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Abstract. Physical implementations of cryptographic algorithms leak information,
which makes them vulnerable to the so-called side-channel attacks. The problem of
secure computation in the presence of leakage is generally known as leakage resilience.
In this work, we establish a connection between leakage resilience and fault-tolerant
quantum computation. We first prove that for a general leakage model, there exists a
corresponding noise model in which fault tolerance implies leakage resilience. Then
we show how to use constructions for fault-tolerant quantum computation to implement
classical circuits that are secure in specific leakage models.

1. Introduction

Modern theoretical cryptography is primarily concerned with developing schemes that
are provably secure under reasonable assumptions. While the field has been hugely
successful, the threat model considered usually does not allow for the possibility of
side-channel attacks—attacks on the physical implementation of the cryptographic
scheme.
Side-channel attacks have been a worry long before the advent of modern cryptog-

raphy. As early as 1943, it was discovered that a teletype used for encryption by the
American military caused spikes in an oscilloscope that could then be used to recover
the plaintext [21]. More recently, side-channel attacks on cryptographic applications
widely used in practice have been revealed. One of these is the “Lucky Thirteen” attack
on TLS in CBC mode [2], which is based on measuring the time it takes the server
to reply to a request over the network. Another recent attack [13] uses acoustic crypt-
© International Association for Cryptologic Research 2019
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analysis to attack the GnuPG implementation of RSA. The authors managed to extract
the full RSA key by measuring the noise produced by the computer while it decrypts a
set of chosen ciphertexts. Although the relevant software has since then been updated
so that these attacks are no longer possible, they highlight the importance of designing
implementations with side-channel attacks in mind.
The theoretical approach to side-channel attacks is to design protocols that are resilient

against them. This is the focus of the area known as leakage resilience. In this work, we
present a way to perform universal leakage-resilient computation, i.e., we construct a
general “leakage-resilient compiler” that takes an arbitrary circuit and produces a new,
leakage-resilient version having the same computational functionality.
We take a novel approach to leakage resilience: fault-tolerant quantum computation.

The basic idea is that all actions performed in the execution of a classical circuit—
as well as leakage attacks on it—can be described using the formalism of quantum
mechanics. Then, leakage of the physical state of the computation is equivalent to a so-
called phase error in a quantum circuit. Since a fault-tolerant quantum computation must
protect against phase errors (as well as more conventional bit-flip errors), it is necessar-
ily leakage-resilient. However, achieving leakage resilience in this way would require
a fault-tolerant quantum circuit. Here, we give a method for constructing a leakage-
resilient classical circuit by modifying an appropriate fault-tolerant quantum circuit.
The former mimics the latter, inheriting its leakage resilience. Our approach is similar
to security proofs of quantum key distribution in which it is shown that the operation of
the actual protocol—where the outcomes of measurements on entangled quantum states
are processed classically—can be interpreted as mimicking a fully quantum protocol for
entanglement distillation, from which the protocol derives its security [25].
Before introducing our general setting for leakage, it is illustrative to present a concrete

example of leakage resilience in practice. Smart cards are integrated circuits that have
been widely used for authentication and also allow the storing of sensitive data, making
them portable carriers of information such as money and medical records. Since smart
cards are designed to be portable, they are subject to a variety of physical attacks. Possible
attacks include measuring the time and the electrical current used when performing
operations (power analysis). Thus, leakage resilience is essential to the design of smart
cards.
More specifically, a smart card stores some internal data, provides an interface for

external input, performs some computation on the internal data and the external input
and sends the output through an output interface. One of the design goals is that if the
smart card is given to an adversary, who can send inputs to and read off outputs from
it, the adversary should not be able to obtain any information about the internal data
in the card, beyond what can be learned from the regular output of the computation.
This design goal is what we mean by leakage resilience. However, whereas smart cards
are usually designed to be resilient against specific attacks, we are interested in larger
classes of attacks.
Our general setting for leakage is as follows: First, an honest party (Alice) inputs a

circuit C that computes a function f along with a secret y. Then, the adversary (Eve) is
given black-box access to the circuit, so that she can interactively send inputs, denoted x ,
to the circuit and gets the corresponding outputs ( f (x, y)). She also receives a description
of the circuit. Additionally, with each interaction Eve obtains leaked bits according to the
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leakagemodel. Roughly, the goal is that Eve should not learn anymore information about
y than what she would having access to f (·, ·) alone. This setting will be formalized in
Sect. 2 using the abstract cryptography framework [18,20].

1.1. Previous Work

The question of hiding internal computation from an eavesdropper is related to the
problem of program obfuscation. Obfuscation can be seen as a “worst-case leakage
resilience,” in which the internal state must be protected even if the whole execution
leaks to the adversary.1 However, it is known that obfuscating programs is impossible in
general [4]. Thus, if we want any leakage resilience at all, the type of leakage allowed
has to be restricted in some way.
This is not a problem in practice because adversaries will typically be restricted in the

type and amount of information they canobtain from the system.Herewe list a few results
in the field, although the list is by no means comprehensive. Ishai et al. [15] considered
adversaries that can learn the values of a bounded number of wires in the circuit. Micali
and Reyzin [19] introduced the “only computation leaks information” assumption, in
which the leakage at each step of the computation only depends on data that were used
in the computation. Faust et al. [9] consider a model where the adversary gets a function
of all of the circuit’s state (that is, the output and all intermediate computations), the
restriction being that the leakage function must be computable in AC0, the family of
circuits containing only AND, NOT and OR gates (with unbounded fan-in) and having
constant depth and polynomial size. They also consider noisy leakage, where the whole
state of the circuit leaks, but the adversary only receives a noisy version of the leaked
state, each bit being flipped with some probability. A common further assumption is to
use a small component of trusted hardware [8,9,11].
Despite these advances, relating leakage models to actual leakage seen in practice

has so far proved to be challenging. Standaert et al. [27] present a few problems with
the “bounded leakage” assumption, in which the leakage at each computation step is
assumed to be bounded; see also [26].
Our work is loosely related to the one of Smith et al. [6], where techniques from fault-

tolerant quantum computation are used to develop a construction for secure multi-party
quantum computation. Given that multi-party computation techniques are commonly
used for leakage resilience (in particular, secret sharing [8,11,15]), the connection be-
tween fault tolerance and leakage resilience is perhaps unsurprising. However, the con-
struction of Smith et al. was inherently quantum, whereas our construction runs on a
classical machine.

1.2. Our Contribution

We establish a relation between leakage-resilient (classical) computation and fault-
tolerant quantum computation, which are formally defined in Sect. 2. Specifically, we
show how methods of the latter can be used to construct leakage-resilient compilers,

1One explicit connection between obfuscation and a specific leakage model (the “only computation leaks
information” model of Micali and Reyzin [19]) has been made in [3]; see also [12].
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which transform a given circuit into another (classical) circuit with the same computa-
tional functionality as well as resistance to leakage.
The starting point in relating leakage-resilient classical computation and fault-tolerant

quantum computation is the observation that any classical logical operation can be re-
garded as a quantumoperation performing the same action in the so-called computational
basis. (“Appendix A” provides a brief background on the formalism and tools of quan-
tum information theory necessary here). Then, as we show in Sect. 3, any given leakage
model may be interpreted as specific model of phase noise afflicting the corresponding
quantum circuit.
Phase noise is not the most general type of quantum noise. Nonetheless, as we show in

Theorem 1, if fault tolerance is possible for a given noise model—meaning roughly that
error correction is performed frequently enough that the encoded information essentially
never suffers from errors—the quantum computation is resilient to leakage of the corre-
sponding leakage model. However, we want to make classical circuits leakage-resilient
and do not necessarily want to carry out a quantum computation to achieve this goal.
Fortunately, the structure of certain quantum error-correcting codes is such that we can
mimic the error-correcting steps with classical circuits.
Following this approach,we construct a general leakage-resilient compiler bymimick-

ing the basic fault-tolerant components of the fault-tolerant scheme in [1] using classical
components. Section4 describes how to transform into classical circuits certain simple
types of quantum circuits that serve as building blocks for arbitrary circuits. Section 5
then presents a fault-tolerant implementation of the Toffoli gate, a gate that is universal
for classical computation [30]. Combining this with the results of Sect. 4 then gives a
leakage-resilient compiler.
As in other works, our construction assumes the existence of a small leak-free com-

ponent: a source of (uniformly) random bits. Using the construction, one can transform
an arbitrary classical circuit into a circuit that is resilient to leakage arising in any model
for which reliable quantum computation is possible under the corresponding phase noise
model. One particular leakage model that translates into a well-studied quantum noise
model is that of independent leakage, in which the value of each wire of the circuit leaks
with some fixed probability. While potentially too restrictive (in particular, the inde-
pendence assumption implies that the adversary does not choose the wires that leak),
its simplicity allows for an easy interpretation in the quantum scenario as independent
phase errors, for which various fault-tolerant constructions are known. This model is
used in our construction in Sect. 5. Leakage models that include correlations lead to
error models that have yet to be analyzed.
We stress that rather than presenting a specific leakage-resilient scheme, the contri-

bution of this work aims to provide a novel approach to leakage resilience and connect
this field of cryptography to the research area of fault-tolerant quantum computation.
Our work thus shows how results achieved in one area (e.g., new threshold theorems for
quantum fault tolerance) can be translated to the other (e.g., bounds on the performance
of leakage-resilient compilers). Our hope is that our result will inspire research develop-
ing the relationship between fault tolerance and leakage resilience. In Sect. 6 we discuss
possible future directions for this line of work.
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2. Definitions

2.1. Abstract Cryptography Framework

In order to define leakage resilienceweuse theabstract cryptography framework [18,20],
of which we give a short summary. From an abstract viewpoint, constructing a protocol
amounts to assuming that a certain set of real resources is available and then using them
to build a new resource, termed an ideal resource. By way of composition, the ideal
resource can then again be used as a real resource in another protocol to build a more
complex ideal resource.
For instance, the one-time pad construction assumes that a resource giving out a secret

key is available along with an authentic channel. It is then shown that these resources can
emulate a secure channel. In this case, the ideal resource is the secure channel, whereas
the authentic channel along with a shared secret key is used as a real resource. On the
other hand, in a protocol for authentication, the authentic channel takes the role of the
ideal resource, and the real resource is a completely insecure channel together with a
secret key.
In this framework, resources are a type of systems, which are defined as abstract

objects which can be composed. Each system has an interface set I, and interfaces can
be connected in order to form new systems. Resources are systems where each interface
corresponds to one party that has access to it. As an example of a resource, we can define
a private channel between honest parties A and B subject to possible eavesdropping by
E as a resource that takes inputs from A and outputs them at B. Since the resource
gives E no outputs, the channel is private by definition. Note that this holds whether E
acts honestly or dishonestly; in abstract cryptography, the broader goal is to emulate the
behavior of ideal resources in all situations, not just when assuming certain parties are
honest and others dishonest.
To emulate an ideal resource from given resources, the latter may be composed. Fur-

thermore, each party can act on their interface using a converter, which is also modelled
as a system. A converter has an “inside” interface, connected to the resource, and an
“outside” interface, which is used by the parties. A protocol specifies a converter for
each party acting honestly and is applied to a real resource. In the security arguments, we
will also consider converters applied to the ideal resource by parties acting dishonestly.
These are termed simulators. We denote composition of systems by juxtaposition, so
that, for instance, the resource formed by plugging converter πA into the resource R is
denoted by πAR.
In order to allow for constructions that do not perfectly match a desired ideal resource

but only approximate it, we need a notion of distance d between two resources, which
must be a pseudo-metric d on the set of resources. Typically, we consider the distance to
be the maximal advantage that a system trying to distinguish between the two resources
(the distinguisher) can have. Given two resources R and S and a distance d, we also
writeR ≈ε S to denote d(R,S) ≤ ε.

In this work, we only ever need to consider two parties, A and E , where A is assumed
to be honest. To keep the formal treatment simple, we restrict ourselves to this case. In
this scenario, what it means for a protocol to securely emulate an ideal resource S given
a resourceR takes a particularly simple form. It reduces to two different conditions: one
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where E is dishonest and another where E is honest—that is, it follows the protocol. We
use the following definition of security, which, for our scenario, is sufficient to imply
the definition presented in [20].2

Definition 1. Let R and S be resources with interface set I = {A, E}. We say that a
protocol π = {πA, πE } securely constructs S fromRwithin ε if there exists a simulator
σE such that

πAR ≈ε σES and (1)

πAπER ≈ε S. (2)

2.2. Leakage Resilience

Using the abstract cryptography framework, we can now define leakage resilience by
specifying the corresponding ideal and real resource. They are two-party resources, with
parties that we denote by Alice (A) and Eve (E), where Alice is assumed to be honest.

Ideal resourceOur goal is to be able to compute a function that takes an input to be given
by the adversary, and an additional input that corresponds to the initial secret. First, we
describe intuitively the kind of resource that we want. At the beginning, Alice inputs the
circuit to be executed along with the secret input. Then, a description of the circuit is
given to Eve, who can execute it as a black box freely.
In light of this informal description, we define the ideal resource S as follows. Alice

initially inputs a secret y and a description of a circuit C that evaluates a function f . Eve
can send inputs x , to which she receives outputs f (x, y). The ideal functionality also
outputs C to Eve. The resource is shown in Fig. 1a.

What this definition implies is that information about y can only leak through f (x, y)
and C. As a concrete example, let C be a circuit implementing an encryption algorithm f
that encrypts inputs x using the secret key y. In establishing security for a cryptographic
scheme, one assumes that the secret key is completely hidden from Eve. In the example,
this assumption is ensured by the way the ideal resource is defined, since the only way
information about y could leak to Eve is through the ciphertext f (x, y).
This example also illustrates that security and leakage resilience are separate goals:

We place no restrictions on f , so even if the function reveals some information about y
that would be of no consequence for leakage resilience. Instead, leakage resilience only
ensures that no additional information about y leaks.

Real resource Informally, the real resource (which we denote byR) is a “leaky” version
of the ideal resource, in which additional information becomes available to Eve. Alice’s
interface allows her to input a secret y and a circuit C that evaluates a function f . Eve’s
interface allows her to send inputs x , to which she gets outputs C(x, y), and additionally
send leakage requests l, getting leakages l ′. As in the ideal resource, Eve also gets C. The
idea is that Eve can use R as a black box, but also obtain additional information from

2We note, however, that in the general case one needs to use additional constructions, termed filters. We
refer to [18,20] for more details.
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Fig. 1. a Ideal resource for leakage resilience and b real resource. In both cases, Alice has access to the left
interface and Eve has access to the right interface.
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Fig. 2. The first condition of Definition 1 applied to leakage resilience. In order to prove that the converter
πA is part of a leakage-resilient protocol π , one has to show the existence of a simulator σE such that the
execution of πA running with the real resource R is indistinguishable from execution of the ideal resource
S with σE . The second condition is easily satisfied by a converter πE which inputs a fixed l and ignores the
output l ′, but forwards the other inputs and outputs unchanged. Here, C(x, y) denotes the encoding of the
output C(x, y).

the leakage which might reveal something about the secret. This scenario is represented
in Fig. 1b.
In order to satisfy the first condition in Definition 1, we need a protocol π to construct

the ideal resource S from the real resource R. The relevant setting for Definition 1 is
depicted in Fig. 2.
Our description of the real resource captures leakage in a very general form, in the

sense that C, l and l ′ may be arbitrary. However, in order for leakage resilience to be
possible, it is necessary to specify how the leakage requests l are chosen. Hence, we
construct schemes that are resilient against leakage with some particular structure. In
order to formalize this, we will make the scenario presented above more concrete, by
restricting the interactions in the followingway. Eve interactswith the resource in rounds.
In each round, she inputs pairs (x, l) and receives outputs ( f (x, y), l ′).3

The particular strategy used to choose the leakage requests l is referred to as a leakage
model L . The leakage model is a set of allowed leakage requests. A leakage request is
a probability distribution over leakage functions. That is, if the set of possible leakage
functions is {li }, Eve sends l = {(li , pi )}, where li is chosen with probability pi . Each
li is a function of the set of values assigned to the wires in the circuit, which we denote
by WC(x, y) (when the circuit is given inputs x and y). If the function l j is chosen, Eve

3We could have the function output additionally be a function of l; this situation would capture tampering,
in which Eve can introduce faults to the wires in the circuit [14].



1078 F. G. Lacerda et al.

receives l ′ = l j (WC(x, y)). Note that the output of l j may or may not include the index
j , depending on the leakage model.
As an example, Eve could choose at every round a bounded number of wires of the

circuit to leak. (These are the “probing attacks” considered in [15].) Or one could restrict
Eve to leakage functions that are computed with constant-depth circuits [9]. In any case,
we define leakage-resilient compilers with respect to a particular leakage model in the
following way. In the definition below, S andR are, respectively, the ideal resource and
the real resource defined above.

Definition 2. The protocol π is an ε-leakage-resilient compiler against leakage model
L if it securely constructs S fromRwithin ε, where the leakage requests are drawn from
L .

Independent leakage In this paper (Sect. 5), we provide as a concrete example an explicit
leakage-resilient compiler for a concrete leakage model which we call independent leak-
age. Independent leakage is characterized by having every wire in the circuit potentially
leak, each with a fixed probability p.
This model can be formalized in the following way. Let n be the number of wires in

the circuit. We label each wire in the circuit with an index i with 1 ≤ i ≤ n. Now let
w be a binary string of length n and lw(x, y) be the values of the wires i with wi = 1
when the circuit has (x, y) as input, along with the stringw to indicate which wires have
leaked. For every round of interaction, the probability pw that the leakage function Lw

was chosen is given by pw = Pr(X = |w|), where X follows a binomial distribution
with parameters n and p and |w| denotes the Hamming weight of w. The leakage model
L is then L = {(lw, pw) : w ∈ {0, 1}n}. (Note that there is only one possible leakage
request.)

Leak-free componentsMany of the leakage-resilient constructions require a small com-
ponent of the circuit to be trusted or “leak-free,” meaning its internal wires do not leak
to Eve. For our construction, this includes wires coming out of leak-free components.
We incorporate this requirement in our definition of leakage resilience by adding the
restriction that the leakage function l may not depend on any wires inside the leak-free
components, or the wires coming out of them.
The only leak-free component we use in this work is a source of random bits: a gate

that takes no input and outputs a uniformly distributed random bit (which is assumed
not to leak). This is used in the part of our proof where we transform a quantum circuit
into a classical one; we leave open the question of whether this is necessary in general.
We note that our requirement is different from than the one used in [9]: We require only
uniformly distributed bits, while their transformation requires bits distributed according
to an arbitrary (althoughfixed) distribution.On the other hand, the outputwires from their
leak-free component are allowed to leak, whereas we require that leak-free components
not leak before interacting with other components.

2.3. Fault Tolerance

A noisy quantum circuit E is an implementation of a unitary U acting on subsystems S
(the data subsystem) and E (the environment). The idea of fault tolerance is to perform
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computations on a noisy circuit reliably, by using the noisy circuit to execute encoded
operations such that at any point of the computation, the encoded state of the data is
close to the state of an ideal circuit that implements U perfectly.

More precisely, let C be a quantum circuit with inputs and outputs inH⊗k
2 . We assume

that the circuit acts on classical inputs; this is done by preparing a known state |0〉⊗k and
then encoding a classical input x into it, obtaining the state denoted |x〉. The possible
input states |x〉 form the computational basis. Then, for any x , the circuit implements
the action of a unitary Ux on |0〉⊗k .
A fault-tolerant simulation for C works as follows. Let C̃ be a noisy quantum circuit

acting on H⊗n
2 . The noise incurred on the circuit is specified by a noise model N , the

form of which is defined in Sect. 3. The data subsystem is initialized in the state |0〉⊗n .
The input x ∈ {0, 1}k is then encoded in a quantum error-correcting code of length n; we
denote the encoded input by |x〉. Execution then proceeds the same way as in the ideal
circuit, except that the gates are replaced by encoded gates (i.e., operations on encoded
data). We can thus compare the states of C and C̃ at an arbitrary step of the computation.
Additionally, after each step of the computation, error correction is performed in order to
keep the state of the circuit in the encoded space of the code. We say that C̃ is ε-reliable
against noise N if for every step, the state of C is equal to the logical value of the state
of C̃ except with probability ε.
We note that the way we use fault tolerance is slightly different from the usual treat-

ment. As defined above (and as it is commonly done), the inputs are encoded as part of
the circuit. But our circuits also receive additional encoded inputs. This is done purely
for convenience and does not make the definition stronger.
The focus in fault tolerance is in implementing the so-called gadgets—components

such as logical gates and error correction, that can then be used as building blocks
to construct reliable circuits. The goal is usually to implement a set of gates that is
universal for quantum computation. However, as we will see in Sect. 5, since we only
seek to perform classical computation, we only need a restricted set of gates.

3. Leakage Models and Quantum Noise

In this section, we show that for an arbitrary classical circuit with leakage according
to some leakage model L , we can view the circuit as a noisy quantum circuit with a
corresponding noise model N , and that if the quantum circuit is reliable with respect
to N then it is also leakage-resilient against L . To this end, we must first make matters
more concrete. A general quantum noise model is an operationN on quantum states on
H⊗n

2 and takes the form

N (ρ) =
∑

k

pk EkρE
†
k , (3)

where Ek are arbitrary operators takingH⊗n
2 to itself and pk ≥ 0 with

∑
k pk = 1. If Ek

has the form Ek = ⊗n
i=1 Z

ai,k
i for ai,k ∈ {0, 1} and Z specified by Z |x〉 = (−1)x |x〉,

then we call N a phase noise model.
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The following lemma relates classical leakage models and quantum noise models.

Lemma 1. For any circuit C running with a leakage request {l j , p j }mj=1 taken from a
leakage model L, there exists a noise modelN such that C, viewed as a quantum circuit,
is a quantum circuit subject to noise N . Furthermore, N has the form

N (ρ) = 1

d

m∑

j=1

p j

d−1∑

k=0

Fk
j ρ(Fk

j )
†, (4)

where Fk
j is the operator taking |s〉 to ωkl j (s)|s〉, ω is a primitive dth root of unity, and

d is the size of the output of l j .

Now we can state the formal connection between leakage resilience and reliable
quantum computation:

Theorem 1. For every circuit C and leakage model L, there exists a noise model N
as specified in Lemma 1 such that for any ε-reliable (against N ) implementation C̃ of
C with encoding function y 	→ |y〉, the protocol π that, given (y, C) as input, outputs
(|y〉, C̃) is a 2

√
ε-leakage-resilient compiler against L.

Proof of Lemma 1. First, consider the case where L is such that at each round, a single
leakage function l is chosen. Let S be the subsystem representing the wire assignments
s := WC(x, y) in the circuit and E be Eve’s subsystem. In quantum-mechanical terms,
the action of the leakage is the transformation

|s〉S ⊗ |0〉E → |s〉S ⊗ |l(s)〉E (5)

for each s. To determine the action of the leakage on system S itself, consider an arbitrary
superposition state |ψ〉S = ∑

s
√
ps |s〉S for some probability distribution ps . After

applying the transformation and tracing out subsystem E , ρ = |ψ〉〈ψ | becomes

ρ → N (ρ) =
∑

s

∑

s′:l(s′)=l(s)

√
ps ps′ |s〉〈s′|, (6)

as all coherence is lost between parts of the state with different values of l. But this is
also the output state if the transformation were instead

|s〉S ⊗ |0〉E → 1√
d

∑

k

ωkl(s)|s〉S ⊗ |k〉E = 1√
d

∑

k

Fk |s〉S ⊗ |k〉E , (7)

where d is the size of the output of l, ω a primitive dth root of unity, and Fk the operator
taking |s〉 to ωkl(s)|s〉. The equivalence of these two maps can be seen by tracing out E .
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Thus, the noise model can be expressed as

N (ρ) = 1

d

d−1∑

k=0

Fkρ(Fk)†. (8)

Now consider the case where the leakage function is chosen probabilistically from a
set {l j }mj=1, where l j is chosen with probability q j . In this case, a corresponding noise
model is a convex combination of noise operators of the form in (8). That is, we can
write

N (ρ) = 1

d

m∑

j=1

q j

d−1∑

k=0

Fk
j ρ(Fk

j )
† (9)

where Fk
j is the operator taking |s〉 to ωkl j (s)|s〉. �

Proof of Theorem 1. Every leakage request from L has a corresponding noise model
as given by Lemma 1. The fault-tolerant implementation of the circuit C includes a
compiled circuit C as well as a method to encode inputs. The converter πA receives
the secret y as well as a circuit as input, and outputs the encoded secret |y〉 and C.
Following the fault-tolerant construction, inputs x received from E are encoded in |x〉,
the quantum circuit is used to compute

∣∣∣C(x, y)
〉
, and the decoded output is sent back to

E . We therefore have a scenario as shown in Fig. 1b.
We now have to show the existence of a simulator σ such that condition (1) (Fig. 2)

is satisfied. We will prove that such a simulator exists by showing that for any step of
the computation, the leakage received by E is essentially independent of the circuit’s
current state (that is, the intermediate values encoded by its wires).
Consider an arbitrary timestep in the circuit. Ideally, the evolution of the input systems

up to this point is described by a unitary operation U , the product of all the unitary
operators for the individual gates. By Lemma 1, the leakage model results in noise N
on the quantum circuit C. The actual evolution of gates and noise can be described
by a quantum operation T . Since C is ε-reliable against N , there can be no errors on
encoded quantum information except with probability ε. (Otherwise, the state of the
reliable circuit would be different from the state in the ideal circuit.) Put differently,
concatenating the actual evolution with the inverse of the ideal evolution should result in
an identity operation on the input. This can be formalized using the completely bounded
norm (see [16] for a precise definition) as ‖T U−1 − 1‖cb < ε.
The actual evolution T is due to leakage to the eavesdropper, which itself can be

described by a quantum operation, call it T ′. Unlike for classical channels, the properties
of T constrain the properties of T ′. In particular, Theorem 3 of [16] shows that if T is
approximately unitary, then T ′ must have an output which is approximately independent
of the input.4 Specifically, there exists an operation TS which takes every input to some
fixed output such that ‖T U−1 − 1‖cb < ε implies ‖T ′ − TS‖cb ≤ 2

√
ε. Therefore,

4It would also be possible to use an uncertainty principle recently derived by one of us for this argument
[23].
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by the properties of the completely bounded norm, the state at any point in the circuit,
which we denote by |s〉, is independent of l(WC(x, y)) (except with probability 2

√
ε).

We now note that for the case of an adaptive adversary, l ′ can depend on previous
inputs and outputs, as well as previous leakages, since the choice of l can depend on
those values. But because those values are also available to the simulator, and because
l ′ is independent of the logical value of s, l ′ can be generated by the simulator.

Nowwe describe the converter πE , used in the case where Eve is honest [condition (2)
in Definition (1)]. πE relays inputs x from Eve to R and decodes the encoded output
C(x, y), which is then passed to Eve. It also decodes the encoded circuit C before passing
it to Eve. It is clear that πAπER (which can be visualized as plugging πE to πAR in
Fig. 2) is indistinguishable from S. �

4. From Quantum to Classical Circuits

Our goal is to have classical leakage resilience, and fault-tolerant techniques yield a
circuit that in general does not have a classical translation. In this section, we show how
to make a particular set of quantum components classical. Then, in Sect. 5, we use these
components to make a fault-tolerant implementation of a quantum gate that is universal
for classical computation—namely, the Toffoli gate. Due to the fact that the components
have a classical translation, we also have a leakage-resilient classical gate.
In order to show the equivalence between the quantum and classical circuits, we ana-

lyze each component in the following scenario: We assume that the quantum component
has Z basis inputs (i.e., the inputs are classical), and that after execution, the outputs
are measured in the Z basis. We then show that for each component there exists a clas-
sical circuit that, when given the same inputs, gives the same outputs as the quantum
component after measuring. We then use the components to construct encoded gadgets
that will be used to implement the Toffoli gate. Since the components have a classical
translation, the gadgets and the Toffoli gate have one as well.
In order to be able to combine the classical translation with Theorem 1, we need it

to preserve the form of the original quantum circuit, so that the connection between
leakage and noise model can be made explicitly. This is achieved by having, for each
component, a classical translation that has the same wires as the quantum component.
For the classical scenario, we assume that we can generate random bits in a leak-free

manner.Wewill see that this is needed in order tomake state preparation of |+〉 classical.
We prove the following result.

Theorem 2. Let C be a quantum circuit accepting classical states as input and con-
taining only X, Z, CNOT, CZ and Toffoli gates, state preparation of |0〉 and |+〉 and
measurement in the X and Z bases. Then each gate G in the circuit can be replaced
by a classical circuit G ′ with the same wires as G. Furthermore, assuming a leak-free
source of random bits, there exist procedures for state preparation of |0〉 and |+〉 and
measurement in the X and Z bases such that the circuit for each procedure can be
replaced by a classical circuit with the same wires. If all these replacements are made,
then the resulting classical circuit C′ gives the same outputs as applying C followed by
measuring its outputs in the Z basis.
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|0 I Z |+
|+ • H •

Fig. 3. Preparation of |+〉.

Proof. Out of the gates we use, X , CNOT and Toffoli are classical, and therefore their
classical translations are trivial. The Z gate flips the input’s phase; as we are assuming
the inputs and outputs to be classical, it corresponds classically to the identity gate. The
same holds for CZ.
There are two bare qubits we need to prepare: |0〉 and |+〉. The classical translation

of preparing a |0〉 is just preparation of 0. To determine the translation of preparing |+〉,
note that immediate measurement in the Z basis would yield a random bit. We can thus
translate state preparation of |+〉 to the classical scenario by preparing 0 and then adding
a random bit r to it, which we assume to be generated in a leak-free manner, so that it is
hidden from the adversary.
The output does not correspond univocally to |+〉; if we had prepared |−〉, we would

get the same output. But we can show that from the point of view of a (classical)
adversary that can see all the wires in the circuit, except for the leak-free component,
this preparation procedure is equivalent to the one that prepares |+〉, shown in Fig. 3.

The secondwire, shown inside the dashed box, is in the leak-free part of the circuit. The
state at the point I is |+〉〈+|+|−〉〈−|; this is the state used in the actual (classical) circuit.
The figure shows how we could then correct this state using the leak-free component,
so that in the end we get |+〉. Since the correction operation has no effect on the Z -basis
value, it can be omitted. Therefore, if we use the circuit in Fig. 3 for preparation of |+〉
in the circuit C, the classical translation amounts to initializing a register to 0 and then
adding a (leak-free) random bit to it.
Measurement in the X basis can be done in a similar way. Measuring X projects

the state |ψ〉 onto one of the operator’s eigenspaces; the projection operators are given
by Pi = 1

2 (1 + (−1)i X) for i ∈ {0, 1} and the post-measurement state is given by

ρ = ∑1
i=0 Pi |ψ〉〈ψ |Pi = 1

2

∑1
i=0 X

i |ψ〉〈ψ |Xi . Hence, measuring in the X basis is
equivalent to a random bit flip, which we can simulate in the classical circuit by adding
a random bit. �

The significance of Theorem 2 is that we can use the given operations to implement
a reliable Toffoli gate for independent (phase) noise, in which every wire in the circuit
is subject to a phase error, an unwanted Z operator, with a fixed probability. We will see
next that this corresponds to the independent leakage model.

5. Leakage-Resilient Gadgets

Our fault-tolerant construction follows [1], which works in the model of independent
phase noise where each wire in the circuit is subject to a phase error with probability p.
This phase noise model is related to the independent leakage model, where each wire in
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•
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Fig. 4. Leaking one bit (encoded in the top wire) is equivalent to introducing a random phase error.

the circuit leaks with probability 2p. This follows because leaking the state of one wire
is equivalent to introducing a random phase error, as seen in Fig. 4.

This relation also provides a more direct relation between fault tolerance and leakage
resilience than the one given in Theorem 1: No bits can leak if all the errors are corrected,
and therefore, an ε-reliable circuit is 2ε-leakage-resilient.
In order to construct a leakage-resilient compiler, we just need to implement a set of

fault-tolerant gates that is universal for classical computation. We only use the compo-
nents in the statement of Theorem 2, so that we are able to make the implementation
classical. A typical approach is to implement the NAND gate. However, quantum gates
are reversible; hence, it is easier to implement a universal set of reversible gates. We
have chosen the Toffoli gate, defined by T (a, b, c) = (a, b, ab ⊕ c), which is universal
[30].
The constructionwe develop in the remainder of this section only uses the components

specified in Theorem 2. By this theorem, for each component there exists a classical
translation with the same wires as the original quantum component, and therefore we
can apply the relationship between independent phase noise and independent leakage
explained above directly (or, in general,we could applyLemma1).Wehave the following
result.

Corollary 1. Let L be the independent leakage model, and assume the probability
of leakage p satisfies p < 10−5. For any ε > 0 there exists a ε-leakage-resilient
compiler π that, given an arbitrary reversible classical circuit C with l locations and
depth d as input, outputs a classical circuit C with l ′ = O(l polylog(l/ε)) and depth
d ′ = O(d polylog(l/ε)).

This corollary follows from the implementation of the Toffoli gate and the accuracy
threshold theoremof [1], alongwithTheorem2and the relationship between independent
phase noise and independent leakage.
Given the construction for the Toffoli gate, we have amethod of compiling an arbitrary

circuit into a private one that works as follows. First, we convert the circuit into one
using only Toffoli gates. As we will see, our fault-tolerant implementation of the Toffoli
gate involves only X, Z and CNOT gates, state preparation, measurement in the X and
Z bases, and error correction. Hence, it has a classical translation due to Theorem 2.
Furthermore, by Theorem 1, the resulting circuit is leakage-resilient against independent
leakage.
The construction in [1] works by encoding qubits in the Steane [[7, 1, 3]] code [28].

Fault tolerance is achieved by constructing encoded gadgets that are resilient to errors “in
first order” —that is, if the physical circuit has probability of failure ε, then the encoded
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circuit has probability of failure O(ε2). One can then achieve an arbitrary degree of
accuracy by code concatenation.
In what follows, we present the fault-tolerant gadgets we use in the construction of

the Toffoli gate.

Measurement A Z basis measurement can be done by measuring transversally. For
the Steane code,

∣∣0
〉
is an equal superposition of all the even-weight codewords of

the Hamming code, and
∣∣1

〉
is an equal superposition of the odd-weight codewords.

(SectionA.3 has a review of the Steane code.) Thus, we can determine which state was
prepared by computing the parity of the measurement outcomes. Since phase errors do
not affect the outcomes, the procedure is fault-tolerant.

X basis measurement can thus be done by applying X = X1X2X3 controlled by |+〉
and then measuring in the Z basis. Phase errors only propagate from the data to the
ancilla |+〉 state, which, as argued in the proof of Theorem 2, can be assumed to be
prepared perfectly, since classically they correspond to generating a random bit. This
ensures that the procedure is fault-tolerant.

Error correction Error correction consists of syndrome extraction, in which the errors
are diagnosed, and a recovery step, performed in order to transform the state back into the
correct one. First, notice that since we are performing computation on Z basis states and
we assume that only phase noise is possible, the recovery step would always consist of
applying Z operators and, by the remarks in Theorem 2, can never change the outcome of
the computation. Therefore, only the syndrome extraction step is necessary. For that we
use a method known as Steane error correction [10,29], for which syndrome extraction
reduces to X basis measurement.

CNOT and X gates For the Steane code, the X gate can be applied transversally, that is,
X = ⊗7

i=1Xi . The CNOT gate can also be easily seen to be transversal, in the sense that
every qubit in the first block only interacts with the corresponding qubit in the second
block.

State preparation We first describe the state preparation of
∣∣0

〉
. It is accomplished by

preparing 7 |0〉 states and then performing Steane (phase) error correction. This method
consists of taking the state |0〉⊗7 and then performing a CNOT gate with this state as
target and an ancilla state

∣∣0
〉
as control. The ancilla is then measured in the Z basis.

This, of course, has an obvious problem—in order to execute the circuit, we need
∣∣0

〉
,

which is exactly the state we are trying to prepare. But before addressing this issue, let
us see why it works. The outcomes of the measurement of

∣∣0
〉
after the transversal CNOT

with |0〉⊗7 determine the eigenvalues of the X -type stabilizers of the code. The original
state |0〉⊗7 is projected onto the subspace associated with the particular measurement
outcomes. We can then map the state into the code space by changing the eigenvalues
as needed. But in fact recovery is not necessary, since it could only change the phase of
the state. As long as we have the information about the eigenvalues, we might as well
adopt the resulting state as

∣∣0
〉
.

In order to prepare the ancilla
∣∣0

〉
, we use the circuit shown in [1, Fig. 12]. We note

that, since the circuit acts on physical qubits, it is not fault-tolerant. The usual way to
prepare an ancilla state fault-tolerantly is to perform a verification step after encoding,
where the state is rejected and the procedure is repeated if the verification detects too
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|+ • • • • X x

|+ • • Z X • y

0 Z z + xy

|x Z •
|y Z •
|z • X •

(a)

|+ •
|+ •
|+ • X

|even7 parity

(b)

Fig. 5. a Reliable Toffoli gate. b Construction of the Toffoli ancilla state. All the gates are executed transver-
sally. After computing the parity, the circuit (Fig. 6b) is executed on the bottom block.

many errors. However, this does not help us because there is no clear classical analogue;
the circuit would not “know” when to reject a state, since phase errors do not show up
in the classical picture.
Instead, we use the ancilla verification method developed in [7]. In this method,

the ancilla state is prepared, interacts with the data transversally and is subsequently
decoded. The decoding is done in such a way that errors due to a single fault in the
ancilla preparation can be perfectly distinguished and the data block can be corrected. In
our case, we can decode by measuring the phase-error syndrome, which for the Steane
code reduces to X basis measurement.
Now we can use

∣∣0
〉
along with |+〉 to prepare

∣∣+〉
: We prepare

∣∣0
〉
and then apply X

controlled by a random bit. As we have argued for X basis measurement, the circuit is
fault-tolerant.
The method used to prepare

∣∣0
〉
can also be used to prepare the “Shor state” |even7〉,

which is a superposition of all the even-weight words in {0, 1}7 and is used in the
construction of the Toffoli ancilla state (below).Ourmethod to prepare and verify |even7〉
is the same as the one presented in [7] for the cat state, except it is done in the rotated basis
(|even7〉 is obtained from the cat state by applying the Hadamard gate transversally). For
more details, see “Appendix B.”

Toffoli gate The gadget for the Toffoli gate, proposed by Shor [24] (see also [22]) is
shown in Fig. 5a. The correctness of the circuit can be verified by inspection. However,
we have not shown how to execute the subcircuit in the dashed rectangle; indeed, this
subcircuit uses a Toffoli gate, which is exactly what we are trying to implement. Instead,
we use an alternative circuit to prepare the state

∣∣�
〉 = ∣∣000

〉 + ∣∣100
〉 + ∣∣010

〉 + ∣∣111
〉
,

which is the output of the subcircuit in the dashed rectangle. The alternative circuit is
shown in Fig. 5b.
All the gates in Fig. 5b are executed transversally, so the circuit is fault-tolerant.5 We

will show that if transversal CNOT and Toffoli work as the “encoded” circuits in this

5Because theToffoli gate is not aClifford gate, it does not propagatePauli errors toPauli errors; in particular,
a phase flip in the third block is propagated to a superposition of phase flips. This would make a classical
simulation of the level-k circuit inefficient, because the error patterns to keep track of grow exponentially in
k, but again, this is not a problem for our construction because we do not need to perform error recovery.
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case, where |even7〉 encodes 0 and the “odd” state |odd7〉 encodes 1, then the circuit
prepares

∣∣�
〉
. Specifically, we need to check that output in the target of the CNOT is

|even7〉 if the control is
∣∣0

〉
and |odd7〉 if the control is

∣∣1
〉
, and that the Toffoli gate outputs

|odd7〉 if and only if both control qubits are
∣∣1

〉
, and |even7〉 otherwise. For the CNOT,∣∣0

〉
is an equal superposition of even-weight strings, so XORing them with even-weight

strings outputs even-weight strings.
∣∣1

〉
is an equal superposition of odd-weight strings,

and XORing them with even-weight strings produces odd-weight strings.
For the Toffoli gate, it suffices to prove that the transversal product of |x〉 and |y〉 is a

superposition of odd-weight strings if and only if x = y = 1, and is a superposition of
even-weight strings otherwise. The key to show this claim is that the Steane code is based
on a classical code C that contains its own dual C⊥. Let H be the parity-check matrix
of the code C . We have Hc = 0 for every c ∈ C. That is, each codeword is orthogonal
to every row Hi of H . Since C⊥ ⊂ C, this also applies to the codewords of C⊥, and
in particular to Hi . That is, each Hi is orthogonal to itself, which can only happen if it
has even weight. Hence, all the codewords in C⊥ have even weight. Furthermore, they
must have even overlap (i.e., have 1 in the same position) with every Hi (otherwise they
would not be orthogonal), and therefore also among themselves.
Thus,

∣∣0
〉
is the superposition of all the even-weight codewords of C, which have even

overlap among themselves by the argument above. The state
∣∣1

〉
is the superposition

of the codewords in C − C⊥, which all have odd weight. Since they also satisfy the
parity check H they have even overlap with the rows of H , and therefore also with
the codewords in

∣∣0
〉
. But they have odd overlap among themselves. To prove this, let

x, y ∈ C −C⊥. If x and y have even overlap, then x + y ∈ C⊥ (since it has even weight)
and thus x and x + y would have even overlap. This proves our claim.
Thus, we have a way of preparing the ancilla state

∣∣�
〉
fault-tolerantly. Furthermore,

the classical translation is easy: The only new component here is measurement of the
parity of the Shor state, which can be done by measuring in the Z basis and then adding
up the outcomes. Now every component in Fig. 5a has a classical translation.

6. Discussion

Theorem 1 establishes an explicit relationship between fault-tolerant quantum compu-
tation and classical leakage resilience. Although it relates leakage and noise models (via
Lemma 1), it is not clear how the properties of the noise model relate to the properties
of the leakage model in general. However, in some cases the leakage model resulting
from a given noise model has a simple interpretation. In this work, we analyzed the
independent leakage model, which corresponds to the independent phase noise model.
A possible further direction is to take a leakage model that is used in other leakage re-
silience proposals and try to understand the corresponding noise model. Conversely, one
could take, say, the “local noise” model of [1] and see what the corresponding leakage
model looks like.
We developed a concrete implementation of universal leakage-resilient computation

based on the fault-tolerant construction of [1]. This constructionworks in the independent
noisemodel by using the concatenated Steane code. Fault tolerance is achieved assuming
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probability of error per wire or gate p < 10−5 (the accuracy threshold). Along with our
results, this gives us a leakage-resilient construction for universal classical computation
assuming independent leakage with probability of leakage per wire p < 2 · 10−5.

Taking into account the fact that we only want leakage resilience rather than fault
tolerance, this threshold can be improved. An accuracy threshold for concatenated codes
depends essentially on the size of the largest gadget in the first level of encoding (a
level-1 extended rectangle or 1-exRec in the language of [1]). A lower bound for the
threshold is the reciprocal of the number of pairs of locations in the largest 1-exRec.
In the implementation of [1], the largest 1-exRec is the CNOT gate, but due to the
simplifications in our case, the largest extended rectangles are the gadgets for state
preparation: They have 20 locations each. The number of pairs of locations is then(20
2

) = 190, which gives a crude leakage threshold estimate of p ≈ 1%.
As in [1], we only use the Steane code, but we note that our construction works for

any CSS code based on a dual-containing classical code. A promising possibility is to
use color codes [5], for which numerical evidence suggests they have good accuracy
thresholds [17] but currently lack a rigorous lower bound on the threshold.
We note that while the independent leakagemodel looks similar to the “noisy leakage”

case of [9], they are in fact different models. In the noisy leakage model, all bits leak, but
the adversary only receives noisy versions of these bits, each of them being flipped with
probability p. Crucially, the adversary does not know which bits have leaked faithfully,
whereas in our model every bit that is leaked is sure to arrive correctly at the adversary.
While we do not expect existing results on fault tolerance to give direct constructions

for the leakage models commonly studied in the literature (especially since fault toler-
ance has only been shown to work in very few noise models), we note that quantum
fault tolerance is a stronger requirement than classical leakage resilience: As we have
seen in this work, translating from the former to the latter allows us to make several sim-
plifications. Additionally, the techniques used in the area of fault tolerance are different
from those used for leakage resilience. Hence, we expect our result to shed new light on
leakage resilience.
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Appendix A: Qubits and Stabilizers

A quantum system can be described by a complex Hilbert space. In this work, we
deal only with two-level systems. LetH2 be a two-dimensional complex Hilbert space,
and let {|0〉, |1〉} denote one orthonormal basis, which we call the standard basis or the
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computational basis. An arbitrary element |ψ〉 ofH2 can bewritten as |ψ〉 = α|0〉+β|1〉,
where α, β ∈ C. Quantum states are represented by unit vectors, that is, |α|2+|β|2 = 1.
Composite systems are given by the tensor product, that is, if A, B are two complex

Hilbert spaces, then the state of the system composed by A and B is an element of A⊗B.
Systems whose state is not completely known are described properly by density op-

erators. Suppose a system is in the state |ψi 〉 with probability pi . We define the density
operator ρ for the system by

ρ =
∑

i

pi |ψi 〉〈ψi |

States that are completely known, that is, states of the form ρ = |ψ〉〈ψ |, are called
pure states, while other states are called mixed states.
In the following, as well as in the rest of the text, we only deal with states that are

equal superpositions, so we omit the normalizing factor. So, for instance, we write the
state |−〉 = 1√

2
(|0〉 − |1〉) simply as |0〉 − |1〉.

A.1. Pauli Operators

Take the standard basis forH2, and let

1 =
(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

X,Y, Z are called the Pauli matrices. They anticommute with each other. Furthermore,
an arbitrary matrix A on H2 can be written as A = a01 + a1X + a2Y + a3Z with
a0, a1, a2, a3 ∈ C. Similarly, operators on H⊗n

2 can also be written in terms of Pauli
matrices. Let Pn be the set of operators of the form i k

⊗n
i=1 Pi , where k ∈ Z and

Pi ∈ {1, X,Y, Z}. The set Pn is a non-abelian group; it is called the Pauli group on n
qubits. Because Y = i X Z , the group is generated by X and Z (up to a phase factor);
that is, Pn = 〈i1, X1, . . . , Xn, Z1, . . . , Zn〉, where Xi denotes the operator that acts as
X on the i th qubit, and similarly for Zi . An arbitrary matrix on H⊗n

2 can be written as
a linear combination of elements of Pn .
Consider now a system S subject to noise from the environment E . By the above

discussion, the system evolves as

|ψ〉S|0〉E →
∑

k

Ek |ψ〉A|ek〉E

where the states |ek〉 are not necessarily orthogonal and {Ek} is a set of linearly inde-
pendent Pauli operators. We call each of them a Pauli error. We say a Pauli error Ek has
weight t if it acts non-trivially on at most t qubits. Because general errors can always
be decomposed into Pauli errors, we only need to design error-correcting codes that can
correct Pauli errors.
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A.2. Error-Correcting Codes

A quantum error-correcting code C of length n is a subspace of H⊗n
2 . Let E be a set of

errors. We say that C corrects E if there exists a recovery operator R acting on a larger
systemC⊗A such that for every |ψ〉 ∈ C and every E ∈ E , we have trA R(E |ψ〉C |a〉A) =
|ψ〉C , where |a〉 is some ancilla state in A.
A code that corrects all errors of weight t can detect all errors of weight 2t . We define

the distance of a code as the weight of the error of smallest weight that is not detectable.
Thus, a code that can correct t errors has distance d = 2t + 1. Analogously to the
classical case, we call an error-correcting code of weight n that encodes k qubits and
has distance d an [[n, k, d]] code.
Now let S be a subgroup of the Pauli group Pn not containing −1. Given such a

subgroup, we define a stabilizer code C of length n as

C = {|ψ〉 ∈ H⊗n
2 | s|ψ〉 = |ψ〉,∀s ∈ S}.

The group S is called the code’s stabilizer. If the code encodes k qubits, the stabilizer is
generated by n − k elements. Errors that are not detectable are in the centralizer Z(S),
the group of operators that commute with all elements of S. Since errors act non-trivially
on the codewords, they are not in S; thus, the distance of the code is given by the weight
of the operator in Z(S) − S with smallest weight.
Since Pn has dimension 2n, the centralizer has dimension 2n − (n − k) = n + k.

Therefore, Z(S) − S has dimension 2k. These operators can be regarded as logi-
cal operations on the codewords. We can always choose them to be the operators
Z1, . . . , Zk, X1, . . . , Xk , satisfying the anticommutation relation Zi X j = (−1)δi j X j Zi .
Stabilizer generators are the quantum analogue of rows in the parity-check matrix of

a classical code. In fact, there is a general class of codes known as CSS codes that are
constructed from two classical codes C1,C2 such that C⊥

2 ⊂ C1. We will not introduce
the general theory of CSS codes here, and instead concern ourselves with a particular
CSS code known as the Steane code.

A.3. The Steane Code

The Steane code [28] is a [[7, 1, 3]] code that has stabilizer generators

g1 = Z1Z3Z5Z7

g2 = Z2Z3Z6Z7

g3 = Z4Z5Z6Z7

g4 = X1X3X5X7

g5 = X2X3X6X7

g6 = X4X5X6X7

and logical operators

Z = Z1Z2Z3
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X = X1X2X3

The Steane code is a CSS code based on the classical [7, 4, 3] Hamming code, which
we denote here by C . The Hamming code contains its own dual, that is, C⊥ ⊂ C . The
stabilizer generators g1, g2, g3 and g4, g5, g6 for the Steane code correspond to the rows
in the parity-check matrix for C , where a 0 in the parity-check matrix corresponds to
the identity and 1 corresponds to Z (for the Z -type stabilizers) or X (for the X -type
stabilizers). The codewords are given by

∣∣0
〉 = ∑

x∈C⊥|x〉 = |0000000〉 + |0001111〉 + |0110011〉 + |1010101〉
+ |0111100〉 + |1011010〉 + |1100110〉

∣∣1
〉 = ∑

x∈C−C⊥|x〉 = |1111111〉 + |1110000〉 + |1001100〉 + |0101010〉
+ |1000011〉 + |0100101〉 + |0011001〉.

Notice that
∣∣0

〉
is an equal superposition of all the even-weight Hamming codewords, and∣∣1

〉
is an equal superposition of all the odd-weight ones. This comes from the fact that

C⊥ ⊂ C , which implies several properties that make the Steane code useful for fault
tolerance. In particular, the logical Hadamard gate can be implemented transversally,
that is, H = H⊗7. This fact is also crucial in the construction we use for the Toffoli
ancilla state, used to implement the Toffoli gate.

A.4. Quantum Gates and Measurement

X and Z gates correspond to the application of the respective Pauli matrices. CZ and
CNOT are the controlled versions of these gates, that is, they are linear operators with

CNOT(|a〉, |b〉) = (|a〉, |a + b〉)
CZ(|a〉, α|0〉 + β|1〉) = (|a〉, α|0〉 + β(−1)a |1〉)

Measurements are operations that take a quantum state as input and have a classical
outcome. A measurement in the Z basis of an arbitrary qubit α|0〉 + β|1〉 returns 0
with probability |α2| and 1 with probability |β2|. A measurement in the X basis works
similarly, by writing the state in the X basis: Measuring α|+〉 + β|−〉 gives 0 with
probability |α2| and 1 with probability |β2|.

Appendix B: Construction of the Shor State

The circuit to construct the Shor state, adapted from the cat state construction of [7],
is shown in Fig. 6a. After it interacts with the data, we measure its syndrome using the
circuit in Fig. 6b in order to diagnose a possible fault in the preparation.
We need to show that no single error in the encoding and decoding of the Shor state

can cause us to incorrectly apply a multi-qubit correction operation to the data. Incorrect
single-qubit corrections, in contrast, are not fatal, as they can be corrected in subsequent
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|+ •
|+ • 1

|+ • 2

|0
|+ • 3

|+ • 4

|+ •
(a)

•
X

•
X

•
X

•
X

Z
•

X
•

X
(b)

Fig. 6. a Preparation of the Shor state |even7〉. The numbers indicate positions at which a local error causes
errors on multiple output wires. b Syndrome measurement for the Shor state .

rounds of error correction. First, let us examine the possible multiple Z error patterns
resulting from a single fault that might occur during encoding. Those are shown by the
numbers in Fig. 6a. All the other possibilities lead either to a single error in the output,
or to the same error pattern as one of those.
The error patterns, in the order given by the figure, are Z1Z2, Z1Z2Z3, Z5Z6Z7 and

Z6Z7. The decoding circuit (Fig. 6b) propagates these errors to Z1Z2Z6, Z1Z2Z3Z6Z7,
Z2Z4Z6Z7 and Z6Z7, respectively. Thus, all possible error patterns give different syn-
dromes, making them correctable. Furthermore, it is straightforward to verify that no
single fault in the decoding operation leads to any of these patterns. Thus, no single fault
causes a multi-qubit correction to be incorrectly applied to the data.
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