulk of research on secure computa-
tionwas theoretical in nature. Indeed,many held the opinion that secure computationwill
never be practical since carrying out cryptographic operations for every gate in a circuit
computing the function (which is thewaymany protocolswork)will never be fast enough
to be of use. Due to many works that pushed secure computation further toward practical
applications, e.g., [7–9,11,14–17,21,22,29,30,39,44,46,49,51–53,56,58,63], this con-
jecture has proven to be wrong, and it is possible to carry out secure computation of com-
plex functions at speeds that five years ago would have been unconceivable, both in the
semi-honest model and in the malicious model. For example, in [44], it was shown that a
single AES evaluation can be securely computed in 12ms even with security against ma-
licious adversaries. This has applications to private database search and also tomitigating
server breaches in the cloud by sharing the decryption key for sensitive data between two
servers and never revealing it (thereby forcing an attacker to compromise the security of
two servers instead of one). In addition, several applications have a circuit size of several
million up to billions ofANDgates,whichwould have until recently been thought impos-
sible to evaluate securely. For instance, the Edit-Distance circuit of [29] has a size of 1.29
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billion AND gates. Hence, the underlying cryptographic operations that are performed
in secure computation protocols need to efficiently process large-scale circuits.

Oblivious Transfer and Extensions In an oblivious transfer (OT) [19,62], a sender with a
pair of input strings (x0, x1) interacts with a receiver who inputs a choice bit r . The result
is that the receiver learns xr without learning anything about x1−r , while the sender learns
nothing about r . Oblivious transfer is an extremely powerful tool and the foundation for
almost all efficient protocols for secure computation. Notably, Yao’s garbled circuits
protocol [65] requires OT for every input bit of one party, and the GMW protocol [25]
requires OT for every AND gate of the circuit. Accordingly, the efficient instantiation of
OT is of crucial importance as is evident in many recent works that focus on efficiency,
e.g., [8,11,14,15,22,24,27–29,32,33,43,46,49,52,56,56,60,64]. The best known OT
protocol in the semi-honest and malicious case is that of [12], which achieves around
10,000 1-out-of-2 OTs per second using one thread. However, if millions or even billions
of oblivious transfers need to be carried out, this will become prohibitively expensive.
We give concrete examples for typical applications requiring a large number of OTs next:

Example 1.1. The AES circuit has ∼10,000 AND gates (cf. [56]) and requires 20,000
passively secure OTs when evaluated with GMW and ∼220 actively secure OTs when
evaluated with TinyOT (≥40 OTs (aBits) per AND gate [46]).

Example 1.2. The PSI circuit (Sort-Compare-Shuffle) of [28] has O(bn log n) AND
gates and for n = 65,536 elements with b = 32-bits, the circuit has 225 AND gates and
requires 226 passively secure OTs when evaluated with GMW and ∼230 actively secure
OTs when evaluated with TinyOT.

Example 1.3. The PSI protocol of [13] needs 1.44kn OTs for both the passively- and
actively secure versions of the protocol. For n = 1, 000, 000 elements and security
parameter k = 128, this amounts to ∼ 227 OTs (∼ 180 OTs per element).

To meet this large-scale demand of OTs, OT extensions [6,35] can be used. An OT
extension protocol works by running a small number of base-OTs (say, 80 or 128) that
are used as a base for obtaining many OTs via the use of cheap symmetric cryptographic
operations only. This is conceptually similar to hybrid encryption where instead of
encrypting a large message using RSA, which would be too expensive, only a single
RSA computation is carried out to encrypt a symmetric key and then the long message
is encrypted using symmetric operations only. Such an OT extension can actually be
achieved with extraordinary efficiency; specifically, the protocol of [35] requires only
three hash function computations on a single block per oblivious transfer (beyond the
initial base-OTs). For active adversaries, OT extensions are somewhat more expensive.
Prior to this work, the best known protocol for OT extensions with security against
active adversaries was introduced by [56], which added an overhead of approximately
8
3 (= 266%) to the passively secure OT extension protocol of [35].

1.1. Our Contributions and Outline

In this paper, we present more efficient protocols for OT extensions in the semi-honest,
covert, and malicious model. Our improvements in the semi-honest model (Sect. 4)
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Table 1. Empirical communication and run-time for 224 randomOT extensions on 1-bit strings with κ = 128
bit security evaluated using 4 threads in a LAN and WAN setting (cf. Sect. 7).

Protocol Comm. Run-time (s) Base-OTs Security

(MB) LAN WAN

Passive
[35] 508 9.2 39.9 128 CRF
[40] 154 7.8 20.8 256 RO
This (Sect. 4) 254 3.8 18.8 128 CRF
Covert
This (Sect. 5.5) 330 4.5 26.1 166 CRF/RO
Active
[45] 196,688∗ – – 323 CRF
[56] 682 9.1 50.4 342 RO
This (Sect. 5) 378 7.3 30.5 190 CRF/RO
[41] 256* – – 128 RO

The security assumption is given as correlation robust function assumption (CRF) or randomoracle assumption
(RO) (cf. Sect. 2.2). Numbers with * are estimated

seem somewhat surprising since the protocol of [35] sounds optimal given that only
three hash function computations are needed per transfer. Interestingly, our protocols do
not lower the number of hash function operations. However, we observe that significant
cost is incurred due to other factors than the hash function operations. We propose
several optimizations that improve computation and communication and outline how to
parallelize the semi-honest OT extension. We build on the efficiency improvements of
the semi-honest OT extension protocol of [35] and outline how to extend the protocol
to covert and malicious adversaries at a lower cost than the previously best malicious
secure OT extension protocol of [56] (Sect. 5). In short, our protocol improves the
overhead that comes with extending the passively secure OT extension protocol of [35]
to malicious adversaries from 266 to 150%. Finally, we outline different OT flavors that
are specifically designed to be used in secure computation protocols and which reduce
the communication and computation even further (Sect. 6). We apply our optimizations
to the OT extension implementation of [64] (which is based on [11]) and demonstrate
the improvements by extensive experiments (Sect. 7).1 After presenting related work
in Sect. 3 and preliminaries in Sect. 2, our paper is structured as follows:

Faster Semi-HonestOTExtensions Sect. 4Wepresent an improved version of the original
OT extension protocol of [35] with reduced communication and computation complex-
ity. Furthermore, we demonstrate how the OT extension protocol can be processed in
independent blocks, allowing OT extension to be parallelized and yielding a much faster
run-time (Sect. 4.1). In addition, we show how to implement the matrix transpose op-
eration using a cache-efficient algorithm that operates on multiple entries at once (Sect.
4.2); this significantly reduces the run-time of the protocol to 41% as can be seen in the
LAN experiments in Table 1. Finally, we show how to reduce the communication from
the receiver to the sender to 50% (Sect. 4.3). This is of great importance since local
computations of the OT extension protocol are so fast that the communication is often

1Our implementation is available online at http://encrypto.de/code/OTExtension.

http://encrypto.de/code/OTExtension
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the bottleneck, especially when running the protocol over the Internet or even wireless
networks (cf. WAN results in Table 1 and Fig. 2).

Faster Covert and Malicious OT Extensions Sect. 5 We present our improved malicious
OT extension protocol which improves on the previously best malicious OT extension
protocol of [56].Wefirst present the basic protocol (Sect. 5.1) and prove its security (Sect.
5.2). The basic protocol adds very low communication overhead to the semi-honest ver-
sion but incurs a high computation overhead. We show how to reduce the computation at
the cost of increased communication,which results in better overall efficiency (Sect. 5.3).
The resulting protocol decreases the communication overhead for obtaining actively se-
cure OT extension from 266% for [56] to 150%.We then outline how to modify the pro-
tocol to replace the randomoraclewith aweaker correlation robustness assumption (Sect.
5.4). Finally, we show how to modify our protocol to achieve covert security (Sect. 5.5).
ExtendedOTFunctionality Sect. 6Our improved protocols can be used in any setting that
regular OT can be used. However, with a mind on the application of secure computation,
we further optimize the protocol by taking into account its use in secure computa-
tion in Sect. 6. We outline four OT flavors that are specifically designed to be used in
secure computation protocols and which reduce the communication and computation
even further: Correlated OT, Sender Random OT, Receiver Random OT, and Random
OT. Correlated OT (C-OT, Sect. 6.1) is suitable for secure computation protocols that
require varying correlated inputs, such as Yao’s garbled circuits protocol with the free-
XOR technique [42,65] or the arithmetic multiplication routine of [15]. Sender Random
OT (SR-OT, Sect. 6.2) and Receiver Random OT (RR-OT, Sect. 6.3) are suitable where
the input of the sender (or receiver) can be random, but the input of the receiver (sender)
needs to be chosen. Finally, Random OT (R-OT Sect. 6.4) is a combination of Sender
Random and Receiver Random OT and can be used where the inputs of sender and
receiver can be random, such as GMWwith multiplication triples [25,64] (cf. Sect. 2.7).
In all cases, the communication from the sender to the receiver is reduced to 50% (or
even less) of the original protocol of [35].

Experimental Evaluation Sect. 7 We experimentally verify the performance improve-
ments of our proposed optimizations for OT extension and special-purpose OT func-
tionalities in a LAN and a WAN setting. A summary of our results for 224 random OT
extensions on 1-bit strings using 4 threads is given in Table 1. Overall, our optimizations
improve the run-time and communication of the passively secure OT extension proto-
col of [35] by factors 2–3 and 2, respectively, and the run-time and communication for
actively secure OT extension by factors 1.3–1.7 and 1.7, respectively.

1.2. Concurrent and Independent Related Work

Parallel to and independently of our work on passively secure OT extension, [40] intro-
duced an efficient 1-out-of-N OT extension protocol and outlined the same optimization
for reducing the communication from the receiver to the sender by 50% that we propose
in Sect. 4.3. When transferring short strings, their 1-out-of-N OT extension protocol
can be broken down into log2(N ) 1-out-of-2 OTs that require less communication than
log2(N ) executions of our 1-out-of-2 OT extension protocol (cf. Table 1).We implement
and compare their protocol on 1-out-of-2 OT on 1 bit in Sect. 7.4.
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Most recently, a new actively secureOT extension protocol has been introduced in [41]
which works in the random oracle model and achieves nearly the same communication
and computation overhead as the passively secure protocol of [35]. Their protocol is
conceptually similar to ours (and to that of [56]) but performs the checks on the base-
OTs in parallel instead of checking individual pairs. Furthermore, their check routine can
be implemented very efficiently using the AES new instructions (AES-NI), resulting in
very little computational overhead over the passively secure variant. The authors prove
that if one uses κ base-OTs, the protocol provides 2κ−c computational security against
a malicious receiver who is able to learn c bits with probability at most 2−c where κ is
the computational security parameter. In contrast to the work of [41], we prove that our
protocol is secure in the weaker, min-entropy correlation robust model (cf. Sect. 5.4).

1.3. Extensions Over Previous Work

This work combines and extends our works previously published at ACMCCS 2013 [2]
and Eurocrypt 2015 [3]. We have made the following improvements over these
versions:

• Section 5: Detailed proof of the malicious OT extension and parameter estima-
tion (Sect. 5.2).

• Section 6: Extended special-purpose OT functionalities in particular Receiver Ran-
dom OT for GMW (Sect. 6.3) and formal proofs of security.

• Section 7: Extended experiments, in particular comparisonwith the passively secure
1-out-of-N OT extension of [40] and using parallelism for actively secure OT
extension (Sect. 7.4), and the k-min-entropy correlation (Sect. 7.5).

2. Preliminaries

In the following, we give preliminaries for our paper. We describe our security parame-
ters (Sect. 2.1) and definitions (Sect. 2.2) and give an overviewof oblivious transfer (Sect.
2.3), oblivious transfer extensions (Sect. 2.4), Yao’s garbled circuits protocol (Sect. 2.5),
the GMWprotocol of Goldreich–Micali–Wigderson (Sect. 2.6), and outline how to eval-
uate AND gates in GMW using oblivious transfer (Sect. 2.7).

2.1. Security Parameters

Our protocols use a computational (symmetric) security parameter κ and a statistical
security parameter ρ. Asymptotically, this means that our protocols are secure for any
adversary running in time poly(κ), except with probability μ(κ) + 2−ρ (a formal defi-
nition follows and is based on [48]). In our experiments, we set κ = 128 and ρ = 40,
which is considered to be secure beyond 2030.2 Table 2 lists usage times (time frames)
for different values of the symmetric security parameter κ (SYM) and corresponding field
sizes for elliptic curve cryptography (ECC) as recommended by NIST [55]. For ECC,
we use Koblitz curves which had the best performance in our experiments (cf. [18]).

2According to the summary of cryptographic key length recommendations at http://keylength.com.

http://keylength.com
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Table 2. Security parameters and recommended key sizes.

Security (time frames) SYM ECC

Short (legacy) 80 K-163
Medium (<2030) 112 K-243
Long (>2030) 128 K-283

2.2. Definitions

We let κ denote the security parameter and let ρ denote the statistical security parameter.
For a set A, x ∈R A denotes that the element x is chosen uniformly at random from
A. We first define indistinguishability, respectively, to both security and statistical se-
curity parameter, as in [48]. A distribution ensemble X = {X (a, κ, ρ)}κ,ρ∈N,a∈{0,1}κ is
an infinite sequence of random variables. Two distribution ensembles X,Y are (κ, ρ)-

computationally indistinguishable, denoted X
κ,ρ≡ Y if there exists a constant 0 < c ≤ 1

such that for every non-uniform polynomial time distinguisher D, every ρ ∈ N, every
polynomial p(·), and all large enough κ ∈ N it holds that for every a ∈ {0, 1}∗:

|Pr [D (X (a, κ, ρ), a, κ, ρ) = 1)] − Pr [D (Y (a, κ, ρ), a, κ, ρ)]| <
1

p(κ)
+ 1

2c·ρ
(1)

In protocols where we do not use a statistical security parameter (as the semi-honest
protocols in this paper), we use the standard computational indistinguishability defini-
tion, which is a special case of the definition above. Specifically, the ensembles X and
Y are indexed by a and κ only, and we omit the quantification over ρ and the term 1

2c·ρ

in Eq. (1). We denote this (standard) indistinguishability by X
c≡ Y .

Correlation Robust Function We recall the standard definition of a correlation robust
function from [35], as well as a stronger version of the assumption. Let U� denote the
uniform distribution over strings of length �.

Definition 2.1. (Correlation Robustness) An efficiently computable function
H : {0, 1}κ → {0, 1}n is correlation robust if it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡, {Um·κ+m·n}

where t1, . . . , tm, s ∈ {0, 1}κ are uniformly and independently distributed. H is strongly
correlation robust if for every t1, . . . , tm ∈ {0, 1}κ it holds that:

{H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·n}

where s ∈ {0, 1}κ is uniform.

Secure Two-PartyComputationWe refer the reader to [26, Chap. 7] and [10] for the defin-
itions of security for two-party computation in the presence of semi-honest andmalicious
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adversaries. In the semi-honest model, we require the standard computational indistin-
guishability. For the malicious case, we require (κ, ρ) indistinguishability between the
ideal and the real distributions, rather than just regular computational indistinguisha-
bility. We also consider the model of covert adversaries and refer the reader to [1] for
appropriate definitions.

2.3. Oblivious Transfer

Oblivious transfer (OT) was first introduced by Rabin [62] as a function where a receiver
receives a message, sent by a sender, with probability 1/2, while the sender remains
oblivious whether the message was received. It was later redefined to the 1-out-of-2
OT functionality more commonly used today by [19], where the sender inputs two
messages (x0, x1) and the receiver inputs a choice bit r and obliviously receives xr
without learning any information about x1−r . Formally, the 1-out-of-2 OT functionality
on n-bit strings is defined as OTn((x0, x1), r) = (λ, xr ) where λ denotes the empty
string and x0, x1 ∈ {0, 1}n . In this paper, we focus on the general (and most applicable)
functionality, which is equivalent tom invocations of the 1-out-of-2 OT functionality on
n-bit strings. That is, the sender inputs m pairs of n-bit strings (x0j , x

1
j ) for 1 ≤ j ≤ m

and the receiver inputs m selection bits r = (r1, . . . , rm). The output of the receiver is
(xr11 , . . . , xrmm ) while the sender has no output. We denote this functionality as m × OTn
and call the sender PS or P0 and the receiver PR or P1.

Several protocols for OT based on different cryptographic assumptions and attacker
models were introduced. Most notable are the passively secure OT protocol of [57] and
the actively secure OT protocols of [12] and [61], which are among the most efficient
today. However, the impossibility result of [38] showed that OT protocols require costly
asymmetric cryptography, which greatly limits their efficiency.

2.4. OT Extension

In his seminal work, Beaver [6] introduced OT extension protocols, which extend few
costly base-OTs using symmetric cryptography only. While the first construction of [6]
was inefficient and mostly of theoretical interest, the protocol of [35] showed that OT
can be extended efficiently and with very little overhead.We give the semi-honest secure
OT extension protocol of [35] in Protocol 1.

2.5. Yao’s Garbled Circuits Protocol

Yao’s garbled circuits protocol [65] allows two parties to securely compute an arbitrary
function that is represented as Boolean circuit. The sender PS encrypts the Boolean gates
of the circuit using symmetric keys and sends the encrypted function together with the
keys that correspond to his input bits to the receiver PR . PR then uses a m × OTκ to
obliviously obtain the keys that correspond to hism input bits and evaluates the encrypted
function by decrypting it gate by gate. To obtain the output, PR sends the resulting output
keys to PS or PS provides a mapping from keys to output bits.
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PROTOCOL 1 (Semi-honest secure OT extension protocol of [35])

• Input of PS: m pairs (x0j , x
1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm ).
• Common Input: Symmetric security parameter κ and number of base-OTs � = κ .
• Oracles and cryptographic primitives: The parties have an oracle access to the � × OTκ

functionality and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a correlation
robust function H : [m] × {0, 1}� → {0, 1}n (see Definition 2.1).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR chooses � pairs of
seeds k0i ,k

1
i each of size κ .

(b) The parties invoke the � × OTκ -oracle, where PS acts as the receiver with input s and
PR acts as the sender with inputs (k0i ,k

1
i ) for every 1 ≤ i ≤ �.

Let T = [t1| . . . |t�] be a random m × � bit matrix that is generated by PR where its i th
column is ti for 1 ≤ i ≤ �. Let t j denote the j th row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:

(a) PR computes u(i,0) = ti ⊕G(k0i ) and u
(i,1) = ti ⊕G(k1i ) ⊕ r, and sends (ui,0, ui,1)

to PS for every 1 ≤ i ≤ �.
(b) For every 1 ≤ i ≤ �, PS defines qi = u(i,si ) ⊕ G(ksii ). (Note that qi = (si · r) ⊕ ti .)

(c) Let Q = [q1| . . . |q�] denote the m × � bit matrix where its i th column is qi . Let q j

denote the j th row of the matrix Q. (Note that qi = (si · r)⊕ ti and q j = (r j · s)⊕ t j .)
(d) PS sends (y0j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕ H( j,q j ) and y1j = x1j ⊕ H( j,q j ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes x j = y
r j
j ⊕ H( j, t j ).

3. Output: PR outputs (x1, . . . , xm ); PS has no output.

2.6. The GMW Protocol

The protocol of Goldreich, Micali, and Wigderson (GMW) [25] also represents the
function to be computed as a Boolean circuit. Both parties secret-share their inputs
using the XOR operation and evaluate the Boolean circuit as follows. An XOR gate is
computed by locally XORing the shares while an AND gate is evaluated interactively
with the help of a multiplication triple [5] which can be precomputed by two random
1-out-of-2 OTs on bits (cf. Sect. 2.7). To reconstruct the outputs, the parties exchange
their output shares. The performance of GMWdepends on the number of OTs and on the
depth of the evaluated circuit, since the evaluation of AND gates requires interaction.

2.7. GMW with Random 1-Out-of-2 OTs

AnAND gate in the GMWprotocol can be computed efficiently using the multiplication
triple functionality [5], denoted as f mult :

f mult (λ, λ)=((a0, b0, c0), (a1, b1, c1)) ∈R {0, 1}6 s.t. c0 ⊕ c1=(a0 ⊕ a1)(b0 ⊕ b1),

where λ denotes the empty string.



G. Asharov et al.

In order to precompute the multiplication triples, previous works suggest to use 1-
out-of-4 bit OT [11,64]. In the following, we present a different approach for generating
multiplication triples using two random 1-out-of-2 OTs on bits (R-OT). The R-OT func-
tionality is exactly the same as OT, except that the sender gets two random messages
(x0, x1) and the receiver gets a random choice bit a and xa as output. Later in Sect. 6.4,
we will show that R-OT can be extended more efficiently than OT. In comparison with
1-out-of-4 bit OTs, using two R-OTs only slightly increases the computation complexity
(one additional evaluation of G and H and two additional matrix transpositions), but
reduces the communication complexity by a factor of 2. Alternatively, one could use the
1-out-of-N OT from [40] and break it down to 1-out-of-4 bit OT, which again reduces
communication at the cost of increased computation (cf. Sect. 7.4).

In order to generate amultiplication triple, we first introduce the f ab functionality that
is implemented in Protocol 2 using R-OT. The f ab functionality is defined as follows:

f ab(λ, λ) = ((b, v), (a, u)) ∈R {0, 1}4 s.t. ab = u ⊕ v.

The implementation of this functionality is as follows.

PROTOCOL 2 (Implementing f ab in the R-OT hybrid model)

1: PS and PR perform a R-OT with PS as sender and PR as receiver.
PS obtains bits x0, x1 and PR obtains random choice bit a and xa as output.

2: PR sets u = xa ; PS sets b = x0 ⊕ x1 and v = x0.
[Note that ab = u ⊕ v as ab = a(x0 ⊕ x1) = (a(x0 ⊕ x1) ⊕ x0) ⊕ x0 = xa ⊕ x0 = u ⊕ v.]

3: PR outputs (a, u) and PS outputs (b, v).

Note that in Protocol 2, the parties do not send any messages, they just invoke the
R-OT functionality and “translate” its output. The security of this protocol is shown
via the following argument. There exists, in fact, a bijective function between f ab and
the R-OT functionalities, and therefore the security of the two is equivalent both in the
presence of a semi-honest adversary. Protocol 2 is in fact a transformation from R-OT
to f ab. A transformation from f ab to R-OT can be shown as follows: Given (a, u), the
receiver just outputs them both. Given (b, v), the receiver outputs (v, b⊕v). Since these
two functionalities are equivalent, a secure protocol for computing R-OT implies secure
protocol for f ab, and a secure protocol for f ab implies secure protocol for R-OT.

We are now ready to implement the f mult functionality in the f ab-hybrid model:

PROTOCOL 3 (Implementing f mult in the f ab-hybrid model)

1: The parties invoke the f ab functionality where P0 obtains (b0, v0) and P1 obtains (a1, u1).
Note that a1b0 = u1 ⊕ v0.

2: The parties invoke the f ab functionality where P0 obtains (a0, u0) and P1 obtains (b1, v1).
Note that a0b1 = u0 ⊕ v1.

3: Each party outputs ci = ai bi ⊕ ui ⊕ vi , and outputs (ai , bi , ci ).

Claim 2.2. Protocol 3 securely computes the f mult -functionality in the f ab-hybrid
model, both in presenceof a static (probabilistic polynomial time) semi-honest adversary.
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Proof Sketch. Regarding correctness, note that:

c0 ⊕ c1 = (a0b0 ⊕ u0 ⊕ v0) ⊕ (a1b1⊕u1⊕v1)=a0b0 ⊕ (u0⊕v1) ⊕ (u1⊕v0) ⊕ a1b1
= a0b0 ⊕ a0b1 ⊕ a1b0 ⊕ a1b1 = (a0 ⊕ a1)(b0 ⊕ b1).

Regarding simulation, assume that P0 is corrupted. The simulator receives as input
(a0, b0, c0, v0) and has to produce the view of the corrupted party, i.e., the messages
(b0, v0) and (a0, u0). It sets u0 = c0 ⊕ a0b0 ⊕ v0, and thus the view is a deterministic
function of the output of P0 (which is the input of the simulator). The simulation is
perfect. The case of corrupted P1 is shown analogously. �

3. Related Work

In this section, we review related work on semi-honest OT extension (Sect. 3.1) and
malicious OT extension (Sect. 3.2).

3.1. Semi-Honest OT Extension

In the semi-honest model, the protocol of [35] was implemented by the FastGC frame-
work [29]. In [34], the memory footprint of the OT extension implementation in [29]
was improved by splitting the OT extension protocol sequentially into multiple rounds
and speedups were obtained by instantiating the pseudorandom generator with AES
instead of SHA-1. In [40], a 1-out-of-N OT extension protocol was introduced that is
based on the OT extension protocol of [35] and, for 1-out-of-2 OT on short strings,
achieves sub-linear communication in the number of OTs. In particular, for 1-out-of-2
OT on 1-bit strings, their protocol improves communication compared to [35] by factor
1.6. This improvement in communication comes with an increased cost in computation,
since the number of evaluations of the random oracle H for the sender is increased from
2 log2(N ) to N . In Sect. 7.4, we compare our protocols to [40] for 1-out-of-2 OT on
1-bit strings in order to evaluate this computation/communication trade-off. However,
we would like to point out that our work is orthogonal to theirs, since our OT protocols
maintain their efficiency when obliviously transferring long strings in a 1-out-of-2 OT
while their work achieves better efficiency when performing 1-out-of-N OT.
The aboveworks all consider the concrete efficiency of OT extensions. The theoretical

feasibility of OT extensions was established in [6], and further theoretical foundations
were laid in [50]. [36] introduced a non-black-box technique for extending OTs with
asymptotic constant computation/communication overhead. Their protocol assumes the
existence of a polynomial stretch pseudo-random generator in NC0, i.e., the set of func-
tions that can be computed by a constant depth circuit with bounded fan-in where each
output bit depends on a constant number of input bits. The high-level idea of the protocol
is to use the PRG in the scheme for extending OTs of [6]. However, their scheme is ex-
tremely costly in concrete terms and the security of the PRG inNC0 requires nonstandard
security assumptions.
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3.2. Malicious OT Extension

Due to its importance, a number of previous works have tackled the question of OT
extensions with security for malicious/active adversaries. There exist several approaches
for achieving security against malicious adversaries for OT extensions. All of the known
constructions build on the semi-honest protocol of [35], and add consistency checks of
different types to the OT extension protocol, to ensure that the receiver sent consistent
values. (Note that in [35], the sender cannot cheat and so it is only necessary to enforce
honest behavior for the receiver.)
The first actively secure version of OT extension used a cut-and-choose technique and

was already given in [35]. This cut-and-choose technique achieves a security of 2−ρ by
performing ρ parallel evaluations of the basic OT extension protocol.
This was improved on by [31,54], who show that active security can be achieved at a

much lower cost. Their approach works in the random oracle model and ensures security
against a malicious receiver by adding a low-cost check per extended OT, which uses
the uncertainty of the receiver in the choice bit of the sender. As a result, a malicious
receiverwhowants to learn p choice bits of the sender risks being caughtwith probability
2−p. However, this measure allows a malicious sender to learn information about the
receiver’s choice bits. They prevent this attack by combining S ∈ {2, 3, 4} OTs and
ensuring the security of one OT by sacrificing the remaining S − 1 OTs. Hence, their
approach adds an overhead of at least S ≥ 2 compared to the semi-honest OT extension
protocol of [35] for a reasonable number of OTs (with S = 2 and approximately 107

OTs, they achieve security except with probability 2−25, cf. [54]).
An alternative approach for achieving actively secure OT extension was given in [56].

Their approach also works in the random oracle model but, instead of performing checks
per extended OT as in [31,54], they perform consistency checks per base-OT. Their
consistency check method involves hashing the strings that are transferred in the base-
OTs and is highly efficient. In their approach, they ensure the security of a base-OT by
sacrificing another base-OT, which adds an overhead of factor 2. In addition, a malicious
receiver is able to learn p choice bits of the sender in the base-OTs with probability 2−p.
[56] shows that this leakage can be tolerated by increasing the number of base-OTs from
κ to 
 8

3κ�. The [56] protocol has been optimized and implemented on a GPU in [23]. We
give a full description of the [56] protocol with optimizations of [23] in the Appendix.
An approach for achieving actively secure OT extension that works in the standard

model has recently been introduced in [45]. Their approach achieves less overhead in
the number of base-OTs at the expense of substantially more communication during
the check routine (cf. Table 1 on page 5) and is therefore considerably less efficient.
Nevertheless, we point out that the work of [45] is of independent interest since it is
based on the original correlation robustness assumption only.
Since it is the previous best, we compare our protocol to that of [56]. Our approach

reduces the number of base-OTs by removing the “sacrifice” step of [56] (where one
out of every 2 base-OTs is opened) but increases the workload in the consistency check
routine. Indeed, we obtain an additive factor of a statistical security parameter, instead
of the multiplicative increase in [56]. This can be seen as a trade-off between reducing
communication through fewer base-OTs while increasing computation through more
work in the consistency check routine. We empirically show that this results in a more
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efficient actively secure OT extension protocol, which only has 60–90% more time and
50% more communication than the passively secure OT extension protocol of [35] in
the LAN and WAN setting compared to 90 –175% more time and 166% more commu-
nication for [56] (cf. Table 1).
In [37], it was shown how to achieve actively secure OT extension with constant over-

head from the passively secure protocol of [35]. Their approach involves the sender and
receiver “simulating” additional parties and then running an outer secure computation
protocol with security against honest majority. In addition, they show that their trans-
formation can make black-box use of any passively secure OT protocol. Overall, this
approach improves on the asymptotic communication of [31], but the exact constants
involved in this approach have not been analyzed.

4. Faster Semi-Honest OT

In the following, we describe algorithmic optimizations that improve the scalability
and computational complexity of OT extension protocols. We identified computational
bottlenecks in OT extension by micro-benchmarking the 1-out-of-2 OT extension im-
plementation of [64].3 We found that the combined computation time of PS and PR

was mostly spent on two operations: the matrix transposition (61%) and the evaluation
of H , implemented with SHA-256 (32%). (The remaining time was mostly spent on
XOR operations (5%) and the evaluation of G, implemented with AES (2%)). Further-
more, for networks with low bandwidth, the communication of OT quickly became the
bottleneck. To speed up OT extension, we propose to use parallelization (Sect. 4.1), an
efficient algorithm for bit-matrix transposition (Sect. 4.2), and a protocol optimization
that allows to reduce the communication from PR to PS by half (Sect. 4.3). Note that
these implementation optimizations are of general nature and can be applied to our, but
also to other OT extension protocols with security against stronger active adversaries.

4.1. Blockwise Parallelized OT Extension

Previous OT extension implementations [11,64] improved the performance of OT ex-
tension by using a vertical pipelining approach, i.e., one thread is associated with each
step of the protocol: The first thread evaluates the pseudorandom generator G, and the
second thread evaluates the correlation robust function H (cf. Sect. 2.4). However, as
evaluation of G is faster than evaluation of H , the workload between the two threads
is distributed unequally, causing idle time for the first thread. Additionally, this method
for pipelining is designed to run exactly two threads and thus cannot easily be scaled to
a larger number of threads.
As observed in [34,35], a large number of OT extensions can be performed by se-

quentially running the OT extension protocol on blocks of fixed size. This reduces the
total memory consumption at the expense of more communication rounds.
We propose to use a horizontal pipelining approach that splits the matrices processed

in the OT extension protocol into independent blocks that can be processed in parallel
using multiple threads with equal workload, i.e., each of the N threads evaluates the

3Note that the implementation in [64] performs 1-out-of-4 OT, but we adapted their implementation since
our protocol optimizations target 1-out-of-2 OT extension.
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Fig. 1. Efficient matrix transposition of a 4 × 4 matrix using Eklundh’s algorithm.

OT extension protocol for m
N inputs in parallel. Each thread uses a separate socket to

communicate with its counterpart on the other party, s.t. network scheduling is done by
the operating system.

4.2. Efficient Bit-Matrix Transposition

The computational complexity of cryptographic protocols is oftenmeasured by counting
the number of invocations of cryptographic primitives, since their evaluation often dom-
inates the overall run-time. However, non-cryptographic operations can also have a high
impact on the overall run-time of executions, although they might seem insignificant in
the protocol description. Matrix transposition is an example for such an operation. It
is required during the OT extension protocol to transpose the m × � bit-matrix T (cf.
Sect. 2.4), which is created column-wise but hashed row-wise. Although transposition
is a seemingly trivial operation, it has to be performed individually for each entry in T ,
making it a very costly operation.
We propose to efficiently implement the matrix transposition using Eklundh’s algo-

rithm [20], which uses a divide-and-conquer approach to recursively swap elements of
adjacent rows (cf. Fig. 1). This decreases the number of swap operations for transposing
a n × n matrix from O(n2) to O(n log2 n). Additionally, since we process a bit matrix,
we can perform multiple swap operations in parallel by loading multiple bits into one
register. Therefore, we again reduce the number of swap operations from O(n log2 n)

toO(
 n
r � log2 n), where r is the register size of the CPU (r = 64 for the machines used

in our experiments). Jumping ahead to the evaluation in Sect. 7.2, this reduced the total
time for the matrix transposition by approximately a factor of 22 from 17.4 s to 0.8 s
per party for 224 OTs and reduced the total time for the OTs from 30.4 s to 13.2 s when
using a single thread.

4.3. Optimized Semi-Honest OT Extension

In the following, we optimize them×OTn extension protocol of [35], described in Sect.
2.4. Note that this optimization was independently outlined in [40]. Recall, that in the
first step of the protocol in [35], PR chooses a hugem×�matrix T = [t1| . . . |tκ ]while
PS waits idly (for the semi-honest OT extension protocol, we can set � = κ; for the
malicious OT extension protocol, � needs to be increased). The parties then engage in
a �×OTm protocol, where the inputs of the receiver are (ti , ti ⊕ r) where r is its input
in the outer m×OTn protocol (m selection bits). After the OT, PS holds ti ⊕ (si · r)
for every 1 ≤ i ≤ �. As described in the appendices of [33,35], the protocol can be
modified such that PR only needs to choose two small �×κ matrices K0 = [k01| . . . |k0�]
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and K1 = [k11| . . . |k1�] of seeds. These seeds are used as input to �×OTκ ; specifically,
PR’s input as sender in the i-th OT is (k0i ,k

1
i ) and, as in [35], the input of PS is si .

To transfer the m-bit tuple (ti , ti ⊕ r) in the i-th OT, PR expands k0i and k1i using a
pseudorandom generator G, sends (u(i,0),u(i,1)) = (G(k0i ) ⊕ ti ,G(k1i ) ⊕ ti ⊕ r), and
PS recovers G(ksii ) ⊕ u(i,si ).
Our main observation is that, instead of choosing ti randomly, we can set ti = G(k0i ).

Now, PR needs to send only onem-bit element ui = G(k0i )⊕G(k1i )⊕r to PS (whereas
in previous protocols of [33,35], two m-bit elements were sent). Observe that if PS had
input si = 0 in the i-th OT, then it can just define its output qi to be G(k0i ) = G(ksii ).
In contrast, if PS had input si = 1 in the i-th OT, then it can define its output qi

to be G(k1i ) ⊕ ui = G(ksii ) ⊕ ui . Since ui = G(k0i ) ⊕ G(k1i ) ⊕ r, we have that
G(k1i ) ⊕ ui = G(k0i ) ⊕ r = ti ⊕ r, as required. The full description of our protocol is
given in Protocol 4. This optimization is significant in applications ofm×OTn extension
where m is very large and n is short, such as in GMW. In typical use-cases for GMW,
m is in the size of several millions to a billion (cf. examples in Sect. 1), while n is one.
Therefore, the communication complexity of GMW is almost reduced by half.
In addition, observe that the initial OT phase in Protocol 4 is completely independent

of the actual inputs of the parties. Thus, the parties can compute the initial base-OTs
before their inputs are determined.
Finally, another problem that arises in the original protocol of [35] is that the entire

m × � matrix is transmitted together and processed. This means that the number of OTs
to be obtained must be predetermined and, ifm is very large, this results in considerable
latency as well as memory management issues. As in [34], splitting the matrix into
smaller blocks that are processed in a pipelined fashion reduces latency, computation
time, and avoidsmemorymanagement problems. In addition, it is possible to continually
extend OTs, with no a priori bound on m. This is very useful in a secure computation
setting, where parties may interact many times together with no a priori bound. We state
and prove security of our optimizations next.

Theorem 4.1. Assuming that G is a pseudorandom generator and H is a correlation
-robust function (as in Definition 2.1), Protocol 4 correctly and privately computes the
m×OTn-functionality in the presence of semi-honest adversaries, in the �×OTκ -hybrid
model.

Proof. We first show that the protocol implements the m×OTn-functionality. Then,
we prove that the protocol is secure where the sender is corrupted, and finally that it is
secure when the receiver is corrupted.
CorrectnessWe show that the output of the receiver is (xr11 , . . . , xrmm ) in an execution of
the protocol where the inputs of the sender are ((x01 , x

1
1), . . . , (x

0
m, x1m)) and the input

of the receiver is r = (r1, . . . , rm). We have two cases:

1. r j = 0: Recall that q j = (r j · s) ⊕ t j , and so q j = t j . Thus:

x j = y0j ⊕ H( j, t j ) = x0j ⊕ H( j,q j ) ⊕ H( j, t j )

= x0j ⊕ H( j, t j ) ⊕ H( j, t j ) = x0j
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2. r j = 1: In this case, q j = s ⊕ t j , and so:

x j = y1j ⊕ H( j, t j ) = x1j ⊕ H( j,q j ⊕ s) ⊕ H( j, t j )

= x1j ⊕ H( j, t j ) ⊕ H( j, t j ) = x1j

PROTOCOL 4 (Optimized semi-honest secure OT extension protocol)

• Input of PS: m pairs (x0j , x
1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm ).
• Common Input: Symmetric security parameter κ and number of base-OTs � = κ .
• Oracles and cryptographic primitives: The parties have an oracle access to the � × OTκ

functionality and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a correlation
robust function H : [m] × {0, 1}� → {0, 1}n (see Definition 2.1).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR chooses � pairs of
seeds k0i ,k

1
i each of size κ .

(b) The parties invoke the � × OTκ -oracle, where PS acts as the receiver with input s and
PR acts as the sender with inputs (k0i ,k

1
i ) for every 1 ≤ i ≤ �.

For every 1 ≤ i ≤ �, let ti = G(k0i ). Let T = [t1| . . . |t�] denote them×� bit matrix where

its i th column is ti for 1 ≤ i ≤ �. Let t j denote the j th row of T for 1 ≤ j ≤ m.
2. OT Extension Phase:a

(a) PR computes ti = G(k0i ) and ui = ti ⊕ G(k1i ) ⊕ r, and sends ui to PS for every
1 ≤ i ≤ �.

(b) For every 1 ≤ i ≤ �, PS defines qi = (si · ui ) ⊕G(ksii ). (Note that qi = (si · r) ⊕ ti .)

(c) Let Q = [q1| . . . |q�] denote the m × � bit matrix where its i th column is qi . Let q j

denote the j th row of the matrix Q. (Note that qi = (si · r)⊕ ti and q j = (r j · s)⊕ t j .)
(d) PS sends (y0j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕ H( j,q j ) and y1j = x1j ⊕ H( j,q j ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes x j = y
r j
j ⊕ H( j, t j ).

3. Output: PR outputs (x1, . . . , xm ); PS has no output.

aThis phase can be iterated. Specifically, R can compute the next κ bits of ti and ui (by applying
G to get the next κ bits from the PRG for each of the seeds and using the next κ bits of its input in
r) and send the block of κ × κ bits to S (κ bits from each of u1, . . . ,uκ ).

Corrupted Sender The view of the sender during the protocol contains the output from
the �× OTκ invocation and the messages u1, . . . ,u�. The simulator S0 simply out-
puts a uniform string s ∈ {0, 1}� (which is the only randomness that PS chooses in
the protocol, and therefore w.l.o.g. can be interpreted as the random tape of the ad-
versary), � random seeds ks11 , . . . ,ks�� , which are chosen uniformly from {0, 1}κ , and
� random strings u1, . . . ,u�, chosen uniformly from {0, 1}m . In the real execution,
(s,ks11 , . . . ,ks�� ) are chosen in exactly the same way. Each value ui for 1 ≤ i ≤ � is

defined as G(k0i ) ⊕ G(k1i ) ⊕ r. Since k1−si
i is unknown to PS (by the security of the

�×OTκ functionality), we have that G(k1−si
i ) is indistinguishable from uniform, and so
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each ui is indistinguishable from uniform. Therefore, the view of the corrupted sender
in the simulation is indistinguishable from its view in a real execution.

Corrupted Receiver The view of the corrupted receiver consists of its random tape and
the messages ((y01 , y

1
1), . . . , (y

0
m, y1m)) only. The simulator S1 is invoked with the inputs

and outputs of the receiver, i.e., r = (r1, . . . , rm) and (xr11 , . . . , xrmm ). S1 then chooses a
random tape ρ for the adversary (which determines the k0i ,k

1
i values), defines the matrix

T , and computes y
r j
j = x

r j
j ⊕ H( j, t j ) for 1 ≤ j ≤ m. Then, it chooses each y

1−r j
j

uniformly and independently at random from {0, 1}n . Finally, it outputs (ρ, (y01 , y
1
1), . . . ,

(y0m, y1m)) as the view of the corrupted receiver.
We now show that the output of the simulator is indistinguishable from the view

of the receiver in a real execution. If r j = 0, then q j = t j and thus (y0j , y
1
j ) =

(x0j ⊕ H( j, t j ), x1j ⊕ H( j, t j ⊕ s)). If r j = 1,q j = t j ⊕ s and therefore (y0j , y
1
j ) =

(x0j ⊕ H( j, t j ⊕ s), x1j ⊕ H( j, t j )). In the simulation, the values y
r j
j are computed as

x
r j
j ⊕ H( j, t j ) and therefore are identical to the real execution. It therefore remains to

show that the values (y1−r1
1 , . . . , y1−rm

m ) as computed in the real execution are indis-
tinguishable from random strings as output in the simulation. As we have seen, in the

real execution, each y
1−r j
j equals x

1−r j
j ⊕ H( j, t j ⊕ s). Since H is a correlation robust

function, it holds that:

{t1, . . . , tm, H( j, t1 ⊕ s), . . . , H( j, tm ⊕ s)} c≡ {Um·�+m·n}
for random s, t1, . . . , tm ∈ {0, 1}�, where Ua defines the uniform distribution over
{0, 1}a (see Definition 2.1). In the protocol, we derive the values t1, . . . , tm by apply-
ing a pseudorandom generator G to the seeds k01, . . . ,k

0
� and transposing the resulting

matrix. We need to show that the values H( j, t1 ⊕ s), . . . , H( j, tm ⊕ s) are still indis-
tinguishable from uniform in this case. However, this follows from a straightforward
hybrid argument (namely, that replacing truly random ti values in the input to H with
pseudorandom values preserves the correlation robustness of H ). We conclude that the
ideal and real distributions are computationally indistinguishable. �

5. Faster Malicious OT

On the Malicious Security of [35] The key insight to understanding how to secure OT
extension against malicious adversaries is to understand that a malicious party only
has very limited possibilities for an attack. In fact, the original OT extension protocol
of [35] already provides security against a malicious PS . In addition, the only attack
for a malicious PR is in Step 2a of Protocol 1, where PR computes and sends ui =
ti ⊕ G(k1i ) ⊕ r (cf. [35]). A malicious PR could choose a different r for each ui (for
1 ≤ i ≤ �), and thereby extract PS’s choice bits s. Hence, malicious security can be
obtained if PR can be forced to use the same choice bits r in all messages u1, . . . ,u�.

5.1. Overview of our Malicious Secure Protocol

All we add to the semi-honest protocol (Protocol 1) is a consistency check for the values
r that are sent in Step 2a, and increase the number of base-OTs. Let ri = ti ⊕G(k1i )⊕ui ,
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i.e., the value that is implicitly defined by ui . We observe that if the receiver PR uses
the same choice bits ri and r j for some distinct i, j ∈ [�]2, they cancel out when
computing their XOR, i.e., ui ⊕ u j = (ti ⊕ G(k1i ) ⊕ ri ) ⊕ (t j ⊕ G(k1j ) ⊕ r j ) =
G(k0i ) ⊕ G(k1i ) ⊕ G(k0j ) ⊕ G(k1j ). After the base-OTs, PS holds G(ksii ) and G(k

s j
j )

and in Step 2a of Protocol 1, PR computes and sends ui = G(k0i ) ⊕ G(k1i ) ⊕ ri and
u j = G(k0j ) ⊕ G(k1j ) ⊕ r j . Now note that PS can compute the XOR of the strings he

received in the base-OTs G(ksii ) ⊕ G(k
s j
j ) as well as the “inverse” XOR of the strings

received in the base-OTs G(ksii ) ⊕ G(k
s j
j ) = G(ksii ) ⊕ G(k

s j
j ) ⊕ ui ⊕ u j if and only

if PR has correctly used ri = r j . However, PS cannot check whether the “inverse”

XOR is correct, since it has no information about G(ksii ) and G(k
s j
j ) (this is due to

the security of the base-OTs that guarantees that PS receives the keys k
si
i ,k

s j
i only, and

learns nothing about ksii ,k
s j
j ). PR cannot give these values to PS since this will reveal its

choice bits. However, PR can send the hashes of these inverse values. Specifically, the
PR commits to the XORs of all strings h p,q

i, j = H(G(kp
i )⊕G(kqj )), for all combinations

of p, q ∈ {0, 1}. Now, given hsi ,s ji, j , h
si ,s j
i, j , PS checks that h

si ,s j
i, j = H(G(ksii ) ⊕G(k

s j
j )),

and that h
si ,s j
i, j = H(G(ksii ) ⊕ G(k

s j
i ) ⊕ ui ⊕ u j ) = H(G(ksii ) ⊕ G(k

s j
j )). This check

passes if ri = r j and h p,q
i, j were set correctly.

If a malicious PR tries to cheat and has chosen ri �= r j , it has to convince PS by
computing h p,q

i, j = H(G(kp
i )⊕G(kqj )⊕ ri ⊕ r j ) for all p, q ∈ {0, 1}. However, PS can

check the validity of h
si ,s j
i, j = H(G(ksii )⊕G(k

s j
j )) while PR remains oblivious to si , s j .

Hence, PR can only convince PS by guessing si , s j , computing h
si ,s j
i, j correctly and set

h
si ,s j
i, j = H(G(ksii )⊕G(k

s j
j )⊕ri ⊕r j ), which PR cannot do better than with probability

1/2. This means that PR can only successfully learn ρ bits but will be caught except
with probability 2−ρ . The full description of our new protocol is given in Protocol 4. We
give some more explanations regarding the possibility of the adversary to cheat during
the consistency check in Sect. 5.2.

We note that learning few bits of the secret s does not directly break the security of
the protocol once |s| > κ . In particular, the values {H( j, t j ⊕ s)} j are used to mask the

inputs {x1−r j
j } j . Therefore, when H is modeled as a random oracle and enough bits of s

remain hidden from the adversary, each value H( j, t j ⊕ s) is random, and the adversary

cannot learn the input x
1−r j
j . For simplicity, we first prove security of our protocol in

the random oracle model. We later show that H can be replaced with a variant of a
correlation robustness assumption.
The advantage of our protocol over [56] is that PS does not need to reveal any infor-

mation about si , s j when checking the consistency between r i and r j (as long as PR

does not cheat, in which case it risks getting caught). Hence, it can force PR to check
that ri equals any r j , for 1 ≤ j ≤ � without disclosing any information.
Section Outline In the following, we describe our basic protocol and prove its secu-
rity (Sect. 5.2).We then show how to reduce the number of consistency checks to achieve
better performance (Sect. 5.3), and how to replace the random oracle with a weaker cor-
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relation robustness assumption (Sect. 5.4). Finally, we show how our protocol can be
used to achieve covert security (Sect. 5.5).

PROTOCOL 5 (Our actively secure OT extension protocol)

• Input of PS: m pairs (x0j , x
1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm ).
• Common Input: Symmetric security parameter κ and statistical security parameter ρ. It is

assumed that the number of base-OTs is � = κ + ρ.
• Oracles and cryptographic primitives: The parties have oracle access to the � × OTκ

functionality, and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a random oracle
H (see Sect. 5.4 for instantiation of H ).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR chooses � pairs of
seeds k0i ,k

1
i each of size κ .

(b) The parties invoke the �×OTκ -oracle, where PS acts as the receiver with input s and
PR acts as the sender with inputs (k0i ,k

1
i ) for every 1 ≤ i ≤ �.

For every 1 ≤ i ≤ �, let ti = G(k0i ). Let T = [t1| . . . |t�] denote them×� bit matrix where

its i th column is ti for 1 ≤ i ≤ �. Let t j denote the j th row of T for 1 ≤ j ≤ m.
2. OT Extension Phase (Part I):

(a) PR computes ti = G(k0i ) and ui = ti ⊕ G(k1i ) ⊕ r, and sends ui to PS for every
1 ≤ i ≤ �.

3. Consistency Check of r: (the main change from Protocol 1)

(a) For every pair α, β ⊆ [�]2, PR defines the four values:

h0,0α,β = H(G(k0α) ⊕ G(k0β)) , h0,1α,β = H(G(k0α) ⊕ G(k1β)) ,

h1,0α,β = H(G(k1α) ⊕ G(k0β)) , h1,1α,β = H(G(k1α) ⊕ G(k1β)) .

It then sendsHα,β = (h0,0α,β , h0,1α,β , h1,0α,β , h1,1α,β ) to PS .

(b) For every pair α, β ⊆ [�]2, PS knows sα, sβ , ksαα ,k
sβ
β , uα, uβ and checks that:

i. h
sα,sβ
α,β = H(G(ksαα ) ⊕ G(k

sβ
β )).

ii. h
sα,sβ
α,β = H(G(ksαα )⊕G(k

sβ
β )⊕uα⊕uβ) (= H(G(ksαα )⊕G(k

sβ
β )⊕rα⊕rβ)).

iii. uα �= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):

(a) For every 1 ≤ i ≤ �, PS defines qi = (si · ui ) ⊕G(ksii ). (Note that qi = (si · r) ⊕ ti .)

(b) Let Q = [q1| . . . |q�] denote the m × � bit matrix where its i th column is qi . Let q j

denote the j th row of the matrix Q. (Note that qi = (si · r)⊕ ti and q j = (r j · s)⊕ t j .)
(c) PS sends (y0j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕ H( j,q j ) and y1j = x1j ⊕ H( j,q j ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes x j = y
r j
j ⊕ H( j, t j ).

5. Output: PR outputs (x1, . . . , xm ); PS has no output.
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5.2. The Security of Our Protocol

Malicious Sender The original OT extension protocol of [35] already provides security
against a malicious PS . Our checks do not add any capabilities for a malicious sender,
since they consist of messages from the receiver to the sender only. Thus, by a simple
reduction to the original protocol, one can show that our protocol is secure in the presence
of a malicious sender.

Simulating a Malicious Receiver In the case of a malicious receiver, the adversary may
not use the same r in the messages u1, . . . ,u�, and as a result learn some bits from the
secret s. Therefore, we add a consistency check of r to the semi-honest protocol of [35].
However, this verification of consistency of r is not perfectly sound, and the verification
may still pass even when the receiver sends few u’s that do not define the same r. This
makes the analysis a bit more complicated.

For every 1 ≤ i ≤ �, let ri def= ui ⊕ G(k0i ) ⊕ G(k1i ) that is, the “input” r
i which is

implicitly defined by ui and the base-OTs.
We now explore how the matrices Q, T are changed when the adversary uses incon-

sistent r’s. Recall that when the receiver uses the same r, then qi = (si · r) ⊕ ti and
q j = (r j · s) ⊕ t j . However, in case of inconsistent r’s, we get that qi = (si · ri ) ⊕ ti .
The case of q j is rather more involved; let R = [

r1 | . . . | r�
]
denote the m × � matrix

where its i th column is ri , and let r j denote the j th row of the matrix R. For two strings
of the same length a = (a1, . . . , ak),b = (b1, . . . , bk), let a ∗ b define the entry-wise
product, that is, a ∗ b = (a1 · b1, . . . , ak · bk). We get that q j = (r j ∗ s) ⊕ t j (note
that in an honest execution, r j is the same bit everywhere). The sender masks the inputs
(x0j , x

1
j ) with (H( j,q j ), H( j,q j ⊕ s)).

In order to understand better the value q j , let r = (r1, . . . , rm) be the string that
occurs the most from the set {r1, . . . , r�}, and let U ⊂ [�] be the set of all indices for
which ri = r for all i ∈ U . Let B = [�] \ U be the complementary set, that is, the set of
all indices for which for every i ∈ B it holds that ri �= r. As we will see below, except
with some negligible probability, the verification phase guarantees that |U | ≥ � − ρ.
Thus, for every 1 ≤ j ≤ m, the vector r j (which is the j th row of the matrix R) can be
represented as r j = (r j · 1) ⊕ e j , where 1 is the all one vector of size �, and e j is some
error vector with Hamming distance at most ρ from 0. Note that the nonzero indices in
e j are all in B. Thus, we conclude that:

q j = (s ∗ r j ) ⊕ t j = (s ∗ (r j · 1 ⊕ e j )) ⊕ t j = (r j · s) ⊕ t j ⊕ (s ∗ e j ) .

Recall that in an honest execution q j = (r j · s) ⊕ t j , and therefore the only difference
is the term (s ∗ e j ). Moreover, note that s ∗ e j completely hides all the bits of s that
are in U , and may expose only the bits that are in B. Thus, the consistency check of r
guarantees two important properties: First, that almost all the inputs are consistent with
some implicitly defined string r, and thus the bits r j are uniquely defined. Second, the
set of inconsistent inputs (i.e., the set B) is small, and thus the adversary may learn only
a limited amount of bits of s.

The Consistency Checks of r We now examine what properties are guaranteed by our
consistency check, for a single pair (α, β). The malicious receiver PR first sends the set
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of keysK = {k0i ,k1i } to the base-OT protocol, and then sends all the values (u1, . . . ,u�)

and the checksH = {Hα,β}α,β . In the simulation, the simulator can choose s only after
it receives all these messages (this is because the adversary gets no output from the
invocation of the OT primitive). Thus, for a given set of messages that the adversary
outputs, we can ask what is the number of secrets s for which the verification will
pass, and the number for which it will fail. If the verification passes for some given
T = (K,u1, . . . ,u�,H) and some secret s, then we say that T is consistent with s. In
case the verification fails, we say that T is inconsistent.
In the following, we let Tα,β denote all messages that the receiver sends and which are

relevant for to the verification of the pair (α, β), that is, Tα,β =
(
k0α,k1α,k0β,k1β,uα,uβ,

Hα,β

)
. Note that T , the set of all messages that the receiver sends is defined as T =⋃

α,β Tα,β = (K,u1, . . . ,u�,H), exactly as considered above.

The following Lemma considers the values that the adversary has sent regarding some
pair (α, β) and considers the relation to the pair of bits (sα, sβ) of the secret s. We have:

Lemma 5.1. LetTα,β = {{kbα}b, {kbβ}b,uα,uβ,Hα,β}andassume that H is a collision-
resistant hash function. Then, the following holds, except with negligible probability::

1. If rα �= rβ and Tα,β is consistent with (sα, sβ), then it is inconsistent with (sα, sβ).
2. If rα = rβ and Tα,β is consistent with (sα, sβ), then it is consistent also with

(sα, sβ).

Proof. For the first item, assume that rα �= rβ and that Tα,β is consistent both with
(sα, sβ) and (sα, sβ). Thus, from the check of consistency of (sα, sβ):

h
sα,sβ
α,β = H

(
G(ksαα ) ⊕ G(k

sβ
β )

)
, h

sα,sβ
α,β = H

(
G(ksαα ) ⊕ G(k

sβ
β ) ⊕ uα ⊕ uβ

)
,

and that uα �= uβ . In addition, from the check of consistency of (sα, sβ), it holds that:

h
sα,sβ
α,β = H

(
G(ksαα ) ⊕ G(k

sβ
β )

)
, h

sα,sβ
α,β = H

(
G(ksαα ) ⊕ G(k

sβ
β ) ⊕ uα ⊕ uβ

)
,

and that uα �= uβ . This implies that:

H
(
G(ksαα ) ⊕ G(k

sβ
β )

)
= h

sα,sβ
α,β = H

(
G(ksαα ) ⊕ G(k

sβ
β ) ⊕ uα ⊕ uβ

)
,

and from the collision resistance property of H , except for some negligible probability
we get that:

G(ksαα ) ⊕ G(k
sβ
β ) = G(ksαα ) ⊕ G(k

sβ
β ) ⊕ uα ⊕ uβ .

Recall that rα def= uα ⊕ G(k0α) ⊕ G(k1α), and rβ def= uβ ⊕ G(k0β) ⊕ G(k1β). Combining

the above, we get that rα = rβ , in contradiction.
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For the second item, once rα = rβ , we get that uα ⊕ uβ = G(k0α) ⊕ G(k1α) ⊕
G(k0β) ⊕G(k1β) and it is easy to see that if the consistency check of (sα, sβ) holds, then
the consistency check of (sα, sβ) holds also. �

Lemma 5.1 implies what attacks the adversary can do, and what bits of s it can
learn from each such an attack. In the following, we consider a given partial transcript
Tα,β = ((k0α,k1α,k0β,k1β), (uα,uβ),Hα,β) and analyze what themessagesmight be, and

what the adversary learns in case the verification passes. Let rα = uα ⊕G(k0α)⊕G(k1α)

and rβ defined analogously. We consider 4 types:

1. Type 1: rα = rβ andHα,β is correct. That is, for every (a, b) ∈ {0, 1}2: ha,b
α,β =

H
(
G(kaα) ⊕ G(kbβ)

)
. In this case, the verification passes for every possible value

of (sα, sβ).
2. Type 2: rα = rβ , but Hα,β is incorrect. In this case, the adversary sent uα,uβ

that define the same r. However, it may send hashes Hα,β that are incorrect (i.e.,
for some (a, b) ∈ {0, 1}2, it may send: ha,b

α,β �= H(G(kaα) ⊕ G(kbβ))). However,

from Lemma 5.1, if rα = rβ and Hα,β is consistent with (sα, sβ), then it is also
consistent with (sα, sβ).
Thus, a possible attack of the adversary, for instance, is to send correct hashes for
some bits (0, 0) and (1, 1), but incorrect ones for (0, 1) and (1, 0). The verification
will pass with probability 1/2, exactly if (sα, sβ) are either (0, 0) or (1, 1), but it
will fail in the other two cases (i.e., (1, 0) or (0, 1)). We therefore conclude that
the adversary may learn the relation sα ⊕ sβ , and gets caught with probability 1/2.

3. Type 3: rα �= rβ andHα,β is incorrect in two positions. In this case, for instance,
the adversary can set the values h0,0α,β, h0,1α,β correctly (i.e., h0,0α,β = H(G(k0α) ⊕
G(k0β)) and h0,1α,β = H(G(k0α) ⊕ G(k1β))) and set values h1,0α,β, h1,1α,β , accordingly,
such that the verification will pass for the cases of (sα, sβ) = (0, 0) or (0, 1). That
is, it sets:

h1,0α,β = H(G(k0α) ⊕ G(k1β) ⊕ uα ⊕ uβ)

(and it sets h1,1α,β in a similar way). In this case, the adversary succeeds with prob-
ability 1/2 and learns that sα = 0 in case the verification passes. Similarly, it can
guess the value of sβ and set the values accordingly. For conclusion, the adversary
can learn whether its guess was correct, and in which case it learns exactly one of
the bits sα or sβ but does not learn anything about the other bit.

In case whereHα,β is correct in only one position but rα �= rβ , the probability of
success is even smaller. For instance, assume that ha,b

α,β = H(G(kaα) ⊕G(kbβ)) for

(a, b) = (0, 0), (0, 1), (1, 0), but the adversary sends h1,1α,β incorrectly as above.
In this case, the verification will fail for (sα, sβ) = (1, 1) and, in addition, also
for the cases where (sα, sβ) = (0, 1) or (1, 0), since rα �= rβ . Similarly, for the
case where Hα,β is incorrect in only one position, for which the adversary only
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succeeds with probability 1/2. Therefore, it is more beneficial for the adversary to
send two positions incorrectly.

4. Type 4: rα �= rβ and Hα,β is incorrect in three positions. In this case, the

adversary may guess both bits (sα, sβ) = (a, b) and set ha,b
α,β correctly, set ha,b

α,β

accordingly (i.e., such that the verification will pass for (a, b)), but will fail for
any one of the other cases. In this case, the adversary learns the values (sα, sβ)

entirely, but succeeds with probability at most 1/4.

Note that whenever rα �= rβ , the adversary may pass the verification of the pair
(α, β) with probability at most 1/2. This is because it cannot send consistent hashes for
all possible values of (sα, sβ), and must, in some sense, “guess” either one of the bits, or
both (i.e., Type 3 or Type 4). However, an important point that makes the analysis more
difficult is the fact that the two checks are not necessarily independent. That is, in case
where rα �= rβ and rβ �= rγ , although the probability to pass each one of the verification
of (α, β) and (β, γ ) separately is at most 1/2, the probability to pass both verifications
together is higher than 1/4, and these two checks are not independent. This is because
the adversary can guess the bit sβ , and set the hashes as in Type 3 in both checks. The
adversary will pass these two checks if it guesses sβ correctly, with probability 1/2.

Proving Security of the Protocol Before proceeding to the full proof of security, we first
provide a proof sketch. The simulator S invokes the malicious receiver and plays the
role of the base-OT trusted party and the honest sender. It receives from the adversary its
inputs to the base-OTs, and thus knows the values {k0i ,k1i }�i=1. Therefore, it can compute
all the values r1, . . . , r� when it receives the messages u1, . . . ,u�. It computes the set of
indices U and extracts r. It then performs the same checks as an honest sender, in Step 3
of Protocol 5, and aborts the execution if the adversary is caught cheating. Then, it sends
the trusted party the value r that it has extracted, and learns the inputs xr11 , . . . , xrmm . It
computes q j as instructed in the protocol (recall that these q j may contain the additional

“shift” s ∗ e j ) and use some random values for all {yr jj }mj=1.

Since the values {yr jj }mj=1 are random in the ideal execution, and equal {xr jj ⊕H( j,q j⊕
s)} in the real execution, a distinguisher may distinguish between the real and ideal
executions once it makes a query of the form ( j,q j ⊕ s) to the random oracle. We claim,
however, that the probability that the distinguisher will make such a query is bounded
by (t + 1)/|S|, where t is the number of queries it makes to the random oracle, and S
is the set of all possible secrets s that are consistent with the view that it receives. Thus,
once we show that |S| > 2κ , the probability that it will distinguish between the real and
ideal executions is negligible in κ .
However, the above description is too simplified. First, if the adversary performs few

attacks of Type 2, it learns information regarding s from themere fact that the verification
has passed. Moreover, recall that y

r j
j = x

r j
j ⊕ H( j, t j ⊕ (s∗ e j )), and that the adversary

can control the values t j and e j . Recall that e j is a vector that is all zero in positions that
are in U , and may vary in positions that are in B. This implies that by simple queries
to the random oracle, and by choosing the vectors e j cleverly, the adversary can totally
reveal the bits sB quite easily. We therefore have to show that the set B is small, while
also showing that the set of consistent secrets is greater than 2κ (i.e., |S| ≥ 2κ ). We now
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proceed to a formal statement of the theorem and formal proof of security, where there
we prove the two informal claims that were just mentioned.

Theorem 5.2. Assume that H is a random oracle and that G is a pseudorandom
generator. Then, Protocol 5 with � = κ +ρ securely computes the m×OTn functionality
in the � × OTκ -hybrid model in the presence of a static malicious adversary, where κ is
the symmetric security parameter and ρ is the statistical security parameter.

Proof. Recall that security againstmalicious sender can be provenby a simple reduction
to the original OT extension protocol of [35], which is already secure against malicious
sender, using the fact that our checks consist of messages that go from the receiver to
the sender only. In the following, we will give the proof for a malicious receiver. Since
we already gave some proof sketch, we start directly with a formal description of the
simulator S:
The Simulator S.

1. The simulator invokes the adversary A on the auxiliary input z.
2. Initial OT phase: The adversary A outputs � pairs of κ-bits each {k0i ,k1i }�i=1 as

input to the � × OTκ -functionality. It receives no output from this invocation.
3. First part of OT extension phase: The adversaryA outputs � strings u1, . . . ,u�.
4. Consistency check of r:

(a) For every α, β ∈ [�]2, the adversary A outputs the quadruple Hα,β = (h0,0α,β,

h0,1α,β, h1,0α,β, h1,1α,β).

(b) The simulator chooses a string s uniformly at random from {0, 1}�.
(c) Given the values {{k0i ,k1i }�i=1,u

1, . . . ,u�, {Hα,β}α,β} and the chosen secret s,
the simulator can perform all the needed checks as the honest sender in the real
execution. In case where one of the verification fails, the simulator halts.

5. Second part of the OT extension phase:

(a) The simulator computes the matrices T, Q and R, where for every i, ti =
G(k0i ),q

i = (si · ri ) ⊕ ti and ri = G(k0i ) ⊕ G(k1i ) ⊕ ui .
(b) From all the vectors r1, . . . , r�, let r be the vector that is mostly repeated (as

we will see, the verification process guarantees that there exists a vector that
is repeated at least � − ρ times).

(c) Send r to the trusted party and receive xr11 , . . . , xrmm . Define the values e j for
every 1 ≤ j ≤ m (explicitly, define the matrix R as the matrix for which its i th
column is ri , and let r j denote its j th row. Then, e j = (r j · 1) ⊕ r j . Then, for

every 1 ≤ j ≤ m, set y
r j
j = x

r j
j ⊕ H( j, t j ⊕ (s ∗ e j )), and set y

r j
j uniformly

at random. Send {(y0j , y1j )}mj=1 to the adversary A, output whatever it outputs
and halt.

�

Let T = {{k0i ,k1i }�i=1,u
1, . . . ,u�, {Hα,β}α,β}, i.e., the values that the adversary gives

during the execution of the protocol. Observe that the simulator chooses the secret s only
after T is determined (since the adversary receives no output from the execution of the
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OT primitive, we can assume that). We divide all possible choices of T into two sets,
Tgood and Tbad, defined as follows:

Tgood =
{
T | Pr

s

[
consistent(T , s) = 1

]
> 2−ρ

}
and

Tbad =
{
T | Pr

s

[
consistent(T , s) = 1

] ≤ 2−ρ
}

.

where consistent(T , s) is a predicate that gets 1 when the verification passes for the
transcript T and the secret s, and 0 otherwise. The probability is taken over the choice of
s. For a given T , let S(T ) be the set of all possible secrets s ∈ {0, 1}� that are consistent
with T . That is: S(T ) = {s ∈ {0, 1}� | consistent(T , s) = 1}. Therefore, it holds that:

Pr
s

[
consistent(T , s) = 1

] = |S(T )|
2�

and thus |S(T )| = 2� · Pr [consistent(T , s) = 1
]
. As a result, for every T ∈ Tgood, it

holds that |S(T )| > 2� ·2−ρ = 2�−ρ = 2κ . That is, in case a transcript T ∈ Tgood passes
the consistency check of r, there are at least 2κ different secrets s that are consistent with
the given transcript, each is likely with the same probability, and thus the adversary may
guess s with probability at most 2−κ .

Let U be the largest set of indices such that for every i, j ∈ U , ri = r j . Let B be the
complementary set, that is, B = [�] \U . From the definition of the sets, for every α ∈ U
and β ∈ B, it holds that rα �= rβ .
We claim that if |U | < � − ρ (i.e., |B| > ρ), then it must hold that T ∈ Tbad and the

adversary gets caught with high probability. That is:

Claim 5.3. Let T be as above, and let U be the largest set of indices such that for every
α, β ∈ U , rα = rβ . Assume that |U | < � − ρ. Then:

Pr
s

[
consistent(T , s) = 1

] ≤ 2−ρ

and thus, T ∈ Tbad.

We will prove the claim below. Let T ∈ Tgood, and let U and B be as above. Using
the claim above, we have that |B| < ρ. We now focus on the set of secrets s that are
consistent with this transcript T , i.e., the set S(T ). For a set of indices A, we let sA
denote all the bits in swith indices from A, that is, sA = (sa)a∈A. We now claim that the
bits sB are common to all the secrets in S(T ), and thus, even when we give the adversary
the bits sB in the clear once the verification is completed, the adversary still has to guess
s from a set of at least 2κ secrets. Formally:

Claim 5.4. Let T ∈ Tgood, and let U and B as above. Then, there exists a string
w ∈ {0, 1}|B|, such that for every s′ ∈ S(T ), it holds that: s′B = w.
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Proof. From the definition of the sets B and U , it holds that for every α ∈ U and
β ∈ B, rα �= rβ . Consider two secrets s, s′ that are consistent with T (since T ∈ Tgood,
there are many such T ’s). We show the following:

• If there exists an index β ∈ B such that sβ �= s′
β , then for every α ∈ U , it holds that

sα = s′
α (that is, sU = s′U ).• Similarly, if there exists an index α ∈ U such that sα �= s′

α , then for every β ∈ B,
it holds that sβ = s′

β (i.e., sB = S ′
B).

We show the first claim. Assume that sB �= s′B ; thus, there must exist an index β ∈ B
such that sβ �= s′

β , i.e., s
′
β = sβ . Now, consider some α ∈ U , we show that sα = s′

α

and thus sU = s′U . Recall that T is consistent with s, and therefore is consistent with
(sα, sβ). From Lemma 5.1, it is inconsistent with (sα, sβ) = (sα, s′

β). However, recall
that T is consistent also with s′, and therefore, it is consistent with (s′

α, s′
β). We therefore

conclude that it must hold that sα �= s′
α and thus sα = s′

α . The second claim is proven
analogously.
We now claim that the set S(T ) either shares the same sB for all its elements, or

shares the same sU for all elements (and of course, not both). In order to see this, let
S(T ) = {s1, . . . , sn}. Assume, without loss of generality, that s1U �= s2U (and so, from
above, s1B = s2B). We now claim that all the other elements share the same bits in B. If
not, that is, if there exists an element si ∈ S(T ) such that siB �= s1B , it must hold that
siU = s1U . However, s

1
U �= s2U , which implies that siU �= s2U and thus siB = s2B = s1B , in

contradiction.
We further claim that the set S(T ) must share the same sB and cannot share the same

sU . This is a simple counting argument: Since |B| < ρ, a set S(T ) that shares the same
sU has size of at most 2|B| ≤ 2ρ . However, since T ∈ Tgood, it holds that |S(T )| > 2κ .
Therefore, the set must share the same sB , and the claim follows. �

Wenowshow that the distinguisher distinguishes between the ideal and real executions
with relatively small probability, even when it asks the oracle H as (polynomially) many
queries as it wishes.
First, assume that the distinguisher cannot make any queries to H . We claim that

the distributions of the real and ideal executions are statistically close. Intuitively, if
the adversary outputs T ∈ Tbad, then clearly the distinguisher may succeed only if the
consistency check fails, which happens with probability at most 2−ρ . On the other hand,
in case where the adversary outputs T ∈ Tgood, then, except for negligible probability
(in ρ), it holds that |U | ≥ � − ρ = κ , and |S(T )| ≥ 2κ , where all the elements in S(T )

share the same bits sB . Thus, even if the distinguisher receives sB in the clear, the values
H( j,q j ), H( j,q j ⊕ s) that are used for masking the inputs are uniformly random and
independent of each other. Therefore, the simulation is indistinguishable from the real
execution.
Now, assume that the distinguisher can also make queries to the random oracle H .

In this case, we claim that the distinguisher can distinguish only if it makes a “critical
query,” where:
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Definition 5.5. For every 1 ≤ j ≤ m, a query made by the distinguisher or the receiver
to the random oracle is a critical query if it is of the form ( j, ((1 − r j ) · s) ⊕ q j ) for
some j .

Note that a critical query can also be represented as H( j, (r j ·s)⊕ t j ⊕(s∗e j )). Clearly,
a critical query totally reveals x

r j
j . Conditioned on the event that the distinguisher (or the

receiver) never queries such a critical query and that sU �= 0, the distributions of the real
and ideal executions are statistically close. On the other hand, as long as sU �= 0, and as
long as no such a critical query is made, the answers to the queries are independent of the
value of s, and the distinguisher does not learn anything new from the queries themselves.
Any query to H is distributed uniformly and independently at random, and since s is
distributed uniformly in S(T ), the probability to “hit” a critical query is bounded by
1/|S(T )|. We therefore conclude the following claim:

Claim 5.6. The probability that the distinguisher or the receiver make a critical query
is bounded by: (t +1)/|S(T )| ≤ (t +1) ·2−κ , where t is an upper bound on the number
of their queries.

This completes the proof. �
We now restate Claim 5.3 and prove it. This claim is in fact an analysis of the consis-

tency check phase of the protocol.

Claim 5.7. (Claim 5.3, restated) Let T be as above, and let U be the largest set of
indices such that for every α, β ∈ U , rα = rβ . Assume that |U | < � − ρ. Then:

Pr
s

[
consistent(T , s) = 1

] ≤ 2−ρ

and thus, T ∈ Tbad.

Proof. Let T be the values that the adversary outputs, i.e., the values

T =
{
{k0i ,k1i }i , {ui }i , {Hα,β}α,β

}

For a pair α ∈ U , β ∈ B, we claim that the adversary passes the verification of the pair
(α, β) with probability at most 1/2. This is because rα �= rβ and due to Lemma 5.1,
if T is consistent with some (sα, sβ), then it is inconsistent with (sα, sβ). Thus, there
are at most 2 possible values (sα, sβ) that are consistent with T , and the adversary gets
caught for the 2 other values.
We define the inconsistency graph 	 = (V, E) as follows. The set of vertices is

the set [�]. The set of edges contains all the pairs that define different r’s, that is, there
exists an edge (α, β) if rα �= rβ . Note that since (α, β) are not consistent, the adversary
gets caught in the check (α, β) with probability at least 1/2. We sometimes consider the
complement graph (or, the consistency graph) 	 = (V, E). In 	, each edge represents
that the two vertices define the same implicit input r.
We now analyze the size of the set U .
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1. Case 1: ρ ≤ |U | < � − ρ. In this case, we have a large enough set which is
consistent within itself, but is inconsistent with all the others. We claim that in this
case, the adversary will get caught with probability 1 − 2−ρ .
In order to see this, consider the set B = [�] \U . Since B ∪U = [�], we have that
ρ < |B| ≤ � − ρ as well.
Moreover, consider the inconsistency graph 	 and remove all the edges that are
between two elements of B (this can be interpreted as follows: although there is
some possibility that the adversary gets caught because of these checks, we ignore
them and do not consider these inconsistencies as cheating). As a result, we have a
bipartite graph where the set of vertices is divided into B and U . Moreover, when
considering the complement graph for the resulting graph, we have two cliques, B
and U , and the maximal clique in this graph is at most � − ρ.
According to König’s theorem [47], in any bipartite graph, the number of edges in
the maximal matching equals the minimal vertex cover. Moreover, it is easy to see
that the sum of the minimum vertex cover in some graph and the maximal clique
of its complement graph equals to the overall number of vertices �. We therefore
conclude that the maximal matching in the graph 	 is at least ρ.
Each edge in the graph represents a check where the adversary gets caught with
probability at least 1/2. Since there are at least ρ edges in the maximal matching
in the inconsistency graph, there are at least ρ pairs for which the adversary gets
caught with probability at least 1/2.Moreover, since we have amatching, each pair
and check are independent.We therefore conclude that the adversary succeeds in its
cheating with probability at most 2−ρ , and therefore it gets caught with probability
at least 1 − 2−ρ .

2. Case 2: |U | < ρ. Similarly to the previous case, we can just find a superset U ′ that
contains U of size at least ρ for which we assume (artificially) that is all consistent.
That is, for this set U ′, we just ignore the checks between the elements in this set
and assume that they are all consistent. After we obtain this clique (by ignoring
some of the checks), we are back to the previous case.

For conclusion, we have the following: if T is such that |U | < � − ρ, then :

Pr
s

[
consistent(T , s) = 1

]
< 2−ρ

�
5.3. Reducing the Number of Checks

In Protocol 5, in the consistency check of r, we check all possible pairs (α, β) ∈ [�]2.
In order to achieve higher efficiency, we want to reduce the number of checks.
Let G = (V, E) be a graph for which V = [�], and an edge (α, β) represents a check

between rα and rβ . In Protocol 5, the receiver asks for all possible edges in the graph (all
pairs). In order to achieve better performance, we would like to reduce the number of
pairs that we check. In particular, the protocol is changed so that in Step 3 of Protocol 5,
the sender chooses some set of pairs (edges) E ′ ⊆ V 2, and the receiver must respond
with the quadruples Hα,β for every (α, β) ∈ E ′ that it has been asked for. The sender
continues with the protocol only if all the checks have passed successfully.
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Observe that after sending the values u1, . . . ,u�, the sets U and B (which are both
subsets of [�]) are implicitly defined. In case that the set B is too large, we want to catch
the adversary cheating with probability at least 1 − 2−ρ . In order to achieve this, we
should have ρ edges between B and U that are pairwise non-adjacent. That is, in case
the adversary defines B that is “too large,” we want to choose a set of edges E ′ that
contains a matching between B and U of size of at least ρ.
Note, however, that the sender chooses the edges E ′ with no knowledge whatsoever

regarding the identities of U and B, and thus it needs to choose a graph such that
(with overwhelming probability), for any possible choice of a large B, there will be a
ρ-matching between B and U .

In Protocol 6,wemodify the consistency check of r that appears in Step 3 of Protocol 5.
The sender chooses for each vertexα ∈ [�] exactlyμ out-neighbors uniformly at random.
We later show that with high probability, the set E ′ that is chosen contains a ρ-matching
between the two sets B and U , even for a very small value of μ (for instance, μ = 3 or
even μ = 2).

PROTOCOL 6 (Modification for Protocol 5, Fewer Checks)
The parties run Protocol 5 with the following modifications:
Step 3—Consistency Check of r: (modified)

1. PS chooses μ functions φ0, . . . , φμ−1 uniformly at random, where φi : [�] → [�]. It sends
φ0, . . . , φμ−1 to the receiver PR .

2. For every pair α ∈ [�], i ∈ [μ], let (α, β) = (α, φi (α)). PR defines the four values:

h0,0α,β = H(G(k0α) ⊕ G(k0β)) h0,1α,β = H(G(k0α) ⊕ G(k1β)) ,

h1,0α,β = H(G(k1α) ⊕ G(k0β)) h1,1α,β = H(G(k1α) ⊕ G(k1β)) .

It then sendsHα,β = (h0,0α,β , h0,1α,β , h1,0α,β , h1,1α,β ) to PS .
3. PS checks that it receives Hα,φi (α) for every α ∈ [�] and i ∈ [μ]. Then, for each pair

(α, β) = (α, φ(α)), it checks that:

(a) h
sα,sβ
α,β = H(G(ksαα ) ⊕ G(k

sβ
β )).

(b) h
sα,sβ
α,β = H(G(ksαα ) ⊕ G(k

sβ
β ) ⊕ uα ⊕ uβ) (= H(G(ksαα ) ⊕ G(k

sβ
β ) ⊕ rα ⊕ rβ)).

(c) uα �= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

In our modified protocol, the adversary again first outputs T = {{k0i ,k1i }�i=1,u
1, . . . ,

u�}. Then, the set of checks � = {φ0, . . . , φμ−1} is chosen, and the adversary responds
with H = {{Hα,φi (α)}α,φi }. We can assume that the actual secret s is chosen only after
T ,� andH are determined. Similarly to the proof of Theorem 5.2, for a given transcript
(T ,�,H) and a secret s, we define the predicate consistent((T ,�,H), s) that gets 1 if
and only if the verification is passed for the secret s (i.e., that the sender does not output
⊥). For a given T and set of checks �, letHT ,� be the set of responses that maximizes
the probability to pass the verification, that is:

HT ,�
def= argmaxH{Pr [consistents((T ,�,H), s) = 1

]} .
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We separate all possible transcripts (T ,�) to two sets Tgood and Tbad such that:

Tgood =
{
(T ,�) | Pr

s

[
consistent((T ,�,HT ,�), s) = 1

]
> 2−ρ

}
and

Tbad =
{
(T ,�) | Pr

s

[
consistent((T ,�,HT ,�), s) = 1

] ≤ 2−ρ
}

.

Observe that if a pair (T ,�) ∈ Tbad, then no matter what setH the adversary sends,
it gets caught with probability at least 1 − 2−ρ .

The following claim is the analogue of Claim 5.3, and it bounds the size of the set B.
It states that if the adversary A outputs T that defines |U | < κ , then with probability
1 − 2−ρ the sender will choose � such that (T ,�) ∈ Tbad.

Claim 5.8. Let T be as above, and let U be the largest set of indices such that for every
α, β ∈ U , rα = rβ . For appropriate choice of parameters μ, �, for every T such that
|U | ≤ κ , it holds that:

Pr
�
[(T ,�) ∈ Tbad] ≥ 1 − 2−ρ.

Proof. The partial transcript T defines the two sets B and U . Viewing the � base-
OTs as vertices in a graph, and the pairs of elements that are being checked as edges
E ′ = {(α, φi (α)) | α ∈ [�], i ∈ [μ]}, we have a bipartite graph (B ∪ U , E ′) where each
vertex has at least μ out-edges. We want to show that with probability 1− 2−ρ (over the
choice of �), there exists a ρ-matching between U and B. Once there is a ρ-matching,
the adversary passes the verification phase with probability at most 2−ρ , and thus the
pair (T ,�) is in Tbad. �

In order to show that in a graph there is a ρ-matching between B and U , we state
the following theorem which is a refinement of Hall’s well-known theorem (see [47]).
Let NU (S) denote the set of neighbors in U , for some set of vertices S ⊆ B, that is,
NU (S) = {u ∈ U | ∃v ∈ S, s.t. (u, v) ∈ E ′}. We have:

Theorem 5.9. There exists a matching of size ρ between B and U if and only if, for
any set S ⊆ B, |NU (S)| ≥ |S| − |B| + ρ.

Note that we need to consider only subsets S ⊆ B for which |S| ≥ |B|−ρ (otherwise,
the condition holds trivially).
The choice of � is equivalent to choosing μ out-edges for each vertex uniformly. We

will show that for every subset of S ⊆ B with |S| ≥ |B| − ρ, it holds that |NU (S)| ≥
|S| − |B| + ρ.

Let S ⊆ B and T ⊂ U . Let XS,T be an indicator random variable for the event that
all the out-edges from S go to B ∪ T , and all the out-edges of U \ T do not go to S (we
use the term “out-edges” even though the graph is not directed; our intention is simply
to address the edges that connect the vertexes in the sets). As a result, |NU (S)| ≤ |T |.
Then, the probability that XS,T equals 1 is the probability that all the μ · |S| out-edges
of S go to B ∪ T only, and all the μ · (|U | − |T |) out-edges of U \ T go to {�} \ S only.
Since we have independence everywhere, we have:



More Efficient Oblivious Transfer Extensions

Pr
[
XS,T = 1

] =
( |B| + |T |

�

)|S|·μ
·
(

� − |S|
�

)(|U |−|T |)·μ

We are interested in the event
∑

XS,T for all S ⊆ B, T ⊆ U s.t. |B| − ρ ≤ |S| ≤
|B|, |T | ≤ |S| − |B| + ρ (denote this condition by (�)), and we want to show that it is
greater than 0 with very low probability. We have:

Pr

⎡

⎣
∑

S,T, s.t. (�)

XS,T > 0

⎤

⎦ ≤
∑

S,T s.t. (�)

Pr
[
XS,T = 1

]

≤
∑

S,T s.t. (�)

( |B| + |T |
�

)|S|·μ
·
(

� − |S|
�

)(|U |−|T |)·μ

=
|B|∑

|S|=|B|−ρ

|S|−|B|+ρ∑

|T |=0

(|B|
|S|

)
·
(|U |

|T |
)

·
( |B| + |T |

�

)|S|·μ

·
(

� − |S|
�

)(|U |−|T |)·μ
(2)

We proceed to show an asymptotic analysis for the above and show that it is bounded
by 2−ρ for appropriate choice of parameters and large enough μ. We remark that we did
not attempt to provide a tight asymptotic analysis since for concrete use, we compute
the parameters from the exact bound given above; see Table 3.

In the asymptotic analysis, we omit the last term. Since |B| − ρ ≤ |S| ≤ |B| and
0 ≤ |T | ≤ |S| − |B| + ρ ≤ ρ and have that:

( |B| + |T |
�

)|S|·μ
≤

( |S| + ρ

�

)|S|·μ
≤

( |B| + ρ

�

)(|B|−ρ)·μ
.

Moreover,
(|B|
|S|

) = |B|!
|S|!·(|B|−|S|)! , where, for every |B| − ρ ≤ |S| ≤ |B|, it holds that

(|B|
|S|

) ≤ |B|ρ . Likewise, (|U |
|T |

) ≤ |U |ρ for every 0 ≤ |T | ≤ |S| − |B| + ρ ≤ ρ.

Pr

⎡

⎣
∑

S,T, s.t. (�)

XS,T > 0

⎤

⎦ ≤
|B|∑

|S|=|B|−ρ

|S|−|B|+ρ∑

|T |=0

(|B|
|S|

)
·
(|U |

|T |
)

·
( |B| + |T |

�

)|S|·μ

·
(

� − |S|
�

)(|U |−|T |)·μ

≤ ρ2 · |B|ρ · |U |ρ ·
( |B| + ρ

�

)(|B|−ρ)·μ
.

which is bounded by 2−ρ as long as

μ ≥ ρ + 2 log ρ + ρ log |B| + ρ log |U |
(|B| − ρ) · (log � − log(|B| + ρ))

. (3)

�
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Table 3. Concrete choice of parameters for Protocol 6.

κ 128 80

μ 2 3 4 5 6 8 15 3 4 5 10

� 190 177 174 172 171 170 169 133 128 125 122

#-checks 380 531 696 860 1026 1360 2535 399 512 625 1220

μ is computed by bounding Eq. (2) above with 2−ρ , where |U | = κ, |B| = � − |U |, and ρ = 40. Total
#-checks is computed as μ�. Each column achieves probability less than 2ρ [cf. Eq. (2)]

As a result from the previous claim, we get the following corollary:

Corollary 5.10. Assuming that H is a random oracle and G is a pseudorandom gen-
erator, Protocol 6 with appropriate choice of parameters (�, μ) securely computes the
m×OTn functionality in the �×OTκ -hybrid model in the presence of a static malicious
adversary.

Proof. We choose (�, μ) as described in the proof of Claim 5.8. The proof is based on
the proof of Theorem 5.2. The simulator is the same, except for the fact that it chooses
the set of checks � as the honest sender in the real execution sends it to the malicious
receiver and receives the set of hashesH. It then continues with the simulation as in the
previous proof.
Note that the verification is passed with the exact same probability in the real and in

the ideal execution. If (T ,�) ∈ Tbad, then the verification is passed with probability at
most 2−ρ . On the other hand, if the verification is passed and (T ,�) ∈ Tgood, then the
number of consistent secrets with (T ,�,H) is at least 2κ . Moreover, from Claim 5.8,
|U | > κ and it holds also that |U | > |B|. This implies that Claim 5.4 holds here as well.
As a result, even if we give the distinguisher the bits sB in the clear, there are still more
than 2κ possible secrets and the simulation is indistinguishable for the same reasons as
previously. �

Concrete Choice of Parameters Claim 5.8 states that the bound is achieved for an ap-
propriate choice of parameters. We numerically computed the probability in Eq. (2) for
a variety of parameters and obtained that the probability is less than 2−ρ with ρ = 40,
for the following parameters:
We recall that in case we check all pairs (i.e., Protocol 5), we have either � = κ +ρ =

128 + 40 = 168 base-OTs with
(
�
2

) = 14, 028 checks, or � = κ + ρ = 80 + 40 = 120
base-OTs with 7140 checks.

5.4. Correlation Robustness Instead of a Random Oracle

In this section, we show how a correlation robustness assumption (with respect to a high
min-entropy source) suffices for proving the security of our protocol.

Correlation Robust FunctionWefirst recall the standard definition of a correlation robust
function given in Definition 2.1 as well as the stronger version of the assumption. Let
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U� denote the uniform distribution over strings of length �. Another way of looking at
the correlation robust function H is as a type of pseudorandom function. Specifically,
define Fs(t) = H(t ⊕ s). Then, H is correlation robust if and only if F is a weak
pseudorandom function, and H is strongly correlation robust if and only if F is a (non-
adaptive) pseudorandom function. For proving the security of our protocol, we need to
consider the above notions but where s is chosen from a high min-entropy source. Thus,
we consider the case where H has a similar property to that of an extractor: generating
highly random output from a somewhat weak random source (with sufficiently large
min-entropy).
Let X be a randomvariable taking values from {0, 1}�. Themin-entropy ofX , denoted

H∞(X ), is: H∞(X )
def= minx

{
log 1

Pr[X=x]

}
= − log (maxx {Pr [X = x]}) . If a source

X has a min-entropy κ , we say thatX is a “κ-source.” For instance, a κ-source may be κ

uniform and independent bits, together with some �−κ fixed bits (in an arbitrary order),
or κ uniform bits with some � − κ bits that depends arbitrarily on the first random bits.
We are now ready to define min-entropy correlation robustness.

Definition 5.11. (Min-EntropyCorrelationRobustness)Anefficiently computable func-
tion H : {0, 1}� → {0, 1}n is κ-min-entropy correlation robust if for all (efficiently
samplable) κ-sources X on {0, 1}� it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·�+m·n}

where t1, . . . , tm are chosen uniformly and independently at random from {0, 1}�, and
s ← X . H is κ-min-entropy strongly correlation robust if for all (efficiently sam-
plable) κ-sources X on {0, 1}� and every (distinct) t1, . . . , tm ∈ {0, 1}� it holds that:

{H(t1 ⊕ s), . . . , H(tm ⊕ s)} c≡ {Um·n}

where s ← X .

In Protocol 5, the values that are used to mask the inputs of the sender are H( j, t j ),
H( j, t j ⊕ s) (or, H( j, t j ⊕ (s ∗ e j )), H( j, t j ⊕ (s ∗ e j ) ⊕ s) in case the adversary uses
different ri ’s). Since the receiver is the one that effectively chooses the t j ’s values, it
may choose values that are not distributed uniformly or even choose them maliciously.
As a result, we prove the security of Protocol 5 in its current form using the strong
κ-min-entropy correlation robustness assumption.
However, it is also possible to modify the protocol and rely only on κ-min-entropy

correlation robustness, as follows. In Step 4c (of Protocol 5), in each iteration 1 ≤ j ≤ m,
the sender chooses a randomvalued j ∈ {0, 1}� and sends the values (d j , y0j , y

1
j ), where:

y0j = x0j ⊕ H( j,q j ⊕ d j ) and y1j = x1j ⊕ H( j,q j ⊕ d j ⊕ s) .

Then, PR computes x j = y
r j
j ⊕ H( j, t j ⊕ d j ). Since the d j values are chosen last, this

ensures that the values used inside H are always uniformly distributed. Thus, κ-min-
entropy correlation robustness suffices.
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In Step 3 of Protocol 5, we also use the function H ; however, the property that is
needed fromH for these invocations is collision resistance andnot correlation robustness.
Therefore, to explicitly emphasize the differences between the two assumptions, we say
that the parties use a collision-resistant function h in Step 3 of the protocol, and a (variant
of) correlation robust function in Step 4c.

Theorem 5.12. 1. Assume that H is strongly κ-min-entropy correlation robust, h is
a collision-resistant function and G is a pseudorandomgenerator. Then, Protocol 5
securely computes the m × OTn functionality in the � × OTκ -hybrid model in the
presence of a static malicious adversary.

2. Assume that H is κ-min-entropy correlation robust, h is a collision-resistant func-
tion, and G is a pseudorandom generator. Then, the above-described modified
protocol securely computes the m × OTn functionality in the � × OTκ -hybrid
model in the presence of a static malicious adversary.

Proof. We prove the first item in the theorem. The second is proven in almost the same
way. Moreover, we consider for now the original protocol (i.e., Protocol 5, where the
checks of all pairs are performed). We later show how to consider the protocol with the
reduced number of checks.
Recall that in both the ideal and real executions, the outputs of the execution consist of

the randomness of the adversary, its view (the messages it receives during the execution)
and the output of the honest party. The randomness of the adversary uniquely defines
the messages it sends in the first round T = {k0i ,k1i }�i=1,u

1, . . . ,u�,Hα,β}. The view
of the adversary consists of the messages it receives in the last round of the protocol,
that is, {y0i , y1i }mi=1. We now consider two cases; the first in which the randomness of the
adversary defines T for which T ∈ Tbad and the second case where T ∈ Tgood.
A outputs T ∈ T bad. In such a case, in both executions, the adversary gets caught
with probability 1 − 2−ρ . This is because both the simulator in the ideal execution and
the honest sender in the real execution choose a secret s uniformly at random in {0, 1}�,
and it holds that:

Pr
[
consistent(T , s) = 1

] ≤ 2−ρ

In case the verification does not pass, both the simulator in the ideal execution and the
honest sender in the real execution halt the execution immediately and do not transfer
the values {y0i , y1i }�i=1. As a result, the two executions are clearly identical, since the
adversary has no view and the output of the honest party in both cases is ⊥. The only
possibility of failure is in case where the verification passes although T ∈ Tbad, which
happens with probability 2−ρ .

A outputs T ∈ T good. Even though T ∈ Tgood, there is still a noticeable probability
that the verification will not pass. Since the secret s is chosen exactly the same way in
both executions, the verification passes or fails with the exact same probability.
If the verification does not pass, i.e., s �∈ S(T ), then in both the real and the ideal

executions, there is no transmission, and therefore both executions are identical as above.
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We left with the case where T ∈ Tgood and that s ∈ S(T ). In such a case, there is a
transmission in both executions. We show that the two are indistinguishable by a mental
experiment and consider the following three executions:

1. The real execution, conditioned on the event where T ∈ Tgood and s ∈ S(T ).
2. The real execution, conditioned on the event that T ∈ Tgood and s is chosen from

the κ-source X (T ). Below, in Claim 5.13, we show how one can sample from the
set S(T ) = {s ∈ {0, 1}� | consistent(T , s) = 1} efficiently.

3. The ideal execution, conditioned on the event that T ∈ Tgood and s ∈ S(T ).

The only difference between execution 2 and execution 3 is the values {y1−r j
j }mj=1. We

recall that in the ideal execution, these values are uniform and independent, whereas

in the real execution for j = 1, . . . ,m, it holds that y
1−r j
j = x

1−r j
j ⊕ H( j, t′j ⊕ s).

However, from the fact that H is a strongly κ-min-entropy correlation robust (as in
Definition 5.11), executions 2 and 3 are computationally indistinguishable.
The only difference between executions 1 and 2 is the way s is chosen. In the real

execution, we condition on the case where s ∈ S(T ), and thus s is distributed uniformly
in S(T ). In execution 2, s is chosen uniformly from the set S(T ). These two executions
are distributed identically.

The Case of Protocol 6 We now consider the protocol with the fewer number of checks.
Again, the messages T = {{k0i ,k1i }�i=1,u

1, . . . ,u�} depend only on the randomness
of A and therefore are the same in both executions. Both the honest sender in the real
execution and the simulator in the ideal execution choose the functions � with the
same distribution, and therefore the hashes H = {Hα,φ(α)}α∈[�],φ∈� have the same
distribution. As the previous protocol, the case where (T ,�) ∈ Tbad happens with the
same probability in both executions and the view of the adversary is the same in both
executions.
Given (T ,�,H), the case of (T ,�) ∈ Tgood, but for which s �∈ S(T ,�,H), where

S(T ,�,H) = {s ∈ {0, 1}� | consistent((T ,�,H), s) = 1} also occurs with the
same probability, and the view of the adversary and the output of the honest party are
clearly the same in both execution.
The case where (T ,�) ∈ Tgood and s ∈ S(T ,�,H) is handled as in the equiva-

lent case above. Specifically, consider an execution where s is chosen from the source
X (T ,�,H) is defined below. This execution is identical to the real, and by the corre-
lation robustness property of H , this execution is indistinguishable from the real, since
H is a strongly κ-min-entropy correlation robust. �

Claim 5.13. For any given transcript T ∈ Tgood, there exists an efficient procedure
that samples a uniform secret s from S(T ). This procedure is a κ-source.

Proof. We want to show that given the transcript that the adversary has outputted, we
can extract the constraints that are defined by these values, and the bits that are learned
from the fact that the verification has passed. This will give us the ability to sample a
value from S(T ). Note that just sampling a random s ∈ {0, 1}� and performing the same
checks as in the honest execution is not enough, since there are {0, 1}� possible secrets
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overall, whereas |S(T )|may be an order of 2κ . As a result, the probability that a random
s ∈ {0, 1}� is a consistent secret may be too small.
For a pair (α, β), consider Hα,β = (h0,0α,β, h0,1α,β, h1,0α,β, h1,1α,β). Let correctp,q(Hα,β) ∈

{0, 1}4 be a predicate that its value is 1 if and only if h p,q
α,β = H(G(kp

α )⊕G(kqβ)). Finally,
let

correct(Hα,β)
def= (

correct0,0(Hα,β), correct0,1(Hα,β),

correct1,0(Hα,β), correct1,1(Hα,β)
)
.

We also assume that in cases where rα �= rβ , whenever the adversary sets h p,q
α,β that

is incorrect, it sets its value to be H(G(kp
α ) ⊕ G(kqβ) ⊕ uα ⊕ uβ) in order to maximize

the success probability of the verification. We note that this condition can be verified as
well and generate new constraints in case it does not hold. Algorithm 1 describes how
one can sample a consistent secret s from a given transcript T .

ALGORITHM 1 (The κ-source X (T ): sampling a uniform s from S(T ))
Input: A transcript T = {{k0i ,k1i }�i=1, u

1, . . . ,u�,Hα,β }.
1. Extract the following constraints regarding s and store them. For every pair (α, β), extract

rα = uα ⊕ G(k0α) ⊕ G(k1α) and rβ in a similar manner. Then:

(a) If rα = rβ :

i. If correct(Hα,β ) = (1, 1, 1, 1), then no new constraint is added.
ii. If correct(Hα,β ) = (1, 0, 0, 1), then add the constraint sα ⊕ sβ = 0.
iii. If correct(Hα,β ) = (0, 1, 1, 0), then add the constraint sα ⊕ sβ = 1.

(b) If rα �= rβ :

i. If correct(Hα,β ) = (1, 1, 0, 0), then add the constraint sα = 0.
ii. If correct(Hα,β ) = (0, 0, 1, 1), then add the constraint sα = 1.
iii. If correct(Hα,β ) = (1, 0, 1, 0), then add the constraint sβ = 0.
iv. If correct(Hα,β ) = (0, 1, 0, 1), then add the constraint sβ = 1.

(c) If rα �= rβ and only one position of Hα,β is correct, learn both (sα, sβ) and add
this as a constraint. (e.g., if correct(Hα,β ) = (1, 0, 0, 0), then add the constraint
(sα, sβ) = (0, 0)).)

2. If some of the constraints are contradicting, abort and output ⊥.
3. Otherwise, choose a random s ∈ {0, 1}� under the constraints that were stored above, and

output it.

It is easy to see that the possible outputs of the algorithm are exactly the set S(T ).
Moreover, since T ∈ Tgood, it holds that |S(T )| ≥ 2κ . As a result, for every possible
output s of the algorithm X (T ), it holds that Pr [X (T ) = s] ≤ 2−κ , and thus the min-
entropy of X (T ) is κ . �

Algorithm 1 was designed for the variant of the protocol where we check all pairs.
An equivalent source X (K,�,H) for the variant of the protocol that does not check all
pairs can also be constructed in a similar manner. The only difference between the two
algorithms is that we do not run over all possible pairs (α, β) in Step 1 of the algorithm,
but rather only all pairs (α, φ(α))φ∈�. This is a κ-source for every (T ,�) ∈ Tgood,
since the number of possible outputs S is at least 2κ .
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5.5. Achieving Covert Security

In this section, we present a more efficient protocol (with fewer base-OTs and checks)
with the property that any deviation from the protocol that can result in a breach of
security will be detected with probability at least 1/2. For details on the definition of
covert security, we refer to [1]. Our protocol below is secure under the strong explicit-
cheat formulation with deterrent factor ε = 1

2 .
As in the malicious case, given the set of keys {k0i ,k1i }, and the messages u1, . . . , u�,

the sets B and U are implicitly defined, and we want to catch the adversary if its behavior
defines a set B with “high” cardinality. Here, we will be content with catching the
adversarywith probability 1/2, instead of 1−2−ρ as in the case ofmalicious adversaries.
As wewill show below, our approach for the consistency check of r enables us to achieve
a deterrent factor of 1/2 at the cost of very few consistency checks. Concretely, it will
be enough to use 7 checks of pairs only.

The Protocol In Step 3 of Protocol 5, the sender chooses t random pairs {(αi , βi )}ti=1
uniformly and independently at random, and sends them to the receiver. The receiver
sendsHαi ,βi for each pair (αi , βi ) that it was asked. Then, the sender performs the same
checks as in the previous protocol: It checks that the receiver replied with hashes for
all the pairs (αi , βi ) that it was asked for, and that the hashes that were sent are correct
(i.e., as in Step 3b of Protocol 5). We proceed with a formal statement of the theorem
and the proof. We state and prove the theorem with respect to some concrete choice of
parameters.

Theorem 5.14. Assume that H is strongly κ-min-entropy correlation robust, h is a
collision-resistant function and G is a pseudorandom generator. Assume the above pro-
tocol with the following parameters: � is the total number of base-OTs, t is the number of
checks, and ε is the deterrent factor. The protocol computes the m×OTn functionality in
the �× OTκ -hybrid model in the presence of a covert adversary with ε-deterrent factor,
if the following conditions hold:

1. Let δ
def= (� − κ) · κ − 2t (� − t). Then, we require that δ > 0, and

2. t >
log(1−ε)

log
(
1− δ

�2

) .

Proof. The simulator is exactly the same as in Theorem 5.2, where the only difference
is the consistency check. The simulator, as the sender in the real execution, chooses t
random pairs {(αi , βi )}ti=1 uniformly and independently at random. We now show that
any cheating attempt gets caught with probability at least ε.
We again consider the graph of checks, and let V = [�] and the edges are all possible

checks. We divide [�] to B and U as in the proof of Theorem 5.2, and we show that when
using t checks, the probability that the adversary succeeds to pass the verification when
B is too “large” is less than 1− ε. That is, we show that for every |B| > �−κ (and thus,
|U | < κ), the probability that the adversary passes the verification is smaller than 1− ε.
There are �2 edges overall, where 2|B|·|U | are edges between B andU , and |B|2+|U |2

edges are between B and B, or U and U . We say that an edge is “good” if it goes between
B and U . Recall that in such a check, the adversary is caught with probability at least
1/2.
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For the first edge that is chosen, the probability that it is a good edge is 2|B| · |U |/�2.
However, once this specific edge between B and U is chosen, an edge between B and U
that is pairwise non-adjacent with the previously chosen edge is no longer good, since
the probability that the adversary will get caught here is not 1/2. Therefore, we denote
by goodi the probability of choosing the (i + 1)th “good” edge. That is, the probability
that edge e j is good conditioned on the event that i good edges were previously chosen
in the set {e1, . . . , e j−1}. We have that:

goodi = 2 · (|B| − i) · (|U | − i)

�2
.

This holds because once a good edge is chosen, we do not want to choose an edge that
is adjacent to it. As a result, with each good edge that is chosen, the effective size of the
set B and U is decreased by 1.

In contrast, we denote by badi the probability that the next chosen edge is bad, given
that there were i previous good edges. That is, a bad edge is either an edge between B
and B, an edge between U and U , or is adjacent to one of the 2i vertices of the previously
chosen good edges. This probability is as follows:

badi = |B|2 + |U |2 + 2i · |U | + 2i · |B| − 2i2

�2

= |B|2 + |U |2 + 2i(� − i)

�2

That is, a bad edge can be either an edge from B to B,U to U , or an edge between
the i vertices that were chosen with any other vertex. Note, however, that there are
some edges that are counted twice, and thus, we remove 2i2. In addition, observe that
goodi + badi = 1.

When we have t checks, we may have between 0 to t good edges. In case there are
d good edges, the probability that the adversary succeeds to cheat is 2−d . In order to
ease the calculation, let good be the maximal probability of good0, . . . ,goodt−1, and
let bad be the maximal probability of bad0, . . . ,badt . We get that:

good = 2 · |B| · |U |
�2

and for t < �/2:

bad = |B|2 + |U |2 + 2t (� − t)

�2
.

Now, consider the edges e1, . . . , et . The probability that the adversary succeeds in its
cheating is the union of succeeds in cheating in each possible combination of checks. In
particular, we may have d = 0, . . . , t good edges, and for each d, there are

( t
d

)
possible

ways to order d good edges and t −d “bad” edges. Finally, when we have d good edges,
the probability that the adversary succeeds to cheat is 2−d . We therefore have that the
probability that the adversary successfully cheats without being caught is less than:
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t∑

d=0

(
t

d

)
· goodd · badt−d · 2−d =

t∑

d=0

(
t

d

)
·
(
1

2
· good

)d

· badt−d

=
(
1

2
· good + bad

)t

Recall that δ = (� − κ) · κ − 2t (� − t) and that δ > 0. For every κ < |B| < �/2, it
holds that (� − κ) · κ < |B| · |U |, and thus 2t (� − t) < |B| · |U | − δ which implies that:

(
1

2
· good + bad

)t

≤
( |B|2 + |U |2 + 2t (� − t) + |B| · |U |

�2

)t

≤
( |B|2 + |U |2 + 2|B| · |U | − δ

�2

)t

≤
(

(|B| + |U |)2 − δ

�2

)t

=
(
1 − δ

�2

)t

< 1 − ε ,

where the last step is true since t > log(1 − ε)/ log(1 − δ
�2

). �

It is easy to verify that the statement holds for κ = 128, � = 166, ε = 0.5 and t = 7.
We will use these parameters in our experiments.

6. Special-Purpose OT Functionalities

The protocols described up until now implement the m × OT� functionality. In the
following, we present further optimizations that are specifically tailored to the use of OT
extensions in secure computation protocols summarized in Table 4: Correlated OT (Sect.
6.1), Sender Random OT (Sect. 6.2), Receiver Random OT (Sect. 6.3), and Random
OT (Sect. 6.4). We first give the intuition and overview of the functionalities and then
present a formal definitions and proofs of security.

6.1. Correlated OT (C-OT)

When performing OT extension, often the sender does not need to transfer two inde-
pendent n-bit strings (x0j , x

1
j ). In some protocols, x0j and x1j only need to be correlated

by a value � j and a correlation function f� j , while one of the two strings can be
constant and publicly known or random. For instance, the Private Set Intersection pro-
tocol of [13] fixes x0j = 0 and transfers only x1j (hence, we can set � j = x1j and

f� j (x
0
j ) = � j ) and the Hamming Distance Protocol of [4] requires a random x0j and a

correlated x1j = f� j (x
0
j ) = x0j +� j . We can alter the functionality of our OT extension

protocols to compute correlatedOT as follows. Since x0j is just a randomvalue, PS can set
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x0j = H( j,q j ) and x1j = f� j (x
0
j ) and can send the single value y j = x1j ⊕H( j,q j ⊕ s).

PR defines its output as H( j, t j ) if r j = 0 or as y j ⊕ H( j, t j ) if r j = 1. For OT on n-bit
strings, we thereby reduce the communication from PS to PR from 2n + � to n + � per
OT.

Defining theFunctionalityThe input x0j of the sender is implicitly definedby the protocol.

Nevertheless, the sender may choose x1j in any arbitrarily way, including as an arbitrary

function of x0j . That is, in the protocol, the sender has the freedom to choose x1j as a

function of x0j . When defining the corresponding functionality, we need to model this
fact. As a result, the functionality C-OT is defined as a reactive functionality, where
the functionality chooses x0j at random, gives it to the sender, and then the sender

replies with its choice for x1j . We proceed with a formal description of the functionality
(Functionality 1), the protocol (Protocol 7) and its proof of security (Theorem 6.1).

FUNCTIONALITY 1 (The Correlated OT Functionality C-OT)
1. PR sends its input r = (r1, . . . , rm ).
2. The functionality chooses m random n-bit strings x01 , . . . , x0m and send them to PS .

3. PS sends x11 , . . . , x1m to the functionality.

4. PR gets as output xr11 , . . . , xrmm .

PROTOCOL 7 (Implementing Correlated OT (C-OT))
We follow protocol 4, where the sender has input f�1 , . . . , f�m instead of (x01 , x11 ), . . . , (x0m , x1m ).
In Step 4c, we have the following modification:

1. PS defines x0j = H( j, q j ) and x1j = f� j (x
0
j ).

2. PS sends y j for every 1 ≤ j ≤ m, where: y j = x1j ⊕ H( j, q j ⊕ s) .

3. For 1 ≤ j ≤ m, PR computes x j = H( j, t j ) if r j = 0, and x j = y j ⊕ H( j, t j ) otherwise.

Output: PS outputs (x01 , x11 ), . . . , (x0m , x1m ), PR outputs r.

Theorem 6.1. Assuming that H is a programmable random oracle and G is a pseudo-
randomgenerator, thenProtocol 7 (with appropriate choice of parameters, as inClaim5.8
and Table 3) securely computes the C-OT functionality (Functionality 1) in the �×OTκ -
hybrid model in the presence of a static malicious adversary.

Proof Sketch. We sketch the simulator and the proof, and relate to the full proof of
the protocol (Theorem 5.2).

The Case of Corrupted Sender The case of corrupted sender here is more subtle than the
proof of the general protocol, and the functionality is now a reactive one. Moreover, we
prove security in the programmable random oracle model.
The simulator chooses a random input r and follows the execution of the protocol

with the corrupted sender and with an honest receiver with input r. Specifically, the
adversary first outputs a vector s of size �. The simulator chooses random {k0i ,k1i }�i=1
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and sends them back to the adversary, together with the ui messages and the necessary
checks Hα,β , all set according to the protocol specifications. Note that this determines
the matrices T and Q.
The simulator then receives the inputs x01 , . . . , x

0
m from the trusted party, and it pro-

grams the random oracle H such that for every 1 ≤ j ≤ m, H( j,q j ) = x0j and chooses
random output for H( j,q j ⊕ s). In case the adversary has already queried H for one
of these values before the simulator programs it, the simulator is failed. The simulator
receives from the adversary the messages y1, . . . , ym , defines for every 1 ≤ j ≤ m the
input x1j = y j ⊕ H( j,q j ⊕ s), and sends the inputs x11 , . . . , x

1
m to the trusted party.

Clearly, the probability that the adversary that makes at most q queries to H( j,q j )

or H( j,q j ⊕ s) before it receives the messages u1, . . . ,u� is bounded by q · 2−�, and
therefore the probability that the simulation fails is bounded by this amount.

The Case of Corrupted Receiver The simulator is the same as in Theorem 5.2, where in
the last step, instead of sending to the adversary the two messages y0j , y

1
j , it sends only

y1j . Note that if no critical query (as in Definition 5.5), then the input x
1−r j
j is hidden from

the adversary or the distinguisher. Specifically, in case r j = 0, the value t j = q j and
therefore H( j,q j ⊕ s) is distributed uniformly, and the value y j = x1j ⊕ H( j,q j ⊕ s)
is distributed uniformly as well. In case r j = 1, it holds that t j = q j ⊕ s, which
implies that x0j = H( j,q j ) = H( j, t j ⊕ s) is distributed uniformly and hidden from the
adversary. �

6.2. Sender Random OT (SR-OT)

When using OT extensions for implementing the OT-based Private Set Intersection (PSI)
protocol of [59,60], the efficiency can be improved even further. In this case, the inputs
for PS in everyOTare independent random stringsm0 andm1. Thus, the sender can allow
theOT extension protocol (functionality) SenderRandomOT (SR-OT) to determine both
of its inputs randomly. This is achieved in the OT extension protocol by having PS define
m0 = H( j,q j ) and m1 = H( j,q j ⊕ s). Then, PR computes mr j just as H( j, t j ). With
this optimization, we obtain that the entire communication in the OT extension protocol
consists only of the initial base-OTs, together with the messages u1, . . . ,uκ , and there
are no y j messages. This is a dramatic improvement of bandwidth. In particular, for the
OT-PSI protocol of [59,60], which performs O(nσ) OTs on ρ + 2 log2(n) bit strings,
where n is the number of elements in both parties sets, σ is the bit length of each element,
and ρ is the statistical security parameter, the communication from PS to PR is reduced
from O(nσ) to O(n).

Formal Description of the Functionality We proceed with a formal description of the
functionality (Functionality 2), the protocol (Protocol 8), and its proof of security (The-
orem 6.2).

Theorem 6.2. Assuming that H is a programmable random oracle, G is a pseudoran-
dom generator, Protocol 8 (with appropriate choice of parameters, as in Claim 5.8 and
Table 3) securely computes the SR-OT functionality (Functionality 2) in the � × OTκ -
hybrid model in the presence of a static malicious adversary.
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FUNCTIONALITY 2 (Sender Random OT)
• Input: PS holds no input, PR holds r = (r1, . . . , rm ).
• The functionality: The functionality chooses m pairs of random strings of size n each,

(x01 , x11 ), . . . , (x0m , x1m ).

• Output: PS outputs (x01 , x11 ), . . . , (x0m , x1m ). PR outputs (x
r1
1 , . . . , xrmm ).

PROTOCOL 8 (Implementing Sender Random OT (SR-OT))
We follow Protocol 4, where the sender does not have any input. In Step 4c, we have the following
modification:

1. PS defines x0j = H( j, q j ) and x1j = H( j, q j ⊕ s) for every 1 ≤ j ≤ m.

2. PR defines x
r j
j = H( j, t j ) for every 1 ≤ j ≤ m. Note that there is no interaction between

the parties in this step.

Output: The sender outputs (x0j , x
1
j ), the receiver outputs x

r j
j .

Proof Sketch. The Case of Corrupted SenderWe prove security in the programmable
random oracle model.
The simulator chooses a random input r and follows the execution of the protocol

with the corrupted sender and with an honest receiver with input r. Specifically, the
adversary first outputs a vector s of size �. The simulator chooses random {k0i ,k1i }�i=1
and sends them back to the adversary, together with the ui messages and the necessary
checksHα,β , all sets according to the protocol specifications. Note that this determines
the matrices T and Q.
The simulator then receives the inputs (x01 , x

1
1), . . . , (x

0
m, x1m) from the trusted party,

and it programs the random oracle H such that for every 1 ≤ j ≤ m, H( j,q j ) = x0j
and H( j,q j ⊕ s) = x1j .
The Case of Corrupted Receiver The simulator is the same as in Theorem 5.2, where
the only modification is that the simulator does not send the receiver any message in the
transfer phase. Assuming that the receiver or the distinguisher do not make any critical
query (Definition 5.5), the value H( j, t j ⊕ s) is hidden and distributed uniformly. In
case where r j = 0, this value is x1j and in case where r j = 1, it is x0j . The theorem
follows. �

6.3. Receiver Random OT (RR-OT)

Analogously to the Sender Random OT, in the Receiver Random OT (RR-OT), PR ob-
tains his input choice bits r as random output of the protocol execution. Our instantiation
of RR-OT in OT extension allows PR to save one bit of communication per OT. Recall
that in Step 2(a) in Protocol 4, PR sends ui = G(k0i ) ⊕ G(k1i ) ⊕ r for 1 ≤ i ≤ �.
However, if we allow r to be randomly chosen, we can set r = G(k01) ⊕ G(k11) and
t1 = G(k01) and only need to transfer ui

′ = G(k0i ′) ⊕ G(k1i ′) ⊕ r for 2 ≤ i ′ ≤ �. PS
can then compute q1 = G(ks11 ) and, as before, qi

′ = (si ′ · ui ′) ⊕G(k
si ′
i ′ ). Therefore, the

communication from PR to PS is reduced by one bit per OT.
We proceed with a formal description of the functionality (Functionality 3), protocol

(Protocol 9) and its proof of security (Theorem 6.3).
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FUNCTIONALITY 3 (The Receiver Random OT Functionality (RR-OT))
• Input: PS holds m pairs (x01 , x11 ), . . . , (x0m , x1m ) of n-bit strings.
• In case of corrupted receiver: PR sends m-bits r = (r1, . . . , rm ) to the functionality.
• In case of honest receiver: PR has not input. The functionality chooses m random bits

r = (r1, . . . , rm ).
• Output: PS has no output; PR outputs (x

r1
1 , . . . , xrmm ) and r.

PROTOCOL 9 (Implementing Receiver Random OT (RR-OT))
We follow Protocol 4 with the following modifications:

1. PR has no input.
2. Given the chosen keys {k0i , k1i }�i=1, PR sets r = G(k01) ⊕ G(k11).

3. For every 2 ≤ i ≤ �, PR sets ui = G(k0i ) ⊕ G(k1i ) ⊕ r, and sends u2, . . . ,u� to PS . Note

that u1 is not sent.
4. In case of our actively secure OT extension protocol, the parties check consistency as pre-

viously.
5. PR defines T = [t1 | . . . | t�] where ti = G(k0i ) for every 1 ≤ i ≤ � as in Protocol 4.

6. PS defines Q = [q1 | . . . | q�] where q1 = G(ks11 ), and for every 2 ≤ i ≤ �, qi is defined
as in Protocol 4, i.e., qi = G(k0i ) if si = 0; otherwise, set qi = ui ⊕ G(k1i ).

7. The parties proceed with the execution as in Protocol 4.

Theorem 6.3. Assuming that H is a random oracle, G is a pseudorandom generator,
Protocol 9 (with appropriate choice of parameters, as in Claim 5.8 and Table 3) securely
computes the RR-OT functionality (Functionality 3) in the �× OTκ -hybrid model in the
presence of a static malicious adversary.

Proof Sketch. Note that the random oracle does not have to be programmable. Re-
garding correctness, for every 2 ≤ i ≤ � it holds that qi = ti ⊕ (si · r). For i = 1, if
s1 = 0 then q1 = G(k01) = ti ; in case s1 = 1, then q1 = G(k11) = G(k01) ⊕ r = ti ⊕ r,
and therefore q1 = t1 ⊕ (s1 · r) as well.
The Case of Corrupted Sender The simulator is exactly the same as in Theorem 5.2, i.e.,
the simulator chooses an random r′ and plays the role of an honest receiver with input
r′. There is no contradiction between the simulated execution (where the input of the
receiver is r′) and the actual value r chosen by the trusted party, for the same reasons
that the simulator in Theorem 5.2 succeeds with the simulation for some random input
r′, whereas the receiver uses its true input r to the trusted party.
The Case of Corrupted Receiver The only difference is that the simulator sends the
messages u2, . . . ,u� (excluding u1). In particular, the input r that the simulator extracts
is the most repeated ri value according to the messages u2, . . . ,u�, and define r1 as
G(k0i ) ⊕ G(k1i ). The theorem follows from the correctness argument as above, and
Theorem 5.2. �

6.4. Random OT (R-OT)

In a randomOT, both PS and PR obtain their input as random output of the protocol. The
random OT functionality can be obtained by combining the SR-OT protocol with the
RR-OT protocol. Random OT can be used in the GMW protocol when pre-computing
random multiplication triples (see Sect. 2.7). We proceed with a formal description of
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the functionality (Functionality 4), the protocol (Protocol 10), and its proof of security
(Theorem 6.4).

FUNCTIONALITY 4 (Functionality Random OT R-OT)
• Inputs: PS has no input, and the functionality chooses m pairs of n-bit strings

(x01 , x11 ), . . . , (x0m , x1m ).
• In case of corrupted receiver: PR sends m-bits r = (r1, . . . , rm ) to the functionality.
• In case of honest receiver: PR has no input. The functionality chooses m random bits

r = (r1, . . . , rm ).
• Output: PS outputs (x01 , x11 ), . . . , (x0m , x1m ). PR outputs (x

r1
1 , . . . , xrmm ) and r.

PROTOCOL 10 (Implementing Random OT R-OT)
This is a simple combination of Protocols 8 and 9. Specifically, PR defines its input as G(k01) ⊕
G(k11), and PS defines its inputs x

0
j , x

1
j according to H( j, q j ), H( j, q j ⊕s), respectively, for every

1 ≤ j ≤ m. There is no transmission of u1 from PR to PS , and there is no transmission of y0j , y
1
j

from PS to PR for every 1 ≤ j ≤ m.

Theorem 6.4. Assuming that H is a programmable random oracle, G is a pseudoran-
dom generator, Protocol 10 (with appropriate choice of parameters, as in Claim 5.8 and
Table 3) securely computes the R-OT functionality (Functionality 4) in the � × OTκ -
hybrid model in the presence of a static malicious adversary.

Proof Sketch. The proof follows from Theorems 6.3 and 6.2. In particular, in case
of corrupted sender, the simulator receives the inputs (x01 , x

1
1), . . . , (x

0
m, x1m) from the

trusted party, and it programs the random oracle H such that for every 1 ≤ j ≤
m, H( j,q j ) = x0j and H( j,q j ⊕ s) = x1j . In case of a corrupted receiver, the in-

put r that the simulator extracts and sends to the trusted party is the most repeated ri

value according to the messages u2, . . . ,u� (where r1 is defined as G(k01) ⊕G(k11)). �

Summary The original OT extension protocol of [35] and our proposed improvements
for m×OTn are summarized in Table 4. We compare the communication complexity
of PR and PS for m parallel 1-out-of-2 OT extensions of n-bit strings, with security
parameter κ and � base-OTs (we omit the cost of the initial κ×OTκ ). We also compare
the assumption on the function H needed in each protocol, where CR denotes correlation
robustness and RO denotes random oracle.

7. Experimental Evaluation

In this section, we empirically evaluate our optimizations and proposed protocols.
In Sect. 7.1, we describe our benchmarking environment and implementation. In Sect.
7.2, we evaluate the optimizations on the passively secure OT extension protocol of [35],
outlined in Sect. 4. In Sect. 7.3, we evaluate the special-purpose OT functionalities, pre-
sented in Sect. 6. In Sect. 7.4, we evaluate the performance of our covert and actively
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Table 4. Bits sent for sender PS and receiver PR for m 1-out-of-2 OT extensions of n-bit strings and security
parameter κ for the semi-honest OT extension protocol of [35] with our optimizations.

Protocol Applicability PR → PS PS → PR H

Original [19]+ [35] All applications m� 2mn CR
C-OT Sect. 6.1 x0j random; x1j correlated with � j m� mn RO

SR-OT Sect. 6.2 x0j , x
1
j random, r j chosen m� 0 RO

RR-OT Sect. 6.3 x0j , x
1
j chosen, r j random m(� − 1) 2mn RO

R-OT Sect. 6.4 x0j , x
1
j , r j random m(� − 1) 0 RO

secure OT extension protocol, presented in Sect. 5. Finally, in Sect. 7.5, we evaluate the
overhead for themin-entropy correlation robustness assumption fromSect. 5.4 compared
to the random oracle assumption.

7.1. Benchmark Setting

Parameters and Instantiation In all our experiments, we assume long-term security
(cf. Table 2), i.e., we set the symmetric security parameter κ = 128-bit and use the
283-bit Koblitz curve of [55]. We instantiate the pseudorandom generator using AES-
CTR and the correlation robust function as well as the random oracle using SHA256.
We process the OTs blockwise with blocks of size w = 219. We use the OT protocol
of [57] in the random oracle model as base-OT protocol for the passively secure OT
extension protocols and the OT protocol of [12] as base-OT protocol for the actively
secure OT extension protocols. As parameters for our actively secure protocol, we use
190 base-OTs and 380 checks, and for our covert secure protocol, we use 166 base-OTs
and 7 checks as these parameters resulted in the best performance. For the actively secure
protocol of [56], we use the parameters in the paper, i.e., 342 base-OTs and 171 checks.
Our implementation is available online at http://encrypto.de/code/OTExtension.

3-Step OT Extension To generate large numbers m > w = 219 of OTs for the actively
secure OT extension protocols, we perform a 3-step OT, where PS and PR first perform
� base-OTs, then extend these � OTs to 
m�/w� OTs using the respective OT extension
protocols, and finally split these 
m�/w� OTs into m/w blocks of � OTs and extend
each block to w OTs again using the respective OT extension protocol to obtain the m
OTs. In case m > w�w/��, one can simply extend this approach again and do a 4-step
OT.

1-Out-of-2 R-OT on Bits Via 1-out-of-N OT [40] For the passively secure 1-out-of-N
OT extension protocol of [40], we use N = 16, since this resulted in the lowest com-
munication, and hence convert one 1-out-of-16 OT to four 1-out-of-2 OTs. In particular,
we compute the SR-OT functionality and convert the i-th 1-out-of-16 OT with 4-bit
output values (z0i , ..., z

15
i ) ∈ {0, 1}64 to the 4i-th to (4i + 3)-th 1-out-of-2 OTs with

single bit output values (x04i , x
1
4i ), ..., (x

0
4i+3, x

1
4i+3) as: (x

0
4i ||x04i+1||x04i+2||x04i+3) = z0i

and (x14i ||x14i+1||x14i+2||x14i+3) = z15i . For the remaining values (z1i , ..., z
14
i ), PS sends

4-bit correction values y j
i = z ji ⊕ (x j0

4i ||x j1
4i+1||x j2

4i+2||x j3
4i+3) for 1 ≤ j ≤ 14, j =

http://encrypto.de/code/OTExtension
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j0|| j1|| j2|| j3 and j0 is the least significant bit of j . Therefore, we do not need to send
the correction values for z0i and z

15
i which saves 8-bits of communication per 1-out-of-N

OT. To compute the RR-OT functionality, PR randomly selects four bit positions that
uniquely determine the codeword in the base-OTs and omits the sending of the correc-
tion values u for these positions. Note, that the [40] OT can also be instantiated with
N ∈ {2, 4, 8}, which would increase communication but reduce computation complex-
ity. As a special case, if N = 2 and when using a repetition code, the [40] protocol
would be equal to the [35] protocol.

Benchmark Environment We perform our experiments in two settings: a LAN setting
and a WAN setting. In the LAN setting, we run the sender and receiver routines on two
Desktop PCs, each equipped with an Intel Haswell i7-4770K CPU with 4 cores and
AES-NI support and 16 GB RAM that are connected by Gigabit Ethernet. In the WAN
setting, we run the sender on an Amazon EC2 m3.xlarge instance with a 2.5 GHz Intel
Xeon E5-2670v2 CPU with 4 virtual CPUs (vCPUs) and 15 GB RAM, located in North
Virginia (US EAST) and the receiver routine on one of our Desktop PCs in Europe. The
average bandwidth between these two machines was 120MBit/s and the average ping
latency (round-trip time) was 100 ms.

7.2. Evaluation of Semi-Honest OT Extension

In the following, we evaluate the performance gains from our optimizations on the pas-
sively secure OT extension protocol of [35] described in Sect. 4. We benchmark the
protocol in three versions: the original passively secure OT extension protocol of [35]
with naive matrix transposition, the protocol of [35] with the Eklundh matrix transposi-
tion (cf. Sect. 4.2), and our improved passively secure OT extension protocol (cf. Sect.
4.3), including the Eklundhmatrix transposition.We evaluate all three versions using the
Random OT functionality (cf. Sect. 6.4) as this functionality reduces the overhead for
the last step in the protocol and hence lets us evaluate the core efficiency of the protocol
more precisely. We vary the number of OTs from 210 (=1024) to 224 (=16,777,216) and
fix the bit length of the transferred strings to 128. The results in the LAN and WAN
setting are given in Fig. 2.

In both the LAN and WAN settings, we were able to decrease the run-time by factor
2-3. In the LAN setting, the efficient matrix transposition from Sect. 4.2 had the highest
impact while our protocol optimization from Sect. 4.3 only slightly decreased the run-
time. This can be explained by the computation being the bottleneck in the LAN setting,
hence the communication improvement from our protocol optimization had only little
effect. In the WAN setting, on the other hand, the communication improvement from
our protocol optimization resulted in a higher run-time decrease than the efficient matrix
transposition because in this setting communication is the main bottleneck. For smaller
number of OTs, the base-OTs have a high impact on the total run-time, hence the run-
time of all protocols is similar. However, the base-OTs amortize for higher number of
OTs and the improvements on the OT extension protocols can be seenmore clearly. Note
that the dent for 219 OTs for both the LAN and WAN settings is due to the block size of
our implementation. More than 219 OTs are processed in multiple blocks, resulting in a
better amortization.
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Fig. 2. Run-time for passively secure R-OT extension on 128-bit strings in the LAN (a)- andWAN (b) setting.
Time for 224 OTs given in {} .
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Fig. 3. Run-time overhead over R-OT for different OT flavors using the semi-honest OT extension on 128-bit
strings in the LAN (a)- and WAN (b) setting. Run-time overhead for 224 OTs given in {}.

7.3. Evaluation of Special-Purpose OT Functionalities

Next, we evaluate the performance of the special-purpose OT functionalities, outlined
in Sect. 6. We use the performance of the Random OT (R-OT) (cf. Sect. 6.4) as baseline
and evaluate the overhead that is added when using the original OT, Correlated OT
(C-OT) (cf. Sect. 6.1), and Sender Random OT (SR-OT) (cf. Sect. 6.2) functionalities.
Similar to the evaluation of semi-honest protocol optimizations, we vary the number
of OTs from 210 (=1024) to 224 (=16,777,216) and fix the bit length of the transferred
strings to 128. The results for the LAN and WAN scenario are given in Fig. 3.
From the results, we can observe that the standard OT functionality and the C-OT

functionality are both slower than the R-OT functionality. The SR-OT, on the other
hand, has a similar performance as the R-OT since R-OT only reduces the communi-
cation by a single bit per OT. In the LAN setting, the performance difference is nearly
negligible (224 R-OTs need 13.1 s while the same number of OTs requires 13.6 s), since
the improvements from R-OT mainly affect the communication complexity which is
not the bottleneck in the LAN setting. In the WAN setting, however, the performance
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Fig. 4. Run-time for single thread (a, c) and multi-thread (b, d) passively, covert, and actively secure R-OT
extension protocols on 1-bit strings in the LAN (a, b) and WAN (c, d) setting. Time for 224 OTs given in {}.

improvements of (S)R-OT are higher, since the communication is the bottleneck and
the C-OT and standard OT functionality have to send messages from the sender to the
receiver. Evaluating 224 OTs in the WAN setting requires 23.0 s for the standard OT
functionality, 20.7 s for the C-OT functionality, 19.7 s for SR-OT, and 19.5 s for R-OT.

7.4. Evaluation of Actively Secure OT Extension

Here, we evaluate our covert and actively secure OT extension protocols of Sect. 5 and
compare their performance to the actively secure protocol of [56], the passively secure 1-
out-of-N OT protocol of [40], and our optimized version of the passively secure protocol
of [35]. We benchmark all five protocols on the 1-bit Random OT functionality and vary
the number of OTs from 210 (=1024) to 230 (=1,073,741,824) in the LAN setting and to
224 (=16,777,216) in the WAN setting. We evaluate the protocols once using one thread
for both parties and once using four threads for both parties to highlight the effect of
increased computing power. The single- and multi-thread results are given in Figure 4.
To evaluate the improvement when using multiple threads in parallel, we benchmark
all protocols in the LAN setting on a fixed number of 226 random OTs with increasing
number of threads from 1 to 4 and give the results in Table 5.
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Table 5. Run-time for increasing number of threads and time improvement of 4 threads over 1 thread when
evaluating 226 random OT extensions on 1-bit strings in the LAN setting.

Protocol 1 Thread (s) 2 Threads (s) 3 Threads (s) 4 Threads (s) Improvement 1 �→ 4

[56] (act) 65.8 34.6 27.2 27.3 2.4×
This work (act) 64.7 33.1 23.7 18.8 3.4×
This work (cov) 49.9 25.8 18.2 15.1 3.3×
This work (pas) 44.1 22.7 15.9 13.2 3.3×
[40] (pas) 107.7 54.6 37.4 29.5 3.7×

Single Thread As expected, we can observe that the run-time increases with the pro-
vided security as our passively secure OT extension protocol outperforms our covert
secure protocol which again outperforms both actively secure protocols in both LAN
and WAN. The only exception to this is the passively secure 1-out-of-N OT extension
of [40], which is slowest in the LAN setting and second slowest in the WAN setting due
to its higher computational overhead. In the LAN setting, the actively secure protocol
of [56] outperforms our actively secure protocol since our protocol has a larger computa-
tional overhead for the check routine. In the WAN setting, however, the communication
becomes the bottleneck and the overhead for the communication of [56] outweighs the
computational overhead for the check routine of our protocol. In fact, in theWANsetting,
the run-time overhead of the covert and actively secure OT extension protocols over the
passively secure protocol is proportional to their communication overhead. Our covert
secure protocol has a communication and run-time overhead of 130%, our actively se-
cure protocol has a communication overhead of 148% and a run-time overhead of 152%,
and the actively secure protocol of [56] has a communication overhead of 267% and a
run-time overhead of 277%.

Multiple Threads The main improvement when increasing the number of threads can be
seen in the LAN setting, where the run-time of all protocols was improved. In particular,
the passively secure OT extension protocol of [40] and our actively secure protocol
benefit most from the increased number of threads (cf. Table 5). The better scaling of
these protocols can again be explained by their lower communication,which becomes the
bottleneck when using multiple threads even in the LAN setting. In theWAN setting, the
run-times for nearly all protocols remain unchanged even when using multiple threads
since already a single thread is able to utilize the full bandwidth. The only exception to
this is the passively secure protocol of [40], which nearly achieves the same run-times
as our passively secure protocol.

7.5. Evaluation of Min-Entropy Correlation Robustness

We empirically evaluate the overhead when using the min-entropy correlation robust
(MECR) version (cf. Sect. 5.4) instead of the random oracle (RO) version (cf. Sect.
5.1) of our actively secure OT extension protocol. Recall that we achieve the min-
entropy correlation robustness by changing Step 4c in Protocol 5 such that the sender
chooses random d j ∈ {0, 1}� and computes y0j = x0j ⊕ H( j,q j ⊕ d j ) and y1j =
x1j ⊕H( j,q j ⊕d j ⊕s). The sender then sends (d j , y0j , y

1
j ) to the receiver who computes
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Fig. 5. Run-time overhead of the min-entropy correlation robustness (MECR) version of our actively secure
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x j = y
r j
j ⊕ H( j, t j ⊕ d j ). We benchmark the protocol on 210 to 224 actively secure

random OTs on 1-bit strings in the LAN setting and give the overhead of the MECR
version over the RO version in Figure 5.
From the results, we can observe that the MECR version adds a constant overhead

per block of OTs. While this overhead remains constant and low for less than 219 OTs,
it grows linearly in the number of OTs that are processed. For 224 OTs, the difference
amounts to 1.4 s, where the MECR version has a run-time of 30.3 s, while the RO
version has a run-time of 28.9 s.
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Appendix: Active Secure OT Extension of [56]

In Protocol 11, we depict the actively secure OT extension protocol of [56] with opti-
mizations from [23].
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PROTOCOL 11 (Active secure OT extension protocol of [56])

• Input of PS: m pairs (x0j , x
1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm ).
• Common Input: Symmetric security parameter κ and number of base-OTs � = 
 83 κ�.
• Oracles and cryptographic primitives: The parties have an oracle access to the � × OTκ

functionality and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a random oracle
H (see Sect. 5.4 for instantiation of H ).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s�) ∈ {0, 1}� and PR chooses � pairs of
seeds k0i ,k

1
i each of size κ .

(b) The parties invoke the �×OTκ -functionality, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0i ,k

1
i ) for every 1 ≤ i ≤ �.

For every 1 ≤ i ≤ �, let ti = G(k0i ). Let T = [t1| . . . |t�] denote them×� bit matrix where

its i th column is ti for 1 ≤ i ≤ �. Let t j denote the j th row of T for 1 ≤ j ≤ m.
2. OT Extension Phase:

(a) PR computes ti = G(k0i ) and ui = ti ⊕ G(k1i ) ⊕ r and sends ui to PS for every
1 ≤ i ≤ �.

(b) For every 1 ≤ i ≤ �, PS defines qi = (si · ui ) ⊕ G(ksii ). qi = (si · r) ⊕ ti .)

3. Consistency Check of r:

(a) PS chooses a uniform random permutation π : {1, ..., �} �→ {1, ..., �}with π(π(i)) = i
and sends π to Bob. Let �(π) = {i |i ≤ π(i)}.

(b) For all i ∈ �(π), PS computes di = si ⊕ sπ(i) and zi = qi ⊕ qπ(i) sends di to PR .

(c) PR computes z′i = (di · r) ⊕ ti ⊕ tπ(i).
(d) PS and PR check equality between Z = z1||...||z��/2� and Z′ = z′1||...||z��/2� as

follows:

i. PS samples w ∈R {0, 1}κ , computes c = H ′(Z||w), sends c to PR .
ii. PR then sends Z′ to PS .

iii. PS checks Z ?= Z′ and aborts on failure. Else sends (Z,w) to PR .

iv. PR checks that Z ?= Z′ and c ?= H ′(Z′||w) and aborts on failure.

(e) For all ��/2� indices in i ∈ �(π) where i is the kth index with 1 ≤ k ≤ ��/2�, PS sets
q′
k = qi and s′k = si and PR sets t′k = ti .

4. OT Extension (continued):

(a) Let Q′ = [q′1| . . . |q′��/2�] denote the m × ��/2� bit matrix where its i th column is
q′i . Let q′

j denote the j th row of the matrix Q′. (Note that q′i = (s′i · r) ⊕ t′i and
q′
j = (r j · s′) ⊕ t′j .)

(b) PS sends (y0j , y
1
j ) for every 1 ≤ j ≤ m, where y0j = x0j ⊕ H( j, q′

j ) and y1j =
x1j ⊕ H( j, q′

j ⊕ s′).
(c) For 1 ≤ j ≤ m, PR computes x j = y

r j
j ⊕ H( j, t′j ).

5. Output: PR outputs (x1, . . . , xm ); PS has no output.



G. Asharov et al.

References

[1] Y. Aumann, Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries,
in Journal of Cryptology, vol. 23(2), (Springer, 2010) pp. 281–343

[2] G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer and extensions for
faster secure computation, in ACM Computer and Communications Security (CCS’13), pp. 535–548.
ACM, 2013. Code: http://encrypto.de/code/OTExtension

[3] G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More efficient oblivious transfer extensions with
security for malicious adversaries, in Advances in Cryptology—EUROCRYPT’15, vol. 9056 of LNCS,
(Springer, 2015) pp. 673–701. Full version: http://eprint.iacr.org/2015/061

[4] J. Bringer, H. Chabanne, A. Patey. SHADE: secure hamming distance computation from oblivious
transfer, in Financial Cryptography and Data Security (FC’13), vol. 7862 of LNCS, (Springer, 2013),
pp. 164–176

[5] D. Beaver. Efficient multiparty protocols using circuit randomization, in Advances in cryptology—-
CRYPTO’91, vol. 576 of LNCS, (Springer, 1991), pp. 420–432

[6] D. Beaver. Correlated pseudorandomness and the complexity of private computations, in Symposium
on the theory of computing (STOC’96), (ACM, 1996), pp. 479–488

[7] M. Bellare, V. Hoang, S. Keelveedhi, P. Rogaway. Efficient garbling from a fixed-key blockcipher, on
IEEE Symposium on Security and Privacy (S&P’13), (IEEE, 2013), pp. 478–492

[8] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart.
High performance multi-party computation for binary circuits based on oblivious transfer. Cryptology
ePrint Archive, Report 2015/472, 2015. Online: http://eprint.iacr.org/2015/472.

[9] A. Ben-David, N. Nisan, B. Pinkas. FairplayMP: a system for secure multi-party computation, in ACM
Computer and Communications Security (CCS’08), (ACM, 2008) pp. 257–266

[10] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[11] S.G. Choi, K.-W.Hwang, J. Katz, T.Malkin, D. Rubenstein. Securemulti-party computation of Boolean
circuits with applications to privacy in on-line marketplaces, in Cryptographers’ Track at the RSA
Conference (CT-RSA’12), vol. 7178 of LNCS, (Springer, 2012) pp. 416–432

[12] T. Chou, C. Orlandi. The simplest protocol for oblivious transfer, in Progress in Cryptology—
LATINCRYPT’15, vol. 9230 of LNCS, (Springer, 2015), pp. 40–58

[13] C. Dong, L. Chen, Z. Wen. When private set intersection meets big data: an efficient and scalable
protocol, in ACM Computer and Communications Security (CCS’13), (ACM, 2013), pp. 789–800

[14] I. Damgård, R. Lauritsen, T. Toft. An empirical study and some improvements of theMiniMac protocol
for secure computation, in Security and Cryptography for Networks (SCN’14), vol. 8642 of LNCS,
(Springer, 2014), pp. 398–415

[15] D. Demmler, T. Schneider, M. Zohner. ABY—a framework for efficient mixed-protocol secure two-
party computation, in Network and Distributed System Security (NDSS’15). The Internet Society, 2015

[16] I. Damgård, S. Zakarias. Constant-overhead secure computation of Boolean circuits using preprocess-
ing, in Theory of cryptography conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 621–641

[17] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, T. Toft. Privacy-preserving face recog-
nition, inPrivacy Enhancing Technologies Symposium (PETS’09), vol. 5672 ofLNCS, (Springer, 2009),
pp. 235–253

[18] Y. Ejgenberg, M. Farbstein, M. Levy, Y. Lindell. SCAPI: the secure computation application program-
ming interface. Cryptology ePrint Archive, Report 2012/629, 2012. Online: http://eprint.iacr.org/2012/
629

[19] S. Even, O. Goldreich, A. Lempel. A randomized protocol for signing contracts, in Communications
of the ACM, vol. 28(6), (ACM, 1985), pp. 637–647

[20] J.O. Eklundh. A fast computer method for matrix transposing, in IEEE Transactions on Computers,
vol. C-21(7), (IEEE, 1972), pp. 801–803

[21] K. Frikken,M.Atallah, C. Zhang. Privacy-preserving credit checking, inElectronicCommerce (EC’05),
(ACM, 2005), pp. 147–154

[22] T.K. Frederiksen, M. Keller, E. Orsini, P. Scholl. A unified approach to MPC with preprocessing using
OT, in Advances in Cryptology—ASIACRYPT’15, vol. 9452 of LNCS, (Springer, 2015), pp. 711–735

http://encrypto.de/code/OTExtension
http://eprint.iacr.org/2015/061
http://eprint.iacr.org/2015/472
http://eprint.iacr.org/2012/629
http://eprint.iacr.org/2012/629


More Efficient Oblivious Transfer Extensions

[23] T. K. Frederiksen, J. B. Nielsen. Fast and maliciously secure two-party computation using the GPU,
in Applied Cryptography and Network Security (ACNS’13), vol. 7954 of LNCS, (Springer, 2013), pp.
339–356

[24] S.D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, Y. Vahlis. Secure two-party
computation in sublinear (amortized) time, in ACMComputer and Communications Security (CCS’12),
(ACM, 2012), pp. 513–524

[25] O. Goldreich, S. Micali, A. Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority, in Symposium on Theory of Computing (STOC’87), (ACM, 1987), pp.
218–229

[26] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University Press,
2004

[27] Y. Huang, P. Chapman, D. Evans. Privacy-preserving applications on smartphones, in Hot topics in
security (HotSec’11). USENIX, 2011

[28] Y. Huang, D. Evans, J. Katz. Private set intersection: Are garbled circuits better than custom protocols?
in Network and Distributed System Security (NDSS’12). The Internet Society, 2012

[29] Y. Huang, D. Evans, J. Katz, L. Malka. Faster secure two-party computation using garbled circuits, in
USENIX Security’11, (USENIX, 2011), pp. 539–554

[30] A. Holzer, M. Franz, S. Katzenbeisser, H. Veith. Secure two-party computations in ANSI C, in ACM
Computer and Communications Security (CCS’12), (ACM, 2012) pp. 772–783

[31] D. Harnik, Y. Ishai, E. Kushilevitz, J. Buus Nielsen. OT-combiners via secure computation, in Theory
of Cryptography Conference (TCC’08), vol. 4948 of LNCS, (Springer, 2008), pp. 393–411

[32] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, I. Wehrenberg. TASTY: Tool for Automating Secure
Two-partY computations, in ACM Computer and Communications Security (CCS’10), (ACM, 2010),
pp. 451–462

[33] Y. Huang, L.Malka, D. Evans, J. Katz. Efficient privacy-preserving biometric identification, inNetwork
and Distributed Security Symposium (NDSS’11). The Internet Society, 2011

[34] W. Henecka, T. Schneider. Faster secure two-party computation with less memory, in ACM Symposium
on Information, Computer and Communications Security (ASIACCS’13), (ACM, 2013), pp. 437–446

[35] Y. Ishai, J. Kilian, K. Nissim, E. Petrank. Extending oblivious transfers efficiently, in Advances in
Cryptology—CRYPTO’03, vol. 2729 of LNCS, (Springer, 2003), pp. 145–161

[36] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Cryptography with constant computational overhead,
in ACM Symposium on Theory of Computing (STOC’08), (ACM, 2008), pp. 433–442

[37] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently, in
Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008), pp. 572–591

[38] R. Impagliazzo, S. Rudich. Limits on the provable consequences of one-way permutations, in Advances
in Cryptology—CRYPTO’88, vol. 403 of LNCS, (Springer, 1988), pp. 8–26

[39] F. Kerschbaum.Automatically optimizing secure computation, inACMComputer andCommunications
Security (CCS’11), (ACM, 2011), pp. 703–714

[40] V. Kolesnikov, R. Kumaresan. Improved OT extension for transferring short secrets, in Advances in
Cryptology—CRYPTO’13, vol. 8043 of LNCS, (Springer, 2013) pp. 54–70

[41] M. Keller, E. Orsini, P. Scholl. Actively secure OT extension with optimal overhead, in Advances in
Cryptology—CRYPTO’15, vol. 9215 of LNCS, (Springer, 2015), pp. 724–741

[42] V.Kolesnikov, T. Schneider. Improved garbled circuit: freeXORgates and applications, in International
Colloquium on Automata, Languages and Programming (ICALP’08), vol. 5126 of LNCS, (Springer,
2008), pp. 486–498

[43] B. Kreuter, A. Shelat, C. Shen. Billion-gate secure computation with malicious adversaries, inUSENIX
Security’12, (USENIX, 2012), pp. 285–300

[44] M. Keller, P. Scholl, N.P. Smart. An architecture for practical actively secure MPC with dishonest
majority, in ACM Computer and Communications Security (CCS’13), (ACM, 2013), pp. 549–560

[45] E. Larraia. Extending oblivious transfer efficiently, or - how to get active security with constant crypto-
graphic overhead, in Progress in Cryptology– LATINCRYPT’14, vol. 8895 of LNCS, (Springer, 2014),
pp. 368–386

[46] E. Larraia, E. Orsini, N.P. Smart. Dishonest majority multi-party computation for binary circuits, in
Advances in Cryptology—CRYPTO’14, vol. 8617 of LNCS, (Springer, 2014), pp. 495–512



G. Asharov et al.

[47] L. Lovász, M.D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986. Also published as
vol. 121 of the North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam

[48] Y. Lindell, B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer, in Theory
of Cryptography Conference (TCC’11), vol. 6597 of LNCS, (Springer, 2011), pp. 329–346

[49] Y. Lindell, B. Riva. Blazing fast 2pc in the offline/online setting with security for malicious adversaries,
in ACM Computer and Communications Security (CCS’15), (ACM, 2015), pp. 579–590

[50] Y. Lindell, H. Zarosim. On the feasibility of extending oblivious transfer, in Theory of Cryptography
Conference (TCC’13), vol. 7785 of LNCS, (Springer, 2013), pp. 519–538

[51] L.Malka.VMCrypt—modular software architecture for scalable secure computation, inACMComputer
and Communications Security (CCS’11), (ACM, 2011), pp. 715–724

[52] D.Malkhi, N. Nisan, B. Pinkas, Y. Sella. Fairplay—a secure two-party computation system, inUSENIX
Security’04, (USENIX, 2004), pp. 287–302

[53] P. MacKenzie, A. Oprea, M.K. Reiter. Automatic generation of two-party computations, in ACM Com-
puter and Communications Security (CCS’03), (ACM, 2003), pp. 210–219

[54] J.B. Nielsen. Extending oblivious transfers efficiently—how to get robustness almost for free. Cryptol-
ogy ePrint Archive, Report 2007/215, 2007. Online: http://eprint.iacr.org/2007/215

[55] NIST. NIST Special Publication 800-57, Recommendation for Key Management Part 1: General (Rev.
3). Technical report, NIST, 2012

[56] J. B. Nielsen, P.S. Nordholt, C. Orlandi, S.S. Burra. A new approach to practical active-secure two-
party computation. In Advances in Cryptology – CRYPTO’12, vol. 7417 of LNCS, (Springer, 2012),
pp. 681–700

[57] M. Naor, B. Pinkas. Efficient oblivious transfer protocols, in Symposium on Discrete Algorithms
(SODA’01), (ACM/SIAM, 2001), pp. 448–457

[58] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, N. Taft. Privacy-preserving ridge
regression on hundreds of millions of records, in IEEE Symposium on Security and Privacy (S&P’13),
(IEEE, 2013), pp. 334–348

[59] B. Pinkas, T. Schneider, G. Segev,M. Zohner. Phasing: Private set intersection using permutation-based
hashing, in USENIX Security’15, (USENIX, 2015), pp. 515–530

[60] B. Pinkas, T. Schneider, M. Zohner. Faster private set intersection based on ot extension, in USENIX
Security’14, (USENIX, 2014), pp. 797–812

[61] C. Peikert, V. Vaikuntanathan, B. Waters. A framework for efficient and composable oblivious transfer,
in Advances in Cryptology—CRYPTO’08, vol. 5157 of LNCS, (Springer, 2008) pp. 554–571

[62] M.O. Rabin.How to exchange secrets with oblivious transfer, TR-81 edition, 1981. Aiken Computation
Lab, Harvard University.

[63] A. Schröpfer, F. Kerschbaum. Demo: secure computation in JavaScript, in ACM Computer and Com-
munications Security (CCS’11), (ACM, 2011), pp. 849–852

[64] T. Schneider,M. Zohner.GMWvs.Yao?Efficient secure two-party computationwith lowdepth circuits,
in Financial Cryptography and Data Security (FC’13), vol. 7859 of LNCS, (Springer, 2013), pp. 275–
292

[65] A.C. Yao. How to generate and exchange secrets, in Foundations of Computer Science (FOCS’86),
(IEEE, 1986), pp. 162–167

http://eprint.iacr.org/2007/215

	More Efficient Oblivious Transfer Extensions
	1. Introduction
	1.1. Our Contributions and Outline
	1.2. Concurrent and Independent Related Work
	1.3. Extensions Over Previous Work

	2. Preliminaries
	2.1. Security Parameters
	2.2. Definitions
	2.3. Oblivious Transfer
	2.4. OT Extension
	2.5. Yao's Garbled Circuits Protocol
	2.6. The GMW Protocol
	2.7. GMW with Random 1-Out-of-2 OTs

	3. Related Work
	3.1. Semi-Honest OT Extension
	3.2. Malicious OT Extension

	4. Faster Semi-Honest OT
	4.1. Blockwise Parallelized OT Extension
	4.2. Efficient Bit-Matrix Transposition
	4.3. Optimized Semi-Honest OT Extension

	5. Faster Malicious OT
	5.1. Overview of our Malicious Secure Protocol
	5.2. The Security of Our Protocol
	5.3. Reducing the Number of Checks
	5.4. Correlation Robustness Instead of a Random Oracle
	5.5. Achieving Covert Security

	6. Special-Purpose OT Functionalities
	6.1. Correlated OT (C-OT)
	6.2. Sender Random OT (SR-OT)
	6.3. Receiver Random OT (RR-OT)
	6.4. Random OT (R-OT)

	7. Experimental Evaluation
	7.1. Benchmark Setting
	7.2. Evaluation of Semi-Honest OT Extension
	7.3. Evaluation of Special-Purpose OT Functionalities
	7.4. Evaluation of Actively Secure OT Extension
	7.5. Evaluation of Min-Entropy Correlation Robustness

	Acknowledgements




