
https://doi.org/10.1007/s00145-018-9303-2
J Cryptol (2019) 32:1448–1490

Efficient Dissection of Bicomposite Problems with
Cryptanalytic Applications∗

Itai Dinur
Computer Science Department, Ben-Gurion University, Beer-Sheva, Israel

Orr Dunkelman
Computer Science Department, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il

Nathan Keller
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

Adi Shamir
Computer Science Department, The Weizmann Institute, Rehovot, Israel

Communicated by Serge Vaudenay.

Received 26 November 2017 / Revised 9 July 2018
Online publication 21 August 2018

Abstract. In this paper, we show that a large class of diverse problems have a bicom-
posite structure which makes it possible to solve them with a new type of algorithm
called dissection, which has much better time/memory tradeoffs than previously known
algorithms. A typical example is the problem of finding the key of multiple encryption
schemes with r independent n-bit keys. All the previous error-free attacks required time
T and memory M satisfying TM = 2rn , and even if “false negatives” are allowed,
no attack could achieve TM < 23rn/4. Our new technique yields the first algorithm
which never errs and finds all the possible keys with a smaller product of TM, such as
T = 24n time and M = 2n memory for breaking the sequential execution of r = 7
block ciphers. The improvement ratio we obtain increases in an unbounded way as
r increases, and if we allow algorithms which can sometimes miss solutions, we can
get even better tradeoffs by combining our dissection technique with parallel collision
search. To demonstrate the generality of the new dissection technique, we show how to
use it in a generic way in order to improve rebound attacks on hash functions and to
solve with better time complexities (for small memory complexities) hard combinatorial
search problems, such as the well-known knapsack problem.

Keywords. Bicomposite problems, Dissection algorithm, Time-memory tradeoff,
Cryptanalysis, Multiple encryption, Knapsack problems.

∗A shortened version of this paper [9] was presented at CRYPTO 2012.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9303-2&domain=pdf

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1449

1. Introduction

A composite problem is a problem that can be split into several simpler subproblems
which can be solved independently of each other. To prevent attacks based on such
decompositions, designers of cryptographic schemes usually try to entangle the various
parts of the scheme by using a complex key schedule in block ciphers, or a strong
message expansion in hash functions. While we can formally split such a structure into
a top part that processes the input and a bottom part that produces the output, we cannot
solve these subproblems independently of each other due to their strong interactions.
However, when we deal with higher level constructions which combine multiple

primitives as black boxes, we often encounter unrelated keys or independently computed
outputs which can provide exploitable decompositions. One of the best examples of such
a situation was the surprising discovery by Joux [17] in 2004 that finding collisions in
hash functions defined by the parallel execution of several independent hash functions is
much easier than previously believed. In this paper, we show the dual result that finding
the key of a multiple encryption scheme defined by the sequential execution of several
independent cryptosystems is also easier than previously believed.
Sincewe can usually reduce the time complexity of cryptanalytic attacks by increasing

their memory complexity, we will be interested in the full tradeoff curve between these
two complexities rather than in a single point on it. We will be primarily interested in
algorithms which use an exponential combination of M = 2mn memory and T = 2tn

time for a small constantm and a larger constant t , when the key size n grows to infinity.
While this setup may sound superficially similar to Hellman’s time/memory tradeoff
algorithms [14], it is important to notice that Hellman’s preprocessing phase requires
time which is equivalent to exhaustive search and memory which is at least the square
root of the number of keys, and that in Hellman’s online phase the product of time
and memory is larger than the number of keys. In our model, we do not allow free
preprocessing, we can use smaller amounts of memory, and the product of time and
memory is strictly smaller than the number of keys.
The type of problems we can solve with our new techniques is characterized by

the existence of two orthogonal ways in which we can decompose a given problem
into (almost) independent parts. We call such problems bicomposite, and demonstrate
this notion by considering the problem of cryptanalyzing the sequential execution of r
block ciphers which use independent n-bit keys to process n-bit plaintexts, usually called
multiple encryption scheme (seeFig. 1). In order tomake the full rn-bit key of this scheme
uniquewith a reasonable probability, the cryptanalyst needs r known plaintext/ciphertext
pairs. The full encryption process can thus be described by an (r + 1) × r matrix
whose columns correspond to the processing of the various plaintexts and whose rows

P E E E E C

K1 K2 Ki Kr

Fig. 1. Multiple encryption scheme with r independent keys.

1450 I. Dinur et al.

correspond to the application of the various block ciphers, called in the sequel execution
matrix. The attacker is given the r plaintexts at the top and the r ciphertexts at the
bottom, and his goal is to find all the keys with a generic algorithm which does not
assume the existence of any weaknesses in the underlying block ciphers. The reason we
say that this problem is bicomposite is that the keys are independently chosen and the
plaintexts are independently processed, and thus we can partition the execution matrix
both horizontally and vertically into independent parts. In particular, if we know certain
subsets of keys and certain subsets of intermediate values, we can independently verify
their consistency with the given plaintexts or ciphertexts without knowing all the other
values in the execution matrix. This should be contrasted with the standard constructions
of iterated block ciphers, in which a partial guess of the key and a partial guess of some
state bits in themiddle of the encryption process usually cannot be independently verified
by an efficient computation.
The security ofmultiple encryption schemes had been analyzed formore than 35years,

but most of the published papers had dealt with either double or triple encryption (which
are widely used as DES-extensions, e.g., in the electronic payment industry). For exam-
ple, Diffie and Hellman’s original meet-in-the-middle attack [8], Lucks’ improvement
for Triple-DES [23], or Biham’s work on triple modes of operation [6]. While the exact
security of double and triple encryption are well understood and we can not push their
analysis any further, our new techniques show that surprisingly efficient attacks can be
applied already when wemake the next step and consider quadruple encryption, and that
additional improvements can be made when we consider even longer combinations.1

Standard meet-in-the-middle (MITM) attacks (introduced in [8]), which account for
the best-known results against double and triple encryption, try to split such an execution
matrix into a top part and a bottom part with a single horizontal partition line which
crosses the whole matrix from left to right. Our new techniques use a more complicated
way to split thematrix into independent parts by exploiting its two-dimensional structure.
Consider, for example, the sequential execution of 7 independent block ciphers. We can
find the full 7n-bit key in just 24n expected time and 2n expected memory by guessing
two of the seven internal states after the application of the third block cipher and one of
the seven internal states after the application of the fifth block cipher. We call such an
irregular way to partition the execution matrix with partial guesses a dissection, since it
mimics the way a surgeon operates on a patient by using multiple cuts of various lengths
at various locations.
Our new techniques make almost no assumptions about the internal structure of the

primitive operations, and in particular, they can be extended with just a slight loss
of efficiency to primitive operations which are one-way functions rather than easily
invertible permutations. This makes it possible to find improved attacks on message
authentication codes (MACs) which are defined by the sequential execution of several
keyed hash functions. Note that standard MITM attacks cannot be applied in this case,
since we have to encrypt the inputs and decrypt the outputs in order to compare the
results in the middle of the computation.

1These results are independent of the theoretical analysis proposed in [13] which discusses only query
complexity (i.e., data complexity), disregarding any time or memory considerations.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1451

To demonstrate the generality of our techniques, we show in this paper how to apply
them to several types of combinatorial search problems. A main example is the knap-
sack problem: Given n generators a1, a2, . . . , an which are n-bit numbers, find a subset
that sums modulo 2n to S.2 For 30years, the best-known special purpose algorithm
for this problem was the 1981 Schroeppel–Shamir algorithm [28], with complexity of
T = O(2n/2) and M = O(2n/4). At Eurocrypt 2011, Becker et al. [4] presented sev-
eral improved special purpose algorithms for different ranges of (T, M) (see Sect. 5).
Our generic dissection technique provides better time complexities for small memory
complexities.

To show the connection between knapsack problems andmultiple encryption, describe
the solution of the given knapsack problem as a two-dimensional r×r execution matrix,
in which we partition the generators into r groups of n/r generators, and partition each
number into r blocks of n/r consecutive bits. Each row in the matrix is defined by
adding the appropriate subset of generators from the next group to the accumulated
sum computed in the previous row. We start with an initial value of zero, and our
problem is to find some execution that leads to a desired value S after the last row. This
representation is bicomposite since the choices made in the various rows of this matrix
are completely independent, and the computations made in the various columns of this
matrix are almost independent as the only way they interact with each other is via the
addition carries which do not tend to propagate very far into the next block. This makes
it possible to guess and operate on partial states, and thus, we can apply almost the
same dissection technique we used for multiple encryption schemes. Note that unlike
the case of multiple encryption in which the value of r was specified as part of the given
problem, here we can choose any desired value of r independently of the given value
of n in order to optimize the time complexity for any available amount of memory. In
particular, by choosing r = 7, we can reduce the best-known time complexity for hard
knapsacks when we use M = 2n/7 = 20.1428n memory from 2(3/4−1/7)n = 20.6071n

in [4] to 24n/7 = 20.5714n with our new algorithm.
Previous algorithms for the knapsack problem [4,28] crucially depend on two facts:

(1) addition is an associative and commutative operation on numbers, and (2) sets can
be partitioned into the union of two subsets in an exponential number of ways. Our
algorithms make no such assumptions, and thus, they can be applied under a much
broader set of circumstances. For example, consider a non-commutative variant of the
knapsack problem in which the generators ai are permutations over {1, 2, . . . , k}, and
we have to find a product of length � of these generators which is equal to some given
permutation S (a special case of this variant is the problem of finding the fastest way to
solve a given state of Rubik’s cube by a sequence of face rotations, which was analyzed
extensively in the literature). To show that this problem is bicomposite, we have to
represent it by an execution matrix with independent rows and columns. Consider an
� × k matrix in which the i th row represents the action of the i th permutation in the
product, and the j th column represents the current location of element j from the set.
Our goal is to start from the identity permutation at the top, and end with the desired

2We note that in the standard formulation of the knapsack problem, one searches for a subset that sums to
S, without the modular reduction. However, as explained in [4], the modular formulation is computationally
equivalent.

1452 I. Dinur et al.

permutation S at the bottom. We can reduce this matrix to size r × r for various values
of r by bunching together several permutations in the product and several elements from
the set. The independence of the rows in this matrix follows from the fact that we can
freely choose the next generators to apply to the current state, and the independence of
the columns follows from the fact that we can know the new location of each element j
if we know its previous location and which permutation was applied to the state, even
when we know nothing about the locations of the other elements in the previous state.
This makes it possible to guess partial states at intermediate stages and thus to apply
the same dissection algorithms as in the knapsack problem with the same improved
complexities.
We note that generic ideas similar to the basic dissection attacks were used before, in

the context of several specific bicomposite problems. These include the aforementioned
algorithms of Schroeppel and Shamir [28] and of Becker et al. [4] which analyzed the
knapsack problem, the algorithmof vanOorschot andWiener [27]which attacked double
and triple encryption, and the results of Isobe [16] and of Dinur et al. [12] in the specific
case of the block cipher GOST.3 A common feature of all these algorithms is that none
of them could beat the tradeoff curve TM = N 3/4, where N is the total number of keys.
The algorithms of [12,16,27,28] matched this curve only for a single point, and the
recent algorithm of Becker et al. [4] managed to match it for a significant portion of
the tradeoff curve. Our new dissection algorithms not only allow to beat this curve, but
actually allow to obtain the relation TM < N 3/4 for any amount of memory in the range
M ≤ N 1/4.

Follow-upWork Since the conference version of this paper has appeared, the dissection
technique was studied further and applied in numerous papers, in a wide variety of
contexts. To mention a few:
On the theoretical side, Austrin et al. [1] transformed the complexity analysis of the

dissection technique from the average-case complexity setting considered here to the
worst-case complexity setting and Wang [29] generalized the application to knapsacks
to the k-SUM problem.

On the practical side, Canteaut et al. [7] used dissection in their ‘sieve in the middle’
generic technique for MITM attacks, Lallemand and Naya-Plasencia [20] used it in their
semi-practical attack on the full stream cipher Sprout, Baek et al. [2] used it in an attack
on a new white-box implementation of the AES, Kirchner and Fouque [18] used it to
obtain improved algorithms for lattice enumeration, and Bar-On et al. [3] used it in
attacks on reduced-round AES.
In a follow-up work [11], the authors applied the dissection technique to Feistel

networks, obtaining generic attacks that outperform the best-known specialized attacks
on a number of block ciphers, including the AES candidate DEAL. In addition, in [10],
the authors elaborated on how to apply dissection to solve Rubik’s cube with the smallest
possible number of face rotations.

Paper Organization The paper is organized as follows: In Sect. 3, we introduce the
dissection technique and present our best error-free attacks on multiple encryption.

3The basic idea of guessing internal values and “attacking” from themappeared in several priorworks,most
notably inMerkle and Hellman attack on 2K-3DES [25] and in Biham’s work on triple modes of operation [6].

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1453

In Sect. 4, we consider the model when “false negatives” are allowed and show that
the dissection algorithms can be combined with the parallel collision algorithm of van
Oorschot and Wiener [27] to get an improved time-memory tradeoff curve. In Sect. 5,
we apply our techniques to other cryptographic problems, such as solving the hardest
instances of knapsack problems, and improving rebound attacks on hash functions.
Finally, Sect. 6 concludes the paper and describes some open problems.

2. Notations and Conventions

In this paper, whenwe consider multiple encryption (mostly in Sects. 3 and 4), we denote
the basic block cipher by E and assume that it uses n-bit blocks and n-bit keys (we can
easily deal with other sizes, but it makes the notation and the discussion cumbersome).
We denote by Ei the encryption process with key ki , and denote by E [1...r] the multiple
encryption schemewhich uses r independent keys to encrypt the plaintext P and produce
the ciphertext C via C = Ekr (Ekr−1(· · · Ek2(Ek1(P)) · · ·)). The intermediate value
produced by the encryption of Pj under E [1...i] is denoted by Xi

j , and the decryption

process of E [1...r] is denoted by D[1...r] (which applies the keys in reverse order). To
attack E [1...r], we are usually given r plaintext/ciphertext pairs, which are expected to
make the key unique (at intermediate stages, we may be given fewer than j − i +
1 plaintext/ciphertext pairs for E [i ... j], and then we are expected to produce all the
compatible keys). In all our exponential complexity estimates, we consider expected
rather thanmaximal possible values (under standard randomness assumptions, they differ
by no more than a logarithmic factor), and ignore multiplicative polynomial factors in
n and r .
When we consider execution matrices for bicomposite problems (mostly in Sect. 5),

we denote the matrix by S, and the j’th element in its i’th row (which corresponds to the
intermediate state Xi

j inmultiple encryption) by Si, j . In addition, we denote the ‘actions’
that can be performed on a state at the i’th row by ai . The execution matrix notations are
demonstrated in Fig. 2, which also emphasizes the fact that in a bicomposite execution
matrix, if we know certain subsets of the actions and certain subsets of the intermediate
values, we can independently verify their consistency without knowing all the other
values in the execution matrix.

3. Dissecting the Multiple Encryption Problem

In this section, we develop our basic dissection algorithms that allow to solve efficiently
the problem of multiple encryption. Given r -encryption with r independent keys, r n-bit
plaintext/ciphertext pairs and 2mn memory cells, the algorithms find all possible values
of the keys which comply with the plaintext/ciphertext pairs, or prove that there are no
such keys. The algorithms are deterministic, in the sense that they do not use random
bits and they always succeed since they implicitly scan all possible solutions.
This section is organized as follows. In Sect. 3.1, we briefly describe the classical

meet-in-the-middle attack which serves as a basis to our algorithms. In Sect. 3.2, we

1454 I. Dinur et al.

Sr

Sr−1

Sr−2

...
...

...

Si+2

Si+1

Si

Si−1

...
...

...

S0

S1

S2

Sr,1 Sr,2 . . . Sr,r

Sr−1,1 Sr−1,2 . . . Sr−1,r

S2,1 S2,2 . . . S2,r

S1,1 S1,2 . . . S1,r

Si+2,j . . . Si+2,k

Si+1,j . . . Si+1,k

Si,j . . . Si,k

Si−1,j . . . Si−1,k

ar−1

ar

ai

ai+1

ai+2

a1

a2

Fig. 2. An execution matrix of a bicomposite search problem.

present the most basic dissection algorithm, and apply it to 4-encryption. In Sect. 3.3,
we discuss natural extensions of the basic dissection algorithm, which dissect the cipher
in a symmetric way by splitting it into parts of equal size. In Sect. 3.4 we introduce
asymmetric dissection algorithms (which split the cipher into parts of different sizes),
and present a sequence of asymmetric dissection algorithms which are more efficient
than the symmetric ones. In Sect. 3.5, we present a formal framework for dissection
algorithms and show the optimality of our algorithms in this framework. While our
basic algorithms and analysis apply only to the case where M = 2n , in Sect. 3.6, we
show that a small modification allows us to extend the dissection algorithms to any
fixed amount of memory. We list the complexities of our most efficient deterministic
dissection algorithms for all r ≤ 40 and m ≤ 10 in Table 1. Finally, in Sect. 3.7, we
describe dissection algorithms in the case where instead of encryptions we are given a
sequence of keyed one-way functions.
A reader which is interested mainly in the ideas of the dissection algorithms and not

in details and generalizations, may concentrate on Sects. 3.2 and 3.4 and leave the other
sections for later reading.

3.1. Previous Work: The Meet-in-the-Middle Attack

The trivial algorithm for recovering the key of an r -encryption scheme is exhaustive
search over the 2rn possible key values, whose time complexity is 2rn , and whose
memory requirement is negligible. In general, with no additional assumptions on the
algorithm and on the subkeys, this is the best possible algorithm.
In [25] Merkle and Hellman observed that if the keys used in the encryption are

independent, an adversary can trade time and memory complexities, using a MITM
approach. In this attack, the adversary chooses a value u, 1 ≤ u ≤ �r/2�, and for
each possible combination of the first u keys (k1, k2, . . . ku) she computes the vector
(Xu

1 , X
u
2 , . . . , X

u
r) = E [1...u](P1, P2, . . . , Pr) and stores it in a sorted table (along with

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1455

the respective key candidate). Then, for each value of the last r − u keys, the adversary
computes the vector D[u+1...r](C1,C2, . . . ,Cr) and checks whether the value appears
in the table (each such collision suggests a key candidate (k1, . . . , kr)). The right key
is necessarily suggested by this approach, and in cases when other keys are suggested,
additional plaintext/ciphertext pairs can be used to sieve the wrong key candidates.
The time complexity of this algorithm is T = 2(r−u)n , whereas itsmemory complexity

is M = 2un . Hence, the algorithm allows to achieve the tradeoff curve TM = 2rn

for any values T, M such that M ≤ 2�r/2�n .4 Note that the algorithm can be applied
also if the number of available plaintext/ciphertext pairs is r ′ < r . In such a case, it
outputs all the possible key candidates, whose expected number is 2(r−r ′)n (since the
plaintext/ciphertext pairs yield an r ′n-bit condition on the 2rn possible keys).
The MITM attack, designed for breaking double-encryption, is still the best-known

generic attack on double-encryption schemes. It is also the best-known attack up to
logarithmic factors5 for triple encryption, which was studied very extensively due to its
relevance to the former de-facto encryption standard Triple-DES.

3.2. The Basic Dissection Algorithm: Attacking 4-Encryption

In the following, we show that for r ≥ 4, the basicMITMalgorithm can be outperformed
significantly, using a dissection technique. For the basic case r = 4, considered in this
section, our algorithm runs in time T = 22n with memory 2n , thus allowing to reach
TM = 23n , which is significantly better than the TM = 24n curve suggested by the
meet-in-the-middle attack.
Themain idea behind the algorithm is to dissect the 4-encryption into two 2-encryption

schemes and to apply the MITM attack to each of them separately. The partition is
achieved by enumerating parts of the internal state at the dissection point. The basic
algorithm, which we call Dissect2(4, 1) is given in Algorithm 1 and illustrated in Fig. 3.
The notation Dissect2(4, 1)means “a dissection algorithm for 4-encryption, withm = 1
(i.e., with 2mn = 2n memory), and the division performed after round 2”.
It is easy to see that once the right value for X2

1 is considered, the right values of
(k1, k2) are found in Step 2 and the right values of (k3, k4) are found in Step 6, and thus,
the right value of the key is necessarily found. The time complexity of the algorithm
is 22n . Indeed, Steps 2 and 6 are called 2n times (for each value of X2

1), and each of
them runs the basic MITM attack on 2-encryption in expected time and memory of 2n .
Following the randomness of a block cipher (for a random block cipher, about 2−n of the
keys satisfy that the encryption of a given plaintext P is a given ciphertextC), the number

4We note that the algorithm, as described above, works only for u ∈ N. However, it can be easily adapted
to non-integer values of u ≤ �r/2�, preserving the tradeoff curve TM = 2rn . This is done by trying 2un key
candidates for (k1, . . . , k	u
), storing the relevant partial encryptions, and testing the relevant (k	u
+1, . . . , kr).
If this procedure fails, the next 2un key candidates for (k1, . . . , k	u
) are tested, and so forth.

5A logarithmic time complexity improvement can be achieved in these settings as suggested by Lucks [23].
The improvement relies on the variance in the number of keys encrypting a given plaintext to a given ciphertext.
This logarithmic gain in time complexity comes at the expense of an exponential increase in the data complexity
(a factor 8 gain in the time complexitywhen attacking triple-DES increases the data from 3 plaintext–ciphertext
pairs to 245 such pairs).

1456 I. Dinur et al.

Input: Four plaintexts (P1, P2, P3, P4) and their corresponding ciphertexts (C1,C2,C3,C4)

1: for all candidate values of X2
1 = Ek2 (Ek1 (P1)) do

2: Run the standard MITM attack on 2-round encryption with (P1, X
2
1) as a single plaintext–ciphertext

pair
3: for all obtained 2n values of (k1, k2) of the previous step do

4: Compute X2
2 = Ek2 (Ek1 (P2)) (i.e., partially encrypt P2 under k1, k2)

5: Store in a sorted table the corresponding values of X2
2, along with the values of (k1, k2)

6: Run the standard MITM attack on 2-round encryption with (X2
1,C1) as a single plaintext–ciphertext

pair
7: for all obtained 2n values of (k3, k4) do

8: Compute X2
2 = Dk3 (Dk4 (C2)) (i.e., partially decrypt C2 using (k3, k4))

9: if the suggested value for X2
2 appears in the table then

10: Retrieve the corresponding (k1, k2) from the table
11: if Ek4 (Ek3 (Ek2 (Ek1 (P3, P4)))) = (C3,C4) then

12: return (k1, k2, k3, k4)

Algorithm 1: The Dissect2(4, 1) Algorithm

P1 P2 P3 P4

C1 C2 C3 C4

X2
1

k
1

k
2

k
3

k
4

k
2
,
k
1

k
4
,
k
3

k
4
,
k
3
,
k
2
,
k
1

k
4
,
k
3
,
k
2
,
k
1

Fig. 3. Illustration of the Dissect2(4, 1) algorithm for 4-encryption.

of expected collisions in the table of X2
2 is 2n . Thus, the expected time complexity of

the attack6 is 2n · 2n = 22n .
Thememory consumption of the 2-encryptionMITM steps (Steps 2 and 6) is expected

to be about 2n . The size of the table computed in Step 5 is also 2n , since each MITM
step is expected to output 2n key candidates. Hence, the expected memory complexity
of the entire algorithm is 2n .

6We remind the reader that we disregard factors which are polynomial in n and r .

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1457

3.3. Natural Extensions of the Basic Dissection Algorithm

We now consider the case (r > 4,m = 1) and show that natural extensions of the
Dissect2(4, 1) algorithm presented above, allow us to significantly increase the gain
over the standard MITM attack for larger values of r .
It is clear that any algorithm for r ′-encryption can be extended to attack r -encryption

for any r > r ′, by trying all possible r − r ′ keys (kr ′+1, . . . , kr), and applying the basic
algorithm to the remaining E [1...r ′]. The time complexity is increased by a multiplicative
factor of 2(r−r ′)n , and hence, the ratio 2rn/TM is preserved. This leads to the following
natural definition.

Definition 1. The gain of an algorithm A for r -encryption whose time and memory
complexities are T and M , respectively, is defined as

Gain(A) = log(2rn/TM)/n = r − log(T M)/n.

The maximal gain among all deterministic algorithms for r -encryption which use 2mn

memory, is denoted by GainD(r,m) (where “D” stands for “deterministic”).

By the trivial argument above, GainD(r, 1) is monotone non-decreasing with r . The
Dissect2(4, 1) algorithm shows that GainD(r, 1) ≥ 1 for r = 4, and hence, for all
r ≥ 4. Below we suggest two natural extensions, which allow to increase the gain up to√
r .

The LogLayer Algorithm: The first extension of the Dissect2(4, 1) is the recursive
LogLayerr algorithm, applicable when r is a power of 2, which tries all the possible X2i

1
for i = 1, 2, . . . , r/2−1 and runs simple MITM attacks on each subcipher E [2i+1,2i+2]
separately. As each such attack returns 2n candidate keys (which can be stored inmemory
of (r/2)·2n), the algorithm then groups 4 encryptions together, enumerates the values X4i

2
for i = 1, 2, . . . , r/4−1, and runs MITM attacks on each subcipher E [4i+1...4i+4] sepa-
rately (taking into account that there are only 2n possibilities for the keys (k4i+1, k4i+2)

and 2n possibilities for the keys (k4i+3, k4i+4)). The algorithm continues recursively
(with log r layers in total), until a single key candidate is found. We illustrate LogLayer
for 8-encryption in Fig. 4.7

The memory complexity of LogLayerr is 2n (as we need to store no more than r
tables, each of size 2n). As in the j th layer of the attack, (r/2 j) − 1 intermediate values
are enumerated, and as each basic MITM attack has time complexity of 2n , the overall
time complexity of the attack is

7We note that one can slightly reduce the memory complexity of the attack by using only the pair (P3,C3)

for checking the consistency between the candidates for the subkeys (k1, . . . , k4) and the candidates for the
subkeys (k5, . . . , k8) and then using the remaining plaintext/ciphertext pairs sequentially to verify the correct-
ness of the proposed full key k1, . . . , k8, as was done in the algorithm Dissect2(4, 1). As the improvement
is only by a constant factor, for sake of simplicity we omit it and use all the remaining plaintext/ciphertext
pairs in the consistency check between (k1, . . . , k4) and the candidates for the subkeys (k5, . . . , k8). We do
the same in the following algorithms as well.

1458 I. Dinur et al.

P1 P2 P3 . . . P8

C1 C2 C3 . . . C8

X4
1 X4

2

X2
1

X6
1

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
2
,
k
1

k
4
,
k
3

k
6
,
k
5

k
8
,
k
7

k
4
,
k
3
,
k
2
,
k
1

k
8
,
k
7
,
k
6
,
k
5

Fig. 4. Illustration of the LogLayer algorithm for 8-encryption.

log r∏

j=1

2n((r/2 j)−1) · 2n = 2n(r−log r).

Therefore, Gain(LogLayerr) = log r −1, which shows that GainD(r, 1) ≥ �log r�−1.

The Squarer Algorithm: This logarithmic gain of LogLayerr is significantly out-
performed by the Squarer algorithm, applicable when r = (r ′)2 is a perfect
square. The Squarer algorithm starts by by enumerating all Xr ′

1 , Xr ′
2 , . . ., Xr ′

r ′−1, X
2r ′
1 ,

X2r ′
2 , . . . , X2r ′

r ′−1, . . ., X
r ′(r ′−1)
1 , Xr ′(r ′−1)

2 , . . . , Xr ′(r ′−1)
r ′−1 , i.e., (r ′−1) intermediate values

every r rounds for r ′ − 1 plaintexts. Given these values, the adversary can attack each
of the r ′-encryptions (e.g., E [1...r ′]), separately, and obtain 2n “solutions” on average,
which are stored in sorted tables. Then, the adversary can treat each r ′-round encryption
as a single encryption with 2n possible keys, and apply an r ′-encryption attack to recover
the key. We illustrate Square9 for 9-encryption in Fig. 5.
The time complexity of Squarer is equivalent to repeating 2(r ′−1)(r ′−1)n times

a sequence of r ′ + 1 attacks on r ′-encryption. Hence, the time complexity is
at most 2[(r ′−1)(r ′−1)+(r ′−1)]·n , and the memory complexity remains 2n . Therefore,
Gain(Squarer) ≥ √

r − 1, which shows that GainD(r, 1) ≥ �√r� − 1.
Obviously, improving the time complexity of attacking r ′-encryption with 2n memory

reduces the time complexity of Squarer as well. However, as the best attacks of this
kind known to us yield a gain of O(

√
r ′) = O(r1/4), the improvement to the overall

gain of Squarer is asymptotically negligible.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1459

P1 P2 P3 P4

C1 C2 C3 C4

. . . P9

. . . C9

X3
1 X3

2

X6
1 X6

2

k
2
,
k
1

k
3

k
5
,
k
4

k
6

k
8
,
k
7

k
9

k
6
,
k
5
,
.
.
.
,
k
2
,
k
1

k
9
,
k
8
,
k
7

Fig. 5. Illustration of the Square9 algorithm for 9-encryption.

3.4. Asymmetric Dissections: 7-Encryption and Beyond

A common feature shared by the LogLayerr and the Squarer algorithms is their sym-
metry. In both algorithms, every dissection partitions the composition into parts of the
same size. In this section, we show that a better gain can be achieved by an asymmetric
dissection.
We observe that the basic dissection attack on 4-encryption is asymmetric in its nature.

Indeed, after the two separate MITM attacks are performed, the suggestions from the
upper part are stored in a table, while the suggestions from the lower part are checked
against the table values. As a result, the number of suggestions in the upper part is
bounded from above by the size of the memory (which is now assumed to be 2n and kept
in sorted order), while the number of suggestions from the lower part can be arbitrarily
large and generated on-the-fly in an arbitrary order. This suggests that an asymmetric
dissection in which the lower part contains more rounds than the upper part may result in
a better algorithm. This is indeed the case, as illustrated by the Dissect3(7, 1) algorithm
given in Algorithm 2 and depicted in Fig. 6.
The memory complexity of the algorithm is 2n , as both the basic MITM attack on

triple encryption and the algorithm Dissect2(4, 1) require 2n memory, and the size of
the table computed in Step 5 is also 2n .
The time complexity is 24n . Indeed, two n-bit intermediate encryption values are

enumerated, both the basic MITM attack on triple encryption and the algorithm
Dissect2(4, 1) require 22n time, and the remaining 22n possible values of (k4, k5, k6, k7)

1460 I. Dinur et al.

Input: Seven plaintexts (P1, P2, . . . , P7) and their corresponding ciphertexts (C1,C2, . . . ,C7)

1: for all candidate values of X3
1, X

3
2 do

2: Apply the basic MITM algorithm to E [1...3] with (P1, X
3
1) and (P2, X

3
2) as the plaintext–ciphertext

pairs
3: for all obtained 2n values of (k1, k2, k3) of the previous step do

4: Compute X3
3, X

3
4, . . . , X

3
7 = E [1..3]

k1,k2,k3
(P3, P4, . . . , P7)

5: Store in a sorted table the corresponding values of X3
3, X

3
4, . . . , X

3
7, along with the values of

(k1, k2, k3)

6: Apply Dissect2(4, 1) to E [4...7] with (X3
1,C1) and (X3

2,C2) as the plaintext–ciphertext pairs

7: for all obtained 22n values of (k4, k5, k6, k7) do

8: Compute X3
3, X

3
4, . . . , X

3
7 = D[4...7]

k4,k5,k6,k7
(C3,C4, . . . ,C7)

9: if the suggested value for X3
3, X

3
4, . . . , X

3
7 appears in the table then

10: return (k1, k2, . . . , k7)

Algorithm 2: The Dissect3(7, 1) Algorithm

P1 P2 P3 . . . P7

C1 C2 C3 . . . C7

X3
1 X3

2

X5
1

k
1

k
3
,
k
2

k
1

k
3
,
k
2

k
4

k
5

k
6

k
7

k
5
,
k
4

k
7
,
k
6

k
3
,
k
2
,
k
1

k
7
,
k
6
,
k
5
,
k
4

Fig. 6. Illustration of the Dissect3(7, 1) algorithm for 7-encryption.

are checked instantly. This leads to a time complexity of 22n · 22n = 24n . This shows
that Gain(Dissect3(7, 1)) = 2, which is better than the algorithms LogLayerr and
Squarer , for which the gain is only 1.
The algorithm Dissect3(7, 1) can be extended recursively to larger values of r , to

yield a better asymptotical gain compared to the symmetric algorithms we presented.
Given the algorithm Dissect j (r ′, 1) such that Gain(Dissect j (r ′, 1)) = �−1, we define
the algorithm Dissect1NEXT = Dissect�+1(r ′ + � + 1, 1) for r -encryption, where
r = r ′ + � + 1, using Algorithm 3 depicted in Fig. 7.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1461

Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts (C1,C2, . . . ,Cr)

1: for all candidate values of X�+1
1 , X�+1

2 , . . . , X�+1
�

do

2: Apply the basic MITM algorithm to E [1...(�+1)] with (P1, X
�+1
1), (P2, X

�+1
2), …, (P�, X

�+1
�

) as the
plaintext–ciphertext pairs

3: for all obtained 2n values of (k1, k2, . . . , k�+1) of the previous step do

4: Partially encrypt P�+1, P�+2, . . . , Pr using (k1, k2, . . . , k�+1)

5: Store in a sorted table the corresponding values of X�+1
�+1, X

�+1
�+2, . . . , X

�+1
r , along with the values of

(k1, k2, . . . , k�+1)

6: Apply Dissect j (r
′, 1) to E [(�+2)...r] with (X�+1

1 ,C1), (X
�+1
2 ,C2), …, (X�+1

�
,C�) as the plaintext–

ciphertext pairs

7: for all obtained 2(r ′−�)n values of (k�+2, k�+3, . . . , kr) do

8: Partially decrypt C�+1,C�+2, . . . ,Cr using (k�+2, k�+3, . . . , kr)

9: if the suggested value for X�+1
�+1, X

�+1
�+2, . . . , X

�+1
r appears in the table then

10: return (k1, k2, . . . , kr)

Algorithm 3: The Dissect�+1(r ′ + � + 1, 1) Algorithm

P1 P2 P3 . . . P� P�+1 . . . Pr

C1 C2 C3 . . . C� C�+1 . . . Cr

k
�
,
k

�
−

1
,
.
.
.

k
3
,
k
2
,
k
1

k
�
+

1

X�+1
1 X�+1

2 X�+1
3

. . . X�+1
�

k
�
+

1
,
k

�
,
.
.
.
,
k
2
,
k
1

Dissectj(r′, 1)

k
r

′ +
�
+

1
,
k

r
′ +

�

.
.
.
,
k

�
+

3
,
k

�
+

2

Fig. 7. Illustration of the Dissect�+1(r
′ + � + 1, 1) algorithm for (r ′ + � + 1)-encryption.

A similar argument to the one used for Dissect3(7, 1) shows that the time and
memory complexities of Dissect�+1(r, 1) are 2r

′n and 2n , respectively, which implies
that Gain(Dissect�+1(r, 1)) = �. In fact, Dissect3(7, 1) can be obtained from
Dissect2(4, 1) by the recursive construction just described.

1462 I. Dinur et al.

The recursion leads to a sequence of asymmetric dissection attacks with memory
M = 2n , such that the gain increases by 1 with each step of the sequence. Let r� be the
smallest number of rounds at with a gain of � is achieved, then by the construction, the
sequence satisfies the recursion

r� = r�−1 + � + 1,

which (together with r0 = 2 which follows from the basic MITM attack) leads to the
formula:

r� = (� + 1)(� + 2)

2
+ 1.

The asymptotic gain of this sequence is obtained by representing � as a function of r , and
is equal to (

√
8r − 7 − 3)/2 ≈ √

2r , which is bigger than the
√
r gain of the Squarer

algorithm.
The analysis presented in Sect. 3.5 shows that the algorithms obtained by the recursive

sequence described above are the optimal among all dissection algorithms that split the
r rounds into two (not necessarily equal) parts and attacks each part recursively, using
any dissection algorithm.
We conclude that as far as only dissection attacks are concerned, the magic sequence

of the minimal numbers of rounds for which the gains are � = 0, 1, 2, 3, . . ., called in
the sequel magic numbers, is:

Magic1 = {2, 4, 7, 11, 16, 22, 29, 37, 46, 56, . . .}.

This “magic sequence” (also known as the Lazy Caterer’s sequence) will appear several
more times in the sequel.

3.5. The Dissectu(r, 1) Algorithm

In this section, we present a formal treatment of the dissection algorithm and show
the optimality of the sequence Magic1 presented above for algorithms which use the
following framework: In the outer loop of the algorithm, the adversary dissects E [1...r]
into two parts, E [1...u] and E [u+1...r], and guesses a few of the Xu

i values. Then, she
finds candidates for the keys k1, k2, . . . , ku by attacking E [1...u], and stores their values
in a sorted table, along with some additional Xu

j values. At this point, the adversary

attacks E [u+1...r], deduces the candidate values for ku+1, ku+2, . . . , kr , computes the
corresponding Xu

j values, and looks on-the-fly for matches in the table (each suggesting

a value for the entire key of E [1...r]). Obviously, the attacks on E [1...u] and E [u+1...r]
themselves can be performed using dissection algorithms.
As explained in Sect. 3.4, the number of Xu

i values the adversary has to guess is
dictated by the number of key suggestions for k1, k2, . . . , ku yielded by the attack on
E [1...u], since only these suggestions have to be stored in memory. As the amount of
memory allowed in Dissectu(r, 1) is 2n , we assume that the adversary guesses u − 1

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1463

Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts (C1,C2, . . . ,Cr)

1: for all candidate values of Xu
1 , Xu

2 , . . . , Xu
u−1 do

2: Apply the basicMITMalgorithm to E [1...u] with (P1, X
u
1), (P2, X

u
2),…, (Pu−1, X

u
u−1) as the plaintext–

ciphertext pairs
3: for all obtained 2n values of (k1, k2, . . . , ku) of the previous step do

4: Partially encrypt Pu , Pu+1, . . . , Pr using (k1, k2, . . . , ku)

5: Store in a sorted table the corresponding values of Xu
u , Xu

u+1, . . . , X
u
r , along with the values of

(k1, k2, . . . , ku)

6: Attack E [(u+1)...r] (possibly using dissection) with (Xu
1 ,C1), (Xu

2 ,C2), …, (Xu
u−1,Cu) as the

plaintext–ciphertext pairs
7: for all obtained 2[r−u−(u−1)]n valuesa of (ku+1, ku+2, . . . , kr) do

8: Partially decrypt Cu ,Cu+1, . . . ,Cr using (ku+1, ku+2, . . . , kr)
9: if the suggested value for Xu

u , Xu
u+1, . . . , X

u
r appears in the table then

10: return (k1, k2, . . . , kr)

aWe recall that when attacking E [u+1...n], we expect that out of the 2(r−u)n possible keys, only one in
2(u−1)n is consistent with the given u − 1 “plaintext”-ciphertext pairs.

Algorithm 4: The Dissectu(r, 1) Algorithm

values of the form Xu
i , as this makes the number of suggestions 2n (under standard

randomness assumptions).
Therefore, the Dissectu(r, 1) attack on r -encryption can be defined by Algorithm 4.

Of course, the algorithms Dissect3(7, 1) and Dissect�+1(r ′ + � + 1, 1) presented in
Sect. 3.4 are special cases of Dissectu(r, 1).

Complexity Analysis of Dissectu(r, 1): It is easy to see that since the memory com-
plexity of the attacks on E [1...u] and E [u+1...r] is at most 2n , then the memory complexity
of the whole attack is 2n (recall that we expect 2n candidates for k1, k2, . . . , ku). More-
over, for the right guess of the Xu

1 , X
u
2 , . . . X

u
u−1 values, we are assured that the right

key value is suggested by both Steps 2 and 6, and that the combination of the right key
values leads to a match in the table in Step 9. Hence, the attack indeed returns the right
key (perhaps with a few other candidates).
The time complexity of the attack is 2(u−1)n times the complexity of Steps 2 and 6.

The running time of Step 2 (attacking u ≤ �r/2� rounds8) does not affect the proof of
optimality of our algorithms, and thus we ignore it.
Using our framework, we assume that the most efficient way to implement Step 6 is

by calling Dissectu∗(r−u, 1) algorithm for some u∗ < r−u. Thus, the running time of
Step 6 is at least the time complexity of the Dissectu∗(r − u, 1) algorithm. In addition,
one needs to note that the number of solutions suggested by this part of the attack is
2(r−2u+1)n , i.e., we expect another 2(r−2u+1)n accesses to the table as part of Step 7).

8For a good block cipher E , the problem of attacking the encryption and the decryption direction is
expected to be the same. Hence, we assume without lose of generality that indeed u ≤ �r/2�.

1464 I. Dinur et al.

For convenience of notation, let

f1(r) � min
1≤u≤r−1

{r − 1 − Gain(Dissectu(r, 1))} ,

so that the lowest possible time complexity of an algorithm in our framework on r -
encryption with 2n memory is 2 f1(r)n .

Using this notation, the time complexity of Dissectu(r, 1) is at least

2(u−1)n · max
{
2 f1(u)n, 2 f1(r−u)n, 2(r−2u+1)n

}
.

Therefore, for a given value of r , the optimal value of u is the one that minimizes the
above expression. In other words:

f1(r) = min
1≤u≤r

{u − 1 + max { f1(u), f1(r − u), r − 2u + 1}} . (1)

We can simplify this expression by plugging in u = �r/2�, and obtaining f1(r) ≤
�r/2� + 1 + f1(r/2
). Thus, since f1(r) is non-decreasing, the minimum cannot be
obtained for u > �r/2�, which implies:

f1(r) = min
1≤u≤�r/2� {u − 1 + max { f1(r − u), r − 2u + 1}} . (2)

Using Eq. 2 and the known values of f1(1) = f1(2) = 1 (which follow from the
standard MITM algorithm on 2-encryption), it is easy to show by induction on r that the
minimal complexities are achieved by the sequence of algorithms presented in Sect. 3.4.

Remark 1. Onemay be concerned by the fact that when the algorithm is run recursively
there are no additional “plaintext” values that allow constructing the table in Step 2 (as
we require at least one additional “plaintext” to filter some of the key candidates found
in Step 6). This issue is solved by the fact that once the top part (being E [1...r∗] for some
r∗) has at most 2n possible keys, we can partially encrypt as many plaintexts as we have
to generate the required data.

3.6. Deterministic Dissection Algorithms for m > 1

While the algorithms presented above seem tailored to the casem = 1, it turns out that a
small tweak in the recursive sequence of the dissection algorithms presented in Sect. 3.4
is sufficient to obtain optimal algorithms in our framework for any integer m > 1.

First, we define the general family of dissection algorithms Dissectu(r,m), which
correspond to a memory complexity of 2mn , in Algorithm 5.
As in the case m = 1, we denote fm(r) = r − m − GainD(r,m), so that the lowest

possible time complexity of a deterministic dissection attack on r -encryption with 2mn

memory is 2 fm (r)n . In these notations, exactly the same analysis as in the case m = 1
shows that

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1465

Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts (C1,C2, . . . ,Cr)

1: for all candidate values of Xu
1 , Xu

2 , . . . , Xu
u−m do

2: Apply the basic MITM algorithm to E [1...u] with (P1, X
u
1), (P2, X

u
2), …, (Pu−m , Xu

u−m) as the
plaintext–ciphertext pairs

3: for all obtained 2mn values of (k1, k2, . . . , ku) of the previous step do

4: Partially encrypt Pu−m+1, Pu−m+2, . . . , Pr using (k1, k2, . . . , ku)

5: Store in a sorted table the corresponding values of Xu
u , Xu

u+1, . . . , X
u
r , along with the values of

(k1, k2, . . . , ku)

6: Attack E [(u+1)...r] (possibly using dissection) with (Xu
1 ,C1), (Xu

2 ,C2), …, (Xu
u−1,Cu) as the

plaintext–ciphertext pairs
7: for all obtained 2[r−u−(u−1)]n values of (ku+1, ku+2, . . . , kr) do

8: Partially decrypt Cu ,Cu+1, . . . ,Cr using (ku+1, ku+2, . . . , kr)
9: if the suggested value for Xu

u , Xu
u+1, . . . , X

u
r appears in the table then

10: return (k1, k2, . . . , kr)

Algorithm 5: The Dissectu(r,m) Algorithm

fm(r) = min
1≤u≤�r/2� {u − m + max { fm(r − u), r − 2u + m}} . (3)

The optimal choice of the “cut points” u for each value of r is obtained by a recursive
sequence of algorithms,which is a simple generalization of the sequence thatwe obtained
for m = 1.

First, note that if an algorithm Dissect j (r ′,m) satisfies Gain(Dissect j (r ′,m)) =
� − m, then the algorithm Dissect�+m(r ′ + � + m,m) (which uses Dissect j (r ′,m) as
a subroutine in the lower part) satisfies Gain(Dissect�+m(r ′ + � + m,m)) = �. This
allows us to construct a recursive sequence of algorithms, in which the gain is increased
by m at every step, thus generalizing the case of m = 1.

As the startingpoints for the sequence,we startwith them algorithmsDissectm+i (2m+
2i,m) for i = 0, 1, . . . ,m−1. In the algorithm Dissectm+i (2m+2i,m), the adversary
enumerates i intermediate values after m + i rounds, applies simple MITM attacks on
each part separately, and then applies a MITM attack between the 2mn key suggestions
from the two parts. The time and memory complexities of the algorithm are 2(m+i)n and
2mn , respectively, and hence, its gain is i .
Using these m starting points and the recursive step, the entire sequence can be com-

puted easily. It turns out that the “magic sequence” of the numbers of rounds at which
the gain � = 0, 1, 2, . . . obtained is

Magicm = {2m, 2m + 2,2m + 4, . . . , 4m, 4m + 3, 4m + 6, . . . ,

7m, 7m + 4, 7m + 8, . . . , 11m, . . .},

and the asymptotic gain is approximately
√
2mr .

1466 I. Dinur et al.

Using Eq. (3), it is easy to show by induction on r that the optimal complexities
among Dissectu(r,m) algorithms are achieved by the sequence of algorithms presented
above.9

We present the time and memory complexities of the optimal Dissectu(r,m) algo-
rithms for all r ≤ 40 and m ≤ 10 in Table 1.

3.7. Dissection Algorithms for a Composition of Keyed One-Way Functions

In this section, we consider compositions of keyed one-way functions (OWFs), which
appear in the context of layered Message Authentication Codes, such as NMAC [5].
It turns out that the deterministic dissection algorithms presented above can be easily
modified to yield efficient dissection algorithms for this scenario.
In the scenario of composition of OWFs, the goal is to retrieve k1, k2, . . . , kr used in

F [1...r](P) = Fkr (Fkr−1(· · · Fk2(Fk1(P)) · · ·)),

where Fk(·) is a keyed one-way function from an n-bit input and an n-bit key into an n-bit
output. We shall assume that the keyed one-way function F is a family of 2k random
functions (where each function corresponds to a different key).
Given 22n memory, one can simply store a table of (Fk(X), k, X) sorted by the values

of Fk(X) and k. Thus, given Fk(X) and k, one can find all possible X values (there is one
such value on average) that are “encrypted” into Fk(X) under the key k. As this actually
generates the “decryption” functionality by onememory access per each possible X (and
thus amortized complexity of one memory access per each (Fk(X), k) tuple), we can
repeat the same Dissectu(r,m) algorithms designed for multiple encryption, if m ≥ 2.
In case we only have 2n memory, we use a slightly different approach in the dissection

of F [1...r] into two parts. In the lower part, instead of fixing intermediate values and
checking which keys “decrypt” the known outputs10 into these intermediate values, we
go over all tuples of (intermediate values, key) and store in a table those tuples which
comply with the known outputs.11 Then, we obtain candidates for the keys in the upper
part and check them against the table. This procedure is somewhat less efficient than the
original Dissectu(r,m), but obtains similar asymptotical results.
In the simplest case of r = 3, the algorithm, which we call DissectOW F2(3), is

defined as in Algorithm 6.12

9Our algorithms only work for integer values of m, since u − m (the number of intermediate values that
we guess in Step 1 of Algorithm 5) has to be an integer. These algorithms can be extended to fractional values
of m as well. However, as the extended algorithms are more cumbersome, we decided to not present them in
this paper.

10As we consider one-way functions, we use the terms inputs and outputs rather than plaintexts and cipher-
texts.

11Different from the case of multiple encryption, in the case of one-way functions, we build a table for the
lower part of the cipher.

12Recall that we discuss only the case in which 2n memory is given, as for 22n memory the previous
Dissect algorithms are still applicable. Hence, we omit the amount of memory from the notation.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1467

Table 1. fm (r) values.

r m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2
5 3 3 3 3 3 3 3 3 3 3
6 4 3 3 3 3 3 3 3 3 3
7 4 4 4 4 4 4 4 4 4 4
8 5 4 4 4 4 4 4 4 4 4
9 6 5 5 5 5 5 5 5 5 5
10 7 6 5 5 5 5 5 5 5 5
11 7 6 6 6 6 6 6 6 6 6
12 8 7 6 6 6 6 6 6 6 6
13 9 8 7 7 7 7 7 7 7 7
14 10 8 8 7 7 7 7 7 7 7
15 11 9 8 8 8 8 8 8 8 8
16 11 10 9 8 8 8 8 8 8 8
17 12 11 10 9 9 9 9 9 9 9
18 13 11 10 10 9 9 9 9 9 9
19 14 12 11 10 10 10 10 10 10 10
20 15 13 12 11 10 10 10 10 10 10
21 16 14 12 12 11 11 11 11 11 11
22 16 14 13 12 12 11 11 11 11 11
23 17 15 14 13 12 12 12 12 12 12
24 18 16 15 14 13 12 12 12 12 12
25 19 17 15 14 14 13 13 13 13 13
26 20 18 16 15 14 14 13 13 13 13
27 21 18 17 16 15 14 14 14 14 14
28 22 19 18 16 16 15 14 14 14 14
29 22 20 18 17 16 16 15 15 15 15
30 23 21 19 18 17 16 16 15 15 15
31 24 22 20 19 18 17 16 16 16 16
32 25 22 21 19 18 18 17 16 16 16
33 26 23 21 20 19 18 18 17 17 17
34 27 24 22 21 20 19 18 18 17 17
35 28 25 23 22 20 20 19 18 18 18
36 29 26 24 22 21 20 20 19 18 18
37 29 27 25 23 22 21 20 20 19 19
38 30 27 25 24 23 22 21 20 20 19
39 31 28 26 25 23 22 22 21 20 20
40 32 29 27 25 24 23 22 22 21 20

Items marked in bold are magic numbers

Steps 1 and 2 go over 22n values, with an n-bit filtering condition (in Step 3). Hence,
their running time is 22n and the expected memory consumption13 is 2n . Step 5 iterates
over all 22n values of (k1, k2), and for each such key pair, we expect on average one

13A given output may have several inputs (even when the key is fixed), thus the number of “solutions” to
the equation Fk3 (X

2
1) = C1 may be larger than 2n . However, assuming F(·) is a “good” one-way function,

the number of solutions is not expected to be significantly larger than 2n .

1468 I. Dinur et al.

Input: Three inputs (P1, P2, P3) and their corresponding outputs (C1,C2,C3)

1: for all candidate values of X2
1 do

2: for all k3 do

3: if Fk3 (X
2
1) = C1 then

4: Store (X2
1, k3) in a sorted table

5: for all candidate values of k1, k2 do

6: Compute X2
1 = Fk2 (Fk1 (P1))

7: if X2
1 appears in the table then

8: Obtain k3 from the table
9: if F [1...3](P2, P3) = (C2,C3) then

10: return (k1, k2, k3)

Algorithm 6: The DissectOW F2(3) Algorithm

value of X2
1 in the table. This value suggests on average a single value of k3, from which

we obtain a suggestion for the complete key. We conclude that the time complexity of
DissectOW F2(3) is 22n and its memory complexity is 2n .
We note that (similarly to the case of multiple encryption) a trivial extension of

DissectOW F2(3) allows us to retrieve the key of a composition of r OWFs for any
r ≥ 3, in time 2(r−1)n and memory 2n . Moreover, if we are given only r −1 input/output
pairs, the same algorithm allows us to retrieve the 2n keys which comply with these
pairs. This algorithm will be used in the recursive step below.
Starting with DissectOW F2(3), we can recursively construct a sequence of dissec-

tion algorithms. The construction is similar to the DissectN EXT construction presented
in Sect. 3.4, with a few differences which follow from the special structure of OWFs.
Given � ≥ 2 and an algorithm DissectOW Fj (r ′) whose gain is � − 1, i.e.,

Gain(DissectOW Fj (r ′)) = � − 1, we define the algorithm DissectOW FNEXT =
DissectOW Fr ′(r ′ + � + 1) for r -encryption, where r = r ′ + � + 1, by Algorithm 7.
An analysis similar to that of the Dissect1NEXT algorithm presented in Sect. 3.4

shows that the time and memory complexities of DissectOW FNEXT are T = 2r
′n

and M = 2n . Indeed, the only essential difference between DissectOW FNEXT and
Dissect1NEXT is the second part of Step 1 (i.e., computing the preimages), but the time
complexity of this part is 22n , which is less than the complexity of the other steps of the
algorithm, since � ≥ 2.

This shows that the sequence of DissectOW Fj (r) algorithms satisfies the same
recursion relation as the sequence Dissect j (r, 1). Hence, if we denote by r̃� the �’th
element of the sequence (i.e., the number of rounds for which the gain is �), then

r̃� = r̃�−1 + � + 1.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1469

Input: r inputs (P1, P2, . . . , Pr and their corresponding outputs (C1,C2, . . . ,Cr)

1: for all candidate values of Xr ′
1 , Xr ′

2 , . . . , Xr ′
�

do

2: for all kr ′+1, kr ′+2, . . . , kr do

3: if F [r ′+1...r](Xr ′
1 , Xr ′

2 , . . . , Xr ′
�

) = (C1,C2, . . . ,C�) then

4: Store (Xr ′
1 , Xr ′

2 , . . . , Xr ′
�

, kr ′+1, kr ′+2, . . . , kr) in a sorted table

5: Apply DissectOW Fj (r
′) to E [1...r ′] with (P1, X

r ′
1), (P2, X

r ′
2), . . . , (P�, X

r ′
�

) as the input–output pairs

6: for all obtained 2(r ′−�)n values of (k1, k2, . . . , kr ′) of the previous step do

7: Compute Xr ′
1 , Xr ′

2 , . . . , Xr ′
�

= F [1...r ′](P1, P2, . . . , P�)

8: if Xr ′
1 , Xr ′

2 , . . . , Xr ′
�

appears in the table then

9: Obtain kr ′+1, kr ′+2, . . . , kr from the table

10: if F [1...3](P�+1, P�+2, . . . , Pr) = (C�+1,C�+2, . . . ,Cr) then

11: return (k1, k2, . . . , kr)

Algorithm 7: The DissectOW Fr ′(r) Algorithm (for r = r ′ + � + 1)

Since r̃0 = 3, we get the formula

r̃� = r� + 1 = (� + 1)(� + 2)

2
+ 2.

Therefore, the “magic sequence” corresponding to a composition of OWFs is

MagicOWF
1 = {3, 5, 8, 12, 17, 23, . . .},

and the asymptotic gain is approximately
√
2r , as in the basic r -encryption case.

4. Parallel Collision Search via Dissection

In Sect. 3, we only considered deterministic algorithms for r -encryption schemes which
never err, that is, algorithms which find all the possible values of the keys which comply
with the plaintext–ciphertext pairs, or prove that there are no such keys. For this type of
algorithm, we improved the previously best-known generic tradeoff curve (obtained by
MITM attacks) from TM = 2rn to TM = 2(r−√

2r)n using our dissection algorithms.
We now consider non-deterministic algorithms which find the right keys with some

probability p < 1, which can be made arbitrarily close to one (i.e., Monte Carlo algo-
rithms). In this case, an improved tradeoff curve of T 2M = 2(3/2)rn can be obtained by
the parallel collision search algorithm of van Oorschot and Wiener [27]. In this section,
we combine the dissection algorithms presented in Sect. 3 with the parallel collision

1470 I. Dinur et al.

search algorithm to obtain an even better tradeoff curve with a multiplicative advantage
of at least 2(

√
2r/8)n over the curve of [27].

This section is organized as follows: In Sect. 4.1, we give a brief description of
the Parallel Collision Search algorithm. Our new algorithm, which we call “Dissect &
Collide”, is presented in Sect. 4.2. In Sect. 4.3, we present several extensions of the
basic Dissect & Collide algorithm and analyze its gain compared to the PCS algorithm.
Finally, we present a comparison between the performances of the dissection, PCS, and
Dissect & Collide algorithms for selected values of r and m in Table 2.

4.1. Brief Description of the Parallel Collision Search Algorithm

We start with a brief description of the Parallel Collision Search (PCS) algorithm of van
Oorschot and Wiener [27]. For more information on the algorithm and its applications,
the reader is referred to the original paper [27].

The Memoryless Algorithm The simplest way to present the PCS algorithm is to
consider “memoryless” (i.e., constant memory) attacks on r -encryption. As mentioned
in Sect. 3, the time complexity of exhaustive search is 2rn , and the MITM attack does
not perform better given constant memory. Van Oorschot and Wiener showed that the
time complexity can be reduced to 2(3/4)rn , using the PCS algorithm.
The basic observation behind the algorithm is that given constant memory, one can

efficiently find key candidates which comply with half of the plaintext–ciphertext pairs.
Assume, for sake of simplicity, than r is even and the adversary is given r plaintext–

ciphertext pairs (P1,C1), . . . , (Pr ,Cr). The first step of the PCS algorithm con-
sists of finding candidates for the keys (k1, . . . , kr), which comply with the pairs
(P1,C1), . . . , (Pr/2,Cr/2). In order to find them, the adversary constructs the two step
functions

Fupper : (k1, . . . , kr/2)
→ (Xr/2
1 , . . . , Xr/2

r/2), and

F lower : (kr/2+1, . . . , kr)
→ (Xr/2
1 , . . . , Xr/2

r/2),

anduses a variant of Floyd’s cycle finding algorithm [19] to find a collision between them.
Thus, the adversary obtains a value of (k1, . . . , kr/2, kr/2+1, . . . , kr) which complies
with (P1,C1), . . . , (Pr/2,Cr/2). As both functions are from (r/2)n bits to (r/2)n bits,
Floyd’s algorithm is expected to find a collision in time 2(r/4)n , with constant memory.
In the sequel, we call such collisions partial collisions.
In the second step of the algorithm, the adversary checks whether the found key

candidate also complies with the pairs (Pr/2+1,Cr/2+1), . . . , (Pr ,Cr). By standard ran-
domness assumptions, this occurs with probability 2−(r/2)n , and hence the adversary is
expected to find the key after testing 2(r/2)n candidates. The total time complexity of the
algorithm is thus 2(3/4)rn .
We note that one may be tempted to use the naive approach to find a collision between

Fupper and F lower, by trying to construct a self-colliding chain of values, generated by
alternating the applications of the two functions on the current value. However, this
approach does not work, and in order to efficiently obtain the desired collision, one has
to embed pseudo-randomness into the generation of the chain in order to decide at each

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1471

stage which of the functions to apply next (for more details, refer to [27]). Moreover, the
adversary has to use different flavors of the step functions Fupper and F lower in order to
produce the 2(r/2)n distinct partial collisions required for the second step of the algorithm.
Thus, the algorithm is probabilistic also in the sense that its success probability depends
on the (randomly chosen) starting points of Floyd’s algorithm and the different flavors.

Time/Memory Tradeoff in Parallel Collision Search If more memory is available,
then the algorithm described above can be combined with the techniques used in
the classical Hellman’s time-memory tradeoff attack [14] to obtain the tradeoff curve
T 2M = 2(3/2)rn . The reduction in the time complexity is achieved by obtaining many
partial collisions simultaneously, with a lower amortized time per collision.
Assume that the available memory is M = 2mn . The adversary chooses M random

starting points Vi , and for each of them she computes a chain of values starting from
Vi . Each chain is terminated once a value with (r/4 − m/2)n zero LSBs is obtained,
and this “distinguished point” is stored in a table, along with Vi and its total length. For
each reached distinguished point, the adversary checks whether it already appears in
the table. If it indeed appears, then the corresponding chains give a collision between
F lower and Fupper with high probability. This collision can be easily found using the two
starting points of the chains, and their lengths.
The expected length of each of the 2mn paths is 2(r/4−m/2)n , and thus, the structure

covers a total of about 2(r/4+m/2)n values. Using the birthday paradox, since every
path contains about 2(r/4−m/2)n values, we expect it to collide with at least one of the
2(r/4+m/2)n covered points with high probability. Thus, we expect to find a total of about
2mn partial collisions using this algorithm. Generating the structure requires a total of
about 2(r/4+m/2)n operations, and we can obtain each of the 2mn partial collisions in
about 2(r/4−m/2)n time (the expected length of a chain in the structure). Thus, the total
time complexity of obtaining the collisions is about 2(r/4+m/2)n , which implies that the
time complexity of the algorithm is also about 2(r/4+m/2)n .
In total, the algorithm requires about 2(r/4+m/2)n operations in order to find 2mn partial

collisions. Since 2rn/2 partial collisions are needed, the overall time complexity is

T = 2(r/4+m/2)n · 2(r/2−m)n = 2(3r/4−m/2)n,

which leads to the tradeoff curve T 2M = 2(3/2)rn .

4.2. The Dissect & Collide Algorithm

In this section, we present the Dissect & Collide (DC) algorithm, which uses dissection
to enhance the PCS algorithm.
The basic idea behind the DC algorithm is that it is possible to fix several intermediate

values after r/2 rounds, (Xr/2
1 , . . . , Xr/2

u), and construct complex step functions F̃upper

and F̃ lower in such a way that all the keys they suggest partially encrypt Pi to Xr/2
i and

partially decrypt Ci to Xr/2
i , for all i ≤ u. This is achieved by incorporating an attack

on E [1...r/2] with (P1, X
r/2
1), . . . , (Pu, X

r/2
u) as the plaintext–ciphertext pairs into the

function Fupper, and similarly with E [r/2+1...r] and F lower. As a result, a partial collision
which complies with the pairs (P1,C1), . . . , (Pr/2,Cr/2) can be found at a smaller

1472 I. Dinur et al.

“cost” than in the PCS algorithm. It should be noted that this gain could potentially be
diminished by the “cost” of the new step functions F̃ , which is higher than the “cost”
of the simple step functions F . However, we show that when the efficient dissection
algorithms presented in Sect. 3 are used to attack the subciphers E [1...r/2] and E [r/2+1...r],
the gain is bigger than the loss, and the resulting DC algorithm is faster than the PCS
algorithm (given the same amount of memory).

A Basic Example: Applying DC to 8-encryption As the idea of the DC algorithm is
somewhat involved, we illustrate it by considering the simple case (r = 8,m = 1). In
the case of 8-encryption, the goal of the first step in the PCS algorithm is to find partial
collisions which comply with the pairs (P1,C1), . . . , (P4,C4). Given memory of 2n , the
average time in which PCS finds each such collision is 21.5n . The DC algorithm allows
us to achieve the same goal in 2n average time.

In the DC algorithm, we fix three intermediate values: (X4
1, X

4
2, X

4
3) and want to

attack the subciphers E [1...4] and E [5...8]. Recall that the algorithm Dissect2(4, 1) pre-
sented in Sect. 3 retrieves all 2n values of (k1, k2, k3, k4) which comply with the pairs
(P1, X4

1), (P2, X
4
2), (P3, X

4
3) in time 22n and memory 2n . Furthermore, given a fixed

value X2
1, there is a single value of (k1, k2, k3, k4) (on average) which complies with the

three plaintext–ciphertext pairs and the X2
1 value, and this value can be found in time 2n

(since the Dissect2(4, 1) algorithm starts with guessing the value X2
1 and then performs

only 2n operations for each guess).
Given plaintexts (P1, P2, P3, P4), their corresponding ciphertexts (C1,C2,C3,C4),

and a guess for (X4
1, X

4
2, X

4
3):

Define the step functions F̃upper and F̃ lower by:

F̃upper : X2
1
→ X4

4 and F̃ lower : X6
1
→ X4

4.

In order to compute the step function F̃upper, apply the Dissect2(4, 1) algorithm to
E [1...4] with the plaintext–ciphertext pairs (P1, X4

1), (P2, X
4
2), (P3, X

4
3) and the inter-

mediate value X2
1 to obtain a unique value of the keys (k1, k2, k3, k4). Then, partially

encrypt P4 through E [1...4] with these keys to obtain F̃upper(X1
2) = X4

4. The func-
tion F̃ lower is computed similarly. The resulting algorithm is given in Algorithm 8 and
depicted in Fig. 8.

By the construction of the step functions, each suggested key (k1, . . . , k4) (or
(k5, . . . , k8)) encrypts (P1, P2, P3) to (X4

1, X
4
2, X

4
3) (or decrypts (C1,C2,C3) to

(X4
1, X

4
2, X

4
3), respectively), and hence, each collision between F̃upper and F̃ lower yields

a suggestion of (k1, . . . , k4, k5, . . . , k8) which complies with the pairs (P1,C1), . . . ,

(P4,C4). Since we find 2n collisions in step 1(a), we expect a collision for each possible
value of X4

4. Thus, once we iterate over the correct value of (X4
1, X

4
2, X

4
3), we expect

a collision on the correct value of X4
4, which will suggest the correct key with high

probability.
Since the step functions are from n bits to n bits, we can find the required 2n partial

collisions with 2n invocations using 2n memory in Step 2. By the properties of the
algorithm Dissect2(4, 1) mentioned above, the invocation of the step functions F̃ can
be performed in 2n time and memory. Thus, Step 2 requires a total of 22n time, and the
total running time of the algorithm is 24n−n · 22n = 25n .

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1473

Input: Eight plaintexts (P1, P2, . . . , P8) and their corresponding ciphertexts (C1,C2, . . . ,C8)

1: for all candidate values of X4
1, X

4
2, X

4
3 do

2: Use PCS to obtain 2n collisions between F̃upper and F̃ lower

3: for all obtained collisions do

4: if E [1..8]
k1,...,k4,k5,...,k8

(P5, P6, P7, P8) = (C5,C6,C7,C8) then

5: return k1, . . . , k4, k5, . . . , k8

Algorithm 8: The DC(8, 1) Algorithm

P1 P2 P3 P4 P5 . . . P8

C1 C2 C3 C4 C5 . . . C8

X4
1 X4

2 X4
3

X2
1

X6
1

F̃
u
pp
er

usi
ng

D
issect2(4

,1)

F̃
low

er
using

D
is
se
ct

2
(4
,1

)

k
8
,
k
7
,
k
6
,
k
5
,
k
4
,
k
3
,
k
2
,
k
1

Fig. 8. Illustration of the DC(8, 1) algorithm for 8-encryption.

We note that while our DC algorithm outperforms the respective PCS algorithm
(whose time complexity is 25.5n), it has the same performance as the Dissect4(8, 1)
algorithm presented in Sect. 3. However, as we show in the sequel, for larger values of
r , the DC algorithms outperform the Dissect algorithms significantly.

The General DC(r,m) Algorithms We are now ready to give a formal definition of
the DC(r,m) class of algorithms, applicable to r -encryption (for an even r),14 given
memory of 2mn . An algorithm A ∈ DC(r,m) is specified by a number u, 1 ≤ u ≤ r/2,

14We note that for sake of simplicity, we discuss in this section only even values of r . An easy (but probably
non-optimal) way to use these algorithms for an odd value of r is to guess the value of the key kr , and for each
guess, to apply the algorithms described in this section to E [1...r−1].

1474 I. Dinur et al.

Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts (C1,C2, . . . ,Cr)

1: for all candidate values of Xr/2
1 , Xr/2

2 , . . . , Xr/2
u do

2: Use PCS to obtain 2mn collisions between F̃upper and F̃ lower

3: for all obtained collisions do

4: if E [1..r]
k1,...,kr/2,kr/2+1,...,kr

(Pr/2+1, Pr/2+2, . . . , Pr) = (Cr/2+1,Cr/2+2, . . . ,Cr) then

5: return k1, . . . , kr/2, kr/2+1, . . . , kr

Algorithm 9: The DC(r,m) Algorithm

and two sets I upper and I lower of intermediate locations in the subciphers E [1...r/2] and
E [r/2+1...r], respectively, such that |I upper| = |I lower| = r/2 − u.
To apply the algorithm, u intermediate values (Xr/2

1 , . . . , Xr/2
u) are fixed, and the step

functions F̃upper and F̃ lower are defined by:

F̃upper : V upper
→ (Xr/2
u+1, . . . , X

r/2
r/2), and

F̃ lower : V lower
→ (Xr/2
u+1, . . . , X

r/2
r/2),

where V upper and V lower denote intermediate values at the locations I upper and I lower,
respectively.
The step function F̃upper is computed by applying a dissection attack to E [1...r/2] with

the plaintext–ciphertext pairs (P1, X
r/2
1), . . . , (Pu, X

r/2
u), where the intermediate values

at locations I upper are fixed to the values V upper, to retrieve a unique value of the keys
(k1, . . . , kr/2), and then partially encrypting (Pu+1, . . . , Pr/2) with these keys to obtain

(Xr/2
u+1, . . . , X

r/2
r/2). The step function F̃ lower is computed in a similar way, with respect

to E [r/2+1...r] and the set I lower. The adversary finds 2mn collisions between F̃upper and
F̃ lower using a Hellman-like data structure, where each collision gives a suggestion of
(k1, . . . , kr/2, kr/2+1, . . . , kr), complying with the plaintext–ciphertext pairs (P1,C1),

. . . , (Pr/2,Cr/2). The resulting algorithm is described in Algorithm 9.
Denote the time complexity of each application of F̃ by S = 2sn . An easy computation

shows that the overall time complexity of the algorithm DC(r,m) is:

2(r/2)n · 2((r/2−u−m)/2)n · 2sn = 2((3/4)r−(u+m−2s)/2)n . (4)

As the time complexity of the PCS algorithm with memory 2mn is 2((3/4)r−m/2)n ,
the multiplicative advantage of the DC algorithm is 2(u/2−s)n . In particular, for the
specific DC(8, 1) algorithm described above for 8-encryption, we have s = 1, and
thus, the gain is indeed 2(3/2−1)n = 2n/2. In the sequel, we denote the parameters
I upper, I lower, u, s which specify a DC(r,m) algorithm A and determine its time com-
plexity by I upper(A), I lower(A), u(A), and s(A), respectively.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1475

Flavors in the Step Function of the Algorithm DC We conclude this section by
pointing out a difficulty in the implementation of the DC algorithm (which does not
exist in the PCS algorithm) and presenting a way to resolve it.
Recall that in the PCS algorithm, for each value of (k1, . . . , kr/2), there is exactly one

corresponding value of F̃upper(k1, . . . , kr/2) = (Xr/2
1 , . . . , Xr/2

r/2). On the other hand, in

DC, for some values of V upper, there are no corresponding values of F̃upper(V upper) =
(Xr/2

u+1, . . . , X
r/2
r/2) at all, while for other values of V upper, there are several possible

outputs of F̃upper. This happens since the number of keys (k1, . . . , kr/2) which comply

with the u plaintext–ciphertext values (P1, X
r/2
1), . . . , (Pu, X

r/2
u) and the r/2− u fixed

intermediate values at the locations I upper is not always 1, but is distributed according to
a Poisson distribution with mean 1. While this feature does not influence the expected
performance of the Dissect attacks, its effect on the DC attack is crucial: in an e−1

fraction of the cases, the step function F̃upper returns no value, and thus, the expected
length of its generated chains is constant!
In order to resolve this difficulty, we introduce flavors into the definition of the step

function. Formally, for each value of V upper, F̃upper(V upper) is a (possibly empty) mul-
tiset. Based on this, we define:

F̄upper(V upper) = min({F̃upper(V upper ⊕ i0)}),

where i0 ∈ {0, 1}(r/2−u)n is minimal such that the set {F̃upper(V upper⊕i0)} is non-empty,
and the minimums are taken with respect to the lexicographic order. In other words, if
the set F̃upper(V upper) is empty, then we replace V upper by V upper ⊕ (0, 0, . . . , 0, 1) and
compute F̃upper again. We continue until we reach a value of i0 for which the set of
outputs of F̃upper is non-empty, and the single output F̄upper(V upper) is chosen from
this set according to the lexicographical order. The same modification is applied also to
F̃ lower.
Using this modification, the step function becomes uniquely defined as in the case

of PCS, and the computation overhead required by the new definition is small, since
the output of F̃upper is non-empty for an 1 − 1/e fraction of the inputs. On the other
hand, the introduction of flavors gives rise to another difficulty which does not arise in
the original PCS algorithm, namely, the possibility that in an execution of the algorithm
with the correct values of I upper/I lower, the correct key will not be found since the set
of outputs of F̃upper contains more than one solution. Since the algorithm is forced to
pick only one solution, it may miss the correct key. To deal with this possibility, if we do
not find the key in an execution of the algorithm, we change the ordering algorithm of
the solutions and run the algorithm again. Since we expect no more than a few solutions
in each execution of the step functions, we expect to repeat the algorithm only a small
number of times. After these modifications, which result in a small (constant) penalty in
its time complexity, we can claim that the success probability of the DC algorithm can
be made arbitrarily close to 1 (similarly to the PCS algorithm).

1476 I. Dinur et al.

4.3. The Gain of the Dissect & Collide Algorithm Over the PCS Algorithm

In this section, we consider several natural extensions of the basic DC(8, 1) algorithm
presented in Sect. 4.2.We use these extensions to show that the gain of theDC algorithms
over the PCS algorithm is monotone non-decreasing with r and is lower bounded by
�√2r�/8 for any r ≥ 8.
Before we present the extensions of the basic DC algorithm, we formally define the

notion of gain in the non-deterministic setting. As the best previously known algo-
rithm in this setting is the PCS algorithm, whose time complexity given 2mn memory is
2((3/4)r−m/2)n , we define the gain with respect to it.

Definition 2. The gain of a probabilistic algorithm A for r -encryption whose time and
memory complexities are T and M = 2mn , respectively, is defined as

GainND(A) = (3/4)r − m/2 − (log T)/n.

Themaximal gain among all probabilistic DC algorithms for r -encryption which require
2mn memory, is denoted by GainND(r,m).

Note that it follows from Eq. (4) that if A ∈ DC(r,m), then

GainND(A) = u(A)/2 − s(A). (5)

Monotonicity of the gain The simplest extension of the basic DC algorithm preserves
the gain when additional “rounds” are added. While in the deterministic case, such an
extension can be obtained trivially by guessing several keys and applying the previous
algorithm, in our setting this approach leads to a decrease of the gain by 1/2 for each
two added rounds (as the complexity of the PCS algorithm is increased by a factor of
23n/2 when r is increased by 2). However, the gain can be preserved in another way, as
shown in the following lemma.

Lemma 1. Assume that an algorithm A ∈ DC(r ′,m) has gain �. Then, there exists an
algorithm B ∈ DC(r ′ + 2,m) whose gain is also equal to �.

Proof. Recall that the sets of intermediate locations fixed in the algorithm A are
denoted by I upper(A) and I lower(A). We describe the algorithm B by fixing the sets

of intermediate values at locations: I upper(B) = I upper(A) ∪ {Xr ′/2
1 }, and similarly for

I lower(B). Note that as the DC algorithms for r -encryption satisfy u + |I upper| = r/2,
our choice of I upper(B) and I lower(B) ensures that u(B) = u(A). Hence, Eq. (4)
implies that in order to show that GainND(B) = GainND(A), it is sufficient to show
that s(B) = s(A). Let Step(A) be an algorithm which allows us to compute the func-

tion F̃upper(A) : V upper(A)
→ (Xr ′/2
u+1, . . . , X

r ′/2
r ′/2) in time 2sn (where u = u(A) and

s = s(A)), given the plaintext–ciphertext pairs (P1, X
r ′/2
1), . . . , (Pu, X

r ′/2
u) and the

intermediate values at locations I upper(A). We have to find an algorithm Step(B) which

computes the function F̃upper(B) : V upper(B)
→ (X (r ′+2)/2
u+1 , . . . , X (r ′+2)/2

(r ′+2)/2) in time 2sn

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1477

given the plaintext–ciphertext pairs (P1, X
(r ′+2)/2
1), . . . , (Pu, X

(r ′+2)/2
u) and the inter-

mediate values at locations I upper(B). We define the algorithm Step(B) as follows:

1. Use the values Xr ′/2
1 and X (r ′+2)/2

1 to compute a unique value of the key k(r ′+2)/2
which complies with them.

2. Use the value of k(r ′+2)/2 to partially decrypt the vector (X (r ′+2)/2
1 , . . . , X (r ′+2)/2

u)

through E (r ′+2)/2 to obtain the vector (Xr ′/2
1 , . . . , Xr ′/2

u).

3. Use the algorithm Step(A) to deduce the vector (Xr ′/2
u+1, . . . , X

r ′/2
r ′/2) from the

plaintext–ciphertext pairs (P1, X
r ′/2
1), . . . , (Pu, X

r ′/2
u) and the intermediate val-

ues at locations I upper(A).
4. Partially, encrypt the vector (P1, X

r ′/2
1), . . . , (Pu, X

r ′/2
u) through E (r ′+2)/2 to

obtain the desired vector F̃upper(B)(V upper(B)) = (X (r ′+2)/2
u+1 , . . . , X (r ′+2)/2

(r ′+2)/2).

It is clear that Step 1 of the algorithm requires at most 2n operations, Steps 2 and 4
require at most r operations each, and Step 3 requires 2sn operations. Hence, if s ≥ 1
(which is the case for all DC algorithms), the time complexity of Step(B) is indeed
equal to that of Step(A). The same argument applies also to the function F̃lower. Finally,
it is clear that the memory requirement of B is equal to the memory requirement of A,
which completes the proof. �

Lemma 1 implies that the gain of the DC algorithms is monotone non-decreasing with
r , and in particular, that GainND(r, 1) ≥ 1/2, for any even r ≥ 8.

An analogue of the LogLayer algorithm The next natural extension of the basic DC
algorithm is an analogue of the LogLayer algorithm presented in Sect. 3.3. Recall that
the LogLayerr algorithm, applicable when r is a power of 2, consists of guessing the
set of intermediate values:

I0 =
{
X2
1, X

4
1, . . . , X

r−2
1 , X4

2, X
8
2, . . . , X

r−4
2 , X8

3, . . . , X
r−8
3 , . . . , Xr/2

log r−1

}
,

and applying a recursive sequence of MITM attacks on 2-encryption. Using this algo-
rithm, we can define the algorithm LLr ∈ DC(2r, 1), by specifying I upper(LLr) = I0,
and I lower(LLr) in a similar way. Since |I0| = r − log r − 1, we have u(LLr) =
r − (r − log r − 1) = log r + 1. It follows from the structure of the LogLayerr algo-
rithm that given the values in I0, it can compute the keys (k1, . . . , kr) in time and
memory of 2n . Hence, we have s(LLr) = 1. By Eq. (5), it follows that Gain(LLr) =
(log r + 1)/2 − 1 = (log r − 1)/2.

The basic algorithm for 8-encryption is the special case of this algorithm LL4. The
next two values of r also yield interesting algorithms: LL8 yields gain of 1 for (r =
16,m = 1), which amounts to an attack on 16-encryption with (T = 210.5n, M = 2n),
and LL16 yields gain of 1.5 for (r = 32,m = 1), which amounts to an attack on 32-
encryption with (T = 222n, M = 2n). Both attacks outperform the Dissect attacks and
are the best-known attacks on 16-encryption and on 32-encryption, respectively.

An analogue of the Squarer algorithm: The logarithmic asymptotic gain of the LL
sequence can be significantly outperformed by an analogue of the Squarer algorithm,

1478 I. Dinur et al.

presented in Sect. 3.3. Recall that the Squarer algorithm, applicable when r = (r ′)2 is
a perfect square, starts by guessing the set of (r ′ − 1)2 intermediate encryption values:

I1 = {Xr ′
1 ,Xr ′

2 , . . . , Xr ′
r ′−1, X

2r ′
1 , X2r ′

2 , . . . , X2r ′
r ′−1, . . . ,

Xr ′(r ′−1)
1 , Xr ′(r ′−1)

2 , . . . , Xr ′(r ′−1)
r ′−1 },

and then performs a two-layer attack, which amounts to r ′ + 1 separate attacks on
r ′-encryption. Using this algorithm, we can define the algorithm Sqr ∈ DC(2r, 1), by
specifying I upper(Sqr) = I1, and I lower(Sqr) in a similar way. Since |I1| = (r ′ −1)2, we
have u(Sqr) = r−(r ′−1)2 = 2r ′−1. The step complexity s(Sqr) is the time complexity
required for attacking r ′-encryptionwithout fixed intermediate values.Hence, byEq. (5),

Gain(Sqr) = r ′ − 1/2 − f1(r
′),

where 2 f1(r)n is the time complexity of our best attack on r -encryption with 2n memory.
The basic algorithm for 8-encryption is the special case Sq2 of this algorithm. Since for

small values of r ′, the best-known attacks on r ′-encryption are obtained by the dissection
attacks presented in Sect. 3.4, the next elements of the sequence Sqr which increase the
gain, correspond to the next elements of the sequence Magic1 = {1, 2, 4, 7, 11, 16, . . .}
described in Sect. 3.4. They lead to gains of 1.5, 2.5, and 3.5 for r = 32, 98, and
242, respectively. For large values of r , the PCS algorithm outperforms the Dissect
algorithms, and using it we obtain:

Gain(Sqr) ≥ r ′ − 1/2 − ((3/4)r ′ − 1/2) = r ′/4 = √
2r/8.

This shows that the asymptotic gain of the DC algorithms is at least
√
2r/8.

We note that as for r ′ ≥ 16, the DC algorithm outperforms both the Dissect and the
PCS algorithms, we can use it instead of PCS in the attacks on r ′-encryption in order
to increase the gain for large values of r . However, as the gain of DC over PCS for
r ′-encryption is only of order O(

√
r ′) = O(r1/4), the addition to the overall gain of Sqr

is negligible.

Two-layer DC algorithmsA natural extension of the Sqr algorithm is the class of two-
layer DC algorithms. Assume that r = 2r1 · r2, and that there exist algorithms A1, A2
for r1-encryption and for r2-encryption, respectively, both of which perform in time 2sn

and memory 2n given sets of intermediate values I upper1 and I upper2 , respectively.
Then we can define an algorithm A ∈ DC(r, 1) whose step function is computed by a

two-layer algorithm: First, E [1...r/2] is divided into r2 subciphers of r1 rounds each, and
algorithm A1 is used to attack each of them separately and compute 2n possible sugges-
tions for each set of r1 consecutive keys. Then, each r1-round encryption is considered as
a single encryptionwith 2n possible keys, and algorithm A2 is used to attack the resulting
r2-encryption. The set I upper(A) is chosen such that both A1 and A2 algorithms perform
in time 2sn . Formally, if we denote u1 = |I upper1 |, then the set I upper(A) consists of r2
“copies” of the set I upper1 , r1 − 1− u1 intermediate values after each r1 rounds, and one
copy of the set I upper2 . The set I lower(A) is defined similarly. Hence,

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1479

u(A) = r/2 − |I upper(A)| = r/2 − (r2 · u1 + (r2 − 1)(r1 − 1 − u1) + u2)

= r2 + r1 − u1 − u2 − 1.

As s(A) = s, we have GainND(A) = (r2 + r1 − u1 − u2 − 1)/2 − s.
Note that the algorithm Sqr is actually a two-layer DC algorithm, with r1 = r2 = r ′

and I upper1 = I upper2 = ∅. It turns out that for all 8 ≤ r ≤ 128, our maximal gains are
obtained by two-layer DC algorithmswhere r1, r2 are chosen from the sequenceMagic1
presented in Sect. 3.4, and A1, A2 are the respective Dissect algorithms. The cases of
r = 8, 16, 32 presented above are obtained with r1 = 4 and r2 = 1, 2, 4 (respectively),
and the next numbers of rounds in which the gain increases are r = 56, 88, 128, obtained
for r1 = 4 and r2 = 7, 11, 16, respectively. The continuation of the “non-deterministic
magic sequence” is, however, more complicated. For example, the two-layer algorithm
for r = 176with (r1 = 4, r2 = 22) has the same gain as the algorithmwith (r1 = 4, r2 =
16), and the next increase of the gain occurs only for r = 224, and is obtained by a two-
layer algorithmwith (r1 = 7, r2 = 16). For larger values of r , more complex algorithms,
such as a three-layer algorithm with r1 = r2 = r3 = 7 for 686-encryption, outperform
the two-layer algorithms. We leave the analysis of the whole magic sequence as an open
problem, and conclude that using the two-layer algorithms, the minimal numbers of
rounds for which the gain equals 0.5, 1, 1.5, 2, . . . are:

MagicND1 = {8, 16, 32, 56, 88, 128, . . .}.

Finally, we note that a similar analysis to that presented in Sect. 3.6 shows that two-layer
DC algorithms can be applied also for m > 1, and can be used to show that the first
numbers of rounds for which GainND(r,m) = 0.5, 1, 1.5, 2, . . . are:

MagicNDm = {8m, 8m + 8,8m + 16, . . . , 16m, 16m + 16, 16m + 32, . . . ,

32m, 32m + 24, 32m + 48, . . . , 56m, . . .}.

We give in Table 2 a comparison between the time complexities of the Dissect , PCS,
and DC algorithms. We also give in Fig. 9 a comparison of the gains obtained by all the
algorithms presented given 2n memory.

5. Applications

In this section, we apply our new dissection algorithms to the knapsack problem in
Sect. 5.1, and show how dissection can be used to reduce the memory complexity of
rebound attacks on hash functions in Sect. 5.2.

The application to knapsacks consists of two stages: first, wefind away to represent the
problem as a bicomposite problem, and then we choose the best appropriate dissection
algorithm to solve it. In the case of the knapsack problem, the bicomposite representation
is simple, and moreover, we have the freedom to choose the value of r , in order to
optimize the complexities. By using different choices of r and m, we obtain a complete
tradeoff curve between the time and memory complexities, which is better than the

1480 I. Dinur et al.

Table 2. Comparison of the time complexities of Dissect, PCS, and Dissect & Collide.

r m = 1 m = 2 m = 3

Dissect PCS DC Dissect PCS DC Dissect PCS DC

2 1 1 1 1 – – 1 – –
4 2 2.5 2.5 2 2 2 2 – –
6 4 4 4 3 3.5 3.5 3 3 3
8 5 5.5 5 4 5 5 4 4.5 4.5
10 7 7 6.5 6 6.5 6.5 5 6 6
12 8 8.5 8 7 8 8 6 7.5 7.5
14 10 10 9.5 8 9.5 9.5 8 9 9
16 11 11.5 10.5 10 11 10.5 9 10.5 10.5
18 13 13 12 11 12.5 12 10 12 12
20 15 14.5 13.5 13 14 13.5 12 13.5 13.5
22 16 16 15 14 15.5 15 13 15 15
24 18 17.5 16.5 16 17 16 15 16.5 16
26 20 19 18 18 18.5 17.5 16 18 17.5
28 22 20.5 19.5 20 20 19 18 19.5 19
30 23 22 21 21 21.5 20.5 19 21 20.5
32 25 23.5 22 22 23 21.5 21 22.5 21.5
34 27 25 23.5 24 24.5 23 22 24 23
36 29 26.5 25 26 26 24.5 24 25.5 24.5
38 30 28 26.5 27 27.5 26 25 27 26
40 32 29.5 28 29 29 27.5 27 28.5 27

Items marked in bold are magic numbers

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69
r

Gain

Meet in the Middle

LogLayer

Square

Dissect

PCS

Dissect & Collide

×

×

×

×

×

×

×

×

×

×

×

×

Fig. 9. Comparison of the gain of all algorithms for M = 2n .

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1481

best previously known curve for all 2n/100 ≤ M ≤ 2n/6. We note that the analyses of
our algorithms assume a uniform distribution of solutions. In the case of knapsacks,
our deterministic algorithms can be adapted (with only a small memory overhead) to
deal with cases where the distribution of solutions is far from uniform, as shown in the
follow-up paper [1].

5.1. Application to Knapsacks

The knapsack problem is defined as follows: given a list of n positive integers
x1, x2, . . . , xn of n bits and an additional n-bit positive integer S, find a vector

ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n , such that S =
n∑

i=1
εi · xi (mod 2n).15

Knapsack is awell-knownproblem that has been studied formanyyears. Formore than
30years, the best-known algorithm for knapsacks was the Schroeppel–Shamir algorithm
[28], which requires 2n/2 time and 2n/4 memory. In 2010, Howgrave-Graham and Joux
[15] showed how to solve the knapsack problem in time 20.337n and memory 20.256n ,
using a specialized algorithm (which does not apply if the addition is replaced by a
non-commutative operation, such as the rotations in the Rubik’s cube problem). The
specialized algorithm of [15] was further improved by Becker, Coron and Joux [4] into
an algorithm with time and memory complexities of 20.291n . In addition, Becker et al.
presented a specialized memoryless attack which requires only 20.72n time. All these
attacks are heuristic in the sense that they may fail to find a solution even when it exists,
and thus they cannot be used in order to prove the nonexistence of solutions. In addition
to these heuristic algorithms, Becker, Coron and Joux [4] also considered deterministic
algorithms that never err, and obtained a straight-line time-memory tradeoff curve of
TM = 23n/4, for all 2n/16 ≤ M ≤ 2n/4.
It is worth noting that a pseudo-polynomial algorithm for the knapsack problem is

suggested in [22] which uses polynomial storage. However, this algorithm’s running
time is about 2n in the cryptographic settings (in which S is roughly 2n).

In this section, we show how to use our generic dissection techniques in order to find
deterministic algorithms for the knapsack problemwhich are better than the deterministic
tradeoff curve described in [4] over the whole range of 2n/16 < M < 2n/4. In addition,
we can expand our tradeoff curve in a continuousway for any smaller value ofM ≤ 2n/4.
By combining our generic deterministic and non-deterministic algorithms, we obtain a
new curve which is better than the best knapsack-specific algorithms described in [15]
and [4] in the interval 2n/100 < M < 2n/6. Note that the algorithms of [4,15] outperform
our algorithms for M > 2n/6 and in the memoryless setting.
We note that all the results presented in this section can easily be adapted to the closely

related partition problem, inwhichwe are given a set of n integers,U = {x1, x2, . . . , xn},
and our goal is to partition U into two complementary subsets U1,U2 whose elements
sum up to the same value.

Representing Knapsack as a Bicomposite Problem First, we represent knapsack as
a composite problem. We treat the problem of choosing the vector ε = (ε1, . . . , εn) as

15We work with modular knapsacks which are in general computationally equivalent to arbitrary knap-
sacks [4,15].

1482 I. Dinur et al.

a sequence of n atomic decisions, where the i’th decision is whether to assign εi = 0
or εi = 1. We introduce a counter C which is initially set to zero, and then at the i’th
step, if the choice is εi = 1 then C is replaced by C + xi (mod2n), and if the choice
is εi = 0, then C is left unchanged. Note that the value of C after the n’th step is∑

i = εi xi (mod2n), and hence, the sequence of choices leads to the desired solution if
and only if the final value of C is S.
In this representation, the partition problem has all the elements of a composite prob-

lem: an initial state (Cinitial = 0), a final state (C f inal = S), and a sequence of n steps,
such that in each step, we have to choose one of two possible atomic and invertible
actions. Our goal is to find a sequence of choices which leads from the initial state to the
final state. In terms of the execution matrix, we define Si to be the value of C after the
i’th step (which is an n-bit binary number), and ai to be the action transforming Si−1 to
Si , whose possible values are either C ← C + xi (mod2n) or C ← C .
The second step is to represent the problem as a bicomposite problem. The main

observation we use here is the fact that for any two integers a, b, them’th least significant
bit of a + b(mod2n) depends only on the m least significant bits of a and b (and not
on their other bits). Hence, if we know the m LSBs of Si−1 and the action ai , we can
compute the m LSBs of Si .
Using this observation, we define Si, j to be the j’th most significant bit of Si . This

leads to an n-by-n execution matrix Si, j for i, j ∈ 1, 2, . . . , n with the property that
if we choose any rectangle within the execution matrix which includes the rightmost
column of the matrix, knowledge of the substates Si−1, j , Si−1, j+1, . . . , Si−1,n along its
top edge and knowledge of the actions ai , ai+1, . . . , a� to its left suffices in order to
compute the substates S�, j , S�, j+1, . . . , S�,n along its bottom edge.
In order to handle general rectangles, we ensure that all enumerations of intermediate

states in the algorithm are done from right to left, i.e., in each state, the LSB is guessed
first, then the second least significant bit is guessed, etc. As a result, when we deal with
the processing of the state Si−1, j to S�, j via the actions ai , ai+1, . . . , a�, we already
know the states Si−1,k for all k > j , and hence, we can keep track of the carry bits into
the j th bit in the addition operations. Thus, our representation effectively satisfies the
conditions of a bicomposite representation.
So far, we have represented knapsack as a bicomposite problem with an n-by-n exe-

cution matrix. In order to make the representation similar to the multiple encryption
problem considered in Sects. 3 and 4, we note that for any r � n, the problem has a
bicomposite representation with an r -by-r execution matrix.
Indeed, in the representation as a composite problem above, we can group sequences

of n/r consecutive decisions,16 such that we have r atomic decisions, where in the
i th atomic decision we choose (ε(i−1)n/r+1, ε(i−1)n/r+2, . . . , εin/r) ∈ {0, 1}n/r , and the
operation is

C ← C +
in/r∑

j=(i−1)n/r+1

ε j x j (mod 2n).

16Since we are mostly interested in asymptotic analysis, and since r � n, we assume for sake of simplicity
that n is divisible by r .

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1483

Similarly, in the bicomposite representation, we define Si, j as an n/r -bit value which
consists of bits (j − 1)n/r + 1, (j − 1)n/r + 2, . . . , jn/r of Si , where the counting
order starts with the MSB indexed by 1.
In the knapsackproblemwehave the freedom to choose r such that the time complexity

of the algorithm will be minimized, for a given amount of memory.
Formally, for any r � n, we apply one of the algorithms for multiple encryption

described in Sects. 3 and 4 to an r -encryption scheme with a block size of n∗ = n/r bits
and a memory parameter ofm∗. As the memory complexity of the resulting algorithm is
2m

∗n∗ = 2m
∗n/r , it follows that if we want the memory complexity to be 2mn , we should

consider m∗ = rm.
We denote by f (r, n∗,m∗) the running time of our optimal dissection algorithm

(among the algorithms presented in this paper) for r -encryption with a block size of n∗
bits and M∗ = 2m

∗n∗
available memory. In these notations, the problem of finding the

optimal dissection algorithm for n-bit knapsack is reduced to finding r that minimizes
f (r, n∗,m∗) = f (r, n/r,mr). We call such a value of r an optimal value.
We note that the deterministic algorithms applied in [15] and [4] for 2n/16 ≤ M ≤ 2n/4

implicitly perform a reduction to multiple encryption with the fixed parameters r = 4
and r = 16. In fact, these algorithms are closely related to our Squarer algorithms
described in Sect. 3.3. However, as we show below, we can get a better tradeoff curve
by using other choices of r .

Dissecting the Knapsack Problem - a Summary In this section, we use the dissection
algorithms presented in Sects. 3 and 4 to obtain a new time-memory tradeoff curve of
algorithms for the knapsack problem. We aim at obtaining a complete curve, which
yields for any fixed memory complexity 2mn , the time complexity 2tn of our optimal
dissection algorithm.
We consider deterministic and general algorithms separately. In the deterministic

case, we show below that the curve is piece-wise linear, with “cut” points at all val-
ues of the form m = 1/b j where b j is the j th element of the sequence Magic1 =
{2, 4, 7, 11, 16, 22, 29, . . .} presented in Sect. 3. For each such m = 1/b j , an optimal
algorithm is obtained by choosing r = b j and m∗ = rm = 1. The tradeoff in the
deterministic case is presented in Fig. 10.
In the non-deterministic case, the situation is similar, with the sequence Magic1

replaced by the corresponding magic sequence presented in Sect. 4, i.e., MagicND1 =
{8, 16, 32, 56, 88, 128, . . .}. It turns out that non-deterministic dissection algorithms
outperform the deterministic ones for m < 9/104. A comparison between our gen-
eral tradeoff curve and the previous results of [4,15] for small memory complexities is
presented in Fig. 11.17

Optimal Choice of r for Deterministic Dissection algorithms Recall that given r
and m, we apply a deterministic dissection algorithm with an effective block size of
n∗ = n/r and an effective memory unit of m∗ = mr . We would like to find, for a fixed
m, the value of r that minimizes the running time of our algorithm 2tn = f (r, n∗,m∗) =
f (r, n/r,mr).

17In Fig. 11 we do not include the curve of TM = 23n/4 of [4] and the PCS curve of [27], since the curve
obtained using our algorithms is strictly better for the whole range of 0 < m < 1/4.

1484 I. Dinur et al.

Fig. 10. Time-memory tradeoff curves for knapsack for deterministic algorithms. A comparison between
our time-memory tradeoff curve and the curve obtained in [4] (shown as a dashed line) for deterministic
algorithms. Our curve (defined for m ≤ 1/4) is strictly better than the curve obtained in [4] (defined only for
1/16 ≤ m ≤ 1/4) for any 1/16 < m < 1/4 .

Fig. 11. Time-memory tradeoff curves for knapsack for general algorithms. A comparison in the range 0 ≤
m ≤ 1/4 between our general time-memory tradeoff curve, the curve obtained by extending the (m =
0.211, t = 0.421) attack given in [15] (shown as a bold dashed line), and the memoryless attack with t = 0.72
obtained in [4] (shown as a light dashed horizontal line). Our general time-memory tradeoff curve is better
than the attacks of [4] and [15] in the interval of (approximately) 1/100 ≤ m < 1/6.

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1485

First, we note that for any natural number z, it is easy to reduce our dissection algorithm
with parameters (z · r, n∗/z, z · m∗), to an algorithm with parameters (r, n∗,m∗) that
runs with the same time complexity. As described in Sect. 3.4, the reduction aggregates
every sequence of z blocks into a single block, and every sequence of z plaintext–
ciphertext pairs into a single pair. The reduction implies that for any integer value of
z, f (z · r, n∗/z, z · m∗) ≤ f (r, n∗,m∗). This, in turn, implies that given n and m, in
order to find an optimal value of r , it is sufficient to consider all values of r which are
multiples of some integer. In particular, it is sufficient to consider only values of r for
which m∗ = rm is an integer (i.e., multiples of the denominator of m, assuming w.l.o.g.
that m is rational).

Second, we note that if for somem∗ and r , the number r appears in themagic sequence
Magicm∗ , then for any z ∈ N, we have f (z · r, n∗/z, z · m∗) = f (r, n∗,m∗).
Indeed, by the structure of the sequence Magicm∗ , any of its elements can be written

as r = b j−1m∗ + j i for some i, j with 0 ≤ i < r (where b j denotes the j’th element
of the sequence Magic1, starting with j = 0, as above). Hence, if we consider r ′ = zr
for some z ∈ N and denote n′ = n∗/z and m′ = z · m∗, we have

r ′ = zr = b j−1zm
∗ + j zi = b j−1m

′ + j (zi),

for 0 ≤ i z < r ′, which means that r ′ appears in the sequence Magicm′ . Then, as shown
in Sect. 3.6, the improvement factor of the r ′-round algorithm over exhaustive search is

2((j−1)m′+zi)n′ = 2((j−1)zm∗+zi)m∗/z = 2((j−1)m∗+i)n∗ = 2((j−1)m+i/r)n,

which is indeed independent of z.
The arguments presented above imply that for m = 1/b j for some j , all choices

r = 1/m, 2/m, 3/m, . . . are equivalent, and thus, the optimal gain is given by r = 1/m,
m∗ = rm = 1. In this case, the time complexity is 2(r− j)n∗ = 2n(1− jm).
We would like to show now that for any rational18 m which satisfies 1/b j < m <

1/b j−1, the optimal time complexity parameter t is given by a linear extrapolation of
the complexities atm = 1/b j andm = 1/b j−1 (see Fig. 10). The proof consists of three
simple propositions:

Proposition 1. Let m ∈ Q+. There exists r ∈ N such that rm ∈ N and r ∈ Magicrm.

Proof. Let m = p/q where p, q ∈ N, and let j ∈ N be such that b j−1 ≤ 1/m < b j

(or equivalently, b j−1 ≤ 1/m < b j−1 + j). We claim that r = q j satisfies the condition
of the proposition. First, rm = (q j) · (p/q) = pj ∈ N. Second, we have r − b j−1mr =
q j−b j−1 pj = j (q−b j−1 p). Note that the sequenceMagicrm contains elements of the
form b j−1rm+ j i for all 0 ≤ i < rm. Hence, if we show that 0 ≤ i � q−b j−1 p < mr ,
this would imply r ∈ Magicrm .
This indeed holds, since by assumption, b j−1 ≤ q/p < b j−1 + j , and thus, b j−1 p ≤

q < b j−1 p + j p, which implies 0 ≤ q − b j−1 p < j p = mr , as asserted. �

18There is clearly no loss of generality in assuming that m is rational as any number can be approximated
by rational numbers up to any precision.

1486 I. Dinur et al.

Proposition 2. Let m ∈ Q+ and r ∈ N be such that rm ∈ N and r ∈ Magicrm.
Let j ∈ N be such that b j−1 ≤ 1/m < b j , and let 0 ≤ s < 1 be such that 1/m =
sb j−1 + (1 − s)b j . Then

f (r, n/r,mr) = 2n(s(1− jm)+(1−s)(1−(j+1)m)).

In other words, the exponent t is a linear extrapolation of the exponents corresponding
to m = 1/b j−1 and m = 1/b j .

Proof. The claim follows immediately from the structure of the sequence Magicrm .
Indeed, since b j−1 ≤ 1/m < b j and r ∈ Magicrm , r is of the form r = b j−1rm + i j
for some 0 ≤ i < rm. For each such i , the gain is jrm + i . Since by the assumption,
1/m = sb j−1 + (1 − s)b j , we have i = s/rm. Hence, the gain which corresponds to
f (r, n/r, rm) is

jrm + (1 − s)/rm = s · jrm + (1 − s) · (j + 1)rm.

The claim follows by substituting f (r, n/r,mr) = 2n
∗−rm−Gain(A) where A is the

corresponding dissection algorithm. �

Proposition 3. Let m ∈ Q+ and r ∈ N be such that rm ∈ N and r �∈ Magicrm.
Let j ∈ N be such that b j−1 ≤ 1/m < b j , and let 0 ≤ s < 1 be such that 1/m =
sb j−1 + (1 − s)b j . Then

f (r, n/r,mr) > 2n(s(1− jm)+(1−s)(1−(j+1)m)).

In other words, the exponent t is larger than in the linear extrapolation of the exponents
corresponding to m = 1/b j−1 and m = 1/b j .

Proof. This claim also follows immediately from the structure of the sequence
Magicrm . Indeed, since b j−1 ≤ 1/m < b j and r �∈ Magicrm , there exist 0 ≤ i < rm
and 1 ≤ � < j such that r is of the form r = b j−1rm+ i j + �. Since by the assumption,
1/m = sb j−1 + (1 − s)b j , we can write i = s′/rm for some s′ > s. By the structure
of the sequence Magicrm , we have

Gain(A) = jrm + (1 − s′)/rm < s · jrm + (1 − s) · (j + 1)rm

(since the gain at r = b j−1rm + i(s′/rm) + � is equal to the gain at r̃ = b j−1rm +
i(s′/rm)). The claim follows by substituting f (r, n/r,mr) = 2n

∗−rm−Gain(A). �

Combination of the three propositions above yields the complete tradeoff described
in Fig. 10. Indeed:

– For each m such that b j−1 ≤ 1/m < b j , there exists r such that r ∈ Magicrm (by
Proposition 1),

– The time complexity obtained for this r is optimal (by combination of Propositions 2
and 3), and

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1487

– The corresponding value of t is the linear extrapolation of the values atm = 1/b j−1
and m = 1/b j (by Proposition 2).

Optimal Choice of r for Non-Deterministic Dissection Algorithms The arguments
presented above hold with only slight changes for non-deterministic algorithms, with
the Magic sequences replaced by the corresponding MagicND sequences presented in
Sect. 4. The resulting tradeoff curve is given, along with the tradeoff curves correspond-
ing to deterministic dissection algorithms and to previous results, in Fig. 11.

5.2. Using Dissection to Improve Rebound Attacks on Hash Functions

Another application of our dissection technique can significantly reduce the memory
complexity of rebound attacks [21,24] on hash functions. An important procedure in
such attacks is tomatch input/output differences through an S-box layer (or a generalized
S-box layer). More precisely, the adversary is given a list LA of input differences and a
list LB of output differences, and has to find all the input/output difference pairs that can
be combined through the S-box layer. A series of matching algorithms were presented
by Naya-Plasencia [26] at CRYPTO 2011, optimizing and improving various rebound
attacks.
Our dissection algorithms can be applied to this problem aswell, replacing the gradual

matching or parallel matching presented in [26]. As an example, we can improve the
rebound attack on the SHA-3 candidate Luffa using a variant of our Dissect2(4, 1)
algorithm.
In this rebound attack, the adversary is given 267 possible input differences (|LA| =

267) and 265.6 output differences (LB = 265.6) for 52 active 4-bit to 4-bit S-boxes. The
adversary has to find an input difference in LA that can become an output difference in
LB through the Luffa’s S-box.We note that for this S-box, for any given input difference
there are about 7 possible output differences (and vice versa). We refer the reader to [26]
for the description of the previously best algorithm which takes time of 2104 and 2102

memory.
One can consider this problem to be a bicomposite problemanddissect it. The resulting

attack algorithm follows the Dissect2(4, 1) algorithm. We start by (arbitrarily) dividing
the 52 active S-boxes into four sets of 13 S-boxes each S1, S2, S3, S4. We then go over
all the possible input differences δ ∈ LA in the S-boxes of S1, and for each such input
difference, store all the possible output differences in S2. We then go over all possible
output differences δ′ ∈ LB in the S-boxes of S1, and check for each of them whether the
proposed difference in S2 is in the table. If so, we check whether the output difference
in S1 is compatible with the input difference associated with the output difference in S2
that was stored in the table. Each such match is further analyzed to determine whether
the combination is feasible.
The resulting algorithm is depicted in Algorithm 10.
An analysis of this algorithm shows that its time complexity is 2104 operations, but

its memory complexity is only 252. We note that the true memory complexity of this
attack is actually 266, as one needs to store at least one out of L A or LB . Still, our results
significantly improve those of [26]. These ideas were later used in [7].

1488 I. Dinur et al.

Input: A list L A of input differences and a list LB of output differences

1: for all input differences δ ∈ L A restricted to the S-boxes of S1 do

2: for all 713 output differences which are possible in the S-boxes of S2 do

3: Store in the table the output differences along with the input difference in S1.

4: for all 713 output differences that may be caused by δ in the S-boxes of S1 do

5: if there is a difference δ′ ∈ LB which agrees with δ in S1 then

6: Check that the difference of δ′ in the S-boxes of S2 is in the table
7: if a match is found then

8: Analyze the differences in the S-boxes of S3 and S4
9: if δ and δ′ match then

10: return δ and δ′

Algorithm 10: The Dissect2(4, 1) Rebound Attack

We note that this algorithm, besides improving other rebound attacks, can also be
used when the problem is composed of layers which are relations (rather than functions
or permutations) which allow multiple outputs for a single input.

6. Summary and Open Problems

In this paper, we introduced the new dissection techniquewhich can be applied to a broad
class of problems which have a bicomposite structure. We used this technique to obtain
improved complexities for several well studied problems such as the cryptanalysis of
multiple encryption schemes and the solution of hard knapsacks. Themain open problem
in this area is to either improve our techniques or to prove their optimality. In particular,
we conjecture (but cannot prove) that any attack on multiple encryption schemes should
have a time complexity which is at least the square root of the total number of possible
keys.Another interesting problem for further research iswhether the dissection technique
can be combined with the list-merging algorithms presented in [26], in order to obtain
the benefits of both approaches simultaneously.

Acknowledgements

The authors like to thank the anonymous reviewers of this paper for their useful com-
ments and suggestions. The first author was supported in part by the Israeli Science
Foundation through Grant No. 573/16. The second author was supported in part by the
Israeli ScienceFoundation throughGrantNo. 827/12 andby theCommissionof theEuro-
pean Communities through the Horizon 2020 program under Project Number 645622
PQCRYPTO. The third author was supported by the European Research Council under

Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications 1489

the ERC starting Grant Agreement Number 757731 (LightCrypt) and by the BIU Center
for Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

References

[1] P. Austrin, P. Kaski, M. Koivisto, J. Määttä, Space-time tradeoffs for subset sum: an improved worst
case algorithm, in F.V. Fomin, R. Freivalds, M.Z. Kwiatkowska, D. Peleg, (eds.) ICALP (1). Lecture
Notes in Computer Science, vol. 7965 (Springer, 2013), pp. 45–56

[2] C.H. Baek, J.H. Cheon, H. Hong, White-box AES implementation revisited. J. Commun. Netw. 18(3),
273–287 (2016)

[3] A. Bar-On, O. Dunkelman, N. Keller, E. Ronen, A. Shamir, Improved key recovery attacks on AES with
practical data and memory complexities, in Accepted to CRYPTO 2018, to appear in Lecture Notes in
Computer Science (2018)

[4] A. Becker, J.S. Coron, A. Joux, Improved generic algorithms for hard knapsacks, in K.G. Paterson, (ed.)
EUROCRYPT. Lecture Notes in Computer Science, vol. 6632 (Springer, 2011), pp. 364–385

[5] M. Bellare, R. Canetti, H. Krawczyk, Keying Hash functions for message authentication, in Koblitz, pp.
1–15

[6] E. Biham, Cryptanalysis of triple modes of operation. J. Cryptol. 12(3), 161–184 (1999), https://doi.org/
10.1007/s001459900050

[7] A. Canteaut, M. Naya-Plasencia, B. Vayssière, Sieve-in-the-middle: improved MITM attacks. In R.
Canetti, J.A. Garay, (eds.) Advances in Cryptology—CRYPTO 2013—33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2013. Proceedings, Part I. Lecture Notes in Computer
Science, vol. 8042 (Springer, 2013), pp. 222–240

[8] W. Diffie, M.E. Hellman, Special feature exhaustive cryptanalysis of the NBS data encryption standard.
IEEE Comput. 10(6), 74–84 (1977), https://doi.org/10.1109/C-M.1977.217750

[9] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Efficient dissection of composite problems, with appli-
cations to cryptanalysis, knapsacks, and combinatorial search problems, in R. Safavi-Naini, R. Canetti,
(eds.) CRYPTO. Lecture Notes in Computer Science, vol. 7417 (Springer, 2012), pp. 719–740

[10] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Dissection: a new paradigm for solving bicomposite
search problems. Commun. ACM 57(10), 98–105 (2014), https://doi.org/10.1145/2661434

[11] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, New attacks on Feistel structures with improved memory
complexities, in Gennaro and Robshaw, pp. 433–454

[12] I. Dinur, O. Dunkelman, A. Shamir, Improved attacks on full gost, in A. Canteaut, (ed.) FSE. Lecture
Notes in Computer Science, vol. 7549 (Springer, 2012), pp. 9–28

[13] S. Even, O. Goldreich, On the power of cascade ciphers, in D. Chaum, (ed.) Advances in Cryptology,
Proceedings of CRYPTO ’83, Santa Barbara, California, USA, August 21–24, 1983 (Plenum Press, New
York, 1983), pp. 43–50

[14] M.E. Hellman, A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory 26(4), 401–406 (1980)
[15] N. Howgrave-Graham, A. Joux, New generic algorithms for hard knapsacks, In H. Gilbert, (ed.) EURO-

CRYPT. Lecture Notes in Computer Science, vol. 6110 (Springer, 2010), pp. 235–256
[16] T. Isobe, A single-key attack on the full GOST block cipher, in A. Joux, (ed.) Fast Software Encryption—

18th International Workshop, FSE 2011, Lyngby, Denmark, February 13–16, 2011, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 6733 (Springer, 2011), pp. 290–305

[17] A. Joux, Multicollisions in iterated Hash functions. Application to cascaded constructions, in M.K.
Franklin, (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3152 (Springer, 2004), pp. 306–316

[18] P.Kirchner, P. Fouque, Time-memory trade-off for lattice enumeration in a ball, in IACR Cryptology
ePrint Archive 2016 222 (2016)

[19] D.E. Knuth, The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd Edition.
(Addison-Wesley, Reading, 1981)

[20] V. Lallemand, M. Naya-Plasencia, Cryptanalysis of Full Sprout, in Gennaro and Robshaw, pp. 663–682
[21] M. Lamberger, F. Mendel, M. Schläffer, C. Rechberger, V. Rijmen, The rebound attack and subspace

distinguishers: application to whirlpool. J. Cryptol. 28(2), 257–296 (2015)

https://doi.org/10.1007/s001459900050
https://doi.org/10.1007/s001459900050
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1145/2661434

1490 I. Dinur et al.

[22] D. Lokshtanov, J. Nederlof, Saving space by algebraization, in Schulman, L.J. (ed.) Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, MA, USA, 5–8 June 2010
(ACM, 2010), pp. 321–330, https://doi.org/10.1145/1806689.1806735

[23] S. Lucks, Attacking triple encryption, in S. Vaudenay, (ed.) FSE. Lecture Notes in Computer Science,
vol. 1372 (Springer, 1998), pp. 239–253

[24] F. Mendel, C. Rechberger, M. Schläffer, S.S. Thomsen, The rebound attack: cryptanalysis of reduced
Whirlpool and Grøstl, in O. Dunkelman, (ed.) Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22–25, 2009,Revised Selected Papers. LectureNotes in Computer
Science, vol. 5665 (Springer, 2009), pp. 260–276

[25] R.C. Merkle, M.E. Hellman, On the security of multiple encryption. Commun. ACM 24(7), 465–467
(1981)

[26] M. Naya-Plasencia, How to improve rebound attacks, in P. Rogaway, (ed.) Advances in Cryptology—
CRYPTO 2011—31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14–18, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6841 (Springer, 2011), pp. 188–205

[27] P.C. van Oorschot, M.J. Wiener, Improving implementable meet-in-the-middle attacks by orders of
magnitude, in Koblitz, pp. 229–236

[28] R. Schroeppel, A. Shamir, AT = O(2n/2), S=O(2n/4) algorithm for certain NP-complete problems.
SIAM J. Comput. 10(3), 456–464 (1981)

[29] J.R. Wang, Space-efficient randomized algorithms for K-SUM, in A.S. Schulz, D. Wagner, (eds.)
Algorithms—ESA 2014—22th Annual European Symposium, Wroclaw, Poland, September 8–10, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8737 (Springer, 2014), pp. 810–829

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/1806689.1806735

	Efficient Dissection of Bicomposite Problems with Cryptanalytic Applications
	1. Introduction
	2. Notations and Conventions
	3. Dissecting the Multiple Encryption Problem
	3.1. Previous Work: The Meet-in-the-Middle Attack
	3.2. The Basic Dissection Algorithm: Attacking 4-Encryption
	3.3. Natural Extensions of the Basic Dissection Algorithm
	3.4. Asymmetric Dissections: 7-Encryption and Beyond
	3.5. The Dissectu(r,1) Algorithm
	3.6. Deterministic Dissection Algorithms for m>1
	3.7. Dissection Algorithms for a Composition of Keyed One-Way Functions

	4. Parallel Collision Search via Dissection
	4.1. Brief Description of the Parallel Collision Search Algorithm
	4.2. The Dissect & Collide Algorithm
	4.3. The Gain of the Dissect & Collide Algorithm Over the PCS Algorithm

	5. Applications
	5.1. Application to Knapsacks
	5.2. Using Dissection to Improve Rebound Attacks on Hash Functions

	6. Summary and Open Problems
	Acknowledgements
	References

