
https://doi.org/10.1007/s00145-020-09357-w
J Cryptol (2020) 33:1822–1870

Foundations of Fully Dynamic Group Signatures∗

Jonathan Bootle
University of California, Berkeley, Berkeley, CA, USA

jonathan.bootle@berkeley.edu

Andrea Cerulli
DFINITY, Zurich, Switzerland

andrea@dfinity.org

Pyrros Chaidos
National and Kapodistrian University of Athens, Athens, Greece

pchaidos@di.uoa.gr

Essam Ghadafi
University of the West of England, Bristol, UK

essam.ghadafi@uwe.ac.uk

Jens Groth
University College London, London, UK

DFINITY, Zurich, Switzerland
jens@dfinity.org

Communicated by Masayuki Abe

Received 23 October 2018 / Revised 13 February 2020
Online publication 2 June 2020

Abstract. Group signatures allow members of a group to anonymously sign on behalf
of the group. Membership is administered by a designated group manager. The group
manager can also reveal the identity of a signer if and when needed to enforce account-
ability and deter abuse. For group signatures to be applicable in practice, they need to
support fully dynamic groups, i.e., usersmay join and leave at any time. Existing security
definitions for fully dynamic group signatures are informal, have shortcomings, and are
mutually incompatible. We fill the gap by providing a formal rigorous security model
for fully dynamic group signatures. Our model is general and is not tailored toward
a specific design paradigm and can therefore, as we show, be used to argue about the
security of different existing constructions following different design paradigms. Our

∗An extended abstract of this paper appeared in the Proceedings of Applied Cryptography and Network
Security—ACNS 2016.
The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 307937 and
EPSRC Grant EP/J009520/1.
P. Chaidos: Was supported by an EPSRC scholarship (EP/G037264/1—Security Science DTC).
J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi: Most of the work was done while at University College London.

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-020-09357-w&domain=pdf

Foundations of Fully Dynamic Group Signatures 1823

definitions are stringent and when possible incorporate protection against maliciously
chosen keys. We consider both the case where the group management and tracing signa-
tures are administered by the same authority, i.e., a single group manager, and also the
case where those roles are administered by two separate authorities, i.e., a group man-
ager and an opening authority. We also show that a specialization of our model captures
existing models for static and partially dynamic schemes. In the process, we identify a
subtle gap in the security achieved by group signatures using revocation lists. We show
that in such schemes new members achieve a slightly weaker notion of traceability. The
flexibility of our security model allows to capture such relaxation of traceability.

Keywords. Group signatures, Security definitions.

1. Introduction

Group signatures, put forward by Chaum and van Heyst [27], are a fundamental cryp-
tographic primitive allowing a member of a group to anonymously sign messages on
behalf of the group. Group membership is administered by a designated group manager.
In the case of a dispute, the group manager, or a designated opening authority, has the
ability to revoke the anonymity of a signature by revealing its signer.
In static group signatures [14], the group population is fixed once and for all during the

setup phase. Partially dynamic group signatures [19,43] allow the enrollment ofmembers
in the group at any time, but members cannot leave or be removed from the group once
they have joined. In many settings, however, it is desirable to offer full flexibility in
joining and leaving the group, i.e., requiring fully dynamic group signatures. In this
work, we address the fundamental question of defining security for fully dynamic group
signatures.

1.1. Background and Related Work

Group Signatures Without Revocation. After their introduction, a very prolific line
of research has emerged on group signatures. The first efficient construction of group
signatures was given by Ateniese et al. [2] based on both the strong RSA assumption and
theDDHassumption in the randomoraclemodel [15]. At that time, however, the security
of group signatures was not very well understood and early constructions were proved
secure via informal arguments using various interpretations of their requirements.
To rectify this situation, Bellare et al. [14] formalized the security definitions for static

groupswhere the group population is fixed once and for all during the setup phase. In their
model, the group manager is also granted the authority of opening signatures and she is
assumed to be fully trusted, except she may leak information to the adversary. Later on,
Bellare et al. [19] and Kiayias and Yung [43] independently provided formal security
definitions for partially dynamic groups, in which new group members can join the
group at any time but cannot leave. The former model, following the suggestion of [26],
separates the opening authority from the group manager, while the latter considers both
roles overseen by the group manager. Aside from this, the main difference between the
two models is that in [43] the group manager is trusted to give correct openings without
providing proofs of attributions. More recently, Sakai et al. [59] extended the security

1824 J. Bootle et al.

model of partially dynamic groups by including the notion of opening soundness, which
ensures that a valid signature only traces to one user.
Ghadafi [35] gave a model for partially dynamic group signatures supporting thresh-

old/distributed traceability where the role of the opening authority is distributed among
n parties. Sakai et al. [31] extended the static group model by adding a dedicated author-
ity, the admitter, who decides which subset of the message space signatures on which
could be opened by the opening authority. This intended to reduce the trust placed in the
opening authority by allowing it to only open signatures on messages permitted by the
admitter.
Numerous efficient constructions secure in the above models have been suggested

both in the randomoraclemodel [2,10,25,29,30,33,34,42,44,46,57] and in the standard
model [1,3,20,21,37,38].

Group Signatures with Revocation. Since revocation is an essential feature of group
signatures, different approaches have been proposed for removing members from the
group. Bresson and Stern [17] realize revocation by requiring that the signer proves at
the time of signing that her group membership credential is not among those contained
in a public revocation list. Along this line, Nakanishi et al. [53] gave an efficient scheme
(with constant signing and verification times) in the randomoraclemodel. In the standard
model, Libert et al. [48,49] gave a number of efficient constructions of group signatures
utilizing the subset cover framework [56], originally used in the context of broadcast
encryption, to form revocation lists. Another approach, followed by [23,24,28,55,61],
uses cryptographic accumulators to incorporate revocation of users: accumulators can
be used to give a compact representation of the set of active group members and permit
efficient membership proofs.
Boneh et al. [5] showed how to incorporate the removal of users in their initially static

group scheme by updating both the group public key and unrevoked members’ signing
keys. Song [58] also uses key updates to extend the [2] scheme to support revocation
and additionally achieve forward security.
Brickell [16] considered a different approach for revocation known as verifier-local

revocation where the revocation information (i.e., revocation list) is only sent to the
verifiers (as opposed to both verifiers and signers) who can check whether a particular
signature was generated by a revoked member. This approach was subsequently for-
malized by Boyen and Shacham [18] and used in, e.g., [45,50,52]. A similar approach
is also used in Direct Anonymous Attestation (DAA) protocols [6]. Traceable Signa-
tures [41] extend this idea, with a group manager that can release a trapdoor for each
member, enabling their signatures to be traced back to the individual user. Releasing
tracing information for a member, however, enables the linking of different group sig-
natures by the same revoked member and this by necessity only provides a more relaxed
degree of anonymity.
Other variants of group signatures include linkable group signatures [54] and group

signatures with controlled linkability [39]. In the former, signatures by the same group
member are publicly linkable, whereas in the latter the role of the tracing authority is
reduced to the ability of deciding whether two signatures stem from the same (anony-
mous) member. This approach has been augmented by requiring a proof from the linking
authority [11], by specifying a linking authority that obliviously processes linkability

Foundations of Fully Dynamic Group Signatures 1825

queries across sets of signatures [36] with the results being non-transitive (i.e., signatures
are not linkable across queries), or [40] by adding the ability for the opening authority
to link as well as open signatures and to also produce proofs of non-authorship. In the
latter, users are able to claim or disclaim individual signatures and also link their own
signatures.
In this article, our focus is on standard group signatures with strong anonymity where

the opening of one signature does not allow the identification of another signature by the
same member and thus consider verifier-local revocation and linkable group signatures
out of scope.
A generic approach to construct fully dynamic group signatures from accountable ring

signatures is suggested in [7] and described in [8]. Bootle et al. [7] also give an efficient
instantiation of accountable ring signatures in the random oracle model based on the
DDH assumption. In the standard model, Lai et al. [51] give another construction for
an accountable ring signature scheme achieving constant size signatures. Following [7,
8], both schemes can be used to obtain fully dynamic group signature schemes with
efficiency similar to their ring counterpart.

Security Definitions. The security of static and partially dynamic group signatures has
been rigorously formulated [14,19,43,59], and they are now well understood. The secu-
rity of fully dynamic group signatures is significantly harder to model though. Nakinishi
et al. [53] defined security of fully dynamic group signatures in the context of a single
group manager that controls group membership and can trace signatures to individual
members, and Libert et al. [48] defined security of fully dynamic signatures where a
separate opening authority can trace signers. These definitions specifically refer to revo-
cation lists though while a truly general definition of fully dynamic group signatures
should in principle admit any mechanism for removing group members. Defining fully
dynamic group signatures also leads to subtle questions about when a group member
is activated and when a group signature is valid. The formal definitions in [48,53] do
in principle, after a revocation has happened, allow the “forging" of signatures for pre-
vious epochs. This definitional choice is fine if the application calls for it but implies
that existing group signatures become obsolete over time. We will in contrast aim for
high generality in our definitions; specifically we want the definitions to be flexible so
they can be adapted to any explicit policy that specifies when group members should be
considered active and governs validity duration of group signatures. Existing definitions
for partially dynamic group signatures as well as fully dynamic group signatures assume
honestly generated authorities’ keys. To maximize the security guarantees our defini-
tions capture strong security requirements and include, when possible, security against
adversarially generated authorities’ keys.
Following our initial conference publication [8], other works adopted and extended

our security model. Ling et al. [47] used our model to prove the security of their fully
dynamic group signature scheme, which is the first fully dynamic construction based on
hardness of lattice assumptions. Our model was recently extended by Backes et al. [12]
to include two additional security properties called join and leave privacy, which capture
the privacy of users over the time span of their group membership status. El Kaafarani
et al. [32] also extended this security model in order to formalize anonymous reputation
systems, which allow a set of users to review products anonymously.

1826 J. Bootle et al.

1.2. Our Contribution

We provide a rigorous security model for fully dynamic group signatures. Despite not
assuming a specific design paradigm, in our original version [8] we made a few implicit
assumptions regarding the functioning of group signatures. In this revision, we take a
step further in modeling fully dynamic group signatures by considerably updating and
generalizing [8]. Our model does not preclude current design approaches, and it offers
stringent security properties including the features listed below.

• We provide security definitions both for the case of a single group manager and the
case where her role is separated from the opening authority. In both settings, we
consider, when possible, malicious key generation for the authorities.

• We define a strong correctness property that holds even if the system is populated
with malicious users, and in the two-authority setting with a malicious opening
authority.

• We define group signatures with respect to an explicit policy for when a user is
considered an active group member and for which epochs a group signature is
considered valid.

• We consider concurrent joining sessions between the users and the group manager.
Existing models restrict the state of the group manager to be compartmentalized
on a per user basis resulting in independent joining sessions, where we generalize
fully to any choice of manager state between messages in the joining process.

• We formalize two additional security properties called opening binding and opening
soundness capturing that signatures cannot be attributed, respectively, to multiple
users, nor to anybody other than the legitimate signer.

To validate our definitions, we show suitable restrictions that relate to the existing
definitions for static [14] and partially dynamic [19,43] group signatures. We sketch
how the schemes [49,53] based on revocation lists satisfy our definitions or can be
modified to satisfy them and also show how the accountable signatures of [7] yield fully
dynamic group signatures following a different design paradigm.

2. Definitions for Fully Dynamic Group Signatures

Notation. We write x ← S for sampling an element x from the set S, where unless
otherwise specified we assume the sampling is uniform at random. We write x ← A(a)

for an algorithm A that runs on input a and outputs x . When an algorithm is invoked
several times and keeps state between invocations, we may explicitly refer to the state
stA as an additional input and write x ← A(a; stA). A simple example is a single
invocation of a probabilistic algorithm that may run in two steps where it first samples
randomness r that it stores in its state and then runs the rest of the algorithm x ← A(a; r)
deterministically. We abbreviate deterministic polynomial time DPT and probabilistic
polynomial time PPT.
Algorithms may interact with each other. For algorithms A and B, (x; y) ←

〈A(a); B(b)〉 denotes the joint execution of A (with input a) and B (with input b)
where at the end A outputs x and B outputs y. Delving into the details of the interaction,

Foundations of Fully Dynamic Group Signatures 1827

it may take place over several rounds during which the algorithms sendmessages to each
other and after which they halt and return their outputs. For an interactive algorithm, a
move in the protocol is generated as (out; M ′) ← A(M), where M is the message just
received from the other participant or M = init if this is the first move in the proto-
col, and M ′ is the message to send to the other participant. We use the convention that
when out is empty (out = ε), it means that A intends for the interaction to continue,
but when out is not empty A will send the last message M ′ (unless empty) and then
terminate the interaction with output out. We note that in the setting of group signatures,
the group manager may be involved in multiple concurrent interactions. The group man-
ager’s state may therefore change between two rounds in any given joint execution. We
write (out; M ′; stA) ← A(M; stA) when we explicitly want to indicate the state of an
algorithm A may be updated.

We use a security parameter λ ∈ N to indicate the desired level of security, with
the intention that the higher it is, the more secure the scheme should be. In general,
when we refer to polynomial time algorithms, we mean that they run in polynomial
time in the security parameter and we therefore often give the security parameter to
algorithmswritten in unary 1λ.We often refer to an adversaryA that is trying to break the
system, and when we define security, we usually want the adversary to have negligible
probability of breaking the scheme. A function f : N → [0; 1] is negligible in the
security parameter λ if f (λ) = λ−ω(1). For two functions, f, g : N → [0; 1] we write
f (λ) ≈ g(λ)when | f (λ)−g(λ)| is negligible.Wemay therefore simply write f (λ) ≈ 0
to indicate a function is negligible, and conversely, we will refer to a function f as being
overwhelming when f (λ) ≈ 1.

We use ⊥ as an error symbol. Algorithms do not return ⊥ unless they explicitly want
to indicate an error. Conversely, we use the symbol � to indicate success. We use ε to
denote the empty string. We sometimes abbreviate a set {1, . . . , n} as [n].

2.1. Fully Dynamic Group Signatures

A fully dynamic group signature (FDGS) scheme involves a set of users who are poten-
tial group members and a group manager GM in charge of issuing and revoking group
membership. The group signature scheme enables group members to sign messages on
behalf of the group in an anonymous way, but in case of abuse the group manager can
revoke the anonymity and open the signature to reveal the signer.
We are interested in the fully dynamic setting where users can join and leave the

group at any time at the discretion of the group manager. In static or partially dynamic
group signatures where members cannot leave it is possible to fix the group information
associated with the group at initialization. For a fully dynamic group, however, there
has to be a way to prevent a revoked member from using her old key to sign messages.
This means the group information associated with the group must change after revo-
cation. We divide the group information into a permanent group public key gpk and
temporary group information infoτ , associated with an index τ referred to as an epoch.
The group information depicts changes to the group; for instance, it could include the
current members of the group (as in accumulator-based constructions) or those who
have been excluded from the group (as in constructions based on revocation lists). As

1828 J. Bootle et al.

in existing models, we assume that anyone can verify the authenticity of the published
group information.
Unlike existing security models for group signatures that assume trusted key genera-

tion, we separate key generation from trusted parameter setup. This allows us to define
stringent security that protects against adversarial group managers who might generate
their keys maliciously. Our definitions can easily be adapted to work for the weaker
setting where the group manager’s keys are generated honestly as in existing models.
We give two flavors of our definition. We start by providing a definition where the

roles of opening signatures and administering group membership are overseen by the
same authority and then generalize the definition to the setting where each of those roles
is overseen by a separate authority.

2.2. Syntax

A fully dynamic group signature schemeFDGS involves a groupmanagerGM and a set
of users. Additionally, there might be the presence of a trusted third party that generates
some initial parameters the schemeuses. The schemeconsists of the following algorithms
and data structures:

• Interactive polynomial time protocol run by GM and a user: Join
• Probabilistic polynomial time algorithms:GSetup,GKGen,UpdateGroup, Sign,
Open

• Deterministic polynomial time algorithms: IsActive, Verify, Judge
• Data structure: Reg

We will now describe in greater detail the data structure and algorithms and their usage
in a FDGS scheme.

Reg: The registry is a data structure,which is filled as users join the group. The group
manager associates any joining group members with session identifiers i = 1, 2, 3,
etc. When user i joins, she is able to store a record regi in the registry. Once a
record is stored, it cannot be changed. The group manager will have read access to
the registry and may store the information and use it during opening when tracing
the originator of a signature.Wemodel access to the registry with the two following
algorithms/oracles:

• ReadReg(i): On input a session identifier i ∈ N, it returns the corresponding
entry in the registry regi. If no record regi is stored, it returns ⊥.

• WriteReg(i, M): On input a session identifier i ∈ N and a message M , it sets
regi := M . This oracle can only be used once for every identifier i, further calls
with the same session identifier are ignored.

One way to instantiate the registry is with a PKI, which is done explicitly in,
e.g., [19]. The registry Reg can be hosted by GM but require each entry regi to
be signed by the user involved in the ith instance of the protocol. Whether one
instantiates the registry with a PKI or in a different way is out of scope for this
article as long as it gives us the desired functionality.

Foundations of Fully Dynamic Group Signatures 1829

GSetup(1λ) → param: There may be a trusted third party that runs this algorithm
to generate public parameters param. In case a trusted setup is not required, this
algorithm can be regarded as simply setting param := 1λ.
GKGen(param) → (outGM; stGM): The group manager uses this algorithm to
generate outGM := (mpk, info0) consisting of the manager’s public key and the
initial group information, and the resulting state stGM of the group manager. The
group public key is gpk := (param,mpk).
Join: To enroll a user as a member, the GMmay run the interactive joining protocol
with her. Their respective algorithms are:

• JoinWriteReg(i,·)
User (M; st) → (out; MGM; st): This algorithm specifies the user’s

execution of the interactive joining protocol with GM. Given an input message
from GM and the user’s internal state st, it returns a message for GM and a
new state. In its first call, the algorithm is executed on initial input (init;gpk).
In each instance of the protocol, the user is allowed a single call to the oracle
WriteReg(i, ·) forwriting into the registration table an entry regi corresponding
to its identifier i. Joining session i terminates after at most k(λ) rounds by a call
returning (gsk; MGM; st), which includes the user’s secret key gski := gsk,
an optional final message for the issuer including a termination message done,
and the user final state. If it terminates with gsk = ⊥, the user will consider
it as a fail to join, and on failure it will always be the case that it ends with
MGM = (done,⊥). After termination, the user will ignore all future inputs to
JoinUser.

• JoinReadReg(i)
GM (i, MGM; stGM) → (outGM; M; stGM): This algorithm specifies

GM’s execution in the interactive joining protocol with a user. ThemanagerGM
keeps track of distinct instances of the protocol using unique identifiers i, which
we without loss of generality assume are numbered 1, 2, 3, etc. The algorithm
receives as input a session identifier i, a message MGM received from the user,
and theGM’s internal state, and it returns a message M for the user interacting
in session i and updates the state stGM. The algorithm has access to the oracle
ReadReg(i) to read the entry regi in the registration table Reg.

1 Each joining
session will terminate after at most a polynomial number of rounds. We let
k(λ) be the maximal number of rounds before termination. Termination will be
indicated in the local output outGM of the manager GM and can be successful
(�) or fail (⊥), and if it fails, the output message will be Mi = (done,⊥). After
termination, GM ignores future calls with the same i.

For conciseness, we will often refer to the user involved in the ith session of the
Join protocol with the manager as user i. We note that the user may not be aware
of her own session identifier i, since she may not be aware of how many other users
are joining or have already joined the group.
UpdateGroup(R; stGM) → (info; stGM): The group manager runs this algorithm
to update the group information, where the set R consists of session identifiers

1We note that after reading regi during a join session, the group manager can opt to store it in stGM. The
group manager may therefore be aware of other entries in the registry and could even build its own internal
copy of a full ReadReg(·) oracle if it is willing to spare the storage.

1830 J. Bootle et al.

associated with users to be revoked. The algorithm returns new public group infor-
mation info and updates the state of GM. The group information info may or may
not depend on the set of newly joined members of the group, which the group man-
ager records in its internal state. The group information info is intended as group
information pertaining to the group, and we will in general assume anybody may
have access to the sequence info0, info1, etc.; the group manager creates during the
lifetime of the group signature scheme.
IsActive(i, τ, stGM) → 1/0: The Join protocol and the UpdateGroup algorithm
describe how an honest GM adds and revokes group members. The exact moment
when a member is activated and able to sign is design specific. In some construc-
tions, group members are implicitly activated after successfully terminating the
Join protocols and may even be able to sign with respect to previous epochs; in
others, they are explicitly activated by GM when a new group information infoτ

is published. Consequently, different design choices lead to different time spans
when members are allowed to sign. In order to take into account these differences
in the security definitions without favoring a particular design paradigm, we use
the IsActive procedure, which should be interpreted as the group manager’s policy
for when a member is considered active.
The IsActive algorithm takes as input a session identifier i, an epoch τ associated
with group information infoτ the group manager has published earlier, and the state
of the group manager stGM. We refer to a user as an active member of the group at
epoch τ if and only if the algorithm returns 1. We place the following constraints
on the policies an honest group manager can have for when a user is active:

• If τ is not associated with any infoτ the group manager has published, the
algorithm returns 0.

• If i is not associated with a joining session where the group manager has termi-
nated successfully, the algorithm returns 0.

• If i was revoked when creating infoτ for this epoch or earlier, the algorithm
returns 0.

• If i is associated with a joining session where the group manager ended her part
successfully before infoτ was created, and user i is not revoked at or before
epoch τ , the algorithm returns 1.

Sign(gsk, info,m) → �: Given a user’s group signing key gsk, group information
info, and a message m, the signing algorithm outputs a group signature �.2

Verify(gpk, info,m, �) → 1/0: The verification algorithm checks whether � is a
valid group signature on m with respect to the group information info and outputs
a bit: 1 for accept and 0 for reject.
Open(gpk, stGM, info,m, �) → (i, π): The opening algorithm receives as input
the group public key gpk, the state of the group manager, some public group infor-
mation info, a message, and a signature. It returns a session identifier i together with
a proof π attributing � to user i. If the algorithm is unable to attribute the signature

2We note as a special case that the signing algorithm may be such that it completely ignores info, which
potentially may make it faster. This speed advantage is similar to the efficiency the signer may have in group
signatures with verifier-local revocation where only verifiers receive information about which members are
revoked.

Foundations of Fully Dynamic Group Signatures 1831

to a particular group member, it returns (⊥, π) to indicate that it could not attribute
the signature.
Judge(gpk, info, reg,m, �, π) → 1/0: The judge algorithm checks the validity
of a proof π attributing the signature � on m w.r.t. group information info to a user
with registry record reg. It outputs 1 for accept and 0 for reject.

Separating the Role of Group Manager and Opening Authority. Following the sug-
gestion of Camenisch and Michels [26], Bellare et al. [19] separate the group man-
ager role we described above into two parts: a group manager GM (who they call the
Issuer) administrating group membership and an opening authority OA (who they call
the Opener) capable of tracing the signer of a message. There are natural settings where
such a division of roles may be called for; an organization may, for instance, consider
group management the task of the human resources department and opening signatures
the domain of the fraud department. While the separation of the group manager and
opening authority roles complicates definitions a little, they also have the advantage
of permitting more fine-grained security notions that allow for adversarial behavior in
either the group manager or the opening authority.
When separating out the role of the opening authority, the syntax of a group signature

scheme changes. Key generation can now be seen as a joint process that involves both
the group manager and the opening authority. Sometimes it may be desirable to mini-
mize interaction and allow authorities to generate their own keys independently, but for
maximal generality we define key generation as an interactive protocol between them,
where independent key generation is a special case. Another change is that since the
opening algorithm is run by the opening authority, it needs access to read the registry to
know who to attribute a given signature to. We describe these changes below:

GKGen: Togenerate the grouppublic key,GM andOAmay run an interactive protocol.
Their respective algorithms are:

• GKGenGM(MGM; stGM) → (outGM; MOA; stGM): This algorithm specifies the
GM’s execution in the interactive key generation protocol with OA. It gets as
input a message MGM received from OA and the GM’s internal state and returns
an output outGM, a message MOA for OA and updates the state to stGM. The
state of the group manager is initialized as stGM := param. If GM initiates the
protocol, the input message is initialized as MGM := init. In a successful execution
of the protocol, the last call of the algorithm returns a non-empty output value
outGM := (mpk, info0) consisting of the GM’s public key and the initial group
information. After termination, subsequent calls to the algorithm will be ignored.

• GKGenOA(MOA; stOA) → (outOA; MGM; stOA): This algorithm specifies the
OA’s execution in the interactive key generation protocol withGM. It gets as input
a message from GM and the OA’s internal state and it returns an output outGM, a
message MGM for GM and updates the state stOA. The state of OA is initialized
as stOA := param. IfOA initiates the protocol, the input message is initialized as
MOA := init. In a successful execution of the protocol, the last call of the algorithm
returns an non-empty output value outOA := (opk,osk) consisting of the OA’s
public and secret keys. Subsequent calls of the algorithm are ignored.

1832 J. Bootle et al.

We denote an entire execution of the key generation protocol as

((mpk, info0; stGM); (opk,osk)) ← 〈GKGenGM(param);GKGenOA(param)〉

and let gpk := (param,mpk,opk) be the group public key.

OpenReadReg(·)(gpk,osk, info,m, �) → (i, π): The opening algorithm receives as
input the group public key gpk, the opening key osk, group information info, a mes-
sage, and a signature. It returns a session identifier i together with a proof π attributing
� to user i. If the algorithm is unable to open the signature to a particular group
member, it returns (⊥, π) to indicate that it could not attribute the signature.

RelationBetweenDefinitionswithSingle andSeparateAuthorities.Group signatures
with separate and without separate authorities are closely related. Specifically, given a
group signature schemeFDGS for separateGM andOA, we can define a single authority
group signature schemeFDGS ′, where the groupmanagerGM′ first runs the interaction
((mpk, info0; stGM); (opk,osk)) ← 〈GKGenGM(param);GKGenOA(param)〉 and
returns the manager public key mpk′ := (mpk,opk) and sets the state to be st′GM :=
(stGM,osk).Whenever a newuser joins the group,GM has access to an oracle that allows
it to read the corresponding record in the registry, and we imagine GM′ keeps track of
these registry entries so it has its own virtual ReadReg oracle. Whenever GM′ has to
run the opening algorithm, it will then just use osk. All other algorithms in FDGS ′
are defined in the natural way from FDGS. It is easy to see that this transformation
preserves the efficiency of FDGS and we will in the following argue that security is
preserved as well.

2.3. Security Definitions

In the following, we will generally use the index h to refer to the honest user in security
games where she is unique andH to refer to the set of honest users, as appropriate. We
will use dashed text when referring to the separate authority setting. As such, dashed
text should be ignored in the single authority setting.

Definition 1. AnFDGS with the syntax in Sect. 2.2 is a fully dynamic group signature
if it is correct, anonymous, traceable, and non-frameable as defined below.

Correctness.Correctness guarantees that an honest user can enroll in the group and pro-
duce signatures that are accepted by theVerify algorithm. We assume in the correctness
definition that GM is honest and willing to enroll the user, since otherwise it could just
refuse membership. However, there may be other users that are malicious. We therefore
model correctness as an adversarial game, where the adversary acts on behalf of all other
users and we want even in this setting that the honest user can successfully enroll and
sign messages. The correctness definition captures three aspects in this setting:

• An honest user interacting with an honest GM should be able to enroll in at most
k(λ) rounds after which the user terminates successfully with a key gski.

• The group manager should before or in the same round terminate with success
indicator � and activate the user no later than the next update.

Foundations of Fully Dynamic Group Signatures 1833

Experiment: ExpCorr
FDGS,A(λ)

− h := ⊥;N := 0;K := 0; τCurrent := 0; τJoin := ∞; τRevoke := ∞
− param ← GSetup(1λ)
− (mpk, info0; stGM) ← GKGen(param)

−
(
(mpk, info0; stGM); (opk; stA)

)
← 〈GKGenGM(param);A(param)〉

− gpk := (param,mpk)
− gpk := (param,mpk, opk)

− (m, τ) ← AAddHU,SndToM,Update,Write,State(gpk, info0)
− If K = k(λ) and τRevoke = ∞ and τJoin = ∞ return 0
− If h = ⊥ or τ > τCurrent return 1
− If τJoin < τ < τRevoke and IsActive(h, τ, stGM) = 0 return 0
− If IsActive(h, τ, stGM) = 0 return 1
− Σ ← Sign(gskh, infoτ , m)
− Return Verify(gpk, infoτ , m, Σ)

Fig. 1. Correctness game. Dashed text is omitted in the single authority setting, whereas in the separate

authorities setting Dashed text replaces the preceding line.

• Once activated, the user should be able to sign messages.

These three properties should hold as long as the user is not revoked.
In the game ExpCorrFDGS,A (shown in Fig. 1), we grant the adversary A access to

the following oracles, details of which are given in Fig. 2. We maintain several global
counters: h is the index of the joining session initiated by the honest user, N is the
number of users that initiated the Join protocol with GM, and τCurrent, τJoin, τRevoke
is the current epoch, the epoch during which the user created her key, τRevoke is the
time the user was revoked (if ever), and K is the number of calls to the AddHU
oracle, i.e., the number of rounds executed by the honest user in the Join proto-
col.

AddHU(): This oracle adds a single honest user to the group. Each call of the oracle
executes the next round of interaction in the Join protocol between the honest user
and the honest group manager. It returns the exchanged messages as well as the
outputs of both parties. Note that the adversary learns the group signing key of the
honest user at the successful conclusion of the interaction.

SndToM(i, MGM): This oracle allows the adversary to add a corrupt user to the group.
The adversary can deviate from the Join protocol by sending arbitrary messages
MGM to GM. Each oracle call executes the next move of an honest GM on input
message MGM in the ith instance of the Join protocol. It returns theGM’s response
message and output.

Update(R): This oracle allows the adversary to update the public group information.
HereR is the set of the group members to be removed from the group. Calling this
oracle triggers a new epoch.

1834 J. Bootle et al.

A
dd

H
U
()

�I
f
K

=
k
(λ
)
re
tu
rn

⊥
�K

:=
K

+
1

�I
f
h
=

⊥:
◦N

:=
N

+
1;
h
:=

N
◦M

h
:=

in
it
;s
t h

:=
gp

k
◦g

sk
h
:=

⊥
�(
ou

t h
;M

G
M
;s
t h
)

←
Jo

in
W
ri
te
R
eg

(h
,·)

U
se
r

(M
h
;s
t h
)

�I
f
ou

t h
�=

ε:
◦g

sk
h
:=

ou
t h

◦τ
Jo

in
=

τ C
ur
re
nt

◦K
=

k
(λ
)

//
m
ax

im
al

nu
m
be

r
of

ro
un

ds
�(
ou

t G
M
;M

h
;s
t G

M
)

←
Jo

in
R
ea
dR

eg
(h
)

G
M

(h
,M

G
M
;s
t G

M
)

�R
et
ur
n
(o
ut

h
,M

G
M
),
(o
ut

G
M

,M
h
)

St
at
e(
)

�R
et
ur
n
st

G
M

Sn
dT

oM
(i
,M

G
M
)

�I
f
i
/∈
[N

+
1]

∨
i=

h
re
tu
rn

⊥
�I
f
i=

N
+
1:

◦N
:=

N
+
1

�(
ou

t i;
M

i;
st

G
M
)

←
Jo

in
R
ea
dR

eg
(i
)

G
M

(i
,M

G
M
;s
t G

M
)

�R
et
ur
n
(o
ut

i,
M

i)

U
pd

at
e(

R)
�I
f

⊆�
R

[N
]
re
tu
rn

⊥
�(

in
fo
;s
t G

M
)

←
U
p
d
at

eG
ro

u
p
(R

;s
t G

M
)

�τ
C
ur
re
nt

:=
τ C

ur
re
nt
+
1

�I
f
h

∈
R

an
d

τ R
ev
ok

e
=

∞
se
t

τ R
ev
ok

e
:=

τ C
ur
re
nt

�R
et
ur
n
in
fo

τ C
ur
re
nt
:=

in
fo

W
rit
e(
i,

M
)

�I
f
i=

h
or

re
g i

�=
⊥

re
tu
rn

⊥
�S

et
re
g i

:=
M

F
ig
.2

.
O
ra
cl
es

us
ed

in
th
e
co
rr
ec
tn
es
s
ga
m
e.

Foundations of Fully Dynamic Group Signatures 1835

Write(i, M): Given a session identifier and a message M , the oracle sets regi := M .
The oracle can only be used once for every identifier i, further calls to it return
⊥ without producing changes to the registry. It cannot be called on the identifier
corresponding to the joining session initiated by AddHU.

State(): This oracle returns the current GM’s state stGM.

In the correctness definition, we restrict the adversary to enrolling a single honest user
into the group via calling the AddHU oracle. This generalizes to the case of multiple
honest users via a standard hybrid argument.

Definition 2. (Correctness) An FDGS scheme is correct if for any PPT adversary A

Pr[ExpCorrFDGS,A(λ) = 1] ≈ 1

If the definition holds also for unbounded adversaries, we say the FDGS scheme is
statistically correct, and if the probability is exactly 1, we say the FDGS scheme is
perfectly correct.

Variations in Correctness. In the correctness definition, we give the adversary access
to the state of the group manager. This means even if the honest group manager’s secret
data are leaked, an honest user can still enroll and sign messages as long as the group
mr considers her active. A more relaxed but still reasonable definition of correctness
would be to assume the group manager keeps her state secret. In this latter case, it is
then natural to give the adversary access to an opening oracle to model that the group
manager may sometimes trace a member who produced a signature.
Many definitions of correctness found in the literature [14,19,43] encompass not just

that an honestly generated signature is accepted by the verification algorithm but also
add other requirements such as an honestly generated signature should be opened to
the honest signer who generated it. In our definition of correctness, we only require
that honestly generated signatures are accepted and refer to other security definitions
to handle additional requirements that we consider less central. In particular, for the
property of honestly generated signatures opening to the correct signer, it is captured
by the traceability and opening soundness properties we later define, and captured in
a much stronger sense than usually done in correctness definitions since we explicitly
consider opening soundness in a highly adversarial setting instead of just considering
an honest interaction. This leaves a small definitional gap when considering perfect
correctness since traceability and opening soundness may only hold computationally.
However, we find the difference to be insignificant and have therefore deliberately opted
for theminimal and simplest definitionof correctness that only demandshonest generated
signatures to be accepted.

Correctness Under Separate Authorities. In the case where there is a separation between
the groupmanager and an opening authority, we still need the groupmanager to be honest
for correctness to make sense. However, we may want correctness to hold even in the
presence of a malicious opening authority, since it is the sovereign domain of the group
manager to decide who is an active member and should be able to sign messages. In the
dashed version of Fig. 1, we therefore define the correctness game with an adversarial

1836 J. Bootle et al.

Experiment: ExpAnon−b
FDGS,A(λ)

− param ← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk, info0; stGM) ← GKGen(param)
− gpk := (param,mpk)
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg,Update(gpk, info0)

Fig. 3. Anonymity game.

opening authority. It is straightforward to see that given a group signature schemeFDGS
with separateGM andOA satisfying correctness, the transformation from Sect. 2.2 gives
a group signature scheme FDGS ′ with a single group manager that is correct too.

Anonymity. Group signatures should be anonymous and not reveal the identity of
the group member who produced them. Since the group manager has the ability
to trace signers, we must assume the group manager to be honest for anonymity
to hold, but some of the other users may be malicious. We will be relaxing this
assumption when we consider the case of separate authorities in the next para-
graph.
In the game ExpAnon−b

FDGS,A (shown in Fig. 3), we maintain the following counter and
lists: N is the number of users that initiated the Join protocol with GM, H is a list of
honest users, and C is a list of challenge signatures obtained from the challenge oracle.
We give the adversary access to the following oracles, details of which are given in
Fig. 4.

AddHU(i) : This oracle allows the adversary to add honest users to the group by
going through the join protocol one round at a time. The oracle models full key
exposure; both communication and the user’s signing key are leaked to the adver-
sary.

SndToM(i, MGM) : This oracle allows the adversary to add corrupt users to the group.
The adversary can deviate from the Join protocol by sending arbitrary messages
MGM to GM. Each oracle call executes the next move of an honest GM on input
message MGM in the ith instance of the Join protocol. It returns theGM’s response
message and output.

Chalb(info,m, i0, i1) : This a left–right oracle for defining anonymity. It takes as
input some group information info, a message m, and two honest users i0, i1.
It returns a group signature on the message using key gskib for b ← {0, 1}
and the given group information. It is required that both challenge users are
able to sign with respect to info. The adversary can only call this oracle
once.

Open(info,m, �) :Returns the session identifier i of the signer who produced signature
� on m with respect to info, together with a proof π . The oracle cannot be called
on a signature obtained from the Chalb oracle.

ReadReg(i) : Given a session identifier i, it returns the corresponding entry in the
registry regi.

Foundations of Fully Dynamic Group Signatures 1837

A
dd

H
U
(i
)

�I
f
i
/∈
[N

+
1]

re
tu
rn

⊥
�I
f
i=

N
+

1
◦H

:=
H

∪
{i}

◦N
:=

N
+

1
◦M

i
:=

in
it

◦s
t i
:=

gp
k

◦g
sk

i
:=

⊥
�(
ou

t i;
M

G
M
;s
t i)

←
Jo

in
W
ri
te
R
eg

(i
,·)

U
se
r

(M
i;
st

i)
�I
f
ou

t i
�=

ε:
◦g

sk
i
:=

ou
t i

�(
ou

t G
M
;M

i;
st

G
M
)

←
Jo

in
R
ea
dR

eg
(i
)

G
M

(i
,M

G
M
;s
t G

M
)

�R
et
ur
n
(o
ut

i,
M

G
M
),
(o
ut

G
M

,M
i)

R
ea
dR

eg
(i
)

�R
et
ur
n
re
g i

U
pd

at
e(

R)
�I
f

⊆�
R

[N
]
re
tu
rn

⊥
�(
in
fo
;s
t G

M
)

←
U
p
d
at

eG
ro

u
p
(R

;s
t G

M
)

�τ
C
ur
re
nt

:=
τ C

ur
re
nt
+

1
�R

et
ur
n
in
fo

τ C
ur
re
nt
:=

in
fo

Sn
dT

oM
(i
,M

G
M
)

�I
f
i
/∈
[N

+
1]

∨
i∈

H
re
tu
rn

⊥
�I
f
i=

N
+

1:
◦N

:=
N

+
1

�(
ou

t i;
M

i;
st

G
M
)

←
Jo

in
R
ea
dR

eg
(i
)

G
M

(i
,M

G
M
;s
t G

M
)

�R
et
ur
n
(o
ut

i,
M

i)

C
ha
l b
(i
nf
o,

m
,i
0,
i 1
)

�I
f
{i 0

,i
1

H
⊆�}

re
tu
rn

⊥
�Σ

0
←

S
ig
n
(g
sk

i 0
,i
nf
o,

m
)

�Σ
1

←
S
ig
n
(g
sk

i 1
,i
nf
o,

m
)

�I
f
V
er

if
y
(g
pk

,i
nf
o,

m
,Σ

0)
=

0
re
tu
rn

⊥
�I
f
V
er

if
y
(g
pk

,i
nf
o,

m
,Σ

1)
=

0
re
tu
rn

⊥
�C

:=
{(
in
fo

,m
,Σ

b
)}

�R
et
ur
n

Σ
b

O
pe
n(
in
fo

,m
,Σ

)
�I
f
(i
nf
o,

m
,Σ

)
∈

C
re
tu
rn

⊥
�I
f
V
er

if
y
(g
pk

,i
nf
o,

m
,Σ

)
=

0
re
tu
rn

⊥
�R

et
ur
n
O
p
en

(g
pk

,s
t G

M
,i
nf
o,

m
,Σ

).

F
ig
.4

.
O
ra
cl
es

us
ed

in
th
e
an
on
ym

ity
ga
m
e.

1838 J. Bootle et al.

Update(R) : Allows the adversary to prompt a group information update and incre-
ment the epoch. Here R is a set of the group members to be revoked from the
group.

The adversary can interact with honest users and join corrupt users. At some point,
the adversary picks two honest members of the group at a chosen epoch, gets a signature
from one of them, and tries to learn which of them has signed a chosen message. She
wins if she can guess which member signed the message. For simplicity, the adversary
is only allowed a single challenge query, but a standard hybrid argument (similar to that
used in [19]) shows this is equivalent to seeingmany challenge signatures. Our definition
covers full key exposure attacks by allowingA to learn the secret keys of all users in the
group.

Definition 3. (Anonymity) An FDGS scheme is anonymous if for all PPT adversaries
A the following advantage is negligible

AdvAnonFDGS,A(λ) :=
∣
∣
∣Pr[ExpAnon−0

FDGS,A(λ) = 1] − Pr[ExpAnon−1
FDGS,A(λ) = 1]

∣
∣
∣ .

Variations in Anonymity. Our definition of anonymity corresponds to what Bellare et
al. [14] call full anonymity. Their usage of full anonymity emphasizes that anonymity
holds even in the presence of an adversary that sees the signing keys of honest users and
has access to an opening oracle. Our definition captures full anonymity, as the adversary
sees not only the signing key of every honest user, but she also sees the entire joining
transcript. Full anonymity gives strong security guarantees since it ensures that even if
a user’s secret key is leaked her past or future signatures still do not reveal her identity.
Group signatures with full anonymity imply the existence of IND-CCA secure public-

key encryption [4,23]. The anonymity notion therefore has to be relaxed if we want to
build group signatures based on one-way functions as is done in [23]. Such a relaxation
can consist in not giving outi to the adversary in the AddHU oracle but instead give the
adversary access to a signing oracle that will allow it to get signatures from honest users
on any message of its choosing.
Boneh et al. [5] define another relaxed formof anonymitywhere the adversary does not

have access to the Open oracle. This relaxation is analogous to the distinction between
IND-CPA and IND-CCA secure public-key encryption, and indeed, they refer to the
notion as CPA-anonymity.

Anonymity Under Separate Authorities. Let us now consider the case where we sepa-
rate the roles of managing the group, GM, and the role of opening signatures, OA. For
anonymity to hold, we need the opening authority to be honest; however, we may desire
security against a malicious groupmanager.We give the corresponding anonymity game
in Fig. 5. We observe that the oracles the adversary has access to are different because
when the adversary runs the group manager it can directly manage the joining inter-
action with honest users, simulate the enrollment of corrupt users, and compute group
information updates by itself. Therefore, we remove the Update,SndToM oracles and
replace the AddHU oracle with an SndToU oracle that lets the adversarially controlled
group manager communicate with an honest user trying to join the group.

Foundations of Fully Dynamic Group Signatures 1839

Experiment: ExpAnon−b
FDGS,A(λ)

− param ← GSetup(1λ);N := 0; C := ∅
−

(
(mpk; stA); (opk, osk)

)
← 〈A(param);GKGenOA(param)〉

− gpk := (param,mpk, opk)
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk; stA)

Fig. 5. Anonymity game for separate GM and OA.

SndToU(i, Mi)
� If i /∈ [N + 1] return ⊥
� If i = N + 1:

◦ N := N + 1
◦ Mi := init
◦ sti := gpk

� (outi;MGM; sti) ← JoinWriteReg(i,·)
User (Mi; sti)

� If outi �= ε ∧ outi �= ⊥ :
◦ gski := outi

� Return (outi, MGM)

ReadReg(i)
� Return regi

Chalb(info, m, i0, i1)
� If {i0, i1 ⊆�} [N] return ⊥
� Σ0 ← Sign(gski0 , info, m)
� Σ1 ← Sign(gski1 , info, m)
� If Verify(gpk, info, m, Σ0) = 0 return ⊥
� If Verify(gpk, info, m, Σ1) = 0 return ⊥
� C := {(info, m, Σb)}
� Return Σb

Open(info, m, Σ)
� If (info, m, Σ) ∈ C return ⊥
� If Verify(gpk, info, m, Σ) = 0 return ⊥
� Return OpenReadReg(gpk, osk, info, m, Σ)

Fig. 6. Oracles used in the anonymity game for separate GM and OA.

Let FDGS be a group signature scheme with separate GM and OA with full
anonymity, and let FDGS ′ be the resulting single authority group signature scheme
resulting from the transformation given in Sect 2.2. Then,FDGS ′ is anonymous accord-
ing to the single authority definition because an FDGS adversary can as a special case
run an honest GM algorithm and simulate everything that happens in an attack against
FDGS ′. In particular, by runningGM honestly, it can simulate the SndToM oracle and
use the SndToU oracle to build a simulated AddHU oracle (Fig. 6).

Traceability. Traceability protects the group manager by ensuring that all signatures
that are valid for a given epoch can be opened to an active member of the group. In the
traceability game ExpTraceFDGS,A shown in Fig 7, we maintain a counter N for the number
of users that initiated the Join protocol with GM. The adversary A has access to the
following oracles, details of which are given in Fig. 8.

SndToM(i, MGM) : This oracle allows the adversary to add corrupt users to the group.
She can deviate from the Join protocol by sending arbitrary messages MGM toGM.
Each oracle call executes the next move of an honest GM on input message MGM
in the ith instance of the Join protocol. It returns the GM’s output and response
message.

Update(R) : This oracle allows the adversary to trigger a group information update
and increment the epoch. Here R is the set of the group members to be removed
from the group.

1840 J. Bootle et al.

Experiment: ExpTrace
FDGS,A(λ)

− param ← GSetup(1λ);N := 0; τCurrent := 0
− (mpk, info0; stGM) ← GKGen(param)

−
(
(mpk, info0; stGM); (opk, osk)

)
← 〈GKGenGM(param);GKGenOA(param)〉

− gpk := (param,mpk)
− gpk := (param,mpk, opk)

−
(
m, Σ, τ

)
← ASndToM,Update,WriteReg,Open,State(gpk, info0)

−
(
m, Σ, τ

)
← ASndToM,Update,WriteReg,State(gpk, info0, osk)

− If Verify(gpk, infoτ , m, Σ) = 0 return 0
− (i, π) ← Open(gpk, stGM, infoτ , m, Σ)

− (i, π) ← OpenReadReg(gpk, osk, infoτ , m, Σ)
− If IsActive(i, τ, stGM) = 0 return 1
− If Judge(gpk, infoτ , regi, m, Σ, π) = 0 return 1
− Return 0.

Fig. 7. Traceability game. Dashed text is omitted in the single authority setting, whereas in the separate

authorities setting Dashed text replaces the preceding line.

SndToM(i, MGM)
� If i /∈ [N + 1] return ⊥
� If i = N + 1:

◦ N := N + 1
� (outi;Mi; stGM) ← JoinReadReg(i)

GM (i, MGM; stGM)
� Return (outi, Mi)

WriteReg(i, M)
� If regi �= ⊥ return ⊥
� regi := M

Update(R)
� If ⊆�R [N] return ⊥
� (info; stGM) ← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent := info

Open(info, m, Σ)
� If Verify(gpk, info, m, Σ) = 0 return ⊥
� Return Open(gpk, stGM, info, m, Σ)

� Return OpenReadReg(gpk, osk, infoτ , m, Σ)

State()
� Return stGM

Fig. 8. Oracles used in the traceability game. Dashed text is omitted in the single authority setting, whereas

in the separate authorities setting Dashed text replaces the preceding line.

WriteReg(i, M) :Given a session identifier and amessageM , the oracle sets regi := M .
The oracle can only be used once for every identifier i.

Open(info,m, �) :Returns the session identifier i of the signer who produced signature
� on m with respect to info, together with a proof π .

Definition 4. (Traceability) An FDGS scheme is traceable if for all PPT adversaries
A, the following advantage is negligible

AdvTraceFDGS,A(λ) := Pr[ExpTraceFDGS,A(λ) = 1].

Foundations of Fully Dynamic Group Signatures 1841

Variations in Traceability. Bellare et al. [14] defined traceability purely with respect
to identifying a signer but did not require a proof of correct opening. Bellare et al. [19]
included the use of a proof for correct opening that can be verified by anybody using the
Judge algorithm. If we trust the group manager instead of requiring a proof of correct
opening, the game in Fig. 7 can be simplified by eliminating the proof and the Judge
algorithm.
By necessity, the group manager needs to be at least partially trusted since otherwise

it can just enroll some dummy member that can then sign arbitrary messages and act as
a scapegoat. However, we have defined traceability such that it holds even if the honest
group manager’s secret state is leaked. A reasonable relaxation of our definitions would
be to trust the group manager to keep its state secret, in which case we would remove
the State oracle.

Traceability Under Separate Authorities. Let us consider the case where we separate
the roles of group manager and opening authority. The opening authority is the primary
stakeholder that wants to ensure signers can be traced. However, we define security
strongly by requiring traceability even in case its secret opening key is leaked. As
in the single authority setting, we still need to have some trust in the group man-
ager to keep track of who is active in the group and not to enroll dummy mem-
bers, however, again we opt for a strong definition of security where its state may be
leaked.
The two games for traceability are very similar, and it is easy to see that the transfor-

mation in Sect. 2.2 of an FDGS for separate GM and OA to a single group manager
scheme FDGS ′ preserves traceability.
Non-frameability. Non-frameability is a security notion that says even if the rest of
the group as well as the group manager are fully corrupt, they cannot falsely attribute
a signature to an honest member who did not produce it. In the non-frameability game
ExpNon−Frame

FDGS,A shown in Fig. 9, we grant the adversary access to the oracles described
below and detailed in Fig. 10, and we keep a global list S of signatures produced by an
honest user. We note that the adversary controls the group manager and hence session
identifiers no longer carry much meaning the adversary can pretend the user has any
session identifier. Instead, without loss of generality we simply identify the honest user
with a generic record reg and require that only the honest user is able to write in this
record.

SndToHU(Mh) : This oracle allows the adversary to interact with a single hon-
est user in an instance of the join protocol. Each call executes the next move
of the honest user on input a message Mh provided by the adversary (playing
the role of the corrupt group manager) and returns the user response message.
The user may write a message into the register using oracle Write, which can
be accessed only once by the user and reveals the register entry to the adver-
sary. The user output outh, i.e., the signing key, is not disclosed to the adver-
sary.

SignHU(info,m) :This oracle is used by the adversary against non-frameability to
obtain signatures from an honest groupmember h added to the group viaSndToHU
calls. It returns a group signature on the messagem using key gskh and group infor-
mation info.

1842 J. Bootle et al.

Experiment: ExpNon−Frame
FDGS,A (λ)

− param ← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA) ← A(param)
− (mpk, opk; stA) ← A(param)
− gpk := (param,mpk)
− gpk := (param,mpk, opk)

−
(
m, Σ, π, info

)
← ASndToHU,SignHU(stA)

− If Verify(gpk, info, m, Σ) = 0 return 0
− If (info, m, Σ) ∈ S return 0
− Return Judge(gpk, info, reg, m, Σ, π)

Fig. 9. Non-frameability game. Dashed text is omitted in the single authority setting, whereas in the separate

authorities setting Dashed text replaces the preceding line.

SndToHU(Mh)
� If h = ⊥:

◦ h := �:
◦ Mh := init
◦ sth := gpk

� (outh;MGM; sth) ← JoinWrite(·)
User (Mh; sth)

� If outh �= ε set gskh := outh
� Return MGM

SignHU(info, m)
� If gskh = ⊥ return ⊥
� Σ ← Sign(gskh, info, m)
� S := S ∪ {(info, m, Σ)}
� Return Σ

Write(M)
� Set reg := M
� Send M to A
� Ignore future calls

Fig. 10. Oracles used in the non-frameability game.

Definition 5. (Non-frameability) An FDGS scheme is non-frameable if for all PPT
adversaries A, the following advantage is negligible

AdvNon−Frame
FDGS,A (λ) := Pr[ExpNon−Frame

FDGS,A (λ) = 1].

In our definition of non-frameability, the adversary controls the group manager dur-
ing the key generation process. Thus, our definition is stronger than existing definitions,
which only allow the group manager to be corrupted after the group keys have been
honestly generated.
We allow only a single honest user in the group and ask the adversary to frame her. It

can be shown that this implies the more general case involving several honest users in
the group by a standard hybrid argument since the adversary can simulate the actions of
additional honest users.

Foundations of Fully Dynamic Group Signatures 1843

Variations in Non-frameability. While traceability still makes sense without proofs
and the Judge algorithm, non-frameability does not since it is about whether a corrupt
group manager would be able to prove instead of just falsely accusing an honest user
of having signed a message. If we consider the setting with no proofs and no Judge
algorithm, we can therefore completely eliminate the non-frameability notion from our
definitions.

Non-frameability Under Separate Authorities. In the dashed version of Fig. 9, we give a
variation in the non-frameability game suitable for the setting where the roles of group
manager and opening authority are separated. Since both are under adversarial control,
the game is equivalent to the previous non-frameability game where the group manager
has both roles, so it is easy to see the transformation from Sect. 2.2 of a two-authority
FDGS into a single authority FDGS ′ preserves non-frameability.

2.4. Additional Security Definitions

In addition to the core security properties correctness, anonymity, traceability, and non-
frameability, a group signature scheme may have additional security guarantees. In the
above definitions, the opening provided by either the group manager or the opening
authority can be generally thought of as a deterrent against members misbehavior. It is
not hard, however, to envision applications in which openings could be used to positive
benefit for the members. In such scenarios, it may become crucial to prevent an attacker
exploiting the opening mechanism to her own advantage rather than to elude it.

Opening Binding. Opening binding3 defined by Sakai et al. [59] in the context of par-
tially dynamic group signatures guarantees that even if all authorities and users collude
they should not be able to produce a valid signature that can be selectively attributed to
different members. Consider, for instance, a contest to find the best stock market analyst.
Group signatures are used to sign stock market predictions by the experts, who should
remain anonymous in order not to influence the markets, and later, we use the opening
algorithm in order to tally up who is the best expert. There may be a financial incentive
to become the leading expert, so we could imagine a collusion where an “expert" and
a dummy “novice" enroll and then collaborate to attribute all correct predictions to the
“expert" and all wrong predictions to the “novice."
We describe the opening binding game in Fig. 11, where the goal of the adversary is to

create a signature and two distinct attributions to who signed it. We consider a strongly
adversarial setting, where both the authorities and users may be adversarial but want the
guarantee that each signature must be attributed to a unique record in the registry.

Definition 6. (Opening Binding) An FDGS scheme is opening binding if for all PPT
adversaries A

AdvOpening−Bind
FDGS,A (λ) := Pr[ExpOpening−Bind

FDGS,A (λ) = 1] ≈ 0.

3Sakai et al. [59] refer to this notion as opening soundness.

1844 J. Bootle et al.

Experiment: ExpOpening−Bind
FDGS,A (λ)

− param ← GSetup(1λ)
− (mpk, info, m, Σ, reg, π, reg′, π′) ← A(param)
− (mpk, info, opk, m, Σ, reg, π, reg′, π′) ← A(param)
− gpk := (param,mpk)
− gpk := (param,mpk, opk)
− If Verify(gpk, info, m, Σ) = 0 return 0
− If Judge(gpk, info, reg, m, Σ, π) = 0 return 0
− If Judge(gpk, info, reg′, m, Σ, π′) = 0 return 0
− If reg �= reg′ return 1, else return 0

Fig. 11. Opening binding game. Dashed text is omitted in the single authority setting, whereas in the separate

authorities setting Dashed text replaces the preceding line.

Opening Soundness. Consider again the example of a competition to determine who
is a the best stock market prediction expert, this time from the perspective of an honest
expert. It would be problematic if the opening of her signature did not point to herself
but instead attributed it to somebody else. The worst-case scenario here is that dishonest
authorities are collaborating with a malicious user to attribute an honest user’s signature
to a malicious user instead.4

We define the opening soundness experiment in Fig. 12, where the adversary is trying
to attribute a signature � of an honest user to a different registry. The experiment uses
an oracle to enroll an honest user and an oracle that provides an honestly generated
signature described in Fig. 13.

Definition 7. (Opening Soundness) AnFDGS scheme is opening sound if for all PPT
adversaries A

AdvOpening−Sound
FDGS,A (λ) := Pr[ExpOpening−Sound

FDGS,A (λ) = 1] ≈ 0.

Related notions of opening soundness were previously considered by Kiayias and
Yung [43], as a requirement for correctness, and Sakai et al. [59], under the name of
weak opening soundness. Our definition considers highly adversarial settings and thus
captures a much more stringent notion.

4We observe a subtle difference between opening binding and opening soundness. Opening binding pro-
tects against malicious actors trying to create double openable signatures, while opening soundness guarantees
an honest signer can indeed have the signature attributed to her. Neither definition implies the other. It is con-
ceivable one could violate opening binding by creating two distinct openings of the same valid but maliciously
generated signature without violating the attribution of honest signatures to honest signers. It is also conceiv-
able that honest signatures can only be opened in one way but with a malicious setup that unique attribution
does not point to the honest signer.

Foundations of Fully Dynamic Group Signatures 1845

Experiment: ExpOpening−Sound
FDGS,A (λ)

− param ← GSetup(1λ); h = ⊥; reg := ⊥; gskh = ⊥;Σ := ⊥
− (mpk; stA) ← A(param)
− (mpk, opk; stA) ← A(param)
− gpk := (param,mpk)
− gpk := (param,mpk, opk)

− (info∗, reg∗, m∗, π∗) ← ASndToHU,SignHU(stA)
− If Judge(gpk, info∗, reg∗, m∗, Σ, π∗) = 0 return 0
− If reg �= reg∗ return 1, else return 0

Fig. 12. Opening soundness game. Dashed text is omitted in the single authority setting, whereas in the

separate authorities setting Dashed text replaces the preceding line.

3. Static and Partially Dynamic Group Signatures

In the previous section, we defined fully dynamic group signatures. Earlier formal defini-
tions covered static groups, where the membership is fixed at initialization [14], and par-
tially dynamic groups where new members may enroll but without revocation [19,43].
We will now discuss how our definitions for fully dynamic group signatures can be
relaxed to the static and partially dynamic settings, and we will show that aside from
minor differences earlier formal definitions of group signatures can be seen as restrictions
of our definitions to special cases.

3.1. Restriction to Partially Dynamic Signatures

In prior works, the term dynamic group signature refers to the case where new members
may enroll at any time, but members cannot leave the group once they have joined. This
partially dynamic setting is simply a special case of our fully dynamic group signatures,
where we never revoke members, i.e., in all calls to Update we have revocation set
R = ∅.
For some designs of group signatures, the group information does not change as new

members are enrolled. This is unlike the fully dynamic setting, where by necessity the
group information must change to prevent revoked signers from using their current keys
to produce valid signatures. When the group information is immutable, we can eliminate
the UpdateGroup function entirely from our scheme and remove the corresponding
Update oracle in the security definitions. This in turn means we only have one epoch
τ = 0, and also the IsActive policy now simply says that an enrolled user is active
immediately after the group manager considers her joining procedure to have ended
successfully. Since info0 is generated by GM together with the manager public key
mpk, we can without loss of generality assume info0 = ε. For the special case of
partially dynamic group signatures with immutable group information, the definitions
can therefore be simplified by excluding the epoch τ = 0, the public group information
info0 = ε and the UpdateGroup function.

1846 J. Bootle et al.

Sn
dT

oH
U
(M

h
)

�I
f
h
=

⊥:
◦h

:=
�:

◦M
h
:=

in
it

◦s
t h

:=
gp

k
�(
ou

t h
;M

G
M
;s
t h
)

←
Jo

in
W
ri
te
(·)

U
se
r

(M
h
;s
t h
)

�I
f
ou

t h
�=

ε
se
t
gs
k h

:=
ou

t h
�R

et
ur
n
(o
ut

h
,M

G
M

,s
t h
)

Si
gn

H
U
(i
nf
o,

m
)

�Σ
←

S
ig
n
(g
sk

h
,i
nf
o,

m
)

�R
et
ur
n

Σ
�I
gn

or
e
fu
tu
re

ca
lls

W
rit
e(

M
)

�S
et

re
g
:=

M
�S

en
d

M
to

A
�I
gn

or
e
fu
tu
re

ca
lls

F
ig
.1
3.

O
ra
cl
es

us
ed

in
th
e
op
en
in
g
so
un
dn
es
s
ga
m
e.

Foundations of Fully Dynamic Group Signatures 1847

These notational simplifications lead us to the following syntax for a partially dynamic
group signature scheme with immutable group information:

Reg: A data structure with records regi for joining session identifiers i ∈ N is
associated with the following oracles:

• ReadReg(i): Returns regi (or ⊥ if no such record exists).
• WriteReg(i, M): Sets regi := M and ignores further calls with the same i.

GSetup(1λ) → param: A PPT algorithm generating trusted parameters (or 1λ if
there is no trusted setup).
GKGen(param) → (mpk; stGM): A PPT algorithm for group manager key gen-
eration. The group public key is gpk := (param,mpk).
If we separate the roles of group manager GM and opening authority OA, they
instead run the interactive key generation protocol

((mpk; stGM); (opk,osk)) ← 〈GKGenGM(param);GKGenOA(param)〉

and let gpk := (param,mpk,opk) be the group public key.
Join: An interactive protocol for enrolling a user in the group. It is defined by the
following PPT algorithms:

• JoinWriteReg(i,·)
User (M; st) → (out; MGM; st).

• JoinReadReg(i)
GM (i, MGM; stGM) → (outGM; M; stGM).

IsActive(i, stGM) → 1/0 : A DPT algorithm defining when a user is considered
active. In the partially dynamic case, the policy is that the user joining in session i
is active if and only if the group manager terminated with success symbol �.
Sign(gsk,m) → �: A PPT signing algorithm.
Verify(gpk,m, �) → 1/0: A DPT verification algorithm.
Open(gpk, stGM,m, �) → (i, π): A PPT opening algorithm.
If we separate the roles of group manager and opening authority, OA instead uses
the opening key osk to run OpenReadReg(·)(gpk,osk,m, �) → (i, π).
Judge(gpk, reg,m, �, π) → 1/0: A DPT algorithm determining if signature was
correctly attributed to registry record reg.

The corresponding simplified security experiments for partially dynamic group signature
scheme with immutable group information are given in Fig. 14. We list the experiments
for the single group manager setting where we omit the dashed text. The dashed
text replaces the preceding line in the separate authority setting. The oracles are defined
exactly as in the case of fully dynamic group signatures and simplified by excluding the
group information info = ε and epochs τ = 0.

Comparison to Bellare et al. [19] Model. Bellare et al. [19] define partially dynamic
group signatures with separate group manager (called Issuer) and opening authority
(called Opener). Their definition is a specific type of partially dynamic group signature
with immutable group information. We will now describe restrictions to our definition
of partially dynamic group signatures that yields a definition similar to their definition.
Bellare, Shi and Zhang consider a group manager state of the form stGM =

(msk, {stiGM}). The state is therefore compartmentalized to consist of a fixed partmsk,

1848 J. Bootle et al.

Experiment: ExpCorr
PDGS,A(λ)

− param ← GSetup(1λ); h := ⊥; N := 0;K := 0
− (mpk; stGM) ← GKGen(param)

−
(
(mpk; stGM); (opk; stA)

)
← 〈GKGenGM(param);A(param)〉

−gpk := (param,mpk)
− gpk := (param,mpk, opk)

− m ← AAddHU,SndToM,Write,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh, m)
− Return Verify(gpk, m, Σ)

Experiment: ExpAnon−b
PDGS,A(λ)

− param ← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk; stGM) ← GKGen(param)

−
(
(mpk; stA); (opk, osk)

)
← 〈A(param);GKGenOA(param)〉

−gpk := (param,mpk)
− gpk := (param,mpk, opk)

− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

− Return b∗ ← ASndToU,Open,Chalb,ReadReg
(
gpk; stA

)

Experiment: ExpTrace
PDGS,A(λ)

− param ← GSetup(1λ);N := 0
− (mpk; stGM) ← GKGen(param)

−
(
(mpk; stGM); (opk, osk)

)
← 〈GKGenGM(param);GKGenOA(param)〉

−gpk := (param,mpk)
− gpk := (param,mpk, opk)

− (m, Σ) ← ASndToM,WriteReg,Open,State(gpk)

−
(
m, Σ

)
← ASndToM,WriteReg,State(gpk, osk)

− If Verify(gpk, m, Σ) = 0 return 0
− (i, π) ← Open(gpk, stGM, m, Σ)

− (i, π) ← OpenReadReg(gpk, osk, m, Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi, m, Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
PDGS,A (λ)

− param ← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA) ← A(param)
− (mpk, opk; stA) ← A(param)
− gpk := (param,mpk)
− gpk := (param,mpk, opk)

−
(
m, Σ, π

)
← ASndToHU,SignHU

(
stA

)

− If Verify(gpk, m, Σ) = 0 return 0
− If (m, Σ) ∈ S return 0
− Return Judge(gpk, reg, m, Σ, π)

Fig. 14. Security experiments for partially dynamic group signatures. Dashed text is omitted in the single
authority setting, whereas it replaces the preceding line in the separate authorities setting.

Foundations of Fully Dynamic Group Signatures 1849

which we call the manager’s secret key, and other parts stiGM that are specific to the
joining sessions. It is assumed joining session states are independent of each other,
which makes it easier to reason about concurrent joins. In particular, since the joins are
independent of each other, we can under the same assumption of compartmentalized
group manager state define correctness in terms of a single joining session and ignore
any concurrent joining sessions.
Bellare, Shi and Zhang assume a trusted key generation procedure. If we assume keys

to be honestly generated, we can combine the trusted parameter generation and the key
generation protocol into a single algorithm, which first runs the parameter generation
and then honestly executes the interactive key generation protocol. So there is little loss
of generality in assuming a single trusted algorithm that generates all keys.
Taken together, for a partially dynamic group signature scheme with compartmen-

talized group manager state and trusted key generation we can simplify the syntax and
security experiments as described below. A group signature scheme with compartmen-
talized group manager state satisfying our definition in Fig. 14 directly yields a partially
dynamic group signature scheme satisfying the definition in Fig. 15 by letting the key
generation procedure run the setup algorithm and the interactive key generation protocol
honestly and outputting the resulting keys.

Reg : A data structure with records regi for joining session identifiers i = 1, 2, 3,
etc., which is associated with the following oracles:

• ReadReg(i) : Returns regi (or ⊥ if no such record exists).
• WriteReg(i, M) : Sets regi := M and ignores further calls with the same i.

GKGen(1λ) → (gpk,msk,osk): A trusted PPT algorithm for key generation.
Join : An interactive protocol for enrolling a user in the group and is defined by
the following PPT algorithms:

• JoinWriteReg(i,·)
User (M; st) → (out; MGM; st).

• JoinReadReg(i)
GM (i, MGM,msk; stiGM) → (outGM; M; stiGM).

IsActive(i, stGM) → 1/0 : A DPT algorithm defining when a user is considered
active. The policy is that the user joining in session i is active if and only if the
group manager terminated with success symbol �.
Sign(gsk,m) → �: A PPT signing algorithm.
Verify(gpk,m, �) → 1/0: A DPT verification algorithm.
OpenReadReg(·)(gpk,osk,m, �) → (i, π): A PPT opening algorithm.
Judge(gpk, reg,m, �, π) → 1/0: A DPT algorithm determining if signature was
correctly attributed to registry record reg.

The matching simplified security experiments are given in Fig. 15. The oracles are
defined exactly as in the previous definitions.
Bellare, Shi and Zhang assume a confidential communication channel between the

group manager and joining users, while we assume an open channel. A scheme satis-
fying our security definition will of course also satisfy the weaker security definition
that assumes confidential communication channels. Conversely, the group manager and
user can use public-key cryptography to establish a confidential channel, so this defini-
tional difference is immaterial. Bellare, Shi and Zhang also consider a slightly stronger

1850 J. Bootle et al.

Experiment: ExpCorr
BSZ,A(λ)

− (gpk,msk, osk) ← GKGen(1λ) ; h := ⊥; N := 0;K := 0
− m ← AAddHU,Write(gpk,msk, osk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh, m)
− Return Verify(gpk, m, Σ)

Experiment: ExpAnon−b
BSZ,A (λ)

− (gpk,msk, osk) ← GKGen(1λ) ; N := 0;H := ∅; C := ∅
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk,msk)

Experiment: ExpTrace
BSZ,A(λ)

− (gpk,msk, osk) ← GKGen(1λ) ; N := 0
−

(
m, Σ

)
← ASndToM,WriteReg(gpk,msk, osk)

− If Verify(gpk, m, Σ) = 0 return 0
− (i, π) ← OpenReadReg(gpk, osk, m, Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi, m, Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
BSZ,A (λ)

− (gpk,msk, osk) ← GKGen(1λ) ; h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
−

(
m, Σ, π

)
← ASndToHU,SignHU(gpk,msk, osk)

− If Verify(gpk, m, Σ) = 0 return 0
− If (m, Σ) ∈ S return 0
− Return Judge(gpk, reg, m, Σ, π)

Fig. 15. Security experiments for partially dynamic group signatures akin to Bellare et al. [19].

definition of correctness where an honestly generated signature must always open to
identify the signer, which as discussed in Sect. 2.3 is covered in a computational sense
by traceability and therefore in our opinion immaterial.
It can nowbe seen bydirect comparisonwith [19] that the experiments inFig. 15 yield a

security definition very similar to the one given byBellare, Shi andZhang.One remaining
difference is that Bellare, Shi and Zhang explicitly include a public-key infrastructure
where each user has an identity j ∈ N and generates a key pair (upk[j],usk[j]), and
they consider the registry to be under the jurisdiction of the group manager. However,
as discussed in Sect. 2.2 we can eliminate this extra step to simplify definitions and just
consider the registry record to be under control of the user. For concreteness, this can be
done by letting the user generate a key pair (upk,usk) for a digital signature scheme that
is strongly existentially unforgeable under chosen message attack (sEUF-CMA secure)
and create a signature σ on her intended record together with her identity j and public
key upk[j], i.e., in Bellare et al. let the record created when a user is joining in session i

Foundations of Fully Dynamic Group Signatures 1851

be reg[i] = (j,upk[j], regi, σ). The user can now send this record to the groupmanager
when she wants to write to the registry. Since the group manager cannot forge the user’s
signature, this is equivalent to letting the user have one-time write access to the registry,
and given the record index i, it is easy to map to the user identity j . Our definition in
Fig. 15 is mostly similar to the definition of Bellare et al. [19] modulo this difference.

Comparison to Kiayias and Yung [43]. Kiayias and Yung [43] also give a formal
definition of partially dynamic group signatures with immutable group information.
Their definition is in the single authority setting and deviates from our definition and
Bellare et al. [19] by trusting the groupmanager to open honestly and not requiring proofs
of correct attribution to a signer. This simplification is easy to implement given a single
authority partially dynamic group signature; the opening algorithm can simply discard
the proof of correct attribution. Kiayias and Yung assume the key generation process is
honest and they also assume the groupmanager’s internal state can be compartmentalized
as stGM = (msk, {stiGM}), both of which are special cases of our definition.5 In their
model, opening takes place against a public record, so we let the opening algorithm have
access to the registry, while it is of course easy to just incorporate it into the state of the
group manager. We present the syntax and security experiments below.

Reg : A data structure with records regi for joining session identifiers i = 1, 2, 3,
etc., which is associated with the following oracles:

• ReadReg(i) : Returns regi (or ⊥ if no such record exists).
• WriteReg(i, M) : Sets regi := M and ignores further calls with the same i.

GKGen(1λ) → (gpk;msk): A PPT algorithm for group manager key generation.
Join : An interactive protocol for enrolling a user in the group. It is defined by the
following PPT algorithms:

• JoinWriteReg(i,·)
User (M; st) → (out; MGM; st).

• JoinReadReg(i)
GM (i, MGM,msk; stiGM) → (outGM; M; stiGM).

IsActive(i, stGM) → 1/0 : A DPT algorithm defining when a user is considered
active. The policy is that the user joining in session i is active if and only if the
group manager terminated with success symbol �.
Sign(gsk,m) → �: A PPT signing algorithm.
Verify(gpk,m, �) → 1/0: A DPT verification algorithm.
OpenReadReg(gpk,msk,m, �) → i: A DPT opening algorithm.

The matching security experiments are given in Fig. 16. The oracles are defined exactly
as in the previous definitions.
The security definition given in Fig. 16 is close to the security definition given by

Kiayias and Yung. There are some immaterial differences, such as allowing arbitrary
identifier i versus numbering them consecutively, and their specifying that the registry
must have entries of a specific form corresponding to the joining transcript. There is
one significant difference in the anonymity experiment. Here Kiayias and Yung require
indistinguishability of two signers as long as the keys are consistent with the protocol,
i.e., could plausibly have been generated. We on the other hand, just require indistin-

5Kiayias and Yung use very different notation. What they call “state” is what we call “registry.”

1852 J. Bootle et al.

Experiment: ExpCorr
KY,A(λ)

− (gpk,msk) ← GKGen(1λ) ; h := ⊥; N := 0;K := 0
− m ← AAddHU,SndToM,WriteReg,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh, m)
− Return Verify(gpk, m, Σ)

Experiment: ExpAnon−b
KY,A (λ)

− (gpk,msk) ← GKGen(1λ); N := 0;H := ∅; C := ∅
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

Experiment: ExpTrace
KY,A(λ)

− (gpk,msk) ← GKGen(1λ)
− (m, Σ) ← ASndToM,WriteReg,Open,State(gpk)
− If Verify(gpk, m, Σ) = 0 return 0
− i ← OpenReadReg(gpk,msk, m, Σ)
− If IsActive(i, stGM) = 0 return 1, else return 0

Experiment: ExpNon−Frame
KY,A (λ)

− (gpk,msk) ← GKGen(1λ) ; h := ⊥;S := ∅
−

(
m, Σ

)
← ASndToHU,SignHU(gpk,msk)

− If Verify(gpk, m, Σ) = 0 return 0
− If (m, Σ) ∈ S return 0
− If OpenReadReg(gpk,msk, m, Σ) = h return 1, else return 0

Fig. 16. Security experiments for partially dynamic group signatures akin to Kiayias and Yung [43].

guishability for honestly generated keys. In our opinion, the stronger anonymity notion
of Kiayias and Yung is overkill; it is reasonable to assume honest signers will follow the
protocol, and therefore, our anonymity experiment suffices to protect them. Aside from
this difference, inspection reveals that there are mainly notational and terminological
differences between our security definition in Fig. 16 and Kiayias and Yung [43].

3.2. Restriction to Static Group Signatures

In static group signatures, the set of group members is fixed from the start and never
changes. This means the setup procedure is different, since it includes the key genera-
tion for all the group members, so strictly speaking static group signatures are not just a
definitional restriction of dynamic group signatures but a distinct definition altogether.
However, we can easily convert a dynamic group signature into a static one by incor-
porating the join procedure for the users into the key generation process and then at the
end hand them their secret keys.
In our definition of static group signatures, we will replace the group manager key

generation with a trusted combined key generation protocol that also generates keys for

Foundations of Fully Dynamic Group Signatures 1853

the group members. Since the set of group members is static, there are no managerial
operations taking place so the sole purpose of the group manager is to be able to open
group signatures and identify the signer. We therefore only consider the single authority
setting. Also, since membership does not change, the group information does not need
to change either and we only have a single epoch, so we can without loss of generality
fix info0 = ε and τ = 0 and omit them from the definition. We can also eliminate
reference to the IsActive procedure since all group members are automatically consid-
ered active. Finally, since enrollment of users takes place during setup, we can only get
non-frameability if the registry is honestly generated. This means that in all the security
experiments, we must assume trusted key generation, and therefore, we can incorporate
the trusted parameters generation into the key generation procedure.
With these changes in mind, we get the following security experiments for static

group signatures, where N is an arbitrary polynomially bounded function of the security
parameter.

Reg: A data structure with records regi for members numbered i = 1, 2, 3, . . . , N .
It is associated with the following algorithms:

• ReadReg(i): Returns regi (or ⊥ if no such record exists).
• WriteReg(i, M): Sets regi := M and ignores further calls with the same i.

GKGenWriteReg(1λ, N) → (gpk,gsk1, . . . ,gskN ; stGM): A PPT algorithm for
group manager key generation, which depends on the number of desired group
members N . Returns the group public key, secret keys for the users, writes registry
entries reg1, . . . , regN , and sets the state of the group manager (which can be
interpreted as a group manager secret key).
Sign(gsk,m) → �: A PPT signing algorithm.
Verify(gpk,m, �) → 1/0: A DPT verification algorithm.
Open(gpk, stGM,m, �) → (i, π): A PPT opening algorithm.
Judge(gpk, reg,m, �, π) → 1/0: A DPT algorithm determining if a signature
was correctly attributed to registry record reg.

The matching simplified security experiments for static group signature schemes and
oracle Keys are given in Fig. 17. The rest of the oracles are defined exactly as in the case
of fully dynamic group signatures and simplified by excluding the group information
info = ε and epochs τ = 0.

Comparison to static group signature definitions in [14]. Bellare et al. [14] gave
a formal definition of static group signatures where group membership is fixed at the
beginning of the protocol. Their definition does not include proof of correct opening;
they just require the group manager to identify the signer. This can be seen as a special
case of our static group signature scheme, where we omit the Judge algorithm and
simply trust the judgment of the group manager. We still need the core properties of
traceability, i.e., we can open all valid signatures to one of the members, and still need
partial non-frameability, in that a signature cannot be opened to a member who did not
sign it. We present the simplified definition of static group signatures in Fig. 18 and
the syntax below. Oracles are defined as for the previous definitions. Bellare et al. [14]
combine the traceability and non-frameability notions into a combined notion they call

1854 J. Bootle et al.

Experiment: ExpCorr
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGenWriteReg(1λ, N)
− (h, m) ← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N] return 1
− Σ ← Sign(gskh, m)
− Return Verify(gpk, m, Σ)

Experiment: ExpAnon−b
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGenWriteReg(1λ, N)
− Return b∗ ← AOpen,Chalb,ReadReg(gpk, gsk1, . . . , gskN)

Experiment: ExpTrace
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGenWriteReg(1λ, N)
− (m, Σ) ← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk, m, Σ) = 0 return 0
− (i, π) ← Open(gpk, stGM, m, Σ)
− If Judge(gpk, regi, m, Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
SGS,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM) ← GKGenWriteReg(1λ, N)
−

(
m, Σ, π

)
← AReadReg,Keys,SignHU

(
gpk, stGM

)

− If Verify(gpk, m, Σ) = 0 return 0
− If (m, Σ) ∈ S return 0
− Return Judge(gpk, regh, m, Σ, π)

Oracle: Keys(h)
� If h /∈ [N] return ⊥
� Return {gski}i�=h and ignore future calls

Fig. 17. Security experiments for static group signatures.

full traceability. It is not hard to see though that the definition given in Fig. 18 is almost
equivalent to their security definition for static group signatures.

GKGen(1λ, N) → (gpk,gsk1, . . . ,gskN ; stGM): A PPT algorithm for group
manager key generation, which depends on the number of desired group members
N . Returns the group public key, secret keys for the users, and sets the state of the
group manager (which can be interpreted as a group manager secret key).
Sign(gsk,m) → �: A PPT signing algorithm
Verify(gpk,m, �) → 1/0: A DPT verification algorithm.
Open(gpk, stGM,m, �) → i: A DPT opening algorithm.

If we have a static group signature scheme with proofs of correct opening satisfying
the definition in Fig. 17, then it is easy to convert it into a similar group signature without
proofs of correct opening satisfying the definition in Fig. 18. The group key generation

Foundations of Fully Dynamic Group Signatures 1855

Experiment: ExpCorr
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGen(1λ, N)
− (h, m) ← A(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N] return 1
− Σ ← Sign(gskh, m)
− Return Verify(gpk, m, Σ)

Experiment: ExpAnon−b
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGen(1λ, N)
− Return b∗ ← AOpen,Chalb(gpk, gsk1, . . . , gskN)

Experiment: ExpTrace
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM) ← GKGen(1λ, N)
− (m, Σ) ← A(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk, m, Σ) = 0 return 0
− i ← Open(gpk, stGM, m, Σ)
− If i /∈ [N] return 1
− Return 0

Experiment: ExpNon−Frame
BMW,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM) ← GKGen(1λ, N)
−

(
m, Σ

)
← AKeys,SignHU

(
gpk, stGM

)

− If Verify(gpk, m, Σ) = 0 return 0
− If (m, Σ) ∈ S return 0
− If Open(gpk, stGM, m, Σ) = h return 1, else return 0

Fig. 18. Security experiments for static group signatures akin to Bellare et al. [14].

algorithm can include registry record regi in the secret signing key gski , and the group
manager state stGM may include the entire registry (we could in principle instead include
the registry information in the group public key, but this might lead to an undesirable
increase in the size of gpk). When the Open algorithm is called, it runs the original
opening algorithm to get (i, π), verifies the proof using the Judge algorithm, and returns
i. It follows from the security definitions in Fig. 17 that this simple modification leads
to a static group signature scheme without proof of correct opening that satisfies the
definitions in Fig. 18.

4. On the Security of Some Existing Schemes

In this section, we look at existing constructions of fully dynamic group signatures
and discuss their security in our model. Different design paradigms can use the group
information in different ways. For example, the manager can use the group information
to store the list of the active members, include an accumulator, or provide lists of the

1856 J. Bootle et al.

users that have been revoked. The way the group information is used can also affect the
timespan users are considered active, i.e., the set of epochs in which users are entitled
to sign. In our model, this is configured by specifying the IsActive policy, which spells
out the conditions governing the activation of a user. We can thus compare different
constructions based on their IsActive policy.
In [7], Bootle et al. gave a generic construction of group signatures from accountable

ring signatures. We start by showing that their generic construction is secure in the
stronger variant of ourmodel, namely with respect to separate authorities and adversarial
key generation.We then look at some constructions based on revocation lists [48,49,53].
These implicitly use a weaker IsActive policy than allowed by the model and thus
achieve a slightly weaker notion of traceability. While the small definitional gap may
not necessarily constitute an issue for the applications, we show that small changes to
the constructions allow for stronger policies.

4.1. Bootle et al. Scheme [7]

Bootle et al. [7] gave a generic construction of accountable ring signatures, where every
signature can be traced back to a user in the ring. Differently from group signatures,
accountable ring signatures lack appointed authorities. Instead signers choose their des-
ignated opening authority at the time of signing. Bootle et al. [7] outlined how to obtain
fully dynamic group signatures (with a single authority) from accountable ring signa-
tures. In addition, they gave an efficient instantiation in the random oracle model based
on the DDH assumption. Their instantiation yields signatures of logarithmic size (in the
size of the ring), while signing is quasi-linear, and signature verification requires a linear
number of operations. Bootle et al. [7] instantiation is in some settings more efficient
than existing group signature schemes based on standard assumptions.
In their generic construction, each user has a secret key and an associated verification

key. To sign, users first encrypt their verification key. Then, via a membership proof, they
provide a signature of knowledge showing that the verification key belongs to the ring,
and that they know the corresponding secret key.We now reproduce their definitions and
prove their construction is secure in our separate authorities model. Toward this end, we
take the liberty of fleshing out some group management specific details that [9] did not
fully specify, e.g., a two-party joining protocol. Other designs are also possible, and we
will discuss the key points after the security proof.

Accountable Ring Signatures. Bootle et al. [7] define an accountable ring signa-
ture scheme over a PPT setup ARSSetup as a tuple of polynomial time algorithms
(ARSOKGen,ARSUKGen,ARSSign,ARSV f y,ARSOpen,ARSJudge).

ARSSetup(1λ): Given the security parameter, produces public parameters pp used
(sometimes implicitly) by the rest of the scheme. The public parameters define
key spaces PK , DK , V K , SK which are for openers’ and users’ keys, respec-
tively, with efficient algorithms for sampling and deciding membership.

ARSOKGen(pp): Given the public parameters pp, produces a public key pk ∈ PK
and secret key dk ∈ DK for an opener. Without loss of generality, we assume dk
defines pk deterministically andwrite pk = ARSOKGen(pp, dk)whencomputing
pk from dk.

Foundations of Fully Dynamic Group Signatures 1857

Experiment: ExpCorr
ARS,A(λ)

− pp ← ARSSetup(1λ)
− (vk, sk) ← ARSUKGen(pp)
− (pk,R, m) ← A(pp, sk)
− σ ← ARSSign(pk, sk,R, m)
− If pk /∈ PK or R �⊂ V K or vk /∈ R return 1
− If ARSV fy(pk,R, m, σ) = 1 return 1
− Return 0

Fig. 19. Correctness game.

ARSUKGen(pp): Given the public parameters pp, produces a verification key vk ∈ V K
and a secret signing key sk ∈ SK for a user. We can assume sk deterministically
determines vk and write vk = ARSUKGen(pp, sk) when computing vk from sk.

ARSSign(pk, sk, R,m): Given an opener’s public key, a user’s secret key, a ring (i.e.
a set of verification keys), and a message, produces a ring signature σ . The
algorithm returns the error symbol ⊥ if pk /∈ PK , R
⊂ V K , sk /∈ SK or
vk = ARSUKGen(pp, sk) /∈ R.

ARSV f y(pk, R,m, σ): Given an opener’s public key, a ring, amessage, and a signature,
returns 1 if accepting the signature and 0 otherwise. We assume the algorithm
always returns 0 if pk /∈ PK or R
⊂ V K .

ARSOpen(dk, R,m, σ): Given an opener’s secret key, a ring, a message, and a ring
signature, returns a verification key vk and a proof ψ that the owner of vk pro-
duced the signature. If dk /∈ DK or σ is not a valid signature using pk =
ARSOKGen(pp, dk), the algorithm returns ⊥.

ARSJudge(pk, R, vk,m, σ, ψ): Given an opener’s public key, a ring, a verification key,
a message, a ring signature, and an opening proof, returns 1 if accepting the proof
and 0 otherwise. We assume the algorithm returns 0 if σ is invalid or vk /∈ R.

Accountable ring signatures should be correct, anonymous, traceable, fully unforge-
able, and tracing sound. We recall [7] definitions of all these properties as follows
(Fig. 19).

Definition 8. (Correctness) An accountable ring signature scheme is correct if for all
PPT adversaries A,

Pr[ExpCorrARS,A(λ) = 1] ≈ 1.

Anonymity ensures that a signature does not reveal the identity of the ring member
who produced it without the opener explicitly wanting to open the particular signature.
The definition below implies anonymity against full key exposure attacks [13] as in the
game the adversary is allowed to choose the secret signing keys of the users (Figs. 20,
21).

1858 J. Bootle et al.

Experiment: ExpAnon
ARS,A(λ)

− QSign := ∅
− pp ← ARSSetup(1λ)
− b ← {0, 1}
− (pk, dk) ← ARSOKGen(pp)
− b∗ ← AChalb,Open(pp, pk)
− If b = b∗ return 1
− Return 0

Fig. 20. Anonymity game.

Chalb(R,m, sk0, sk1)
� σ0 ← ARSSign(pk, sk0, R, m)
� σ1 ← ARSSign(pk, sk1, R, m)
� QSign := ((R,m, σ0), (R,m, σ1))
� If σ0 = ⊥ or σ1 = ⊥ return ⊥
� Return σb

Open(R,m, σ)
� If (R,m, σ) ∈ QSign return ⊥
� Return ARSOpen(dk, R, m, σ)

Fig. 21. Oracles used in the anonymity game.

Definition 9. (Anonymity) An ARS scheme is anonymous if for all PPT adversaries
A,

Pr[ExpAnonARS,A(λ) = 1] ≈ 1

2

• Chalb: is an oracle that the adversary can only call once. On query (R,m, sk0, sk1),
it produces signatures on m for ring R under both keys and, if successful, returns
σb, otherwise it returns ⊥.

• Open: is an oracle that on a query (R,m, σ) returns ARSOpen(dk, R,m, σ). If σ

was obtained by calling Chalb on (R,m, ·, ·), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring member
who produced a signature and that she is able to produce a valid proof for her decision
(Fig. 22).

Definition 10. (Traceability) An accountable ring signature scheme is traceable if for
all PPT adversaries A, the following advantage is negligible

AdvTraceARS,A(λ) := Pr[ExpTraceARS,A(λ) = 1].

Full unforgeability ensures that an adversary, who may control the opener, can neither
falsely accuse an honest user of producing a ring signature nor forge ring signatures on
behalf of an honest ring. The former should hold even when all other users in the ring
are corrupt (Figs. 23, 24).

Foundations of Fully Dynamic Group Signatures 1859

Experiment: ExpTrace
ARS,A(λ)

− pp ← ARSSetup(1λ)
− (dk, R, m, σ) ← A(pp)
− pk ← ARSOKGen(pp, dk)
− (vk, ψ) ← ARSOpen(dk, R, m, σ)
− If ARSV fy(pk, R, m, σ) = 0 return 0
− If ARSJudge(pk,R, vk, m, σ, ψ) = 1 return 0
− Return 1

Fig. 22. Traceability game.

Experiment: ExpUnforge
ARS,A (λ)

− QUKGen := ∅;SUKGen[·] := ⊥;QRevealU := ∅;QSign := ∅
− pp ← ARSSetup(1λ)
− (pk, vk,R, m, σ, ψ) ← AUKGen,Sign,RevealU(pp)
− If (pk, vk,R, m, σ) ∈ QSign return 0
− If vk ∈ QUKGen \ QRevealU and ARSJudge(pk, R, vk, m, σ, ψ) = 1 return 1
− If R �⊆ QUKGen \ QRevealU or (pk, ·, R, m, σ) ∈ QSign return 0
− If ARSV fy(pk, R, m, σ) = 1 return 1
− Return 0

Fig. 23. Full unforgeability game.

Definition 11. (Full Unforgeability) An ARS scheme is fully unforgeable if for all
PPT adversaries A, the following advantage is negligible

AdvUnforgeARS,A (λ) := Pr[ExpUnforgeARS,A (λ) = 1].

• UKGen: runs (vk, sk) ← ARSUKGen(pp) and returns vk. QUKGen is the set of
verification keys vk that have been generated by this oracle.

• Sign: is an oracle that on query (pk, vk, R,m) checks if vk ∈ R ∩ QUKGen, in
which case returns a signature σ on m under the key corresponding to vk and ring
R. QSign contains the queries and responses.

• RevealU: is an oracle that when queried on vk ∈ QUKGen returns the corresponding
signing key sk. QRevealU is the list of verification keys vk for which the correspond-
ing signing key has been revealed.

Tracing soundness is analogous to our opening binding definition for group signatures
and ensures that a signature cannot trace to two different users in the ring. Namely, only
one person can be identified as the signer even when all users as well as the opener are
fully corrupt (Fig. 25).

1860 J. Bootle et al.

U
K
G
en

�(
v
k
,s

k
)

←
A
R
S U

K
G

en
(p

p
)

�Q
U
K
G
en

:=
Q

U
K
G
en

∪
{v

k
}

�S
U
K
G
en
[v

k
]:
=

sk
�R

et
ur
n

v
k

R
ev
ea
lU

(v
k
)

�I
f
v
k

/∈
Q

U
K
G
en

re
tu
rn

⊥
�Q

R
ev

ea
lU

:=
Q

R
ev

ea
lU

∪
{v

k
}

�R
et
ur
n

S
U
K
G
en
[v

k
]

Si
gn

(p
k
,v

k
,R

,m
)

�I
f
v
k

/∈
Q

U
K
G
en

∩
R

re
tu
rn

⊥
�σ

←
A
R
S S

ig
n
(p

k
,S

U
K
G
en
[v

k
],

R
,m

)
�Q

Si
gn

:=
Q

Si
gn

∪
{(

p
k
,v

k
,R

,m
,σ

)}
�R

et
ur
n

σ

F
ig
.2
4.

O
ra
cl
es

us
ed

in
th
e
fu
ll
un
fo
rg
ea
bi
lit
y
ga
m
e.

Foundations of Fully Dynamic Group Signatures 1861

Experiment: ExpTrace−sound
ARS,A (λ)

− pp ← ARSSetup(1λ)
− (pk, R, m, σ, vk1, ψ1, vk2, ψ2) ← A(pp)
− If vk1 = vk2 return 0
− If ARSJudge(pk,R, vk1, m, σ, ψ1) = 0 return 0
− If ARSJudge(pk,R, vk2, m, σ, ψ2) = 0 return 0
− Return 1.

Fig. 25. Traceability game.

Definition 12. (Tracing Soundness) An ARS scheme is traceable if for all PPT adver-
saries A, the following advantage is negligible

AdvTrace−sound
ARS,A (λ) := Pr[ExpTrace−sound

FDGS,A (λ) = 1].

Security in Our Model. Next we show that the [7] construction of a fully dynamic
group signature scheme obtained from an accountable ring signature is secure in our
security model with separate authorities. We note that [7] does not fully specify the
construction, e.g., it does not specify the registration protocol and only consider a single
authority. Therefore, the construction described in Fig. 26 is not unique and alternatives
are possible.
A user initiates a joining session with the group manager by generating a key pair

(vk, sk), using ARSUKGen , and then adds the verification key vk into the registry. The
manager reads the registry entry and checks if the same key had already been registered,
in which case the joining fails. We do not spell out the details of the registry, but we
assume users can write once into the registry and that the manager can read the content
of it. We recall that a registry offering these features can be instantiated with a PKI and
thus we abstract it out to simplify the construction.
The group manager stores the outcome of all the joining sessions as well as the lists

Iτ of active users at each epoch. To activate new members, the manager keeps a list
of users that have joined in the current epoch and updates the group information info,
which triggers a new epoch. The information of the group info consists of the verification
keys of all active members. A group signature consist of an accountable ring signature
using the current information info as the ring and the opening authority public key as the
opener’s key. Our construction of a fully dynamic group signature from an accountable
ring signature is presented in Fig. 26.

Theorem 1. The generic group signature scheme construction from accountable ring
signatures of Fig. 26 satisfies our separate authority definitions for a secure, fully
dynamic group signature scheme, and is additionally opening binding.

Proof. We will use a similar proof strategy for all properties: we will assume the
existence of an adversary A against the corresponding property of the group signature

1862 J. Bootle et al.

GSetup(1λ) → param
� Return pp ← ARSSetup(1λ)

GKGen
� GKGenOA(init; param) → (outOA;MGM)

◦ (opk, osk) ← ARSOKGen(param)
◦ Return ((opk, osk); done)

� GKGenGM(init; param) → (outGM;MOA; stGM)
◦ info0 := ∅;L := ∅; Inew := ∅; I0 := ∅
◦ Return ((param, info0); done; (L, Inew, I0))

gpk := (param, opk)

Join

� JoinWriteReg(i,·)
User (M ; st) → (out;MGM; st)

◦ If M = init:
� (vk, sk) ← ARSUKGen(param)
� Call WriteReg on input vk
� Return (ε; init; sk)

◦ If M = (done, ⊥):
� gsk := ⊥

◦ If M = (done, �):
� gsk := st

◦ Return (gsk; done; st)

� JoinReadReg(i)
GM (i, init; stGM) → (outGM;M ; stGM)

◦ Parse stGM as (L, Inew, I0, . . . , Iτ)
◦ If (i, ·) ∈ L return (ε; done; stGM)
◦ vk := ReadReg(i)
◦ If (∃ j < i s.t. (j, vk) ∈ L) ∨ vk /∈ V K:

� L := L ∪ {(i, ⊥)}
� Return (⊥; (done, ⊥); stGM)

◦ L := L ∪ {(i, vk)}
◦ Inew := Inew ∪ {i}
◦ Return (�; (done, �); (L, Inew, I0, . . . , Iτ))

UpdateGroup(R; stGM) → (info; stGM)
� Parse stGM as (L, Inew, I0, . . . , Iτ)
� Iτ+1 := (Iτ \ R) ∪ Inew

� infoτ+1 := {vki : (i, vki) ∈ L ∧ i ∈ Iτ+1 ∧ vki �= ⊥}
� Return (infoτ+1; (L, ∅, I0, . . . , Iτ+1))

Sign(gsk, info, m) → Σ
� Return Σ ← ARSSign(opk, gsk, info, m)

Verify(gpk, info, m, Σ) → 1/0
� Return ARSV fy(opk, info, m, Σ)

OpenReadReg(gpk, osk, info, m, Σ) → (i, π)
� (vk, π) ← ARSOpen(osk, info, m, Σ).
� If vk �= ReadReg(j) for all j, return (⊥, π)
� i := min{j : vk = ReadReg(j)}
� Return (i, π)

Judge(gpk, info, reg, m, Σ, π) → 1/0
� Return ARSJudge(opk, info, reg, m, Σ, π)

IsActive(i, τ, stGM) → 1/0
� Parse stGM as (L, Inew, I0, . . . , Iτ ′)
� If τ /∈ N ∨ τ > τ ′ return 0
� If ((i, vk) ∈ L ∧ i ∈ Iτ ∧ vk �= ⊥) return 1
� Return 0

Fig. 26. Construction of a fully dynamic group signature from an accountable ring signature [7].

Foundations of Fully Dynamic Group Signatures 1863

scheme. We will then show how to build an adversary B that uses A to break the same
property of the accountable ring signature.
For correctness, let B be the adversary in the correctness experiment of Definition 8.

The adversary receives pp and the secret key sk of the target user. Given pp the adver-
sary, B provides param to A and let her pick the public key opk for the opening
authority of the group signature, while B plays the role of the honest group manager
in the game of Fig. 1. The adversary B generates the initial group information info0
and provides it to A. When simulating AddHU for A, B uses the secret key sk for the
challenge user; note that vk can be efficiently obtained given sk. The oracle calls to
SndToM,Update,Write,State used by A are also simulatable by B which keeps the
internal state of the group manager. Once A returns a message and epoch pair (m, τ),
B retrieves the group information infoτ , consisting of the public keys of active group
members at epoch τ , and returns (opk,m, infoτ). We observe that A only wins the
game of Fig. 1 when either the registration protocol fails to complete successfully for
the target user, or the target user is flagged as inactive even though she has joined and
is not revoked, or if the produced signature fails to verify. The registration of the target
user fails only in caseA already successfully registered the same verification key vk in a
previous session. Since vk is not exposed toA beforeAddHU is called, this corresponds
to guessing the target key vk. Assuming the key space V K is large enough this only
happens with small probability and we can thus assume the target user to successfully
complete the joining protocol. When B updates the group information, the target user
verification key is included in info until explicitly removed by another update. The ver-
ification key can only be removed either by revoking the target user or if the adversary
adds another group member with the same vk and then requests to revoke her. However,
registering the same verification key in a later session of the joining protocol would
cause the new session to fail. The remaining winning condition of A in the game of
Fig. 1 is captured by the last line of Definition 8.

For anonymity, we follow the same strategy: the adversary B plays the game of
Definition 9 and obtains the public parameters pp and a public key pk. Then he proceeds
to simulate the key generation protocol for the group signature (Fig. 5): he lets A to
generate the group manager public key and sets pk as the opening public key of the
opening authority. Note that the key generation protocol in Fig. 26 consists of each
authority independently producing and announcing their own keys. This implies that pk
is sufficient for B to simulate the protocol. Finally, B needs to simulateA’s oracle calls.
For the challenge and opening oracles, this is done by using his own oracles, whereas for
SndToU,ReadReg it can simply answer directly. We note that B will correctly guess
the challenge if and only if A is correct as well.
For traceability, B starts by receiving pp and internally running both sides of the key

generation protocol. He then starts the group signature traceability game of Fig. 7 and
calls A. As B plays the role of the group manager in A’s game, he can directly reply to
her oracle queries. To complete the proof, we examine when A wins her game: it must
be the case that user i is inactive or that the Judge algorithm fails. In the accountable ring
signature definition, the first case folds into the second: i being inactive implies vki /∈ R
which will explicitly cause the judging algorithm to fail. In either case,A succeeding in
the game of Fig. 7 implies B succeeding according to Definition 10.

1864 J. Bootle et al.

For non-frameability, let B play in the full unforgeability game of Definition 11. The
adversary B receives pp and initializes A in the game of Fig. 9, which generates the
group public key gpk. B uses his oracles UKGen and Sign to respond to the queries
of the SndToHU and SignHU, respectively. Adversary B forwardsA’s output together
with the opener public key and the honest user verification key. A wining output by A
in her game will cause B to win via the first branch on his own game: note that B does
not make use of his RevealU oracle and thatA does not output a user identity since she
only includes a single honest user in the group.
Reduction for opening binding is near trivial from tracing soundness:B simply passes

the setup parameters and converts the output of A into a ring. We complete the proof
by pointing out that under the accountable ring signatures definitions ARSJudge implies
correct verification. �

Alternative Constructions. The accountable ring signature of [7,8] describes how one
can construct dynamic group signatures from accountable ring signatures, but it omits
the group management details. To amend this, we specified a simple joining protocol,
but other options are possible. Furthermore, our protocol assumes the existence of an
ideal register which could be instantiated in different ways. We do point out, however,
that for the traceability proof to go through, it is necessary that the manager should not
accept keys that have already being registered. At the same time, it is important that the
registry needs to be robust enough, such that attempts to modifying or copying entries
will fail. The former is captured by our idealization of the registry, which we recall
can be realized with a PKI. The latter is accomplished by considering valid only the
first occurrence of a key in the registry, and ignoring all later occurrences as the group
manager should have rejected the corresponding joining sessions.

4.2. Constructions Based on Revocation Lists

A common approach for designing efficient fully dynamic group signatures is by using
revocation lists. Users interact with the group manager to obtain a certificate for their
group membership. The group information, periodically updated by the manager, con-
sists of a revocation list which stores information about revoked members. To sign, users
have to prove they hold a valid certificate and that they are not part of the set of revoked
users. Examples of efficient schemes following this approach include the ones by Libert
et al. [48,49] and Nakanishi et al. [53].
In these constructions, a user is considered authorized to sign until themanager explic-

itly includes her in the revocation list. However, this means that a user can also sign with
respect to old epochs, including those predating her joining to the group. As the user
was not yet part of the group at that time, it raises the question to whether this represents
an issue for the security of the scheme.
At first glance, this is the dual of a well-known issue with many revocation systems.

If a user is revoked and anonymity is maintained, the revoked user is able to produce
back-dated signatures that still verify. The difference here is that while the revoked
user was authorized to be part of the group for the epoch in question, in the situation
described above, however, the signing user was in fact not part of the group at that time.
If the adversary is able to block the opening of this signature (e.g., via legal action), its

Foundations of Fully Dynamic Group Signatures 1865

existence would implicitly frame the group’s past membership as the signature would
be attributed to them.
The issue resides mainly on the interpretation one gives to the epochs in the lifespan of

the scheme. Namely, whether epochs reference the state of the group at the time the cor-
responding group information was created. Our model does not opt for a specific choice,
as different design paradigms may have different takes on this. To capture different
options, our model includes the IsActive algorithm for spelling out the conditions that
makes a user active. This helps to clear potential ambiguities a construction may have
regarding the timespan with respect to which users are allowed to sign. Moreover, it also
enables to compare the security achieved by different schemes based on the strictness
of their underlying IsActive policy.
The IsActive policy has to satisfy some necessary requirements, imposed by our

model, which ensure the definitions capture the intended security notions. One of these
requirements is that if user i is associated with a joining sessionwhere the groupmanager
ended her part successfully before infoτ was created, and user i is not revoked at or before
epoch τ , the algorithm returns 1. However, the policy does not impose a specific outcome
in case the joining session terminates after the infoτ was created, which could then be
set equal to either 0 or 1. For example, we can include the following condition into the
policy:

• If i is associated with a joining session where the group manager completed her
part after infoτ was created, the algorithm returns 0.

Observe that this requirement is achieved by the policy of the construction in Fig. 26. On
the other hand, this policymay be too strict for constructions following the revocation list
approach, as members can typically sign with respect to epochs predating their enroll-
ment into the group. The violation of the above condition translates into a trivial attack
against traceability: an adversary can simply enroll a user and then return a signature by
this user with respect to an epoch predating her joining epoch. If the signature is valid,
this may represent a breach of traceability because the user is not regarded as active with
respect to that epoch. We notice that in case such a policy was adopted, constructions
such as [48,49,53] would be all susceptible to this attack. For such constructions we can
then replace the above condition with the following one, which was implicitly assumed
in their respective models:

• If i is associated with a joining session where the group manager completed her part
successfully after infoτ was created, and user i is not revoked at or before epoch τ ,
the algorithm returns 1.

Note that the IsActive algorithm receives as input the internal state of the groupmanager;
thus, the outcome of the policy can depend on whether the joining session for user i has
currently terminated. This enables to capture the instant activation of certificate based
constructions, i.e., users become active as soon as they successfully terminate the join
protocol, without requiring further action from the group manager.
Given the above trivial attack, it seems that [48,49,53] can only achieve a slightly

weaker notion of traceability than the construction given in Fig. 26. Whether the dif-
ference on the two notions is substantial may depend on the intended applications of
the primitive. In the following, we briefly recall the [48,49,53] constructions and sug-

1866 J. Bootle et al.

gest some simple modifications to prevent the above trivial attack, which allow them to
achieve traceability with respect to a stronger policy.

Libert et al. Scheme [48]. In [48], users are assigned leaves of a complete binary tree
and given a membership certificate containing a unique tag identifying the user, and a
commitment to the path from the root to the user’s leaf in the tree. Note that the certificate
is not bound to the epoch at which the user joined the group. In fact, users joining does
not change infoτ or the epoch τ itself.

Revocation is based on the subset difference method [56], using disjoint sets Ski ,ui
for i = 1, . . . ,m which cover non-revoked users. Sets are represented by two nodes, a
node ki and one of its descendants node ui , and cover all leaves of the sub-tree rooted
at node ki which are not leaves of the sub-tree rooted at ui . Revocations trigger a new
epoch and the update of infoτ with a new cover.
To sign, the group member anonymously proves that she holds a membership cer-

tificate and that the node indicated by the certificate belongs to one of those sets. More
precisely, the user proves that her leaf is a descendant of node ki but not a descendant
of node ui for some i ∈ [m].
Since user certificates are not bound to epochs and leaves are covered until their cor-

responding users are revoked, members are able to produce valid signatures with respect
to revocation lists preexisting their joining of the group. Therefore, the construction is
susceptible to the previous trivial attack against traceability. A similar argument also
applies to the variant of the scheme given in [49].
A possible countermeasure against this is to regard unassigned leaves as revoked until

they are assigned. In this way, the revocation list is used to store the current state of
the group at a certain epoch. This is simple to do as the scheme bounds the maximum
number of users. We do, however, need to re-examine the number of subsets in the
revocation list required to express this, as the 2|R|−1 bound for |R| revoked users may
now seem impractical. If we assume leaves are allocated sequentially to users, we can
bound the number of subsets by 2|R1| + log(|N \R2|) where R2 is the set of leaves
pending allocation, R1 is the set of leaves allocated to users who were later revoked,
and N the set of all leaves. Thus, our fix is only marginally more expensive than the
base system and much more efficient than a naive analysis would indicate.

Nakanishi et al. Scheme [53]. The scheme of Nakanishi et al. [53] is another certificate-
based scheme in the random oracle model. It achieves constant time for both signing
and signature verification, relative to the size of the group and the number of revoked
users.
A user’s group membership certificate consists of a signature on (x, ID) produced by

the group manager, where x is a secret owned by the user and ID is a unique integer
the manager assigned to her. The group manager can revoke users by issuing revocation
lists infoτ . Each list consists of a sequence of open integer intervals (Ri , Ri+1) signed
by the manager, whose endpoints are all the revoked ID’s. At each epoch τ , a signer
fetches the current infoτ and proves, as part of the signature, that her ID is contained in
one interval of the revocation list. If the ID lies between two revoked users’ identities, it
means it is not an endpoint and so she has not been revoked.

Foundations of Fully Dynamic Group Signatures 1867

Again, verifiers only know of revoked members, not active ones and, similarly to [48],
the time of joining is not taken into account. This allows users to sign with respect to
any epoch prior to them joining the group.
The scheme could be easily immunized against the trivial attack against traceability. A

first solution, as for [48], is to initialize the revocation list with all ID’s of users that have
not joined the group yet. When the manager assigns an ID to a new user, she updates reg
and the revocation list infoτ . This way, the signature size is not affected. On the other
hand, revocation lists are now proportional to the size of the maximum number of users,
instead of the number of revoked users.
An alternative countermeasure requires the group manager to include the joining

epochs in the certificates by signing (x, ID, τjoin), where x is a secret owned by user ID
and τjoin is the joining epoch. A signer then needs to include in the signature a proof that
τjoin is not greater than the signing epoch. To realize the latter, one can use membership
proof techniques from [22,60] which are already used in the original scheme for proving
that the ID lies in an interval (Ri , Ri+1). This would increase the cost of signing and
verifying by only a constant factor. The new membership proof would require the group
manager to provide signatures for every elapsed epoch, which could then be included in
infoτ along with the revocation list.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] G. Ateniese, J. Camenisch, S. Hohenberger, B. de Medeiros, Practical group signatures without random
oracles. IACR Cryptology ePrint Archive (2005)

[2] G. Ateniese, J. Camenisch, M. Joye, G. Tsudik, A practical and provably secure coalition-resistant group
signature scheme, in Advances in Cryptology - CRYPTO (2000)

[3] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo, Structure-preserving signatures and
commitments to group elements. J. Cryptology. 29(2):363–421, (2016)

[4] M. Abdalla, B. Warinschi, On the minimal assumptions of group signature schemes, in ICICS, vol. 3269
of Lecture Notes in Computer Science (2004)

[5] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in Advances in Cryptology - CRYPTO (2004)
[6] E.F. Brickell, J. Camenisch, L. Chen, Direct anonymous attestation, in Conference on Computer and

Communications Security - CCS (2004)
[7] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, C. Petit, Short accountable ring signatures based

on DDH, in Computer Security - ESORICS (2015)
[8] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, Foundations of fully dynamic group signatures, in

Applied Cryptography and Network Security - 14th International Conference, ACNS 2016, Guildford,
UK, June 19-22, 2016. Proceedings (2016)

[9] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, Foundations of fully dynamic group signatures.
IACR Cryptology ePrint Archive (2016)

http://creativecommons.org/licenses/by/4.0/

1868 J. Bootle et al.

[10] P. Bichsel, J. Camenisch, G. Neven, N.P. Smart, B. Warinschi, Get shorty via group signatures without
encryption, in Security and Cryptography for Networks - SCN (2010)

[11] O. Blazy, D. Derler, D. Slamanig, R. Spreitzer, Non-interactive plaintext (in-)equality proofs and group
signatures with verifiable controllable linkability, in Topics in Cryptology - CT-RSA (2016)

[12] M. Backes, L. Hanzlik, J. Schneider, Membership privacy for fully dynamic group signatures. IACR
Cryptology ePrint Archive. 2018:641, (2018)

[13] A. Bender, J. Katz, R. Morselli, Ring signatures: Stronger definitions, and constructions without random
oracles. Journal of Cryptology. 22(1):114–138, (2009)

[14] M. Bellare, D. Micciancio, B. Warinschi, Foundations of group signatures: Formal definitions, sim-
plified requirements, and a construction based on general assumptions, in Advances in Cryptology -
EUROCRYPT (2003)

[15] M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, in
Conference on Computer and Communications Security - CCS (1993)

[16] E. Brickell, An efficient protocol for anonymously providing assurance of the container of a private key.
Submitted to the Trusted Computing Group (2004)

[17] E. Bresson, J. Stern, Efficient revocation in group signatures, in Public Key Cryptography - PKC (2001)
[18] D. Boneh, H. Shacham, Group signatures with verifier-local revocation, inConference on Computer and

Communications Security - CCS (2004)
[19] M. Bellare, H. Shi, C. Zhang, Foundations of group signatures: The case of dynamic groups, in Topics

in Cryptology - CT-RSA (2005)
[20] X. Boyen, B. Waters, Compact group signatures without random oracles, in Advances in Cryptology -

EUROCRYPT (2006)
[21] X. Boyen, B. Waters, Full-domain subgroup hiding and constant-size group signatures, in Public Key

Cryptography - PKC (2007)
[22] J. Camenisch, R. Chaabouni, A. Shelat, Efficient protocols for set membership and range proofs, in

Advances in Cryptology - ASIACRYPT (2008)
[23] J. Camenisch, J. Groth, Group signatures: Better efficiency and new theoretical aspects, in Security in

Communication Networks - SCN (2004)
[24] J. Camenisch, A. Lysyanskaya, Dynamic accumulators and application to efficient revocation of anony-

mous credentials, in Advances in Cryptology - CRYPTO (2002)
[25] J. Camenisch, A. Lysyanskaya, Signature schemes and anonymous credentials from bilinear maps, in

Advances in Cryptology - CRYPTO (2004)
[26] J. Camenisch, M. Michels, A group signature scheme with improved efficiency, in Advances in Cryp-

tology - ASIACRYPT (1998)
[27] D. Chaum, E. van Heyst, Group signatures, in Advances in Cryptology - EUROCRYPT (1991)
[28] Y. Dodis, A. Kiayias, A. Nicolosi, V. Shoup, Anonymous identification in ad hoc groups, in Advances

in Cryptology - EUROCRYPT (2004)
[29] C. Delerablée, D. Pointcheval, Dynamic fully anonymous short group signatures, in Progressing Cryp-

tology - VIETCRYPT (2006)
[30] D. Derler, D. Slamanig, Highly-efficient fully-anonymous dynamic group signatures, in Proceedings

of the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS 2018, Incheon,
Republic of Korea, June 04–08, 2018 (2018)

[31] K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, K. Ohara, K. Omote, Y. Sakai, Group signatures with
message-dependent opening: Formal definitions and constructions. Security and Communication Net-
works (2019)

[32] A. El Kaafarani, S. Katsumata, R. Solomon, Anonymous reputation systems achieving full dynamicity
from lattices, in Financial Cryptography and Data Security - 22st International Conference, FC 2018
(2018)

[33] J. Furukawa, H. Imai, An efficient group signature scheme from bilinear maps, in Information Security
and Privacy - ACISP (2005)

[34] J. Furukawa, S. Yonezawa, Group signatures with separate and distributed authorities, in Security in
Communication Networks - SCN (2004)

[35] E.Ghadafi, Efficient distributed tag-based encryption and its application to group signatureswith efficient
distributed traceability, in Progress in Cryptology - LATINCRYPT (2014)

Foundations of Fully Dynamic Group Signatures 1869

[36] L. Garms, A. Lehmann, Group signatures with selective linkability, in Public-Key Cryptography - PKC
(2019)

[37] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in
Advances in Cryptology - ASIACRYPT (2006)

[38] J. Groth, Fully anonymous group signatures without random oracles, in Advances in Cryptology - ASI-
ACRYPT (2007)

[39] J.Y. Hwang, S. Lee, B.-H. Chung, H.S. Cho, D. Nyang, Short group signatures with controllable linka-
bility, in Lightweight Security & Privacy: Devices, Protocols and Applications (LightSec) (2011)

[40] S. Krenn, K. Samelin, C. Striecks, Practical group-signatures with privacy-friendly openings, in Avail-
ability, Reliability and Security - ARES (2019)

[41] A. Kiayias, Y. Tsiounis, M. Yung, Traceable signatures, in Advances in Cryptology - EUROCRYPT
(2004)

[42] A. Kiayias, M. Yung, Group signatures with efficient concurrent join, in Advances in Cryptology -
EUROCRYPT (2005)

[43] A. Kiayias, M. Yung, Secure scalable group signature with dynamic joins and separable authorities.
IJSN. 1(1/2):24–45 (2006)

[44] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, H. Wang, Signature schemes with efficient protocols and
dynamic group signatures from lattice assumptions, in Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4–8, 2016, Proceedings, Part II (2016)

[45] A. Langlois, S. Ling, K. Nguyen, H. Wang, Lattice-based group signature scheme with verifier-local
revocation, in Public-Key Cryptography - PKC (2014)

[46] B. Libert, S. Ling, K. Nguyen, H. Wang, Zero-knowledge arguments for lattice-based accumulators:
Logarithmic-size ring signatures and group signatures without trapdoors, in Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II (2016)

[47] S. Ling, K. Nguyen, H. Wang, Y. Xu, Lattice-based group signatures: Achieving full dynamicity (and
deniability) with ease. CoRR, arXiv:1801.08737 (2018)

[48] B. Libert, T. Peters, M. Yung, Group signatures with almost-for-free revocation, in Advances in Cryp-
tology - CRYPTO (2012)

[49] B. Libert, T. Peters, M. Yung, Scalable group signatures with revocation, in Advances in Cryptology -
EUROCRYPT (2012)

[50] B. Libert, D. Vergnaud, Group signatures with verifier-local revocation and backward unlinkability in
the standard model, in Cryptology and Network Security - CANS (2009)

[51] R.W.F. Lai, T. Zhang, S.S.M.Chow,D. Schröder, Efficient sanitizable signatureswithout randomoracles,
in Computer Security - ESORICS 2016 - 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26–30, 2016, Proceedings, Part I (2016)

[52] T.Nakanishi,N. Funabiki,Verifier-local revocation group signature schemeswith backward unlinkability
from bilinear maps, in Advances in Cryptology - ASIACRYPT (2005)

[53] T. Nakanishi, H. Fujii, Y. Hira, N. Funabiki, Revocable group signature schemes with constant costs for
signing and verifying, in Public Key Cryptography - PKC (2009)

[54] T. Nakanishi, T. Fujiwara, H. Watanabe, A linkable group signature and its application to secret voting.
Transactions of Information Processing Society of Japan. 40(7):3085–3096 (1999)

[55] L. Nguyen, Accumulators from bilinear pairings and applications, in Topics in Cryptology - CT-RSA
(2005)

[56] D. Naor, M. Naor, J. Lotspiech, Revocation and tracing schemes for stateless receivers, in Advances in
Cryptology - CRYPTO (2001)

[57] L. Nguyen, R. Safavi-Naini, Efficient and provably secure trapdoor-free group signature schemes from
bilinear pairings, in Advances in Cryptology - ASIACRYPT (2004)

[58] D.X. Song, Practical forward secure group signature schemes, in Conference on Computer and Com-
munications Security - CCS (2001)

[59] Y. Sakai, J.C.N. Schuldt, K. Emura, G. Hanaoka, K. Ohta, On the security of dynamic group signatures:
Preventing signature hijacking, in Public Key Cryptography - PKC (2012)

[60] I. Teranishi, K. Sako, k-times anonymous authentication with a constant proving cost, in Public Key
Cryptography - PKC (2006)

http://arxiv.org/abs/1801.08737

1870 J. Bootle et al.

[61] G. Tsudik, S. Xu, Accumulating composites and improved group signing, in Advances in Cryptology -
ASIACRYPT (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Foundations of Fully Dynamic Group Signatures
	1. Introduction
	1.1. Background and Related Work
	1.2. Our Contribution

	2. Definitions for Fully Dynamic Group Signatures
	2.1. Fully Dynamic Group Signatures
	2.2. Syntax
	2.3. Security Definitions
	2.4. Additional Security Definitions

	3. Static and Partially Dynamic Group Signatures
	3.1. Restriction to Partially Dynamic Signatures
	3.2. Restriction to Static Group Signatures

	4. On the Security of Some Existing Schemes
	4.1. Bootle et al. Scheme BCCGGP15
	4.2. Constructions Based on Revocation Lists

	References

