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Abstract. In structure-preserving cryptography over bilinear groups, cryptographic
schemes are restricted to exchange group elements only, and their correctness must
be verifiable only by evaluating pairing product equations. Several primitives, such
as structure-preserving signatures, commitments, and encryption schemes, have been
proposed. Although deterministic primitives, such as verifiable pseudorandom func-
tions or verifiable unpredictable functions, play an important role in the construction of
cryptographic protocols, no structure-preserving realizations of them are known. This
is not coincident: In this paper, we show that it is impossible to construct algebraic
structure-preserving deterministic primitives that provide provability, uniqueness, and
unpredictability. This includes verifiable random functions, unique signatures, and ver-
ifiable unpredictable functions as special cases. The restriction of structure-preserving
primitives to be algebraic is natural, otherwise it would not be known how to verify
correctness only by evaluating pairing product equations. We further extend our nega-
tive result to pseudorandom functions and deterministic public key encryption as well
as non-strictly structure-preserving primitives, where target group elements are also
allowed in their ranges and public keys.
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1. Introduction

Most practical cryptographic protocols are built from cryptographic primitives such as
signature, encryption, and commitments schemes, pseudorandom functions, and zero-
knowledge (ZK) proofs. Thereby, the ZK proofs often “glue” different building blocks
together by proving relations among their inputs and outputs. The literature provides
a fair number of different cryptographic primitives (e.g., CL-signatures [20,21], Ped-
ersen commitments [50], ElGamal and Cramer-Shoup encryption [27,30], verifiable
encryption of discrete logarithms [23], and verifiable pseudorandom functions [29]) that
are based on the discrete logarithm problem and that, together with so-called gener-
alized Schnorr protocols [18,51], provide a whole framework for the construction of
practical protocols. Examples of such constructions include anonymous credential sys-
tems [6,19], oblivious transfer with access control [15], group signatures [8,44], and
e-cash [17]. The non-interactive versions of generalized Schnorr protocols are secure
only in the random oracle model, as they are obtained via the Fiat–Shamir heuristic [32],
and it is well known that random oracles cannot be instantiated securely [25,36]. Con-
sequently, many protocols constructed from this framework are secure in the random
oracle model only.
A seminal step toward a framework allowing for security proofs in the standard

model was the introduction of the so-called GS proofs by Groth and Sahai [38]. These
are efficient non-interactive proofs of knowledge or languagemembership and are secure
in the standard model. They make use of bilinear maps to verify statements and, because
of this, are limited to languages of certain types of equations, such as pairing product and
multi-exponentiation equations. In particular, GS proofs are proofs of knowledge only
for witnesses that are group elements but not for exponents. Thus, it is unfortunately not
possible to useGS proofs as a replacement for generalized Schnorr proofs in the “discrete
logarithm-based framework of cryptographic primitives” described earlier. To alleviate
this and to obtain a similar construction framework, the research community has engaged
in a quest for alternative cryptographic primitives that are structure-preserving [3], i.e.,
primitives forwhich thepublic keys, inputs, andoutput consist of (source) group elements
and the verification predicate is a conjunction of pairing product equations (PPEs), thus
making them compatible with proof systems that support only pairing product equations.
Such a framework is especially attractive because GS proofs are “on-line” extractable
(i.e., the extractor works without having to rewind the prover), a property that is essential
for the construction of UC-secure [24] protocols.
Structure-preserving realizations exist for primitives such as signature schemes [2–4,

13,40], commitment schemes [3,5], and encryption schemes [16].However, no structure-
preserving constructions are known for important primitives including pseudorandom
functions (PRFs) [28,35], verifiable unpredictable functions (VUFs) [47], verifiable
random functions (VRFs) [41,47], simulatable VRFs [26], unique signatures (USigs)
[37,46,47], and deterministic encryption (DE) [11,12], despite the fact that these prim-
itives are widely used in the literature. Examples include efficient search on encrypted
data [12] from DE; micropayments [49] from unique signatures; resettable ZK proofs
[48], updatable ZK databases [45], and verifiable transaction escrow schemes [43] from
VRFs. PRFs together with a proof of correct evaluation have been used to construct
compact e-cash [17], keyword search [33], set intersection protocols [39], and adap-
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tive oblivious transfer protocols [14,22,42]. We further refer to Abdalla et al. [1] and
Hohenberger and Waters [41] for a good overview of applications of VRFs.

Our Results In this paper, we show that it is no coincidence that no structure-preserving
constructions of PRFs, VRFs, VUFs, USigs, and DE are known: It is in fact impossible
to construct themwith algebraic algorithms. To this end, we provide a generic definition
of a secure structure-preserving deterministic primitive (SPDP) and show that such a
primitive cannot be built using algebraic operations only. The latter is a very reasonable
restriction: All known constructions of structure-preserving primitives are algebraic. We
then show that PRFs, VRFs, VUFs, and USigs are special cases of an SPDP. We further
extend our results to DE and to “non-strictly” structure-preserving primitives, which are
allowed to have target group elements in their public keys and ranges.
Let us point out that of course our results do not rule out the possibility of constructing

efficient protocols from GS proofs and non-structure-preserving primitives. Indeed, a
couple of such protocols are knownwhere, although someof the inputs include exponents
(e.g., x), they turned out to be sufficient if only knowledge of a group element (e.g., gx ) is
proved. Examples here include the construction of a compact e-cash scheme [7] from the
Dodis–Yampolskiy VRF [29] and of the so-called F-unforgeable signature scheme [6]
and its use in the construction of anonymous credentials.

Related Work Some impossibility results and lower bounds for structure-preserving
primitives are known. Abe et al. [4] show that in the case of asymmetric pairings any
signaturemadewith a structure-preserving signature schememust consist of at least three
group elements when the signing algorithm is algebraic. They also give constructions
meeting this bound. Lower bounds for structure-preserving commitment schemes are
presented by Abe et al. [5]. They show that a commitment cannot be shorter than the
message and that verifying the opening of a commitment in a symmetric bilinear group
setting requires evaluating at least two independent PPEs. They also provide optimal
constructions that match these lower bounds.

Paper Organization In Sect. 2, we specify our notation, define the syntax and se-
curity properties of an algebraic SPDP, and show that such primitives are impossible
to construct. In Sect. 2.5, we present some generalizations to primitives that are not
strictly structure-preserving. Then, in Sect 3, we show how our results can be applied
to structure-preserving PRFs, VRFs, VUFs, and USigs. Section 3.4 is devoted to the
impossibility results for structure-preserving DE. Finally, we conclude the paper and
discuss open problems and possible future research directions in Sect. 4.

2. Definitions and Impossibility Results for Algebraic Structure-Preserving
Deterministic Primitives

2.1. Preliminaries

Notation We say that a function is negligible in the security parameter λ if it is asymp-
totically smaller than the inverse of any fixed polynomial in λ. The function is said to
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be non-negligible in λ, otherwise. We say that an event occurs with overwhelming prob-
ability if it occurs with probability p(λ) ≥ 1 − negl(λ), where negl(λ) is a negligible
function of λ.

We denote as Y
$← F(X) a probabilistic algorithm that on inputX outputs Y . A similar

notation Y ← F(X) is used for a deterministic algorithm with X and Y .
We use an upper-case, multiplicative notation for group elements and lower-case let-

ters for exponents. LetG be a bilinear group generator that takes as input a security param-
eter 1λ and outputs the description of a bilinear groupΛ = (p,G1,G2,GT , e,G1,G2),
where G1, G2, and GT are groups of prime order p, e is an efficient, non-degenerated
bilinear map e : G1 × G2 → GT , and G1 and G2 are generators of groups G1 and
G2, respectively. We denote as Λ∗ = (p,G1,G2,GT , e) the description Λ without
the group generators. By Λsym, we denote the symmetric setting where G1 = G2 and
G1 = G2. In the symmetric setting, we simply write G for both G1 and G2, and G for
G1 and G2.
We also denote the set of all possible vectors of group elements from both G1 and

G2 as {G1,G2}∗, and from G1, G2, and GT as {G1,G2,GT }∗. Let H1 ∈ G1, H2 ∈ G2.
Then, for example, (H2, H1) ∈ {G1,G2}∗ and (Ha

1 , Hb
2 , Hc

2 , Hd
1 ) ∈ {G1,G2}∗ for

a, b, c, d ∈ Zp. Following Groth and Sahai [38], equations of the form

∏

i

e(Xi , Ai )
∏

j

e(Bj , Y j )
∏

i

∏

j

e(Xi , Y j )
ci j = 1

for variables Xi ∈ G1 and Y j ∈ G2 and constants Bj ∈ G1, Ai ∈ G2, and ci j ∈ Zp are
referred to as PPEs, and equations of the form

∏

i

Axi
i

∏

i

Y bi
i

∏

i

∏

j

Y
ci j x j
i = T

for variables xi ∈ Zp and Yi ∈ G2, and constants bi , ci j ∈ Zp and Ai , T ∈ G2
are referred to as multi-scalar multiplication equations (MSEs) in G2. The MSEs in
G1 are defined similarly. The Groth–Sahai proof system allows one to prove relations
represented by those types of equations in a ZK or witness-indistinguishable manner
with reasonable efficiency.

Algebraic Algorithms For a bilinear group Λ generated by G, an algorithm Alg that
takes group elements (X1, . . . , Xn) as input and outputs a group element Y is called
algebraic if Alg always “knows” a representation of Y with respect to (X1, . . . , Xn). We
consider this property with respect to the source groups only. A formal definition for the
minimal case, where Alg takes group elements from only one group G and outputs one
element of this group, is provided below.

Definition 1. (Algebraic Algorithm) Let Alg be a probabilistic polynomial-time algo-
rithm that takes as an input a bilinear group descriptionΛ generated byG, a tuple of group
elements (X1, . . . , Xn) ∈ G

n for some n ∈ N, and some auxiliary string aux ∈ {0, 1}∗
and outputs a group element Y ∈ G and a string ext . Algorithm Alg is algebraic with re-
spect toG if there is a probabilistic polynomial-time extractor algorithmExt that takes the
same input as Alg (including the random coins) and generates output (c1, . . . , cn, ext)
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such that for all Λ
$← G(1λ), all polynomial sizes n, all (X1, . . . , Xn) ∈ G

n , and all
auxiliary strings aux , the following inequality holds:

Pr
[

(Y, ext) ← Alg(Λ∗, X1, . . . , Xn, aux; r) ;
(c1, . . . , cn, ext) ← Ext(Λ∗, X1, . . . , Xn, aux; r)

∣∣∣∣Y �=
∏

Xci
i

]
≤ negl(λ),

where the probability is taken over the choice of the coins r .

It is straightforward to extend this definition to algorithms that output multiple ele-
ments of G1 and G2 of Λ. We note that all known constructions of structure-preserving
primitives are algebraic in the sense defined here. If the considered algorithms were
non-algebraic, it is not known how to prove their correct execution with GS proofs.
One may see a similarity between the above definition and the knowledge of expo-

nent assumption (KEA) [9] as both involve an extractor. We emphasize, however, that
the algebraic algorithm definition characterizes honest algorithms, whereas KEA is an
assumption on adversaries.

2.2. Definitions of Structure-Preserving Deterministic Primitives

We define the syntax of an SPDP. An SPDP consists of the following five algorithms:
Setup, KeyGen,Comp, Prove, and Verify. Besides the parameter generation (Setup),
key generation (KeyGen), and main computation algorithm (Comp), they include a
proving (Prove) and a verification (Verify) algorithm, which together guarantee that the
output value of Comp was computed correctly. We call this the provability property. It
captures the verifiability notion of some deterministic primitives such as VRFs, USigs,
and VUFs. Furthermore, for the deterministic primitives that do not have an inherent
verification property such as PRFs and DE, it covers their widely used combinations
with non-interactive proof systems. One of the main advantages of structure-preserving
primitives and one of the reasons to construct them is their compatibility with existing
non-interactive zero-knowledge (NIZK) proof systems.

Definition 2. (Provable Structure-Preserving Deterministic Primitive) A provable
structure-preserving deterministic primitiveΣSPDP with respect to a bilinear group gen-
eratorG consists of five algorithmsΣSPDP = (Setup,KeyGen,Comp,Prove,Verify)
that operate as follows:

– CP
$← Setup(Λ) is a probabilistic algorithm that takes bilinear group description

Λ ← G(1λ) as input and outputs the common parametersCP that includeΛ, which
is composed of the default generators, but does not contain any other elements of
G1,G2,GT .CP defines the secret key spaceSK, the public key spacePK, the proof
spaceP , and a deterministic polynomial-time computable function F : SK×X →
Y for some domain X and range Y . It is implicitly, if not, given to every further
algorithm.

– (PK, SK)
$← KeyGen(CP) is a probabilistic key generation algorithm that takes

as input CP and outputs a public key PK ∈ PK and a secret key SK ∈ SK.
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– Y ← Comp(X, SK) is a deterministic algorithm that takes X ∈ X and SK as input
and outputs Y = FSK (X) ∈ Y .

– P
$← Prove(X, SK) is a probabilistic algorithm that takes X and SK as input and

outputs a proof P ∈ P .
– 0/1 ← Verify(X,Y, P,PK) is a deterministic verification algorithm that takes

X,Y, P , and PK as input and outputs 1 or 0, representing acceptance or rejection
of proof P , respectively.

The following properties must be satisfied:

1. Structure-Preserving PK, X , Y , and P are subsets of {G1,G2}∗. Furthermore,
the verification algorithm is restricted to perform groupmembership testing, group
operations, and evaluation of PPEs over Λ.

2. Uniqueness For all λ,CP ∈ Setup(1λ) and (PK, SK) ∈ KeyGen(CP), there
exist no values (X,Y,Y ′, P, P ′) such that Y �= Y ′ and Verify(X,Y, P,PK) =
Verify(X,Y ′, P ′,PK) = 1.

3. Provability For all λ, CP ∈ Setup(1λ), (PK, SK) ∈ KeyGen(CP), X ∈ X ,
Y ← Comp(X, SK), and P ∈ Prove(X, SK), it holds that Verify(X,Y, P,PK)

= 1.

Note that the uniqueness is defined with respect to correctly generated keys, which is
more relaxed than that in the case of verifiable pseudorandom functions where unique-
ness is defined over any keys. As we argue impossibility, however, the relaxed form
strengthens our result.
Throughout the paper, we use the convention that the common parametersCP include

Λ with the default generators but do not contain any other elements of G1,G2,GT in
Λ. Furthermore, the parameters are given as input to every relevant algorithm. It is also
assumed that PK can be recovered from SK . This is justified as we will only consider
algebraic KeyGen.
Now, we define two security properties. The unpredictability property states that no

polynomial-time adversary can predict the output value Y for an input X after having
called the Comp and Prove oracles with inputs that are different from X . The pseudo-
randomness property states that no polynomial-time adversary can distinguish Y from
a random value.

Definition 3. (Unpredictability) A provable structure-preserving deterministic prim-
itive ΣSPDP is unpredictable if for all probabilistic polynomial-time algorithms A we
have that

Pr

⎡

⎢⎣
Λ ← G(1λ) ; CP

$← Setup(Λ) ;
(PK, SK)

$← KeyGen(CP) ;
(X,Y ) ← AComp(·,SK),Prove(·,SK)(PK)

∣∣∣∣∣∣∣

Y = Comp(X, SK) ∧
X /∈ S

⎤

⎥⎦ ≤ negl(λ) ,

where S is the set of inputs queried to the oracles Comp and Prove.
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Definition 4. (Pseudorandomness) Aprovable structure-preservingdeterministic prim-
itive ΣSPDP is pseudorandom if for all probabilistic polynomial-time distinguishers
D = (D1,D2) we have that

Pr

⎡

⎢⎢⎢⎢⎢⎢⎣

Λ ← G(1λ) ; CP
$← Setup(Λ) ;

(PK, SK)
$← KeyGen(CP) ;

(X, st) ← D1
Comp(·,SK),Prove(·,SK)(PK) ;

Y0 ← FSK (X) ; Y1
$← Y ; b

$← {0, 1} ;
b′ $← D2

Comp(·,SK),Prove(·,SK)(Yb, st)

∣∣∣∣∣∣∣∣∣∣∣∣

b = b′ ∧
X /∈ S

⎤

⎥⎥⎥⎥⎥⎥⎦
≤ 1

2
+ negl(λ),

where S is the set of queries to the oracles Comp and Prove.

One can see thatΣSPDP having the unpredictability property is a structure-preserving
VUF and ΣSPDP with the pseudorandomness property is a structure-preserving VRF.

2.3. Inexistence of Structure-Preserving Verifiable Unpredictable Functions

We now prove that a structure-preserving VUF, as defined in the previous section, cannot
exist. Namely, we show that a provable SPDP cannot be unpredictable according to
Definition 3 because of its uniqueness and provability properties.

Theorem 1. Let ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a provable
structure-preserving deterministic primitive with respect to G. If the discrete logarithm
problem is hard in the groups of Λ generated by G and KeyGen,Comp, and Prove are
algebraic algorithms with respect to G, then ΣSPDP is not unpredictable.

Proof. For simplicity, we first consider a symmetric bilinear setting (Λ = Λsym),
where PK,X ,Y,P ⊂ {G}∗. Furthermore, we consider X to consist only of a single
group element. We then show that the same result holds for the input being a tuple of
group elements from G and also in the asymmetric setting, for both Type 2 pairings
(where an efficiently computable homomorphism from G2 to G1 exists and there is no
efficiently computable homomorphism fromG1 toG2) and Type 3 pairings (where there
are no efficiently computable homomorphisms between G1 and G2) [34].
The outline of the proof is as follows. First, in Lemma 1 we show that because of the

provability anduniqueness properties ofΣSPDP, as specified inDefinition 2, the output of
Compmust have a particular format, namelyComp(X, SK) = (Ga1Xb1, . . . ,Ga� Xb� )

for some (secret) constants a1, . . . , a�, b1, . . . , b� ∈ Zp. Then, in Lemma 2, we prove
that, if the output of Comp has this format, then the unpredictability property (cf. Def-
inition 3) does not hold for ΣSPDP. This means that no structure-preserving VUF can
exist. �

Lemma 1. Let ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a structure-
preservingdeterministic primitivewith respect toG according toDefinition2. IfKeyGen,

Comp, andProve are algebraic algorithms with respect toG, and the discrete logarithm
problem is hard in the base group of Λ generated by G, then, with overwhelming prob-
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ability taken over the random coins used in the algorithms in ΣSPDP, Comp(X, SK) =
(Y1, . . . ,Y�) = (Ga1Xb1 , . . . ,Ga� Xb� ) holds for some constants a1, . . . , a�, b1, . . . , b�

∈ Zp.

Proof. LetΛ ← G(1λ) andCP ← Setup(Λ). Fix (PK, SK)
$← KeyGen(CP), where

PK ⊂ {G}∗. Let x $← Zp and X = Gx .
First, note that because Comp, Prove, and KeyGen are algebraic algorithms, their

outputs can be expressed as

Comp(X, SK) = Y = (Y1, . . . ,Y�) with Yi = Gai Xbi , (1)

Prove(X, SK) = P = (P1, . . . , Pn) with Pj = Gu j Xv j , and (2)

PK = (S1, . . . , Sm) with S f = Gsf , (3)

where ai = H1,i (X, SK), bi = H2,i (X, SK), u j = H3, j (X, SK, r), and v j = H4, j
(X, SK, r) for some arbitrary functions H�,m : {0, 1}∗ → Zp where r is the randomness
used by the Prove algorithm. We note that ai , bi , u j , and v j can depend on X in an
arbitrary manner, but, as Comp and Prove are algebraic, one can extract ai , bi , u j , and
v j as values from Zp using the extractors of the algorithms Comp and Prove.
Second, recall that, according to Definition 2, the verification algorithm consists of

PPEs. Let the kth PPE used in the verification algorithm be

m∏

f =1

e

(
S f , X

ck,1, f
m∏

t=1

S
ck,2, f,t
t

�∏

i=1

Y
ck,3, f,i
i

q∏

j=1

P
ck,4, f, j
j

)
·

n∏

q=1

e

(
Pq ,

n∏

j=1

P
ck,5,q, j
j

)
·

· e
(
X, Xck,6

�∏

i=1

Y
ck,7,i
i

q∏

j=1

P
ck,8, j
j

)
·

�∏

w=1

e

(
Yw,

�∏

i=1

Y
ck,9,w,i
i

n∏

j=1

P
ck,10,w, j
j

)
= 1.

The intuition behind the proof is as follows. We note that Comp should perform
the computation without necessarily “knowing” the discrete logarithm of the input;
otherwise, one can use Comp to solve the discrete logarithm for X . Now, one can see
that the relation in the exponents of the kth PPE for the tuple (X,Y, P,PK) induces
a polynomial Qk(x) in the discrete logarithm x = logG X . Basically, we can rewrite
the kth PPE as e(G,G)Qk (x) = 1. First, we prove that Qk(x) is a trivial function;
otherwise, it would be possible to solve the discrete logarithm problem for the given X
by solving Qk . Second, we show that if Qk is trivial, then, by the uniqueness property,
ai and bi are constants. Let ai , bi , u j , and v j be the values computed for one specific
X : Yi = Gai Xbi , Pj = Gu j Xv j , and Verify(PK, X,Y, P) = 1. Proposition 2 shows
that these values can be reused to compute a correct Ỹ for any other X̃ ∈ X . Therefore,
if Ỹi is computed as Gai X̃bi and P̃j as Gu j X̃v j , instead of using the normal computation
procedures, then (X̃ , Ỹ , P̃,PK) is also accepted by the verification algorithm due to the
triviality of Qk . Then, from the uniqueness and provability properties, it follows that
ai , bi are the only valid values, i.e., constants.
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Now, we provide the proof in detail. First, we prove that all polynomials Qk induced
by the verification PPEs, as described above, are constants with overwhelming
probability. �

Proposition 1. If the discrete logarithm problem in the base group of Λ is hard, then
Qk is a trivial function.

Proof. The proof is done by constructing a reduction algorithmR that takes as an input
a group description Λ = (p,G,GT , e,G) generated by a group generator G(1λ) and a
random element X ∈ G and outputs x ∈ Zp that satisfies X = Gx with high probability.
The R works as follows. It first takes Λ as an input and sets the common parameters

CP = Λ. It then runs KeyGen(CP), Comp(X, SK), and Prove(X, SK) for the given
X . It also runs the corresponding extractors forKeyGen,Comp, andProve. The extrac-
tor for KeyGen outputs representations s f that satisfy S f = Gs f with overwhelming
probability. Similarly, the extractor forComp outputs representations ai and bi , such that
Yi = Gai Xbi , and the extractor for Prove outputs u j and v j , such that Pj = Gu j Xv j ,
as concrete values in Zp.
This set of extracted exponents s f , ai , bi , u j , and v j induces a quadratic formula Qk

in the exponents of the kth pairing product verification equation. Let us call the variable
of this exponent equation x̃ , then we can write the kth PPE as e(G,G)Qk (x̃) = 1. Given
the representations, R can compute Qk(x̃) = d2 x̃2 + d1 x̃ + d0 in Zp. The condition
that Qk(x̃) is non-trivial guarantees that d2 �= 0 or d1 �= 0. However, R can then solve
Qk(x̃) = 0 for x̃ with standard algebra. Due to the provability property, x is one of
the possible solutions to x̃ . Therefore, if the equation is non-trivial, we can solve this
equation for x̃ and obtain the discrete logarithm of X : x̃ = x . If the discrete logarithm
problem is hard in the base group of Λ, then Qk must be trivial. �

Now, we show that if Qk is trivial, then, by the provability and uniqueness properties,
ai and bi are constants.

Proposition 2. Fix (PK, SK, X) and let ai ← H1,i (X, SK), bi ← H2,i (X, SK), u j ←
H3, j (X, SK, r), and v j ← H4, j (X, SK, r). If all the relations in the exponents of the
PPEs are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ�) with Ỹi = Gai X̃bi and
P̃ = (P̃1, . . . , P̃n) with P̃j = Gu j X̃v j , it holds that (X̃ , Ỹ , P̃,PK) will be accepted by
the verification algorithm.

Proof. Consider fixed (PK, SK, X), any X̃ ∈ G, and Ỹ and P̃ computed from X̃ as
specified in the proposition. Note that the verification algorithm only evaluates PPEs
and performs group membership tests. First, all group membership tests are clearly
successful for the tuple (X̃ , Ỹ , P̃,PK). Since all polynomials Qk are trivial and due to
the way in which Ỹ and P̃ are defined, it holds that the result of evaluating the kth PPE
will be the same for any tuple (X̃ , Ỹ , P̃,PK). Therefore, Verify(X̃ , Ỹ , P̃,PK) should
output the same value for every X̃ ∈ G. Now, considering the case in which X̃ = X we
have Ỹ = (Ỹ1, . . . , Ỹ�) with Ỹi = Gai Xbi and P̃ = (P̃1, . . . , P̃n) with P̃j = Gu j Xv j .
However, due to the correctness of the extractors ofComp andProve, these Ỹ and P̃ are
exactly the outputs of Comp(X, SK) and Prove(X, SK). Therefore, by the provability
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property, it holds that Verify(X, Ỹ , P̃,PK) = 1 for X̃ = X ; thus, for any X̃ ∈ G,
Verify(X̃ , Ỹ , P̃,PK) = 1 also. �

Now, for an arbitrary X̃ ∈ G, consider the tuple (PK, SK, X̃ , Ỹ , P̃, a1, . . . , a�, b1,
. . . , b�) of values as defined above. The P̃ is a valid proof for (X̃ , Ỹ ); thus, the uniqueness
property guarantees that there is no other Ŷ �= Ỹ for which there is a valid proof that Ŷ
is the output corresponding to X̃ . However, the provability property guarantees that for
(X̃ ,Comp(X̃ , SK)) there is a valid proof of correctness. Hence, for any X̃ ∈ G, it holds
that

Comp(X̃ , SK) = Ỹ = (Ỹ1, . . . , Ỹ�) = (Ga1 X̃b1 , . . . ,Ga� X̃b� ).

�

Lemma 2. Suppose that ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) is a
provable Structure-Preserving Deterministic Primitive such that Comp(X, SK) =
(Y1, . . . ,Y�) = (Ga1Xb1 , . . . ,Ga� Xb� ) for some constants a1, . . . , a�, b1, . . . , b� ∈
Zp. Then, ΣSPDP does not satisfy the unpredictability requirement from Definition 3.

Proof. Pick X̂ , X̃ and define X , such that X = X̂2/X̃ /∈ {X̂ , X̃}. Then, an adversary
that learns

Comp(X̂ , SK) = (Ŷ1, . . . , Ŷ�) = (Ga1 X̂b1 , . . . ,Ga� X̂b� ), and

Comp(X̃ , SK) = (Ỹ1, . . . , Ỹ�) = (Ga1 X̃b1 , . . . ,Ga� X̃b� )

can compute the value of Comp(X , SK) as:

(
Ŷ 2
1

Ỹ1
, . . . ,

Ŷ 2
�

Ỹ�

)
=

(
G2a1 X̂2b1

Ga1 X̃b1
, . . . ,

G2a� X̂2b�

Ga� X̃b�

)
=

⎛

⎝Ga1

(
X̂2

X̃

)b1

, . . . ,Ga�

(
X̂2

X̃

)b�
⎞

⎠

=
(
Ga1 X

b1 , . . . ,Ga� X
b�

)
= Comp(X , SK);

therefore, ΣSPDP is not unpredictable. �

We next show that the same result holds for inputs being a tuple of group elements
from G.

X is a Tuple of Group Elements Both Lemmas 1 and 2 can be easily modified to the case
in which X consists of more than one (say t) group element as follows. The reduction
algorithm, after receiving the discrete logarithm challenge X1, will select t − 1 random
exponents x2, . . . , xt and fix Xi as Gxi for i = 2, . . . , t . Then, the lemmas use the
first group element X1 in the place of the original X . Note that in the computation
of Y j and Pj , the exponents corresponding to X2, . . . , Xt can be incorporated into
H1, j (X, SK) and H3, j (X, SK, r) since the prover “knows” x2, . . . , xt . If the quadratic
equations Qk(x̃1) in the exponents of the PPEs are not trivial, then the first element of
the input can be used to solve the discrete logarithm problem; otherwise, supposing that
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the uniqueness and provability properties hold, the elements of the output will be of the
form Ỹi = Gai X̃bi

1 (for the fixed values x2, . . . , xt ) and this can be used to break the
unpredictability property by asking two queries in which only the first elements of the
inputs are different (i.e., X̂1 and X̃1) Then, learning the output corresponding to a third
input that has X1 = X̂2

1/X̃1 as the first element and has the remaining elements equal
to the ones in the oracle queries.

Asymmetric Bilinear Groups Setting Lemmas 1 and 2 can be generalized to the asym-
metric setting as well. We consider both Type 2 and Type 3 pairings. If X consists of
t group elements, we choose t − 1 random exponents x2, . . . , xt and fix Xi as G

xi
1 if

the i th input element is in group G1, or G
xi
2 if the i th input element is in group G2.

Then, either some quadratic equation Qk(x̃1) in the exponents of the PPEs is not trivial
in x1, and this can be used to solve the discrete logarithm problem in the base group in
which X1 is contained, or one of the three security properties (provability, uniqueness,
and unpredictability) does not hold.
In the case of Type 3 pairings, where there are no efficiently computable homomor-

phisms between the groups, each Y j (let Gc denote the group in which it is and Gc its
generator) is of the form

Y j = G
H1, j (X,SK)
c X

H2, j (X,SK)

1 ,

where H2, j (X, SK) = 0 if X1 and Y j are not in the same group and each Pj (that is in
the group Gc) is of the form

Pj = G
H3, j (X,SK,r)
c X

H4, j (X,SK,r)
1 ,

where H4, j (X, SK, r) = 0 if X1 and Pj are not in the same group. In both cases,
the exponents corresponding to X2, . . . , Xt are incorporated into H1, j (X, SK) and
H3, j (X, SK, r). Then, the argument continues, as in the previous case.
In the case of Type 2 pairings, there is an efficiently computable homomorphism

φ : G2 → G1. Then, an element Y j of the output (or an element Pj of the proof) that is
in group G1 can depend on both group generators and on X1 or its mapping φ(X1) into
G1. Namely, if X1 ∈ G1, then Y j , Pj ∈ G1 have the form:

Y j = G
H1, j (X,SK)

1 X
H2, j (X,SK)

1 φ(G2)
H5, j (X,SK) ,

Pj = G
H3, j (X,SK,r)
1 X

H4, j (X,SK,r)
1 φ(G2)

H6, j (X,SK,r) ,

and Y j , Pj ∈ G2 have the form:

Y j = G
H5, j (X,SK)

2 ,

Pj = G
H6, j (X,SK,r)
2 .
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If X1 ∈ G2, then Y j , Pj ∈ G1 have the form:

Y j = G
H1, j (X,SK)

1 φ(X1)
H2, j (X,SK)φ(G2)

H5, j (X,SK) ,

Pj = G
H3, j (X,SK,r)
1 φ(X1)

H4, j (X,SK,r)φ(G2)
H6, j (X,SK,r) ,

and Y j , Pj ∈ G2 have the form:

Y j = X
H2, j (X,SK)

1 G
H5, j (X,SK)

2 ,

Pj = X
H4, j (X,SK,r)
1 G

H6, j (X,SK,r)
2 .

Then, we should have H1, j (X, SK) = a j , H2, j (X, SK) = b j , and H5, j (X, SK) = z j
for constants a j , b j , and z j if the provability and uniqueness hold. However, in this case
the unpredictability does not hold for the same reasons as before.
Putting Lemmas 1 and 2 together completes the proof of Theorem 1. �

2.4. Extension to Quasi-Deterministic Functions

Consider a quasi-deterministic functions where the uniqueness condition is relaxed so
that for each input value there are at most poly(λ) output values for which a valid proof
exists. A simple, but perhaps artificial, example would be a disjunction of polynomial
number of deterministic functions whose output and proof consist of those from one of
the underlying functions applied to the same input. The previous result can be extended
to quasi-deterministic functions. It is possible to prove an analogue of Proposition 2. The
idea is that for any fixed (PK, SK, X) and extracted values ai ← H1,i (X, SK, r), bi ←
H2,i (X, SK, r), u j ← H3, j (X, SK, r), and v j ← H4, j (X, SK, r), if all the relations
in the exponents of the PPEs are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ�) with
Ỹi = Gai X̃bi and P̃ = (P̃1, . . . , P̃n) with P̃j = Gu j X̃v j , it holds that (X̃ , Ỹ , P̃,PK)

will be accepted by the verification algorithm. However, since there are at most poly(λ)

outputs with valid proofs for each input, it follows that there are at most poly(λ) distinct
sets of extracted values (ai , bi ). Therefore, an adversary, after making poly(λ) + 1
queries to theComp(·) oracle, has a non-negligible probability of randomly picking two
outputs that use the samepair of exponents, inwhich case it can break the unpredictability
property in the same way as done in Lemma 2.

2.5. Extension to “Non-strictly” Structure-Preserving Primitives

The definition in the previous sections captures so-called “strictly” SPDPs, i.e., PK
and Y can contain only source group elements. Let us discuss the case of structure-
preserving primitives that also have target group elements in their public key space
and/or their range. A target group element can be represented by two source group
elements using pairing randomization techniques [3] or even deterministically, by fixing
the randomizing exponents. By this, the provability property can be preserved. Now,
the question is: If the uniqueness property holds, can the output be unpredictable? In
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this section, we argue that our impossibility result can be extended to some cases of
“non-strictly” SPDPs, formally defined below:

Definition 5. (“Non-strictly” Structure-Preserving Deterministic Primitive) Let
ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a structure-preserving deter-
ministic primitive according to Definition 2, except that the range ofComp andKeyGen
can also contain target group elements (Y,PK ⊂ {G1,G2,GT }∗). Then, ΣSPDP is
called a “non-strictly” structure-preserving deterministic primitive.

We first extend the notion of the algebraic algorithms from Definition 1 so that it
operates in all groups of Λ. Then, one can use the extractors of KeyGen and Comp to
also extract representations of target group elements output by them. A formal definition
for the minimal case of Type 3 asymmetric groups and outputs consisting of one element
of each group is provided below.

Definition 6. (Extended Algebraic Algorithms) LetAlg be a probabilistic polynomial-
time algorithm that takes as an input Λ of a Type 3 asymmetric bilinear group generated
by G, X consisting of two tuples of group elements (X1,1, . . . , X1,n) ∈ {G1}n and
(X2,1, . . . , X2,m) ∈ {G2}m for some n,m ∈ N, and some auxiliary string aux ∈ {0, 1}∗
and outputs group elements Y ∈ G1,W ∈ G2, and Z ∈ GT and a string ext . The algo-
rithmAlg is algebraic with respect to G if there is a probabilistic polynomial-time extrac-
tor algorithmExt that takes the same input asAlg (including the randomcoins) and gener-
ates output (c = (c1, . . . , cn), d = (d1, . . . , dm), f = ( f1, . . . , fnm), ext) such that for

allΛ
$← G(1λ), all polynomial-sized n,m, all X = (X1,1, . . . , X1,n, X2,1, . . . , X2,m) ∈

{G1}n × {G2}m , and all auxiliary strings aux , the following inequality holds

Pr

⎡

⎢⎢⎢⎣
(Y,W, Z , ext) ← Alg(Λ∗, X, aux; r) ;
(c, d, f, ext) ← Ext(Λ∗, X, aux; r)

∣∣∣∣∣∣∣∣∣

Y �= ∏n
i=1 X

ci
1,i∨

W �= ∏m
j=1 X

dj
2, j∨

Z �= ∏n
i=1

∏m
j=1

e(X1,i , X2, j )
f( j−1)n+i

⎤

⎥⎥⎥⎦ ≤ negl(λ) ,

where the probability is taken over the choice of r .

Similarly to Definition 1, this definition can be extended to algorithms that output
multiple elements of the groups ofΛ and for other types of groups. Adaptation to Type 1
is trivial by considering X1,i = X2,i , and to Type 2 is also straightforward by letting
X1,k+i = φ(X2,i ) for some k < n and all i ∈ {1, . . . ,m}.
Below, we show that if the provability and uniqueness properties (according to Defi-

nition 5) hold, then the unpredictability property does not hold.

Theorem 2. LetΣSPDP = (Setup,KeyGen,Comp,Prove,Verify)bea“non-strictly”
provable structure-preserving deterministic primitive with respect to bilinear group gen-
erator G. If the discrete logarithm problem is hard in the source groups generated by G
and KeyGen, Comp, and Prove are algebraic with respect to G, as defined in Defini-
tion 6, then ΣSPDP is not unpredictable.
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Proof. We first address the case of Type 3 bilinear groups. The outline of the proof
is the same as that for Theorem 1. Without loss of generality, we consider the case in
which X consists of only one element X1 ∈ G1 (since the adversary can set all inputs
except X1 to 1). We show that for any ΣSPDP that is provable and has the uniqueness
property according to Definition 2, the output of Comp must have a particular format.

Fix (PK, SK) ← KeyGen(CP), where the public key consists of both source and
target group elements, i.e., PK ⊂ {G1,G2,GT }∗. Let X = X1 be the input. Since
Comp is deterministic and KeyGen, Comp, and Prove are all algebraic algorithms
over Λ, their respective outputs can be represented as

Comp(X, SK) = Y = (Y1, . . . ,Y�,W1, . . . ,W�′ , Z1, . . . , Z�′′), and

Prove(X, SK) = P = (P1, . . . , Pn, P
′
1, . . . , P

′
n′),

where

Yi = G
a1,i
1 X

b1,i
1 ,Wi = G

a2,i
2 , Zi = e(G1,G2)

a′
i e(X1,G2)

b′
i ,

Pi = Gui
1 Xvi

1 , P ′
i = G

u′
i

2 ,

and one can extract the exponents a1,i , b1,i , a2,i , a′
i , b

′
i , ui , vi , and u′

i as values in Zp

using the extractors of the algorithms KeyGen, Comp, and Prove. Recall that the ver-
ification algorithm consists of evaluations of PPEs. The proof works very similarly to
that of Lemma 1. For X = X1 ∈ G1, with unknown exponent x1 = logG1

X1, the
relation among the exponents of the kth PPE for the tuple (X,Y, P,PK) with respect
to the base e(G1,G2) induces a polynomial Qk(x1) in x1. Thus, the kth PPE can be
written as e(G1,G2)

Qk (x1) = 1. As before, Qk(x1) is a trivial function since other-
wise it would be possible to solve the discrete logarithm problem for the given X1 by
solving Qk . Let a1,i , b1,i , a2,i , a′

i , b
′
i , ui , vi , and u′

i be the exponents obtained from
one specific computation of Yi Wi , Zi , and Pi with input X1. Then, Ỹi , W̃i , Z̃i , and
P̃i , computed for an arbitrary input X̃1 ∈ G1 with these fixed exponents, pass the ver-
ification due to the triviality of Qk . From the uniqueness property, it now follows that
a1,i , b1,i , a2,i , a′

i , and b′
i are the only valid values with respect to X̃1. Thus, they are

constants.
Next, we prove that if the output of Comp has this format, then the unpredictability

property (Definition 3) does not hold for ΣSPDP. We do so by constructing an adversary
breaking the unpredictability property as follows. Select X̂1, X̃1 ∈ G1, set X̂ = X̂1 and
X̃ = X̃1, and define X such that X1 = X̂2

1/X̃1 /∈ {X̂1, X̃1}. As we already proved in
Lemma 2 that the unpredictability does not hold for source group elements, we assume
for simplicity that the output consists only of the target group elements. The adver-
sary that learns Comp(X̂ , SK) = (Ẑ1, . . . , Ẑ�′′) with Ẑi = e(G1,G2)

a′
i e(X̂1,G2)

b′
i

and Comp(X̃ , SK) = (Z̃1, . . . , Z̃�′′) with Z̃i = e(G1,G2)
a′
i e(X̃1,G2)

b′
i can com-

pute the value of Comp(X , SK) = (Z1, . . . , Z�′′) as

(
Ẑ2
1

Z̃1
, . . . ,

Ẑ2
�′′

Z̃�′′

)
because we have

that
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Ẑ2
i

Z̃i
= e(G1,G2)

2a′
i e(X̂1,G2)

2b′
i

e(G1,G2)
a′
i e(X̃1,G2)

b′
i

= e(G1,G2)
a′
i e

(
X̂2
1

X̃1
,G2

)b′
i

= Zi .

Therefore, ΣSPDP is also not unpredictable for the target group elements.
We next proceed to the case of Type 1. Let X be a group element in G. Then, as for

the above case, if the discrete logarithm problem is hard inG, we haveComp(X, SK) =
(Y1, . . . ,Y�, Z1, . . . , Z�′) with Yi = Gai Xbi , and Zi = e(G,G)a

′
i e(X,G)b

′
i e(X, X)c

′
i

for constants ai , bi , a′
i , b

′
i , and c′

i . We construct an adversary that breaks the unpre-
dictability properties as follows. It makes three queries X = 1, X = G, and X = G2

and receives the outputs e(G,G)a
′
i , e(G,G)a

′
i+b′

i+c′
i , and e(G,G)a

′
i+2b′

i+4c′
i . The ad-

versary can then compute e(G,G)a
′
i , e(G,G)b

′
i , and e(G,G)c

′
i , which are sufficient to

compute

Zi = e(G,G)a
′
i e(Gx ,G)b

′
i e(Gx ,Gx )c

′
i

for any x . Thus, the scheme is not unpredictable.
Finally, regarding Type 2 bilinear groups, we have two cases. First, if the scheme

accepts inputs containing at least one element fromG1, then the proof for Type 3 groups
applies since we can argue in exactly the same manner by setting all G2 elements in in-
puts to 1. Second, if the scheme accepts inputs containing at least one element fromG2,
the proof for Type 1 applies since we can move the element toG1 using homomorphism
φ. �

Note that the same holds even if we further allow proof P to include elements in the
target group since their source group representations can be extracted and we can argue
the triviality of Qk(x) in the same manner.

3. Application to Concrete Schemes

In this section, we show how the definition of an abstract provable SPDP given in Sect. 2
relates to the definitions of structure-preserving VRFs and USigs. We show that the
security properties of anSPDPare necessary conditions for anyVRForUSig to be secure.
Note that the requirements are necessary conditions, but may not be sufficient, e.g., in the
case of VRF, pseudorandomness is a stronger requirement than unpredictability.We also
discuss how the SPDP definition relates to structure-preserving PRFs and deterministic
encryption.

3.1. Impossibility of Structure-Preserving Unique Signatures

LetΣUSig = (Setup,KeyGen,Sign,Verify)be a structure-preserving signature scheme
with respect to group generator G [3]. The setup algorithm Setup takes Λ generated
by G and outputs a CP. The key generation algorithm KeyGen takes the CP and out-
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puts a key pair PK and SK . The signing algorithm Sign takes SK and message X as
input and outputs a signature Y . The verification algorithm Verify takes PK , X , and Y
as input and outputs 1 or 0. Structure preservation requires that PK , X , and Y consist
only of source group elements of Λ. The signature scheme must satisfy the standard
notions of correctness and existential unforgeability against adaptively chosen message
attacks. According to Lyskanskaya [46], Σ is a unique signature scheme if the signing
function Sign is deterministic and the following uniqueness property holds: There are
no two distinct signatures Y and Y ′ accepted by the verification algorithm with respect
to the same message X . Namely, there is no tuple (PK, X,Y,Y ′) such that Y �= Y ′
and Verify(X,Y,PK) = Verify(X,Y ′,PK) = 1 holds. We then state the following
impossibility.

Theorem 3. If the discrete logarithm problem is hard in the groups of Λ generated by
G, there is no structure-preserving unique signature scheme whose KeyGen and Sign
are algebraic algorithms with respect to G and that is existentially unforgeable against
adaptive chosen message attacks.

To prove Theorem 3, it is sufficient to show that unforgeable structure-preserving
unique signature schemes are unpredictable SPDPs and apply Theorem 1.

Lemma 3. A structure-preserving unique signature scheme that is existentially un-
forgeable against adaptive chosen message attacks is an unpredictable structure-pre-
serving deterministic primitive.

Proof. We first verify the syntactical consistency of a structure-preserving signature
scheme ΣUSig as an SPDP ΣSPDP. Observe that the algorithms Setup and KeyGen of
ΣUSig are exactly the same as those ofΣSPDP. TheSign algorithmofΣUSig corresponds
to the Comp algorithm of a SPDP. There is no algorithm in ΣUSig that corresponds to
Prove of ΣSPDP. Therefore, we can think of a constant function that outputs a constant
P to be Prove. Then, Verify ofΣUSig can be seen as Verify ofΣSPDP that ignores input
P . With the above syntactical correspondence, one can inspect that the correctness of
ΣUSig implies the provability, as in Definition 2. The uniqueness of ΣUSig is also the
same as that in Definition 2.
It remains to show that existential unforgeability against adaptive chosen message at-

tacks implies the unpredictability property. Suppose that the adversary attacking the un-
predictability, as in Definition 3, succeeds in computing Y such that Y = Comp(X, SK)

holds for a fresh X . Then, such (X,Y ) satisfies Verify(X,Y, P,PK) = 1 for the above
constant P . It then satisfies Verify(X,Y,PK) = 1 for Verify of ΣUSig due to the cor-
respondence of Verify in ΣUSig and as ΣSPDP. Accordingly, (X,Y ) is a valid forgery
breaking the existential unforgeability of ΣUSig. �

3.2. Impossibility of Structure-Preserving Verifiable Random Functions

A structure-preserving VRF consists of algorithms ΣVRF = (Setup,KeyGen,Comp,

Prove,Verify) whose syntax is exactly the same as that of an SPDP. Namely, its pub-
lic key space, domain, range, and proof space consist only of source group elements
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and it satisfies the structure-preserving, provability, and uniqueness properties. A VRF
is required to satisfy the pseudorandomness property. We argue that constructing a
structure-preserving VRF is impossible in the following sense.

Theorem 4. If the discrete logarithm problem is hard in the source groups ofΛ gener-
ated by G, there is no structure-preserving verifiable random function whose KeyGen,
Comp, andProve algorithms are algebraic with respect to G and that is pseudorandom,
as defined in Definition 4.

Toprove the theorem, it is sufficient to show that a structure-preservingVRF satisfying
the pseudorandomness property is an unpredictable SPDP and apply Theorem 1.

Lemma 4. A structure-preserving verifiable random function that is pseudorandom
according to Definition 4 is an SPDP satisfying the unpredictability property, as defined
in Definition 3.

Proof. The syntactical equivalence is by definition.We focus on the part that pseudoran-
domness implies unpredictability. From any adversary A that wins the unpredictability
game from Definition 3 with non-negligible probability, we construct a distinguisher
D = (D1,D2) that wins the pseudorandomness game from Definition 4 with a prob-
ability non-negligibly larger than 1/2. The D uses A that breaks the unpredictability.
The D1 executes a copy of A internally and forwards the oracle queries and answers
appropriately. If A produces an output pair (X,Y ), where Y is an output value for a
fresh input X that was not queried to the oracle before, then D1 uses X as its output
and forwards Y toD2 that uses Y to distinguish if the returned challenge Yb is a random
value or the output of the real function. If no such pair (X,Y ) is produced by A, then
D makes a random guess. From the construction, the advantage of D is the same as the
success probability of A, as claimed. �

We note that this result also rules out the construction of a structure-preserving simu-
latable VRF (sVRF) [26], which is a special case of a VRF (see Definition 1 from [26])
and is a key building block, for instance, of some e-cash schemes [7].

3.3. Impossibility of Structure-Preserving Pseudorandom Functions

We define structure-preserving PRFs and their security as follows. Note that keys are
allowed to be scalar values and the pseudorandomness is defined in a weaker form. The
standard pseudorandomness property requires that, given an unlimited number of oracle
accesses to either a PRF or a truly random function, no polynomial-time adversary can
distinguish which oracle it has accessed. The following weaker notion, in which only
one call to the oracle that is either a PRF or a random function is provided, is implied
by the standard one. The implication can be proved using a standard hybrid argument.

Definition 7. (Structure-Preserving Pseudorandom Function) A function family F :
SK × X→Y is called a pseudorandom function if there are probabilistic polynomial-
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time algorithms Setup and KeyGen and a deterministic polynomial-time algorithm
Comp such that:

– CP
$← Setupprf(Λ) is an algorithm that takes as input aΛ and outputs the common

parameters CP.

– SK
$← KeyGenprf(CP) is an algorithm that takes as inputCP and outputs a (secret)

key SK ∈ SK.
– Y ← Compprf(X, SK) is a deterministic algorithm that takes as input X ∈ X and
SK ∈ SK and outputs the function value Y = FSK (X) ∈ Y .

It is structure-preserving ifX andY are subsets of {G1,G2}∗ and if the relation defined
by Y = Compprf(X, SK), where X and Y form the statement and SK is a witness, can be
represented by PPEs (when SK is in {G1,G2}∗) orMSEs (when SK is in {Zp,G1,G2}∗).

Definition 8. (Pseudorandomness of Pseudorandom Function) For all probabilistic
polynomial-time distinguishers D = (D1,D2), we have

Pr

⎡

⎢⎢⎢⎣

CP
$← Setup(Λ) ; SK

$← KeyGen(CP) ;
(X, st) ← D1

Comp(·,SK)(CP) ;
Y0 ← FSK (X) ; Y1

$← Y ; b
$← {0, 1} ;

b′ $← D2
Comp(·,SK)(Yb, st)

∣∣∣∣∣∣∣∣∣

b = b′ ∧ X /∈ S

⎤

⎥⎥⎥⎦ ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracle Comp.

The purpose of using a structure-preserving PRF, for instance, is to show that one
knows some X and SK that results in Y by coupling it with the Groth–Sahai proof
system. We show that a structure-preserving PRF implies a structure-preserving VRF
which, however, does not exist, as discussed in the previous section. More precisely,
we argue that a combination of structure-preserving PRFs with the Groth–Sahai proof
system results in a VRF in the CRS model. To see exactly what property of the GS proof
system is used in our construction, we reformulate it as a structure-preserving commit-
then-prove ZK proof system, as done by Escala and Groth [31], with some adjustments
to our context.
Let RG be a relation represented by conjunction and disjunction of PPEs and MSEs

with respect to the groups generated byG. Constants in PPEs orMSEs are statements, and
satisfying values assigned to the variables are witnesses. The languageLG characterized
by RG is a set of statements for which a witness exists.

Definition 9. (Structure-Preserving Non-Interactive Commit-then-Prove Zero-
Knowledge Proof System)
A structure-preserving non-interactive commit-then-prove zero-knowledge proof sys-

tem for relationRG consists of the following algorithms.

– CP
$← Setup(Λ): On input of a Λ, it outputs a common parameter CP for the

proof system.
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– CRS
$← CrsGen(CP): On input of a CP, it outputs a common reference string

CRS.
– (C, R)

$← Commit(CRS,W ): On input of a CRS and a witness W , it outputs a
commitment C and the random coin R used to compute C.

– P
$← Prove(CRS, S,W, R): On input of a CRS, a statement S, a witness W , and

a randomness R, it generates a zero-knowledge proof P in which W satisfies S
(provided that this is the case).

– 0/1 ← Verify(CRS, S, P,C): On input of a CRS, S, P , and a C, it outputs 1 or 0
representing acceptance or rejection of P , respectively.

It is required that CRS, P , and C are in {G1,G2}∗, and Verify is done only by group
membership testing, group operations, and evaluating PPEs. It is perfectly sound if
1 ← Verify(CRS, S, P,C), then there exists unique (W, R) that satisfies (C, R) ←
Commit(CRS,W ) and statement S. For any Λ produced by G, (Λ, S,W ) ∈ RG ,
(C, R)

$← Commit(CRS,W ) and P
$← Prove(CRS, S,W, R), algorithm Verify(CRS,

S, P,C) outputs 1. It is composable zero-knowledge if there exists polynomial-time
algorithms SimCrsGen, SimCommit, and SimProve such that

– (CRS, τ )
$← SimCrsGen(CP): On input of aCP, it outputs aCRS and a simulation

key τ ,

– (C, R)
$← SimCommit(CRS, τ ): On input of a CRS and τ , it outputs C and R

used to compute C, and

– P
$← SimProve(CRS, S, τ, R): On input of a CRS, S, τ , and R, it simulates proof

P

holds, the distributions of a CRS as produced by CrsGen and SimCrsGen are indis-
tinguishable, and the distributions of (P,C), with P output by Prove or SimProve and
C by Commit or SimCommit, are identical for a simulated CRS and (Λ, S,W ) ∈ RG
chosen by an adversary with access to τ .

Let PRF = (Setupprf,KeyGenprf,Compprf) be a structure-preserving PRF with re-
spect to G and NIZK = (Setupnizk,CrsGennizk,Commitnizk,Provenizk,Verifynizk) be
a structure-preserving non-interactive commit-and-prove ZK proof system with respect
to G.

Theorem 5. If the discrete logarithm problem is hard in the source groups of Λ

generated by G, and there exists a structure-preserving non-interactive commit-then-
prove zero-knowledge proof system NIZK = (Setupnizk,CrsGennizk,Commitnizk,
Provenizk,Verifynizk) with respect to G whose CrsGennizk, Commitnizk, and Provenizk
are algebraic algorithms, then there is no structure-preserving pseudorandom function
PRF = (Setupprf,KeyGenprf,Compprf)whoseKeyGenprf andCompprf are algebraic
algorithms with respect to G and is pseudorandom as defined in Definition 8.

Proof. Suppose that aPRF is a structure-preservingPRFwhoseKeyGenprf andCompprf
are algebraic algorithms with respect to G and is pseudorandom, as defined in Defini-
tion 8.Also suppose that theNIZK is a structure-preserving non-interactive commit-then-
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prove ZK proof systemwith respect toG whoseCrsGennizk,Commitnizk, andProvenizk
are algebraic algorithms. From such PRF andNIZK , we construct a structure-preserving
VRF whose KeyGen and Comp are algebraic algorithms, and that is pseudorandom.

– CP
$← Setup(Λ): CPprf

$← Setupprf(Λ), CPnizk
$← Setupnizk(Λ), CP :=

(CPprf,CPnizk).

– (PK, SK)
$← KeyGen(CP):SKprf

$← KeyGenprf(CPprf), CRS
$← CrsGennizk

(CPnizk), (C, R)
$← Commitnizk(CRS, SKprf), SK := (SKprf, R,CRS), PK :=

(C,CRS). Return (PK, SK).
– Y ← Comp(X, SK): (SKprf, R,CRS) ← SK . Y ← Compprf(X, SKprf). Return
Y .

– P
$← Prove(X, SK) :Parse (SKprf, R,CRS) ← SK and computeY ← Compprf(X,

SKprf). Then, output P
$← Provenizk(CRS, (X,Y ), SKprf, R).

– 0/1 ← Verify(X,Y,PK, P) : Parse (C,CRS) ← PK . Run b ← Verifynizk(CRS,
(X,Y ), P,C) and return b.

Syntactical consistency as a VRF can be verified by inspection. Its KeyGen, Comp,
and Prove algorithms are algebraic with respect to G because KeyGenprf, Compprf,
CrsGennizk,Commitnizk, andProvenizk are all algebraic. It is structure-preserving since
PK consists of C and CRS in {G1,G2}∗, X , Y , and P are also in {G1,G2}∗, and Verify
only calls Verifynizk that meets the requirements.
Provability holds from the correctness of theNIZK , asVerify is identical toVerifynizk.

Uniqueness holds due to the soundness of the NIZK and the fact that Compprf is deter-
ministic. Namely, if (SK, X,Y ) satisfies relation Y = Compprf(X, SK), then Y �= Y ′
does not satisfy Y ′ = Compprf(X, SK) since Compprf is deterministic. Thus, by the
soundness of the NIZK, there is no P ′ that is accepted by the verification algorithm for
(SK, X,Y ′). The pseudorandomness holds due to the pseudorandomness of the PRF, as
in Definition 8, and the composable ZK property of NIZK .

Such a structure-preserving VRF contradicts Theorem 4. Since the GS proof sys-
tem instantiates the above NIZK under standard assumptions,1 we can conclude that a
structure-preserving PRF cannot exist. �

3.4. Impossibility Results for Structure-Preserving Deterministic Encryption

Deterministic encryption was introduced by Bellare, Boldyreva, and O’Neill [10]. Here,
we provide their definition of DE, adopted to the structure-preserving setting.

Definition 10. (Structure-PreservingDeterministicEncryption)A structure-preserving
deterministic encryption scheme with respect to G consists of the following algorithms.

– CP
$← Setup(Λ) is an algorithm that takes as input a Λ and outputs common

parameters CP which define PK, X , and Y .

1If the correctness relation forCompprf is given byMSEs, an accompanying GS-proof may contain scalar
values [38]. However, they then can be turned into source group elements simply by lifting them up on the
CRS as bases so that the output of Prove consists only of source group elements.
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– (PK, SK)
$← KeyGen(CP) is a probabilistic key generation algorithm that takes

as inputCP and outputs a public key PK ∈ PK and a secret key SK . PK is included
in or uniquely computable from SK .

– Y ← Enc(X,PK) is a deterministic algorithm that takes as input a plaintext X ∈ X
and a PK and outputs a ciphertext Y ∈ Y .

– X ← Dec(Y, SK) is a deterministic algorithm that takes as input a Y ∈ Y and a
SK and outputs a plaintext X ∈ X .

It is required that X = Dec(Enc(X,PK), SK) holds for all X ∈ X and all pairs
(PK, SK) computed legitimately by Λ ← G(1λ), CP ← Setup(Λ), (PK, SK) ←
KeyGen(CP).
It is structure-preserving with respect to encryption if additionally PK, X , and Y ⊂

{G1,G2}∗, and the relation Y ← Enc(X,PK), where Y and PK form the statement and
X is a witness, can be represented by PPEs. Similarly, it is structure-preserving with
respect to decryption if additionally the relation X ← Dec(Y, SK), where X and Y form
the statement and SK is a witness, can be represented by PPEs or MSEs.

Intuitively, the security notion for DE states that the adversary should not be able
to distinguish ciphertexts that correspond to messages that come from two message
distributions with high min-entropy conditioned on previous messages. Following [12],
we define IND security of structure-preserving deterministic encryption schemes as
follows. We call a list X = (X1, . . . , Xn) of random variables over {G1,G2} a block
source (parameterized by some n and t) if H∞(Xi |X1, . . . , Xi−1) ≥ t for all i ∈
{1, . . . , n}.

Definition 11. (IND Security for Deterministic Encryption) A deterministic encryp-
tion scheme ΣDE = (Setup,KeyGen,Enc,Dec) is PRIV-secure for block sources if,
for any block source X of polynomial length n, any function f : {G1,G2}n → {0, 1}∗
and all poly-time adversaries A, the advantage Real(A, f,X ) − Ideal(A, f,X ) is neg-
ligible, where

Real(A, f,X ) = Pr

⎡

⎢⎣
CP

$← Setup(Λ) ;
(PK, SK)

$← KeyGen(CP) ;
X

$← X

∣∣∣∣∣∣∣
A(PK,Enc(PK, X)) = f (X)

⎤

⎥⎦

and

Ideal(A, f,X ) = Pr

⎡

⎢⎣
CP

$← Setup(Λ) ;
(PK, SK)

$← KeyGen(CP) ;
X, X ′ $← X

∣∣∣∣∣∣∣
A(PK,Enc(PK, X ′)) = f (X)

⎤

⎥⎦

Theorem 6. Assuming the hardness of the discrete logarithm problem in the base
groups of Λ ∈ G, there is no IND-secure deterministic encryption scheme that is
structure-preserving with respect to encryption.
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Note that being structure-preservingwith respect toEnc implies thatEnc is algebraic.
(It is generic, in fact.) To prove Theorem 6, we actually prove Lemma 5 that states a
slightly stronger result that there is no structure-preservingDEwith respect to encryption
protecting any kind of secrecy of plaintexts.

Lemma 5. Assuming the hardness of the discrete logarithm problem in the base groups
of Λ ∈ G, any structure-preserving deterministic encryption scheme with respect to
encryption, whose KeyGen and Enc are algebraic with respect to G, allows decryption
only with the public key.

Proof. Let ΣDE = (Setupde,KeyGende,Encde,Decde) be a structure-preserving
DE scheme whose KeyGen and Enc are algebraic with respect to G. We construct a
provable structure-preserving deterministic primitive ΣSPDP from ΣDE as follows.

– CP
$← Setup(Λ): CP

$← Setupde(Λ).

– (PK, SK)
$← KeyGen(CP): (SK,PK)

$← KeyGende(CP).
– Y ← Comp(X, SK): Derive PK from SK , and run Y ← Encde(X,PK). Return
Y .

– P
$← Prove(X, SK) : Return a constant in {G1,G2}∗ as P .

– 0/1 ← Verify(X,Y, P,PK) :Return 1 ifY = Encde(X,PK). Return 0, otherwise.

We verify that the above constitute an ΣSPDP according to Definition 2. Syntactical
consistency can be verified by inspection. We focus on the security properties. First, it
is structure-preserving since PK , X , Y , P are in {G1,G2}∗ and Verify only evaluates
Enc of ΣDE that meets the requirement. Provability and uniqueness hold trivially from
the fact that Enc is deterministic.
We now note that the above SPDP is not unpredictable becauseComp essentially uses

PK instead of SK . Nevertheless, according to Lemma 1 (the conditions required in the
lemma are satisfied here as we assume the hardness of the discrete logarithm problem in
Λ and KeyGende and Encde are algebraic), the ciphertext that encrypts group elements
X = (X1, . . . , Xn) for some n looks as follows: Comp(X, SK) = Encde(X,PK) =
Y = (Ga1

∏n
j=1 X j

b1, j , . . . ,Ga�
∏n

j=1 X j
b�, j ), where a1, . . . , a�, b1,1, . . . , b�,n are

constants in Zp, and G is a group generator. Since Enc is structure-preserving en-
cryption, Gai and bi, j , i = 1, . . . , �, j = 1, . . . , n should depend only on PK and be
efficiently computable fromPK . Hence, the plaintext X can be recovered solely by using
PK . �

We note that SPDE with respect to decryption exists in the random oracle model. The
following is a modification of the encrypt-then-hash deterministic encryption scheme
of Bellare et al. [10]. Consider a deterministic variant of ElGamal encryption scheme
whose secret key is x ∈ Zp and public key is Y = Gx

1 . It encrypts message M ∈ G1

into (C1,C2) = (M ·Y H(Y‖M),GH(Y‖M)
1 ) and decrypts byC1/Cx

2 without checking the
well formness of the ciphertext. The scheme is IND-secure in the random oracle model
under the SXDH assumption (but obviously not secure against chosen ciphertext attacks)
and structure-preserving with respect to decryption since the relation determined by the
decryption can be verified by two MSEs C1/Cx

2 = M and Y = Gx where (x, M) is the
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witness. By coupling it with the GS proof system, one can prove one’s knowledge of
the correct decryption of the ciphertext. It would, however, be of limited use since the
result of decryption must not be revealed. Nevertheless, it is a rare example that uses a
hash function but remains structure-preserving.

4. Conclusion

We proved that it is impossible to construct algebraic structure-preserving VRFs, VUFs,
USigs, PRFs, and DE schemes. We further extend our results to “non-strictly” structure-
preserving primitives, which are allowed to have target group elements in their public
keys and ranges. Although our results are restricted to the class of algebraic algorithms,
all known constructions of structure-preserving primitives consist of algebraic algo-
rithms. Finding constructions of secure structure-preserving algorithms that allow non-
algebraic operations but whose correctness of computation still can be verified using a
system of PPEs is an interesting open problem. Finally, we note that deterministic prim-
itives might exist in a restricted form, where only one query to the oracle is allowed.
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