
https://doi.org/10.1007/s00145-020-09362-z
J Cryptol (2020) 33:2034–2077

Continuously Non-malleable Codes in the Split-State
Model

Sebastian Faust
Technical University of Darmstadt, Darmstadt, Germany

Pratyay Mukherjee
Visa Research, Palo Alto, USA

Jesper Buus Nielsen
Aarhus University, Aarhus, Denmark

Daniele Venturi
Sapienza University of Rome, Rome, Italy

venturi@di.uniroma1.it

Communicated by Jonathan Katz.

Received 13 March 2015 / Revised 3 July 2020
Online publication 24 July 2020

Abstract. Non-malleable codes (Dziembowski et al., ICS’10 and J. ACM’18) are a
natural relaxation of error correcting/detecting codes with useful applications in cryp-
tography. Informally, a code is non-malleable if an adversary trying to tamper with an
encoding of a message can only leave it unchanged or modify it to the encoding of an
unrelated value. This paper introduces continuous non-malleability, a generalization of
standard non-malleability where the adversary is allowed to tamper continuously with
the same encoding. This is in contrast to the standard definition of non-malleable codes,
where the adversary can only tamper a single time. The only restriction is that after the
first invalid codeword is ever generated, a special self-destruct mechanism is triggered
and no further tampering is allowed; this restriction can easily be shown to be neces-
sary. We focus on the split-state model, where an encoding consists of two parts and
the tampering functions can be arbitrary as long as they act independently on each part.
Our main contributions are outlined below.

• We show that continuous non-malleability in the split-state model is impossible without
relying on computational assumptions.

• Weconstruct a computationally secure split-state code satisfying continuous non-mallea-
bility in the common reference string (CRS) model. Our scheme can be instantiated as-
suming the existence of collision-resistant hash functions and (doubly enhanced) trapdoor
permutations, butwe also give concrete instantiations basedon standard number-theoretic
assumptions.

• We revisit the application of non-malleable codes to protecting arbitrary cryptographic
primitives against related-key attacks. Previous applications of non-malleable codes in
this setting required perfect erasures and the adversary to be restricted in memory. We
show that continuously non-malleable codes allow to avoid these restrictions.

© The Author(s) 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-020-09362-z&domain=pdf

Continuously Non-malleable Codes in the Split-State Model 2035

Keywords. Non-malleable codes, Tamper resistance, Split-state model.

1. Introduction

Physical attacks targeting cryptographic implementations instead of breaking the black-
box security of the underlying algorithm are amongst the most severe threats for cryp-
tographic systems. A particularly important attack on implementations is the so-called
tampering attack, where the adversary changes the secret key to some related value and
observes the effect of such changes at the output. Traditional black-box security notions
do not incorporate adversaries that change the secret key to some related value; even
worse, as shown in the celebrated work of Boneh et al. [22], already minor changes to
the key suffice for complete security breaches. Unfortunately, tampering attacks are also
rather easy to carry out: A virus corrupting a machine can gain partial control over the
state, or an adversary that penetrates the cryptographic implementation with physical
equipment may induce faults into keys stored in memory.
In recent years, a growing body of work (see [4,11,55,64,70,76,84]) developed new

cryptographic techniques to tackle tampering attacks. Non-malleable codes introduced
by Dziembowski, Pietrzak and Wichs [55,56] are an important approach to achieve this
goal. Intuitively a code is non-malleable w.r.t. a family of tampering functions F if the
message contained in a codeword modified via a function f ∈ F is either the original
message, or a completely unrelated value. Non-malleable codes can be used to protect
any cryptographic functionality against tampering with the memory. Instead of storing
the key, we store its encoding and decode it each time the functionality wants to access
the key. As long as the adversary can only apply tampering functions from the family
F , the non-malleability property guarantees that the (possibly tampered) decoded value
is not related to the original key.
The standard notion of non-malleability considers a one-shot game: the adversary is

allowed to tamper a single timewith the codeword, afterwhich it obtains the decoded out-
put. In thisworkwe introduce continuously non-malleable codes,where non-malleability
is guaranteed even if the adversary continuously applies functions from the family F to
the same codeword. We show that our new security notion is not only a natural extension
of the standard definition, but moreover allows to protect against tampering attacks in
important settings where earlier constructions fall short to achieve security.

1.1. Continuous Non-malleability

A code consists of two polynomial-time algorithms � = (Enc,Dec) satisfying the
following correctness property: For all messagesm ∈ M, it holds thatDec(Enc(m)) =
m (with probability one over the randomness of the encoding). To define non-malleability
for a function familyF , consider the following experimentTamperFA,�

(λ, b)with hidden
bit b ∈ {0, 1} and featuring a (possibly unbounded) adversary A.

1. The adversary chooses two messages (m0,m1) ∈ M2.
2. The challenger computes a target codeword c ←$ Enc(mb) using the encoding

procedure.

2036 S. Faust et al.

3. The adversary picks a tampering function f ∈ F , which yields a tampered code-
word c̃ = f (c). Hence:

• If c̃ = c, then the attacker receives a special symbol � denoting that tampering
did not modify the target codeword;

• Else, the adversary is given Dec(c̃) ∈ M ∪ {⊥}, where ⊥ is a special symbol
denoting that the tampered codeword c̃ is invalid.

4. The attacker outputs a guess b′ ∈ {0, 1}.
A code � is said to be statistically (one-time) non-malleable w.r.t. F if for all attackers
|P [

b′ = b
] − 1/2| is negligible in the security parameter. This is equivalent to say-

ing that the experiments TamperF
�,A(λ, 0) and TamperF

�,A(λ, 1) are statistically close.
Computational non-malleability can be obtained by simply relaxing the above guarantee
to computational indistinguishability (for all PPT adversaries).
To define continuously non-malleable codes, we allow the adversary to repeat1 step 3

from the above game a polynomial number of times, where in each iteration the attacker
can adaptively choose a tampering function f (i) ∈ F . We emphasize that this change
of the tampering game allows the adversary to tamper continuously with the target
codeword c. As shown by Gennaro et al. [70], such a strong security notion is impossible
to achievewithout further assumptions. To this end,we rely on the following self-destruct
mechanism: Whenever in step 3 the experiment detects an invalid codeword and returns
⊥ for the first time, all future tampering queries will automatically be answered with ⊥.
This is a rather mild assumption as it can, for instance, be implemented using a public,
one-time writable, untamperable bit.
From non-malleable codes to tamper resilience As discussed above, the main applica-
tion of non-malleable codes is to protecting cryptographic schemes against tampering
with the secret key [55,56,84]. Consider a reactive functionality F with secret state σ .
Using a non-malleable code, earlier work showed how to transform the functionality
(F, σ) into a so-called hardened functionality (F̂, c) that is secure against memory tam-
pering. The transformation works as follows: Initially, c is set to Enc(σ). Then, each
time F̂ is executed on input x , the transformed functionality reads the encoding c from
thememory, decodes it to obtain σ = Dec(c), and runs the original functionalityF(σ, x)
obtaining an output y and a new state σ ′. Finally, it erases the memory and overwrites
c with Enc(σ ′).
Besides executing evaluation queries, the adversary can issue tampering queries f (i) ∈

F . The effect of such a query is to overwrite the current codeword c stored in the
memory with a tampered codeword c̃ = f (i)(c), so that the functionality F̂ will take
c̃ as input when answering the next evaluation query. The first time that Dec(c̃) = ⊥,
the functionality F̂ sets the memory to a dummy value (which essentially results in a
self-destruct).
The above transformation guarantees continuous tamper resilience even if the un-

derlying non-malleable code is secure only against one-time tampering. This security

1Our actual definition is stronger, in that as long as the tampered codeword c̃ is valid, and c̃ �= c, the
adversary is even given c̃ (and not just the corresponding decoded message). See Sect. 3 for a discussion.

Continuously Non-malleable Codes in the Split-State Model 2037

“boost” is achieved by re-encoding the secret state after each execution of F̂. As one-time
non-malleability suffices for the above cryptographic application, one may ask why we
need continuously non-malleable codes. Besides being a natural generalization of the
standard non-malleability notion, our new definition has several important advantages
that we discuss in the next two paragraphs.

Tamper resilience without erasures The transformation described above necessarily
requires that after each execution the entire content of the memory is erased. While
such perfect erasures may be feasible in some settings, they are rather problematic in
the presence of tampering. To illustrate this issue consider a setting where besides the
encoding of a key, the memory also contains other non-encoded data. In the tampering
setting, we cannot restrict the erasure to just the part that stores the encoding of the key
as a tampering adversary may copy the encoding to some different part of the memory.
A simple solution to this problem is to erase the entire memory, but such an approach is
not possible in most cases: for instance, think of the memory as being the hard-disk of
your computer that besides the encoding of a key stores other important files that you
don’t want to be erased. Notice that this situation is quite different from the leakage
setting, where we also require perfect erasures to achieve continuous leakage resilience.
In the leakage setting, however, the adversary cannot mess around with the state of the
memory by, e.g., copying an encoding of a secret key to some free space, which makes
erasures significantly easier to implement.
One option to prevent the adversary from keeping permanent copies is to encode the

entire state of the memory. Such an approach has, however, the following drawbacks.

• It is unnatural In many cases, secret data, e.g., a cryptographic key, are stored
together with non-confidential data. Each time we want to read some small part
of the memory, e.g., the key, we need to decode and re-encode the entire state—
including also the non-confidential data.

• It is inefficient Decoding and re-encoding the entire state of the memory for each
access introduces additional overhead and would result in highly inefficient solu-
tions. This gets even worse as most current constructions of non-malleable codes
are rather inefficient.

The second issue may be solved employing locally decodable and updatable non-
malleable codes [42–46], which intuitively allow to access/update a portion of the mes-
sage without reading/modifying the entire codeword. Using our new notion of continu-
ously non-malleable codes we can avoid both issues in one go, and achieve continuous
tamper resilience without using erasures or relying on inefficient solutions that encode
the entire state.

Stateless tamper-resilient transformations To achieve tamper resistance from one-time
non-malleability,we necessarily need to re-encode the state using fresh randomness. This
not only reduces the efficiency of the proposed construction, but moreover makes the
transformation stateful. Thanks to continuously non-malleable codes we get continuous
security without the need to refresh the encoding after each usage. This is particularly
useful when the underlying primitive that we want to protect is stateless itself (e.g., in
the case of any standard block-cipher construction that typically keeps the same key).

2038 S. Faust et al.

Using continuously non-malleable codes, the tamper-resilient implementation of such
stateless primitives does not need to keep any secret state. We discuss the protection of
stateless primitives in further detail in Sect. 5.

1.2. Our Contribution

Our main contribution is the first construction of continuously non-malleable codes
in the split-state model, first introduced in the leakage setting [50,54]. Various recent
works study the split-state model for non-malleable codes [3,4,30,53,84] (see more
details on related work in Sect. 1.3). In the split-state tampering model, the codeword
consists of two halves c0 and c1 that are stored on two different parts of the memory.
The adversary is assumed to tamper with both parts independently, but otherwise can
apply any efficiently computable tampering function. That is, the adversary picks two
polynomial-time computable functions f0 and f1 and replaces the codeword (c0, c1)
with (f0(c0), f1(c1)). Similar to the earlier work of Liu and Lysyanskaya [84], our
construction assumes a public untamperable common reference string (CRS). Notice
that this is a rather mild assumption, as the CRS can be hard-wired into the functionality
and is independent of any secret data.

Continuous non-malleability of existing constructions The first construction of one-
time split-state non-malleable codes (without random oracles) was given by Liu and
Lysyanskaya [84]. At a high-level their construction encrypts the message m with a
leakage-resilient encryption scheme, and generates a non-interactive zero-knowledge
(NIZK) proof of knowledge showing that (i) the public/secret key of the PKE are valid,
and (ii) the ciphertext is an encryption of m under the public key. Then, c0 is set to the
secret key while c1 holds the corresponding public key, the ciphertext, and the NIZK
proof.
Unfortunately, it is rather easy to break the non-malleable code ofLiu andLysyanskaya

in the continuous setting. Recall that our security notion of continuously non-malleable
codes allows the adversary to interact in the followinggame. First,we sample an encoding
(ĉ0, ĉ1) of m, and then we repeat the following process a polynomial number of times.

1. The adversary submits two polynomial-time computable functions (f0, f1) result-
ing in a tampered codeword (c̃0, c̃1) = (f0(ĉ0), f1(ĉ1)).

2. We consider three different cases:

• If (c̃0, c̃1) = (ĉ0, ĉ1), then return �.
• Else, let m̃ be the decoding of (c̃0, c̃1). If m̃ �= ⊥, then return m̃.
• Else, if m̃ = ⊥ self-destruct and terminate the experiment.

The main observation that enables the attack against the scheme of [84] is as follows:
For a fixed (but adversarially chosen) part c0 it is easy to come up with two correspond-
ing parts c1 and c′

1 such that both (c0, c1) and (c0, c′
1) form a valid encoding (i.e., a

codeword whose decoding does not yield ⊥). Suppose further that decoding (c0, c1)
yields a message m that is different from the message m′ obtained by decoding (c0, c′

1).
Then, under continuous tampering, the adversary may permanently replace the original
encoding ĉ0 with c0, while depending on whether the i-th bit of ĉ1 being 0 or 1 either
replace ĉ1 by c1 or c′

1. This allows to recover the entire ĉ1 by just n tampering queries

Continuously Non-malleable Codes in the Split-State Model 2039

(where n is the size of ĉ1). Once ĉ1 is known to the adversary, it is easy2 to tamper with
ĉ0 in a way that depends on the message m̂ corresponding to (ĉ0, ĉ1).
Somewhat surprisingly, our attack can be generalized to break any non-malleable code

that is secure in the information-theoretic setting. Hence, also the recent breakthrough
results on information theoretic non-malleability [3–5,53] fail to provide security under
continuous attacks. Moreover, we emphasize that our attack does not only work for the
code itself, but (in most cases) can be applied to the tamper-protection application of
cryptographic functionalities.

Uniqueness The attack above exploits that for a fixed known part c0 it is easy to come
up with two valid parts c1, c′

1. For the encoding of [84] this is indeed easy to achieve. If
the secret key c0 is known, it is easy to come up with two valid parts c1, c′

1: just encrypt
two arbitrary messagesm,m′ such thatm �= m′, and generate the corresponding proofs.
The above weakness motivates a new property that non-malleable codes shall satisfy in
order to achieve continuous non-malleability. We call this property uniqueness, which
informally guarantees that for any (adversarially chosen) valid encoding (c0, c1) it be
computationally hard to come upwith c′

1 �= c1 such that (c0, c′
1) forms a valid encoding.3

Clearly, the uniqueness property prevents the above described attack, and hence is a
crucial requirement for continuous non-malleability in the split-state model.

A new construction In light of the above discussion, we need to build a non-malleable
code that achieves our uniqueness property. Our construction uses as building blocks a
leakage-resilient storage (LRS) scheme [50,52] for the split-state model (one may view
this as a generalization of the leakage-resilient PKE used in [84]), a collision-resistant
hash function, and (similar to [84]) an extractable NIZK. At a high-level we use the
LRS to encode the secret message, hash the resulting shares using the hash function,
and generate a NIZK proof of knowledge that indeed the resulting hash values are
correctly computed from the shares. While it is easy to show that collision resistance of
the hash function guarantees the uniqueness property, a careful analysis is required to
prove continuous non-malleability. We refer the reader to Sect. 4.1 for the details of our
construction, and to Sect. 4.2 for an outline of the proof.

Tamper resilience for stateless and stateful primitives We can use our new construction
of continuously non-malleable codes to protect arbitrary computation against continuous
tampering attacks. In contrast to earlier works, our construction does not need to re-
encode the secret state after each usage, which besides being more efficient avoids the
use of erasures. As discussed above, erasures are problematic in the tampering setting
as one would essentially need to encode the entire state (possibly including large non-
confidential data).
Additionally, our transformation does not need to keep any secret state. Hence, if our

transformation is used to protect stateless primitives, then the resulting scheme remains
stateless. This solves an open problem posed by Dziembowski, Pietrzak and Wichs

2For example, hard-wire ĉ1, decode (ĉ0, ĉ1), and overwrite ĉ0 with garbage if the first bit of m̂ is zero
(otherwise leave it unchanged).

3Of course, a similar guarantee must hold if we fix the right part c1 of the encoding.

2040 S. Faust et al.

[55,56]. Notice that while we do not need to keep any secret state, the transformed
functionality requires one bit of state to activate the self-destruct mechanism. This bit
can be public, but must be untamperable, and can, for instance, be implemented through
a one-time writable memory. As shown in the work of Gennaro et al. [70], continuous
tamper resilience is impossible to achievewithout such amechanism for self-destruction.
Of course, our construction can also be used for stateful primitives, in which case

our functionality will re-encode the new state during execution. Note that in our setting,
where data are never erased, an adversary can always reset the functionality to a previous
valid state. To avoid this, our transformation uses an untamperable public counter4 that
helps us detecting whenever the attacker tries to reset the functionality to a previous
state (in which case, a self-destruct is triggered). We notice that such an untamperable
counter is necessary, as otherwise there is no way to protect against the above resetting
attack.5

Bounded leakage resilience As an additional contribution, we show that our code is
also secure against bounded leakage attacks. This is similar to the works of [53,84] who
also consider bounded leakage resilience of their encoding scheme. Furthermore, as we
prove, bounded leakage resilience is also inherited by functionalities that are protected
using our transformation.
Notice that without perfect erasures bounded leakage resilience is the best we can

achieve, as there is no hope for security if an encoding that is produced at some point in
time is gradually revealed to the adversary.

1.3. Related Work

Constructions of non-malleable codes Besides showing feasibility by a probabilistic
argument, Dziembowski et al. [55,56] also built non-malleable codes for bit-wise tam-
pering (later improved in [9,10,32,34,36]) and gave a construction in the split-state
model using a random oracle. This result was followed by [33], which proposed non-
malleable codes that are secure against block-wise tampering. The first construction of
non-malleable codes in the split-state model without random oracles was given by Liu
and Lysyanskaya [84], in the computational setting, assuming an untamperable CRS.
Several follow-up works focused on constructing split-state non-malleable codes in the
information-theoretic setting [1,3,4,7,28,53].
See also [9,10,12–17,24,25,27,31,37,45,57,64,67,77,79–82] for other recent ad-

vances on the construction of non-malleable codes. We also notice that the work of
Gennaro et al. [70] proposed a generic method that allows to protect arbitrary compu-
tation against continuous tampering attacks, without requiring erasures. We refer the
reader to [55,56] for a more detailed comparison between non-malleable codes and the
solution of [70].

4Note that a counter only requires a logarithmic (in the security parameter) number of bits.
5This kind of threat is sometimes also known under the name of rewind attacks in the literature [45,46].

Continuously Non-malleable Codes in the Split-State Model 2041

Other works on tamper resilience A large body of work shows how to protect specific
cryptographic schemes against tampering attacks (see [18,20,21,47,48,78,86] andmany
more). While these works consider a strong tampering model (e.g., they do not require
the split-state assumption), they only offer security for specific schemes. In contrast
non-malleable codes are generally applicable and can provide tamper resilience of any
cryptographic scheme.
In all the above works, including ours, it is assumed that the circuitry that computes

the cryptographic algorithm using the potentially tampered key runs correctly, and is
not subject to tampering attacks. An important line of works analyze to what extent we
can guarantee security when even the circuitry is prone to tampering attacks [39,40,66,
69,76,83]. These works typically consider a restricted class of tampering attacks (e.g.,
individual bit tampering) and assume that large parts of the circuit (and memory) remain
untampered.

Subsequent work A preliminary version of this paper appeared as [62]. Subsequent
work showed that our impossibility result on information-theoretic continuous non-
malleability can be circumvented in weaker tampering models, such as bit-wise tamper-
ing [34–36], high-min-entropy and few-fixed points tampering [77], 8-split-state tamper-
ing [6], permutations and overwrites [49], and space-bounded tampering [29,61], or by
assuming that the number of tampering queries is a priori fixed [26] and that tampering
is persistent [8].
Continuously non-malleable codes have also been used to protect Random Access

Machines against tampering attacks with the memory and the computation [63], and to
obtain domain extension for non-malleable public-key encryption [34,36,49].
A recent work by Dachman-Soled and Kulkarni [41] shows that the strong flavor of

continuous non-malleability in the split-state model considered in this paper (sometimes
known as super non-malleability [64,65]) is impossible to achieve in the plain model
(i.e., without assuming an untamperable CRS). On the other hand, Ostrovsky et al. [85]
proved that continuous weak non-malleability in the split-state model (i.e., the standard
flavor of non-malleability in which the attacker only learns the output of the decoding
corresponding to each tampered codeword) is possible in the plainmodel (assuming one-
to-one one-way functions). Faonio and Venturi [58,59] further consider continuously
non-malleable split-state codes with a special refreshing procedure allowing to update
codewords.
Finally, the concept of continuous non-malleability has also been recently studied in

the more general setting of non-malleable secret sharing [23,60,71].

2. Preliminaries

2.1. Notation

For a string x , we denote its length by |x |; if X is a set, |X | represents the number
of elements in X . When x is chosen randomly in X , we write x ←$ X . When A is a
randomized algorithm, we write y ←$ A(x) to denote a run of A on input x (and implicit
random coins r) and output y; the value y is a random variable, andA(x; r) denotes a run

2042 S. Faust et al.

ofAon input x and randomness r . A randomized algorithmA isprobabilistic polynomial-
time (PPT) if for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a
polynomial number of steps (in the size of the input). For a PPT algorithm A, we denote
by 〈A〉 its description using poly-many bits.

Negligible functions We denote with λ ∈ N the security parameter. A function p is a
polynomial, denoted p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant c > 0. A
function ε : N → [0, 1] is negligible in the security parameter (or simply negligible) if
it vanishes faster than the inverse of any polynomial in λ, i.e., ε(λ) ∈ O(1/λc) for every
constant c > 0. We often write ε(λ) ∈ negl(λ) to denote that ε(λ) is negligible.

Unless stated otherwise, throughout the paper, we implicitly assume that the security
parameter is given as input (in unary) to all algorithms.

Random variables For a random variable X, we write P [X = x] for the probability
thatX takes on a particular value x ∈ X (withX being the set whereX is defined). Given

two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X
s≈ Y (resp. X

c≈ Y) to
denote thatX andY are statistically (resp. computationally) close, i.e., for all unbounded
(resp. PPT) distinguishers D:

�D(X;Y) := |P [
D(Xλ) = 1

] − P
[
D(Yλ) = 1

]| ∈ negl(λ).

If the above distance is zero, we say that X and Y are identically distributed, denoted
X ≡ Y.
We extend the notion of computational indistinguishability to the case of interac-

tive experiments (a.k.a. games) featuring an adversary A. In particular, let GA(λ) be
the random variable corresponding to the output of A at the end of the experiment,
whereA outputs a decision bit. Given two experimentsGA(λ, 0) andGA(λ, 1), we write

{GA(λ, 0)}λ∈N
c≈ {GA(λ, 1)}λ∈N if for all PPT A it holds that

|P [GA(λ, 0) = 1] − P [GA(λ, 1) = 1]| ∈ negl(λ).

The above naturally generalizes to statistical distance (in case of unbounded adversaries).

2.2. Collision-Resistant Hashing

A family of hash functions � := (Gen,Hash) is a pair of efficient algorithms specified
as follows: (i) The randomized algorithmGen takes as input the security parameter and
outputs a hash-key hk. (ii) The deterministic algorithmHash takes as input the hash-key
hk and a value x ∈ {0, 1}∗, and outputs a value y ∈ {0, 1}λ.
Definition 1. (Collision resistance) Let � = (Gen,Hash) be a family of hash func-
tions. We say that � is collision resistant if for all PPT adversaries A there exists a
negligible function ν : N → [0, 1] such that:

P
[
x �= x ′ ∧ Hash(hk, x) = Hash(hk, x ′) : (x, x ′) ←$ A(hk), hk ←$ Gen(1λ)

] ≤ ν(λ).

Continuously Non-malleable Codes in the Split-State Model 2043

2.3. Non-interactive Zero Knowledge

Let R be an NP relation, corresponding to an NP language L. A non-interactive ar-
gument system for R is a tuple of efficient algorithms � = (CRSGen,Prove,Ver)
specified as follows: (i) The randomized algorithm CRSGen takes as input the security
parameter and outputs a common reference string ω; (ii) The randomized algorithm
Prove(ω, φ, (x, w)), given (x, w) ∈ R and a label φ ∈ {0, 1}∗, outputs an argument
π ; (iii) The deterministic algorithm Ver(ω, φ, (x, π)), given an instance x , an argu-
ment π , and a label φ ∈ {0, 1}∗, outputs either 0 (for “reject”) or 1 (for “accept”). We
say that � is correct if for every λ ∈ N, all ω as output by CRSGen(1λ), any label
φ ∈ {0, 1}∗, and any (x, w) ∈ R, we have thatVer(ω, φ, (x,Prove(ω, φ, (x, w)))) = 1
(with probability one over the randomness of the prover algorithm).
We define two properties of a non-interactive argument system. The first property says

that honestly computed arguments do not reveal anything beyond the fact that x ∈ L.

Definition 2. (Adaptive multi-theorem zero-knowledge) A non-interactive argument
system� for a relationR satisfies adaptivemulti-theorem zero-knowledge if there exists
a PPT simulator S := (S0,S1) such that the following holds:

(i) S0 outputs ω, a simulation trapdoor ζ and an extraction trapdoor ξ .
(ii) For all PPT distinguishers D, we have that

∣∣
∣P

[
DProve(ω,·,(·,·))(1λ, ω) = 1 : ω ←$ CRSGen(1λ)

]

− P

[
DOsim(ζ,·,(·,·))(1λ, ω) = 1 : (ω, ζ, ξ) ←$ S0(1

λ)
] ∣∣∣

is negligible inλ, where the oracleOsim(ζ, ·, (·, ·)) takes as input a tuple (φ, (x, w))

and returns S1(ζ, φ, x) iff (x, w) ∈ R (and otherwise it returns ⊥).

Groth [73] introduced the concept of simulation extractability, which informally states
that knowledge soundness should hold even if the adversary can see simulated arguments
for possibly false statements of its choice. For our purpose, it will suffice to consider the
weaker notion of true-simulation extractability, as defined by Dodis et al. [51].

Definition 3. (True-simulation extractability) Let � be a non-interactive argument
system for a relation R, that satisfies adaptive multi-theorem zero-knowledge w.r.t. a
simulator S := (S0,S1). We say that � is true-simulation extractable (tSE) if there
exists a PPT algorithm K such that for all PPT adversaries A, it holds that

P

⎡

⎣Ver(ω, φ∗, (x∗, π∗)) = 1 ∧ (φ∗, x∗, π∗) �∈ Q
∧(x∗, w∗) �∈ R :

(ω, ζ, ξ) ←$ S0(1λ)

(φ∗, x∗, π∗) ←$ AOsim(ζ,·,(·,·))(1λ, ω)

w∗ ←$ K(ξ, φ∗, (x∗, π∗))

⎤

⎦

is negligible in λ, where the oracleOsim(ζ, ·, (·, ·)) takes as input a tuple (φ, (x, w)) and
returns S1(ζ, φ, x) iff (x, w) ∈ R (and otherwise it returns ⊥), and the list Q contains
all pairs (φ, x) queried by A to its oracle, along with the corresponding answer π .

2044 S. Faust et al.

Note that the above definition allows the attacker to win using a pair label/statement
(φ∗, x∗) for which it already obtained a simulated argument, as long as the value π∗
is different from the argument π obtained from the oracle. This flavor is sometimes
known as strong tSE, and it can be obtained generically from non-strong tSE (i.e., the
attacker needs towin using a fresh pair (φ∗, x∗)) using any strongly unforgeable one-time
signature scheme [51].

2.4. Leakage-Resilient Storage

We recall the definition of leakage-resilient storage (LRS) from [50]. A leakage-resilient
storage � = (LREnc,LRDec) is a pair of algorithms defined as follows: (i) The
randomized algorithm LREnc takes as input message m ∈ {0, 1}k and outputs two
shares (s0, s1) ∈ {0, 1}2n . (ii) The deterministic algorithm LRDec takes as input shares
(s0, s1) ∈ {0, 1}2n and outputs a value in {0, 1}k . We say that (LREnc,LRDec) satisfies
correctness if for allm ∈ {0, 1}k it holds thatLRDec(LREnc(m)) = m (with probability
1 over the randomness of LREnc).

Security of LRS demands that, for any choice of messages m0,m1 ∈ {0, 1}k , it be
hard for an attacker to distinguish bounded, independent, leakage from a target encoding
of either m0 or m1. Below, we state such a property in the information-theoretic setting,
as this flavor is met by known constructions. In what follows, for a leakage parameter
� ∈ N, letO�

leak(s, ·) be a stateful oracle taking as input functions g : {0, 1}n → {0, 1}∗,
and returning g(s) for a maximum of at most � bits.

Definition 4. (Leakage-resilient storage) We call (LREnc,LRDec) an �-leakage-
resilient storage (�-LRS for short) if it holds that

{
Leak�,A(λ, 0)

}
λ∈N

s≈ {
Leak�,A(λ, 1)

}
λ∈N ,

where for A := (A0,A1) and b ∈ {0, 1} we set:

Leak�,A(λ, b) :=

⎧
⎪⎨

⎪⎩
b′ :

(m0,m1, α) ←$ A0(1λ);
(s0, s1) ←$ LREnc(mb);

b′ ←$ A
O�

leak(s0,·),O�
leak(s1,·)

1 (1λ, α)

⎫
⎪⎬

⎪⎭
.

For our construction, we will need a slight variant of the above definition where at the
end of the game the attacker is further allowed to obtain one of the two shares in full.
Following [2], we refer to this variant as augmented LRS.

Definition 5. (Augmented leakage-resilient storage) We call (LREnc,LRDec) an
augmented �-LRS if for all σ ∈ {0, 1} it holds that

{
Leak+

�,A(λ, 0, σ)
}

λ∈N
s≈

{
Leak+

�,A(λ, 1, σ)
}

λ∈N ,

Continuously Non-malleable Codes in the Split-State Model 2045

where for A = (A0,A1,A2) and b ∈ {0, 1} we set:

Leak+
�,A(λ, b, σ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b′ :
(m0,m1, α1) ←$ A0(1λ);
(s0, s1) ←$ LREnc(mb);

α2 ←$ A
O�

leak(s0,·),O�
leak(s1,·)

1 (1λ, α1);
b′ ←$ A2(1λ, α2, sσ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The lemma below6 shows the equivalence between Definitions 5 and 4 up to a loss of
a single bit in the leakage parameter.

Theorem 1. Let� = (LREnc,LRDec) be an �-LRS. Then,� is an augmented (�−1)-
LRS.

Proof. We prove the lemma by contradiction. Assume that there exists some adver-
sary A+ = (A+

0 ,A+
1 ,A+

2) able to distinguish with non-negligible probability between
Leak+

�,A+(λ, 0, σ) and Leak+
�,A+(λ, 1, σ) for some fixed σ ∈ {0, 1} and using � − 1

bits of leakage. We construct another adversary A = (A0,A1) which can distinguish be-
tween Leak�,A(λ, 0) and Leak�,A(λ, 1)with the same distinguishing advantage, using
� bits of leakage. A description of A follows:

Adversary A :
• A0 simply runs A+

0 (1λ) and returns its output (m0,m1, α1).
• A1 first runs A+

1 (1λ, α1) by simply forwarding its leakage queries to its
own target left/right leakage oracle.

• Denote by α2 the output of A+
1 , and let ĝ

A+
2 ,α2

σ be the leakage function
that hard-wires (a description of) A+

2 and the auxiliary information α2,
and upon input sσ returns the same as A+

2 (1λ, α2, sσ).

• A1 forward ĝ
A+
2 ,α2

σ to the leakage oracle O�
leak(sσ , ·) obtaining a bit b′,

and finally outputs b′ as its guess.

It is clear that A leaks at most � − 1 + 1 = � bits. Moreover, A perfectly simulates the
view of A+, and thus, it retains the same advantage. This finishes the proof. �

3. Continuous Non-Malleability

In this section, we formalize the notion of continuous non-malleability against split-
state tampering in the common reference string (CRS) model. To that end, we start by
describing the syntax of split-state codes in the CRS model.
Formally, a split-state code in the CRS model is a tuple of algorithms � = (Init,Enc,

Dec) specified as follows: (i) The randomized algorithm Init takes as input the security
parameter and outputs a CRS ω ←$ Init(1λ). (ii) The randomized encoding algorithm
Enc takes as input some message m ∈ {0, 1}k and the CRS, and outputs a codeword

6A similar statement holds for computationally secure LRS.

2046 S. Faust et al.

consisting of two parts c := (c0, c1) ∈ {0, 1}2n where c0, c1 ∈ {0, 1}n . (iii) The deter-
ministic algorithm Dec takes as input a codeword (c0, c1) ∈ {0, 1}2n and the CRS, and
outputs either a message m′ ∈ {0, 1}k or a special symbol ⊥.
As usual, we say that � is correct if for all λ ∈ N, for all ω ∈ Init(1λ), and for

all m ∈ {0, 1}k , it holds that Dec(ω,Enc(ω,m)) = m (with probability 1 over the
randomness of Enc).

3.1. The Definition

Intuitively, non-malleability captures a setting where an adversary A tampers a single
time with a target encoding c := (c0, c1) of some message m. The tampering attack
is arbitrary, as long as it modifies the two parts c0 and c1 of the target codeword c
independently, i.e., the attacker can choose any tampering function f := (f0, f1)where
f0, f1 : {0, 1}n → {0, 1}n . This results in a modified codeword c̃ := (c̃0, c̃1) :=
(f0(c0), f1(c1)), and different flavors of non-malleability are possible depending on
what information the attacker obtains about the decoding of c̃:

• Weak non-malleability In this case the attacker obtains the decoded message m̃ ∈
{0, 1}k ∪ {⊥} corresponding to c̃, unless m̃ = m (in which case the adversary gets
a special “same” symbol �);

• Strong non-malleability In this case the attacker obtains the decoded message
m̃ ∈ {0, 1}k ∪ {⊥} corresponding to c̃, unless c̃ = c (in which case the adversary
gets a special “same” symbol �);

• Super non-malleability In this case the attacker obtains c̃, unless c̃ is invalid (in
which case the adversary gets ⊥), or c̃ = c (in which case the adversary gets a
special “same” symbol �).

Super non-malleability is the strongest flavor, as it implies that not even the mauled
codeword reveals information about the underlying message (as long as it is valid and
different from the original codeword). Similarly, one can see that strong non-malleability
is strictly stronger than weak non-malleability. For the rest of this paper, whenever we
write “non-malleability” (without specifying the flavor weak/strong/super) we implicitly
mean “super non-malleability”.
Continuous non-malleability generalizes the above setting to the case where the at-

tacker tampers adaptively with the same target codeword c, and for each attempt obtains
some information about the decoding of the modified codeword c̃ (as above). The only
restriction is that whenever a tampering attempt yields an invalid codeword, the system
“self-destructs”. Toward defining continuous non-malleability, consider the following
oracle Omaul((c0, c1), ·), which is parameterized by a codeword (c0, c1) and takes as
input functions f0, f1 : {0, 1}n → {0, 1}n .

Oracle Omaul((c0, c1), (f0, f1)) :
(c̃0, c̃1) = (f0(c0), f1(c1))
If (c̃0, c̃1) = (c0, c1) return �
If Dec(ω, (c̃0, c̃1)) = ⊥, return ⊥ and “self-destruct”
Else return (c̃0, c̃1).

Continuously Non-malleable Codes in the Split-State Model 2047

By “self-destruct” wemean that onceDec(ω, (c̃0, c̃1)) outputs⊥, the oracle will answer
⊥ to any further query. We are now ready to define (leakage-resilient) continuous non-
malleability.

Definition 6. (Continuous non-malleability) Let � = (Init,Enc,Dec) be a split-state
code in the CRS model. We say that � is �-leakage-resilient continuously super-non-
malleable (�-CNMLR for short), if it holds that

{
Tamper�,A(λ, 0)

}
λ∈N

c≈ {
Tamper�,A(λ, 1)

}
λ∈N ,

where for A := (A0,A1) and b ∈ {0, 1} we set:

Tamper�,A(λ, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b′ :
ω ←$ Init(1λ)

(m0,m1, α1) ←$ A0(1λ, ω)

(c0, c1) ←$ Enc(ω,mb)

b′ ←$ A
O�

leak(c0,·),O�
leak(c1,·),Omaul((c0,c1),·)

1 (1λ, α1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

3.2. Codewords Uniqueness

As we argue below, constructions that satisfy our new Definition 6 have to meet the
following requirement: For any (possibly adversarially chosen) side of an encoding c0 it
is computationally hard to find two corresponding sides c1 and c′

1 such that both (c0, c1)
and (c0, c′

1) form a valid encoding; moreover, a similar property holds if we fix the right
side c1 of a codeword.

Definition 7. (Codewords uniqueness) Let � = (Init,Enc,Dec) be a split-state code
in theCRSmodel.We say that� satisfies codewords uniqueness if for all PPT adversaries
A we have:

P

[
Dec(ω, (c0, c1)) �= ⊥ ∧ Dec(ω, (c0, c′

1)) �= ⊥
∧ c1 �= c′

1
: ω ←$ Init(1λ)

(c0, c1, c′
1) ←$ A(1λ, ω)

]
∈ negl(λ)

P

[
Dec(ω, (c0, c1)) �= ⊥ ∧ Dec(ω, (c′

0, c1)) �= ⊥
∧ c0 �= c′

0
: ω ←$ Init(1λ)

(c0, c′
0, c1) ←$ A(1λ, ω)

]
∈ negl(λ).

The following attack shows that codewords uniqueness is necessary to achieve Defini-
tion 6.

Lemma 1. Let� be a 0-leakage-resilient continuously super-non-malleable split-state
code. Then, � must satisfy codewords uniqueness.

Proof. For the sake of contradiction, assume that there exists a PPT attacker A′ that
outputs a triple (c0, c1, c′

1) violating uniqueness of �, i.e., such that (c0, c1) and (c0, c′
1)

are both valid, with c1 �= c′
1. We show how to construct a PPT attacker A := (A0,A1)

breaking continuous non-malleability of �. Attacker A0, given the CRS, outputs any
two messages m0,m1 ∈ {0, 1}k which differ, say, in the first bit; denote by (ĉ0, ĉ1)
the target codeword corresponding to mb in the experiment Tamper�,A(λ, b). Attacker

2048 S. Faust et al.

A1 runs A′, and then queries the tampering oracle Omaul((ĉ0, ĉ1), ·) with a sequence of
n ∈ poly(λ) tampering queries, where the i-th query (f (i)

0 , f (i)
1) is specified as follows:

• Function f (i)
0 overwrites ĉ0 with c0.

• Function f (i)
1 reads the i-th bit ĉ1[i] of ĉ1; in case ˆc[i] = 0 it overwrites ĉ1 with

c1, and else it overwrites ĉ1 with c′
1.

Note that, as long as A′ breaks codewords uniqueness, c̃(i) = (f (i)
0 (c0), f (i)

1 (c1)) is a
valid codeword for all i ∈ [n]. This allows A1 to fully recover ĉ1 after n tampering
queries, unless (ĉ0, ĉ1) ∈ {(c0, c1), (c0, c′

1)}.7
Finally, A1 asks an additional tampering query (f (n+1)

0 , f (n+1)
1) toOmaul((ĉ0, ĉ1), ·):

• f (n+1)
0 (ĉ0) hard-wires ĉ1 and computes m = Dec(ω, (ĉ0, ĉ1)); if the first bit of m

is 0, then it behaves like the identity function, and otherwise it overwrites ĉ0 with
0n .

• f (n+1)
1 (ĉ1) is the identity function.

The above clearly allows to learn the first bit of the message in the target encoding,
and hence contradicts the fact that � is continuously non-malleable. �

Attacking existing schemes The attack of Lemma 1 can be used to show that the code
of [84] does not satisfy continuous non-malleability as per our definition. Recall that in
[84] a message m is encoded as c0 = (pk, γ := Encrypt(pk,m), π) and c1 = sk. Here,
(pk, sk) is a valid public/secret key pair and π is an argument of knowledge of (m, sk)
such that γ decrypts to m under sk and (pk, sk) is well formed. Clearly, for any fixed
c1 = sk it is easy to find two corresponding parts c0 �= c′

0 such that both (c0, c1) and
(c′

0, c1) are valid.
8

Let us mention two important extensions of the above attack, leading to even stronger
security breaches.

1. In case the pair of valid codewords (c0, c1), (c0, c′
1) violating the uniqueness

property are such that Dec(ω, (c0, c1)) �= Dec(ω, (c0, c′
1)), one can show that

Lemma 1 even rules out continuous weak non-malleability.9 The latter flavor of
uniqueness is sometimes referred to as message uniqueness [60,85].

2. In case it is possible to find both (c0, c1, c′
1) and (c0, c′

0, c1) violating uniqueness,
a simple variant of the attack from Lemma 1 allows to recover both halves of the
target encoding, which is a total breach of security. However, it is not clear how to
do that for the scheme of [84], as once we fix c0 = (pk, γ, π), it shall be hard to
find two valid secret keys c1 = sk �= sk′ = c′

1 corresponding to pk.

A simple adaptation of the above attack shows that continuous non-malleability in the
split-state model is impossible in the information-theoretic setting.

7If not,A1 obtains � as answer to one of its tampering queries, and thus it can safely conclude that ĉ0 = c0
and ĉ1 ∈ {c1, c′1}. Once ĉ0 is known it is trivial to break non-malleability using an additional tampering query.

8Namely, just have c0 (resp. c1) contain pk, the encryption γ (resp. γ ′) of any message m (resp. m′ �= m)
under pk, and the corresponding argument π (resp. π ′).

9Note that this applies in particular to the encoding of [84].

Continuously Non-malleable Codes in the Split-State Model 2049

Theorem 2. There is no split-state code � in the CRS model that is 0-leakage-resilient
continuously super-non-malleable in the presence of a computationally unbounded ad-
versary.

Proof. By contradiction, assume that there exists an information-theoretically secure
continuously non-malleable split-state code � with 2n-bit codewords. By Lemma 1, the
code � must satisfy codewords uniqueness. In the information-theoretic setting, this
means that for all CRSs ω ∈ Init(1λ), and for any codeword (c0, c1) ∈ {0, 1}2n such that
Dec(ω, (c0, c1)) �= ⊥, the following two properties hold: (i) for all c′

1 ∈ {0, 1}n such
that c′

1 �= c1, we have Dec(ω, (c0, c′
1)) = ⊥; (ii) for all c′

0 ∈ {0, 1}n such that c′
0 �= c0,

we have Dec(ω, (c′
0, c1)) = ⊥.

Let now (ĉ0, ĉ1) be a target encoding of some secret m ∈ {0, 1}k . An unbounded
attacker A can define the following tampering query (f0, f1):

• f0, given ĉ0 as input, tries all possible ĉ1 ∈ {0, 1}n until one is found such that
Dec(ω, (ĉ0, ĉ1)) �= ⊥. Hence, it runs m = Dec(ω, (ĉ0, ĉ1)), and it leaves ĉ0 in
case the first bit of the message is zero whereas it overwrites ĉ0 with 0n otherwise.

• f1 is the identity function.

Note that by properties (i) and (ii) above, we know that for all ĉ′
1 �= ĉ1, the decoding al-

gorithmDec(ω, (ĉ0, ĉ′
1)) outputs⊥. Thus, the above tampering query allows to learn the

first bit ofm with overwhelming probability, which is a clear breach of non-malleability.
�

Note that although the attack of Theorem 2 uses a single (inefficient) tampering query, it
crucially relies on the assumption that the code � be continuously non-malleable, in that
it uses the fact that � satisfies codewords uniqueness. This is consistent with the fact that
all split-state codes that achieve one-time non-malleability in the information-theoretic
setting do not satisfy uniqueness.

4. The Code

We describe our split-state code in Sect. 4.1. A detailed outline of the security proof
can be found in Sect. 4.2, whereas the formal proof is given in Sect. 4.3–4.5 Finally,
in Sect. 4.6, we explain how to instantiate our scheme both from generic and concrete
assumptions.

4.1. Description

Our construction combines a hash function (Gen,Hash) (cf. Sect. 2.2), a non-interactive
argument system (CRSGen,Prove,Ver) for proving knowledge of a pre-image of a
hash value (cf. Sect. 2.3), and a leakage-resilient storage � = (LREnc,LRDec) (cf.
Sect. 2.4), as depicted in Fig. 1.

The main idea behind the scheme is as follows: The CRS includes the CRS ω for the
argument system and the hash key hk for the hash function. Given amessagem ∈ {0, 1}k ,
the encoding procedure first encodes m using LREnc, obtaining shares (s0, s1). Hence,

2050 S. Faust et al.

Fig. 1. Leakage-resilient continuously non-malleable split-state code, in the CRS model.

it hashes both s0 and s1, obtaining values h0 and h1, and generates a non-interactive
argument π0 (resp. π1) for the statement h0 ∈ Lhk

hash (resp. h1 ∈ Lhk
hash) using h1 (resp.

h0) as label. The left part c0 (resp. right part c1) of the codeword c∗ consists of s0 (resp.
s1), along with the value h1 (resp. h0), and with the arguments π0, π1.
The decoding algorithm proceeds in the natural way. Namely, given a codeword c∗ =

(c0, c1) it first checks that the arguments contained in the left and right part are equal,
and moreover that the hash values are consistent with the shares; further, it checks that
the non-interactive arguments verify correctly w.r.t. the corresponding statement and
label. If any of the above checks fails, the algorithm returns ⊥, and otherwise it outputs
the same as LRDec(s0, s1).

Correctness of the code �∗ follows directly by the correctness properties of the LRS
and of the non-interactive argument system. As for security, we establish the following
result.

Theorem 3. Let � ∈ N. Assume that:

(i) (LREnc,LRDec) is an augmented �-leakage-resilient storage;
(ii) (Gen,Hash) is a collision-resistant hash function;
(iii) (CRSGen,Prove,Ver) is a true-simulation extractable non-interactive

zero-knowledge argument system for the language Lhk
hash = {h ∈ {0, 1}λ : ∃s ∈

{0, 1}n s.t. Hash(hk, s) = h}.
Then, the split-state code �∗ described in Fig. 1 is an �∗-leakage-resilient continuously
super-non-malleable code in the CRS model, as long as �∗ ≤ �/2 − O(λ log(λ)).

Continuously Non-malleable Codes in the Split-State Model 2051

Fig. 2. Modified tampering oracleO′
maul used in the experimentHyb2

�∗,A∗ (λ, b). For simplicity, we assume

that the extractor K is deterministic (which is the case for known instantiations, e.g., [51]); a generalization is
immediate.

4.2. Proof Outline

Our goal is to show that no PPT attacker A∗ can distinguish the experiments
Tamper�∗,A∗(λ, 0) and Tamper�∗,A∗(λ, 1) (cf. Definition 6). Recall that A∗, after see-
ing the CRS, can select two messages m0,m1 ∈ {0, 1}k , and then adaptively tamper
with, and leak from, a target encoding c∗ = (c0, c1) of either m0 or m1, where both the
tampering and the leakage act independently on the two parts c0 and c1.
In order to prove the theorem,we introduce two hybrid experiments, as outlined below.

Hyb1
�∗,A∗(λ, b): In the first hybrid, we modify the distribution of the target codeword

c∗ = (c0, c1). In particular, we first use the simulator S0 of the non-
interactive argument system to program the CRS ω, yielding simula-
tion trapdoor ζ and extraction trapdoor ξ , and then we compute the
argument π0 (resp. π1) by running the simulator S1 upon input ζ ,
statement h0 (resp. h1) and label h1 (resp. h0).

Hyb2
�∗,A∗(λ, b): In the second hybrid, we modify the way tampering queries are an-

swered. In particular, let (f0, f1) be a generic tampering query, and
c̃∗ = (c̃0, c̃1) = (f0(c0), f1(c1)) be the corresponding mauled code-
word. Note that c̃0 can be parsed as c̃0 = (s̃0, h̃1, π̃0,0, π̃1,0), and sim-
ilarly c̃1 = (s̃1, h̃0, π̃0,1, π̃1,1). The modified tampering oracle then
proceeds as follows, for each β ∈ {0, 1}.
(a) In case c̃β = cβ , define �β := � (cf. Type-A queries in Fig. 2).
(b) In case c̃β �= cβ , but either of the arguments in c̃β does not verify

correctly, define �β := ⊥ (cf. Type-B queries in Fig. 2).

2052 S. Faust et al.

(c) In case c̃β �= cβ and both the arguments in c̃β verify correctly, let
h̃β,β := Hash(hk, s̃β). Check if (h̃1−β, h̃β,β, π̃1−β,β) = (h1−β,

hβ, π1−β); if not (in which case we cannot extract from π̃1−β),
then define �β := ⊥ (cf. Type-C queries in Fig. 2).

(d) Otherwise, run the knowledge extractor K of the underlying non-
interactive argument systemupon input extraction trapdoor ξ , state-
ment h̃1−β , argument π̃1−β,β , and label h̃β,β := Hash(hk, s̃β),
yielding a share s̃1−β . Thus, let c̃1−β = (s̃1−β, h̃β,β, π̃0,β , π̃1,β)

and define �β := (c̃0, c̃1) (cf. Type-D queries in Fig. 2).

Finally, if �0 = �1 the oracle returns this value as answer to the tampering query
(f0, f1); else, it returns ⊥ and self-destructs. (Of course, in case �0 = �1 = ⊥, the
oracle also returns ⊥ and self-destructs.)

As a first step, we argue that Tamper�∗,A∗(λ, b) and Hyb1
�∗,A∗(λ, b) are computa-

tionally close. This follows readily from adaptive multi-theorem zero knowledge of the
non-interactive argument system, as the only difference between the two experiments
is the fact that in the latter the arguments π0, π1 are simulated. As a second step, we
prove that Hyb1

�∗,A∗(λ, b) and Hyb2
�∗,A(λ, b) are also computationally indistinguish-

able. More in details, we show how to bound the probability that the output of the
tampering oracle in the two experiments differs in the above described cases (a), (b), (c)
and (d):

(a) For Type-A queries, note that when c̃β = cβ , we must have c̃1−β = c1−β with
overwhelming probability, as otherwise, say, (c0, c1, c̃1) would violate codewords
uniqueness, which for our code readily follows from collision resistance of the
hash function.

(b) For Type-B queries, the decoding process in the previous hybrid would also return
⊥, so these queries always yield the same output in the two experiments.

(c) For Type-C queries, we use the facts that (i) the underlying non-interactive argu-
ment system is true-simulation extractable, and (ii) the hash function is collision
resistant, to show that c̃β must be of the form c̃β = (sβ, h1−β, π̃0,β , π1,β) with
π̃0,β �= π1,β . As we show, the latter contradicts security of the underlying LRS.

(d) For Type-D queries, note that whenever we run the extractor either the statement
h̃1−β , or the argument π̃1−β,β , or the label h̃β,β are fresh, which ensures thewitness
must be valid with overwhelming probability by (true-simulation) extractability of
the non-interactive argument system.

Next, we show that no PPT attacker A∗ can distinguish between experiments
Hyb2

�∗,A∗(λ, 0) andHyb2
�∗,A∗(λ, 1) with better than negligible probability. To this end,

we build a reduction A to the security of the underlying LRS. In order to keep the expo-
sition simple, let us first assume that A∗ is not allowed to ask leakage queries. Roughly,
the reduction works as follows:

• Simulate the CRS: At the beginning, A samples a programmed CRS ω and the
hash key hk exactly as defined inHyb2

�∗,A∗(λ, b), and runs A∗ upon ω∗ := (ω, hk)

and fresh randomness r . Upon receiving (m0,m1) from A∗, then A forward the
same pair of messages to the challenger.

Continuously Non-malleable Codes in the Split-State Model 2053

• Learn the self-destruct index: Note that in the last hybrid, the tampering oracle
answers A∗’s tampering queries by computing both �0 (looking only at c0) and �1
(looking only at c1), and then �0 is returned as long as �0 = �1 (and otherwise
a self-destruct is triggered). Since A can leak independently from s0 and s1, it can
compute all the values �β by running A∗ with hard-wired10 randomness r inside11

each of its leakage oracles, and then use a pairwise independent hash function to
determine using a binary search the first index i∗ corresponding to the tampering
query where �0 �= �1. By pairwise independence, this yields the index of the
query i∗ in which A∗ provokes a self-destruct with overwhelming probability, and
by leaking at most O(λ log λ) bits from each block.

• Play the game: Once the self-destruct index i∗ is known, A obtains12 sσ and can
thus restartA∗ outside the leakage oracle, using the same randomness r , and answer
to the first i∗ − 1 tampering queries using cσ = (sσ , h1−σ , π0, π1), after which the
answer to all remaining tampering queries is set to be ⊥. This yields a perfect
simulation of how tampering queries are handled in the last hybrid, so that A keeps
the advantage of A∗.

Finally, let us explain how to remove the simplifying assumption that A∗ cannot leak
from the target codeword. The difficulty when considering leakage is that we cannot run
anymore the entire experiment with A∗ inside the leakage oracle, as the answer to A∗’s
leakage queries depends on the other half of the target codeword. However, note that in
this case we can stop the execution and inform the reduction to leak from the other side
whatever information is needed to continue the execution of each copy of A∗ inside the
leakage oracle.
This allows to obtain the answers to all leakage queries of A∗ up to a self-destruct

occurs. In order to obtain the answers to the remaining queries, we must re-run A inside
the leakage oracle and adjust the simulation consistently with the self-destruct index
being i∗. In the worst case, this requires 2�∗ bits of leakage, yielding the final bound of
2�∗ + O(λ log λ). At the end, the reduction knows the answer to all leakage queries of
A∗ with hard-wired randomness r , which allows to play the game with the challenger
as explained above.

4.3. Hybrids

Let us start by recalling the definition of experiment Tamper�∗,A∗(λ, b) for our code
from Fig. 1.

Tamper�∗,A∗(λ, b):

ω ←$ CRSGen(1λ), hk ←$ Gen(1λ), ω∗ := (ω, hk)
(m0,m1, α1) ←$ A∗

0(1
λ, ω∗)

(s0, s1) ←$ LREnc(mb)

∀β ∈ {0, 1} : hβ = Hash(hk, sβ), πβ ←$ Prove(ω, h1−β, (hβ, sβ))

10To be more precise, this also requires to leak the initial hash values, to simulate the non-interactive
arguments as done in the last hybrid, and to hard-wire those values in each leakage query.

11This makes the reduction non-black-box, as it needs to run A∗ inside the leakage oracles.
12Recall that the underlying LRS satisfies augmented leakage resilience (cf. Definition 5).

2054 S. Faust et al.

c∗ := (c0, c1) := ((s0, h1, π0, π1), (s1, h0, π0, π1))

b′ ←$ A∗
1
O�∗

leak(c0,·),O�∗
leak(c1,·),Omaul((c0,c1),·)(1λ, α1)

Consider the following hybrid experiments.

• Hyb1
�∗,A∗(λ, b): Let S = (S0,S1) be the zero-knowledge simulator guaranteed by

the non-interactive argument system. This hybrid is identical to the original experi-
ment, except that the instructions ω ←$ CRSGen(1λ) and
πβ ←$ Prove(ω, h1−β, (hβ, sβ)) are replaced by (ω, ζ, ξ) ←$ S0(1λ) and
πβ ←$ S1(ζ, h1−β, hβ) respectively.

• Hyb2
�∗,A∗(λ, b): Identical to the previous experiment, except that the oracleOmaul

is replaced by O′
maul described in Fig. 2.

We first prove, in Sect. 4.4, that

{
Hyb2

�∗,A∗(λ, 0)
}

λ∈N ≈c

{
Hyb2

�∗,A∗(λ, 1)
}

λ∈N .

Then, in Sect. 4.5, we show that the above hybrids are computationally close, i.e., for
all b ∈ {0, 1}:

{
Tamper�∗,A∗(λ, b)

}
λ∈N ≈c

{
Hyb1

�∗,A∗(λ, b)
}

λ∈N ≈c

{
Hyb2

�∗,A∗(λ, b)
}

λ∈N ,

thus proving continuous non-malleability:

{
Tamper�∗,A∗(λ, 0)

}
λ∈N ≈c

{
Tamper�∗,A∗(λ, 1)

}
λ∈N .

4.4. The Main Reduction

Lemma 2. {Hyb2
�∗,A∗(λ, 0)}λ∈N ≈c {Hyb2

�∗,A∗(λ, 1)}λ∈N.

Proof. The proof is down to the augmented leakage resilience (cf. Definition 5) of
the underlying LRS (LREnc,LRDec). The reduction relies on a family of weakly
universal13 hash functions �. By contradiction, assume that there exists a PPT adver-
sary A∗ = (A∗

0,A
∗
1) that can tell apart Hyb2

�∗,A∗(λ, 0) and Hyb2
�∗,A∗(λ, 1) with non-

negligible probability. Consider the following PPT attacker A against leakage resilience
of (LREnc,LRDec), which relies on the leakage functions defined in Fig. 3 on the
following page.

Attacker A for (LREnc,LRDec) :
1. (Setup phase.) Simulate the CRS as follows:

(a) Run hk ←$ Gen(1λ) and (ω, ζ, ξ) ←$ S0(1λ); set ω∗ = (ω, hk).

13A family of hash functions � = {ψt : {0, 1}2n → {0, 1}λ}t∈{0,1}λ is weakly universal if for all distinct

x1, x2 ∈ {0, 1}2n the following holds: P
[
ψt (x1) = ψt (x2) : t ←$ {0, 1}λ

]
≤ 2−λ. Such families exist

unconditionally.

Continuously Non-malleable Codes in the Split-State Model 2055

Fig. 3. Leakage functions used in the proof of Lemma 2. For simplicity, we assume that the adversary for
continuous non-malleability always asks leakage queries on both parts of the target codeword. See Fig. 2 on
page 18 for the definition of algorithm SimTamp.

(b) Sample r := (r0, r1) ←$ {0, 1}∗, and run (m0,m1, α1) ←$ A0(ω
∗; r0).

(c) Forward (m0,m1) to the challenger, obtaining access to the leakage
oracles O�

leak(s0, ·) and O�
leak(s1, ·).

(d) For each β ∈ {0, 1}, query ghashβ (hk, ·) to O�
leak(sβ, ·), obtaining

hβ = Hash(hk, sβ).
(e) For each β ∈ {0, 1} generate the argument πβ ←$ S1(ζ, h1−β, hβ).
(f) Let α̂ := (ω, hk, ξ, h0, h1, π0, π1, 〈A∗

1〉, α1, r1), and �0,�1 :=
(ε, . . . , ε) be initially empty arrays.

2. (Obtain the temporary leakages.) Run the following loop:

(a) Query alternatively O�
leak(s0, ·) and O�

leak(s1, ·) with gtemp
0

(α̂,�0,�1, ·) and gtemp
1 (α̂,�0,�1, ·).

(b) For any j ≥ 1, after the j-th query, if at least one of the oracles
returns (0,�(j)

β) update the j-th entry of �β as in �β [j] = �
(j)
β .

(c) If both oracles return (1, q0) and (1, q1), respectively, break the
loop obtaining the (temporary) leakages�0,�1 and the (temporary)
number of tampering queries q = min{q0, q1}.

2056 S. Faust et al.

3. (Learn the self-destruct index.) Set (qmin, qmax) = (0, q). Run the
following loop:

(a) If qmin = qmax, break the loop obtaining the self-destruct index
i∗ := qmin = qmax; else, set qmed = � qmin+qmax

2 �.
(b) Sample t ←$ {0, 1}λ.
(c) For eachβ ∈ {0, 1}, query gsdβ (α̂,�0,�1, ψt , qmed, ·) toO�

leak(sβ, ·)
obtaining a value yβ ∈ {0, 1}λ.

(d) If y0 �= y1, update (qmin, qmax) ← (qmin, qmed); else, update
(qmin, qmax) ← (qmed + 1, qmax).

4. (Correct the leakages.) Set �0,�1 ← (ε, . . . , ε), i.e., discard all the
temporary leakages. Run the following loop:

(a) Query alternatively O�
leak(s0, ·) and O�

leak(s1, ·) with gleak0 (α̂,�0,

�1, i∗, ·) and gleak1 (α̂,�0,�1, i∗, ·).
(b) For any j ≥ 1, after the j-th query, if at least one of the oracles

returns (0,�(j)
β) update the j-th entry of �β as in �β [j] = �

(j)
β .

(c) If both oracles return 1, break the loop obtaining the final leakages
�0,�1.

5. (Play the game.) Run the following loop:

(a) Forward σ = 0 to the challenger, obtaining s0.
(b) Set c0 = (s0, h1, π0, π1), then start A∗

1(1
λ, α1; r1).

(c) Upon input the j-th leakage query (g(j)
0 , g(j)

1) from A∗
1, return

(�
(j)
0 ,�

(j)
1).

(d) Upon input the i-th tampering query (f (i)
0 , f (i)

1) from A∗
1:

• If i < i∗, answer with �
(i)
0 = SimTamp(c0, f (i)

0).
• If i ≥ i∗, return ⊥.

(e) Upon input a guess b′ from A∗
1, forward b′ to the challenger and

terminate.

For the analysis, we must show that A does not leak too much information and that the
reduction is correct (in the sense that the view of A∗ is simulated correctly). Note that
A makes leakage queries in steps 1d, 2a, 3c, and 4a. The leakage amount in step 1d is
equal to λ bits per share (i.e., the size of a hash value). The leakage amount in step 2a is
bounded by �∗ + O(log λ) bits per share (i.e., the maximum leakage asked by A∗ plus
the indexes q0, q1); by a similar argument, the leakage in step 4a consists of at most �∗
bits per share. Finally, the leakage in step 3c is bounded by O(λ log(λ)) (as the loop for
the binary search is run at most O(log λ) times, and each time the reduction leaks λ bits
per share). Putting it all together, the overall leakage is bounded by

λ + 2(�∗ + O(log λ)) + O(λ log(λ)) = 2�∗ + O(λ log(λ)) ≤ �,

where the inequality follows by the bound on �∗ in the theorem statement.
Next, we argue that A perfectly simulates the view of A∗ except with negligible

probability. Indeed:

Continuously Non-malleable Codes in the Split-State Model 2057

• The distribution of the CRS ω∗ = (ω, hk) is perfect.
• For each β ∈ {0, 1}, the distribution of the value cβ assembled inside the leak-
age oracle O�

leak(sβ, ·) is identical to that of the target codeword c∗ = (c0, c1) in
Hyb2

�∗,A∗(λ, b),whereb is the hiddenbit in the security game for (LREnc,LRDec).
• The simulation of A∗’s leakage queries is perfect. Note that the simulated leakages

�0,�1 might be inconsistent after the loop of step 2 terminates. This is because
there may exist an index i ∈ [q] such that �

(i)
0 �= �

(i)
1 (i.e., the answer to the

i-th tampering query should be ⊥, but a different value is passed to A∗
1 inside the

leakage oracle), which causes a wrong simulation of all leakage queries j ≥ i (if
any). However, the reduction adjusts the leakages later in step 4, after the index i∗
corresponding to the self-destruct query is known.

• Exceptwith negligible probability, the index i∗ coincideswith the index correspond-
ing to the self-destruct query, i.e. the minimum i∗ ∈ [q] such that �

(i∗)
0 �= �

(i∗)
1

in Hyb2
�∗,A∗(λ, b). The latter follows readily from the weak universality of �,

as for each query gsd0 (α̂,�0,�1, ψt , qmed, ·) and gsd1 (α̂,�0,�1, ψt , qmed, ·) the
probability that

y0 = ψt (�
(1)
0 || · · · ||�(qmed)

0) = ψt (�
(1)
1 || · · · ||�(qmed)

1) = y1,

but �
(1)
0 || · · · ||�(qmed)

0 �= �
(1)
1 || · · · ||�(qmed)

1 is at most 2−λ (over the choice of
t ←$ {0, 1}λ), and thus, by the union bound, the simulation iswrongwith probability
at most q · 2−λ.

• In step 5, the reduction obtains c0, and thus can use the knowledge of the final
corrected leakages �0,�1 and of the self-destruct index i∗ to perfectly simulate
all the queries of A∗

1.

Hence, we have shown that there exists a polynomial p(λ) ∈ poly(λ) and a negligible
function ν : N → [0, 1] such that

∣∣
∣P

[
Leak+

�,A(λ, 0, 0) = 1
]

− P

[
Leak+

�,A(λ, 1, 0) = 1
]∣∣
∣ ≥ 1/p(λ) − ν(λ).

This concludes the proof. �

4.5. Indistinguishability of the Hybrids

We first establish some useful lemmas, and then analyze each of the two game hops
individually.

4.5.1. Useful Lemmata

Lemma 3. The code�∗ = (Init∗,Enc∗,Dec∗) satisfies codewords uniqueness. More-
over, the latter still holds if we modify (Init∗,Enc∗) as defined in Hyb1

�∗,A∗(λ, b).

Proof. We show that Definition 7 is satisfied for β = 0. The proof for β = 1 is
analogous, and therefore omitted.

2058 S. Faust et al.

Assume that there exists a PPT adversary A∗ that, given as input ω∗ = (ω, hk), is able
to produce (c0, c1, c′

1) such that both (c0, c1) and (c0, c′
1) are valid, but c1 �= c′

1. Let
c0 = (s0, h1, π0, π1), c1 = (s1, h0, π0, π1), and c′

1 = (s′
1, h

′
0, π

′
0, π

′
1). Since s0 is the

same in both codewords, we must have h0 = h′
0 as the hash function is deterministic.

Furthermore, since both (c0, c1) and (c0, c′
1) are valid, the arguments on the right parts

must be equal to the ones on the left part, i.e., π ′
0 = π0 and π ′

1 = π1. It follows that
c′
1 = (s′

1, h0, π0, π1), with s′
1 �= s1, and thus (s1, s′

1) are a collision forHash(hk, ·). The
latter contradicts collision resistance of (Gen,Hash), as it can be seen by the simple
reduction that given a target hash key hk embeds it in the CRS ω∗ = (ω, hk), runs
A∗(1λ, ω∗) obtaining (c0, c1, c′

1), and outputs (s1, s′
1).

The second part of the statement of the lemma follows by the non-interactive zero-
knowledge property of the argument system. In fact, the latter implies that the advantage
of any PPT adversary A∗ in breaking codewords uniqueness must be close (up to a
negligible distance) in the first hybrid and in the original experiment. �

Lemma 4. Whenever A∗ outputs a Type-D query in Hyb1
�∗,A∗(λ, b) the following

holds: For all β ∈ {0, 1} the codeword (c̃0,β , c̃1,β) contained in �β must be valid
with overwhelming probability.

Proof. Fix any β ∈ {0, 1}, and let (f0, f1) be a generic query of Type D. Denote
by �β = (c̃0,β , c̃1,β) the answer to any tampering query (f0, f1) as it would be com-
puted by O′

maul((c0, c1), (f0, f1)), i.e., c̃β,β = (s̃β, h̃1−β, π̃0,β , π̃1,β) and c̃1−β,β =
(s̃1−β, h̃β,β, π̃0,β , π̃1,β) with h̃β,β = Hash(hk, s̃β). By construction, (c̃0,β , c̃1,β) is in-
valid if and only if Hash(hk, s̃1−β) �= h̃1−β .
Fix b ∈ {0, 1}. Let nowA∗ be aPPTadversary forHyb1

�∗,A∗(λ, b) thatwith probability
at least 1/poly(λ) outputs a Type-D tampering query (f0, f1) such that
O′

maul((c0, c1), (f0, f1)) would yield an invalid codeword �β as described above. We
construct a PPT attacker A against true-simulation extractability (cf. Definition 3) of the
non-interactive argument system. A description of A follows:

Attacker A for (CRSGen,Prove,Ver) :
• Upon receiving the target CRS ω, generate hk ←$ Gen(1λ) and let ω∗ :=

(ω, hk).
• Run (m0,m1, α1) ←$ A∗

0(1
λ, ω∗), and let (s0, s1) ←$ LREnc(mb).

• Computeh0 = Hash(hk, s0) andh1 = Hash(hk, s1); forward (h1, (s0, h0))
and (h0, (s1, h1)) to the challenger, obtaining arguments π0 and π1.

• Let c∗ = (c0, c1) = ((s0, h1, π0, π1), (s1, h0, π0, π1)), andpick j∗ ←$ [q]
where q ∈ poly(λ) is an upper bound for the number of A∗’s tampering
queries.

• Run A∗
1
O�∗

leak(c0,·),O�∗
leak(c1,·),Omaul((c0,c1),·)(1λ, α1) by answering all of its

leakage and tampering queries as follows:

· Upon input a leakage query g0 (resp. g1) forO�∗
leak(c0, ·) (resp.O�∗

leak
(c1, ·)), return g0(c0) (resp. g1(c1)).

· Upon input a tampering query (f0, f1) for Omaul((c0, c1), (·, ·)), if
this is not the j∗-th tampering query answer in the same way as

Continuously Non-malleable Codes in the Split-State Model 2059

Omaul((c0, c1), (·, ·))woulddo.Else, run c̃β = (s̃β, h̃1−β, π̃0,β , π̃1,β) =
fβ(cβ), compute h̃β,β = Hash(hk, sβ) and forward (h̃1−β, h̃β,β, π̃1,β)

to the challenger.

For the analysis, note that the simulation done by A is perfect. In particular, both the
distribution of the CRS and the answer toA∗’s leakage and tampering queries is identical
to that of Hyb1

�∗,A∗(λ, b). It follows that, with probability at least 1/q · 1/poly(λ) ∈
1/poly(λ), the j∗-th tampering query output by attacker A∗ is such that all of the fol-
lowing conditions are met: (i)Ver(ω, h̃β,β, (h̃1−β, π̃1,β)) = 1; (ii) (h̃1−β, h̃β,β, π̃1−β,β)

is fresh, i.e., it is different from (h1−β, hβ, π1−β); (iii) K(ξ, h̃β,β, (h̃1−β, π̃1,β)) outputs
a value s̃1−β such that Hash(hk, s̃1−β) �= h̃1−β (i.e., (h̃1−β, s̃1−β) �∈ Rhk

hash). Fur-
ther, note that A obtains only simulated arguments for true statements. Thus, A breaks
true-simulation extractability with non-negligible probability. The lemma follows: �

4.5.2. First Game Hop

Lemma 5. ∀b ∈ {0, 1}: {Tamper�∗,A∗(λ, b)}λ∈N ≈c {Hyb1
�∗,A∗(λ, b)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property (cf.
Definition 2) of the underlying non-interactive argument system. By contradiction, as-
sume that there exists a PPT attacker A∗ = (A∗

0,A
∗
1) that, for any fixed b ∈ {0, 1},

can distinguish between {Tamper�∗,A∗(λ, b)}λ∈N and {Hyb1
�∗,A∗(λ, b)}λ∈N with non-

negligible probability. Consider the following PPT distinguisher D attacking the zero-
knowledge property.

Distinguisher D for (CRSGen,Prove,Ver) :
• Upon receiving the target CRS ω, generate hk ←$ Gen(1λ) and let ω∗ :=

(ω, hk).
• Run (m0,m1, α1) ←$ A∗

0(1
λ, ω∗), and let (s0, s1) ←$ LREnc(mb).

• For each β ∈ {0, 1}, compute hβ = Hash(hk, sβ).
• For each β ∈ {0, 1}, forward (h1−β, (hβ, sβ)) to the challenger, obtaining

π0, π1.
• Let c∗ = (c0, c1) = ((s0, h1, π0, π1), (s1, h0, π0, π1)).

• Run b′ ←$ A∗
1
O�∗

leak(c0,·),O�∗
leak(c1,·),Omaul((c0,c1),·)(1λ, α1).

• Output b′.
For the analysis, note that the simulation done byD is perfect. In particular, depending on
the game that D is playing, the CRS ω is either generated by running
CRSGen(1λ) or S0(1λ); similarly, the arguments π0, π1 are either obtained by running
πβ ←$ Prove(ω, h1−β, (hβ, sβ)) or πβ ←$ S1(ζ, h1−β, hβ). Moreover, the reduction
can perfectly emulate the oracles Omaul and O�∗

leak since it holds a simulated codeword
c∗ that is either distributed according to Tamper�∗,A∗(λ, b) orHyb1

�∗,A∗(λ, b). Thus,D
has the same distinguishing advantage as that of A∗. The lemma follows: �

4.5.3. Second Game Hop

Lemma 6. ∀b ∈ {0, 1}: {Hyb1
�∗,A∗(λ, b)}λ∈N ≈c {Hyb2

�∗,A∗(λ, b)}λ∈N.

2060 S. Faust et al.

Proof. Fix b ∈ {0, 1}.Wewill prove that, with all but a negligible probability, the output
of the tampering oracles Omaul((c0, c1), ·) and O′

maul((c0, c1), ·) are identical up to the
first tampering query that is answered with ⊥ in Omaul((c0, c1), ·). (Afterward, both
oracles self-destruct and thus always return ⊥.) Let q ∈ poly(λ) be an upper bound on
the number of tampering queries in either of the hybrids. Consider the following events,
defined over the probability space of both Hyb1

�∗,A(λ, b) and Hyb2
�∗,A(λ, b):

• Event Badsame: There exists an index i ∈ [q], corresponding to a tampering query
(f (i)

0 , f (i)
1), such that oracleO′

maul((c0, c1), (f
(i)
0 , f (i)

1)) outputs �, whereas oracle
Omaul((c0, c1), (f

(i)
0 , f (i)

1)) would output a value in {0, 1}2n ∪ {⊥}.
• Event Bad⊥: There exists an index i ∈ [q], corresponding to a tampering query

(f (i)
0 , f (i)

1), such that oracleO′
maul((c0, c1), (f

(i)
0 , f (i)

1)) outputs⊥, whereas oracle

Omaul((c0, c1), (f
(i)
0 , f (i)

1)) would output a value in {0, 1}2n ∪ {�}.
• Event Badcdw: There exists an index i ∈ [q], corresponding to a tampering
query (f (i)

0 , f (i)
1), such that oracle O′

maul((c0, c1), (f
(i)
0 , f (i)

1)) outputs a code-

word (c̃(i)
0 , c̃(i)

1), whereas oracleOmaul((c0, c1), (f
(i)
0 , f (i)

1)) would output either a
different codeword or a value in {�,⊥}.

Denote by Bad := Badsame ∪ Bad⊥ ∪ Badcdw. Since the two hybrids are identical
conditioned on Bad not happening, by a standard argument, it suffices to prove that Bad
happens with at most a negligible probability. In what follows, we always write

c̃(i)
0 := (s̃(i)

0 , h̃(i)
1 , π̃

(i)
0,0, π̃

(i)
1,0) c̃(i)

1 := (s̃(i)
1 , h̃(i)

0 , π̃
(i)
0,1, π̃

(i)
1,1)

for the tampered codeword (c̃(i)
0 , c̃(i)

1) associated with (f (i)
0 , f (i)

1), and h̃β,β for the value
Hash(hk, s̃β).

Claim 1. P [Badsame] = 0.

Proof. Note that O′
maul((c0, c1), (f

(i)
0 , f (i)

1)) outputs � if and only if (f (i)
0 , f (i)

1) is of

Type A, i.e., c̃(i)
0 = f (i)

0 (c0) = c0 and c̃(i)
1 = f (i)

1 (c1) = c1. However, for such a query,

oracle Omaul((c0, c1), (f
(i)
0 , f (i)

1)) would also return �, and thus the event Badsame
never happens. �

Claim 2. P [Bad⊥] ∈ negl(λ).

Proof. Note that O′
maul((c0, c1), (f

(i)
0 , f (i)

1)) outputs ⊥ if and only if either (i) ∃β ∈
{0, 1} : �β [i] = ⊥, or if (ii) ⊥ �= �0[i] �= �1[i] �= ⊥. We treat each of these sub-cases
separately.
The case ∃β ∈ {0, 1} : �β [i] = ⊥. We observe that �β [i] = ⊥ if and only if one of

the following events happen: (a) f (i)
β is of Type B; (b) f (i)

β is of Type C; (c) f (i)
β is of

Type D, and the extractor K returns ⊥. Below, we analyze each such case.

Type-B queries: Recall that function f (i)
β is of Type B if:

Ver(ω, h̃(i)
1−β, (h̃(i)

β,β, π̃
(i)
β,β)) = 0 ∨ Ver(ω, h̃(i)

β,β, (h̃(i)
1−β, π̃

(i)
1−β,β)) = 0.

Continuously Non-malleable Codes in the Split-State Model 2061

The above means that the local check on c̃(i)
β (as run by the original

decoding algorithm) fails, and thusOmaul((c0, c1), (f
(i)
0 , f (i)

1))would
also return ⊥.

Type-C queries: Wlog. assume that f (i)
0 is of Type C (the proof in case f (i)

1 is of Type

C being analogous). Recall that function f (i)
0 is of Type C if:

(h̃(i)
1 , h̃(i)

0,0, π̃
(i)
1,0) = (h1, h0, π1).

Assume now that (f (i)
0 , f (i)

1) is such that Omaul returns a value different from ⊥.

We claim this implies that the tampered codeword (c̃(i)
0 , c̃(i)

1) must be of the form

((s0, h1, π̃
(i)
0 , π1), (s1, h0, π̃

(i)
0 , π1)). First, collision resistance14 of (Gen,Hash) im-

plies that s̃(i)
0 = s0 and s̃

(i)
1 = s1 with all but a negligible probability. Second, π̃

(i)
1,1 = π1

and π̃
(i)
0,0 = π̃

(i)
0,1 = π̃

(i)
0 as otherwise the tampered codeword would not be valid.

Next, we prove that the above contradicts security of the LRS. By contradiction, as-
sume that there exists an adversaryA∗ that with non-negligible probability outputs a tam-
pering query (f (i)

0 , f (i)
1) such that (c̃(i)

0 , c̃(i)
1) = ((s0, h1, π̃

(i)
0 , π1), (s1, h0, π̃

(i)
0 , π1)),

with π̃
(i)
0 �= π0 (otherwise f (i)

0 would be of Type A). Since π̃
(i)
0 is accepting, by true-

simulation extractability of the argument system (CRSGen,Prove,Ver), it holds that
K(ξ, h1, (h0, π̃

(i)
0)) outputs a value s̃(i)

0 such thatHash(hk, s̃(i)
0) = h0 with all but a neg-

ligible probability.15 Moreover, collision resistance of (Gen,Hash) implies that in this
case s̃(i)

0 = s0 with overwhelming probability.16 Consider now the following attacker A.

Attacker A against (LREnc,LRDec) :
• Run steps 1–4 as described in the reduction A in the proof of Lemma 2.
This yields target messagesm0,m1 (as returned byA∗

0), the final corrected
leakages�0,�1, the index i∗ corresponding to the self-destruct query, and
auxiliary information α̂ = (ω, hk, ξ, h0, h1, π0, π1, 〈A∗

1〉, α1, r1).
• Forward σ = 1 to the challenger, obtaining s1.
• Set c1 = (s1, h0, π0, π1), sample j∗ ←$ [i∗], and then startA∗

1(1
λ, α1; r1).

• Upon input the j-th leakagequery (g(j)
0 , g(j)

1) fromA∗
1, return (�

(j)
0 ,�

(j)
1).

• Upon input the i-th tampering query (f (i)
0 , f (i)

1) from A∗
1:

· If i �= j∗ < i∗, answer with �
(i)
1 = SimTamp(c1, f (i)

1).

· If i = j∗, let c̃(i)
1 = (s̃(i)

1 , h̃(i)
0 , π̃

(i)
0,1, π̃

(i)
1,1) := f (i)

1 (s1, h0, π0, π1).

Run s̃(i)
0 := K(ξ, h1, (h0, π̃

(i)
0,1)). If there exists b

′ ∈ {0, 1} such that

14Given an attacker A∗ that with non-negligible probability outputs a tampering query (f (i)
0 , f (i)

1) such

that (c̃(i)0 , c̃(i)1) is valid with h̃(i)
0 = h0 and s̃

(i)
0 �= s0, we can build an attacker A breaking collision resistance

of (Gen,Hash). The reduction is straightforward: Given hk, adversary A simply runs A∗ honestly after

embedding hk in the CRS, until it outputs the query (f (i)
0 , f (i)

1), which yields the collision (s0, s̃
(i)
0).

15The reduction is analogous to the one in Lemma 4, and therefore omitted.
16The reduction is analogous to the one in Footnote 14.

2062 S. Faust et al.

LRDec(s̃(i)
0 , s̃(i)

1) = mb′ , forward b′ to the challenger and terminate;
else, abort the simulation and terminate.

An argument identical to that used in the proof of Lemma 2 shows that A leaks at most �
bits and perfectly simulates the view of A∗. Since with probability 1/poly(λ) attacker
A∗ outputs a tampering query (f (i)

0 , f (i)
1) such that (c̃(i)

0 , c̃(i)
1) = ((s0, h1, π̃

(i)
0 , π1), (s1,

h0, π̃
(i)
0 , π1)), with π̃

(i)
0 �= π0, and moreover with probability 1/ i∗ this is the j∗-th

tampering query, it follows that b′ = b in experiment Leak+
�,A(λ, b) with probability at

least 1/poly(λ) − negl(λ).

Type-D queries: Wlog. assume that f (i)
0 is of Type D (the proof in case f (i)

1 is of Type

D being analogous). Recall that function f (i)
0 is of Type D if:

(h̃(i)
1 , h̃(i)

0,0, π̃
(i)
1,0) �= (h1, h0, π1),

and moreover the argument π̃ (i)
1,0 is valid w.r.t. statement h̃(i)

1 and label

h̃(i)
0,0. Lemma 4 implies that in such a situation the extractor K yields a

valid witness, so that �0[i] �= ⊥ with overwhelming probability.

The case ⊥ �= �0[i] �= �1[i] �= ⊥. First note that both �0[i] and �1[i] must be
different from �. This is because if �0[i] = �, it must be the case that �1[i] �= �,
and thus c̃(i)

1 = f (i)
1 (c1) �= c1 as otherwise (f (i)

0 , f (i)
1) would be of Type A. Since

Omaul((c0, c1), (f
(i)
0 , f (i)

1)) does not output ⊥, the above implies that both (c0, c1) and

(c0, c̃
(i)
1) are valid codewords, which contradicts codewords uniqueness. More formally,

given an efficient attacker A∗ that provokes the above event, it is straightforward17

to construct an efficient attacker A that breaks uniqueness, which in turn contradicts
Lemma 3.
It remains to analyze the case where both �0[i] and �1[i] contain values in {0, 1}2n ,

i.e., �0[i] = (c̃(i)
0,0, c̃

(i)
1,0) and �1[i] = (c̃(i)

0,1, c̃
(i)
1,1) with (c̃(i)

0,0, c̃
(i)
1,0) �= (c̃(i)

0,1, c̃
(i)
1,1). By

definition of O′
maul((c0, c1), (f

(i)
0 , f (i)

1)), for all β ∈ {0, 1}, we can write:

c̃(i)
β,β = (s̃(i)

β , h̃(i)
1−β, π̃

(i)
0,β , π̃

(i)
1,β) c̃(i)

1−β,β := (s̃(i)
1−β, h̃(i)

β,β , π̃
(i)
0,β , π̃

(i)
1,β).

However, sinceO′
maul((c0, c1), (f

(i)
0 , f (i)

1)) does not return ⊥, it must hold that π̃ (i)
0,0 =

π̃
(i)
0,1 := π̃

(i)
0 and π̃

(i)
1,0 = π̃

(i)
1,1 := π̃

(i)
1 , and furthermore h̃(i)

0,0 = h̃(i)
0 := Hash(hk, s̃(i)

0)

and h̃(i)
1,1 = h̃(i)

1 := Hash(hk, s̃(i)
1). But this implies c̃0,0 = (s̃(i)

0 , h̃(i)
1 , π̃

(i)
0 , π̃

(i)
1) = c̃0,1,

and similarly c̃1,0 = (s̃(i)
1 , h̃(i)

0 , π̃
(i)
0 , π̃

(i)
1) = c̃1,1, a contradiction. �

Claim 3. P [Badcdw] ∈ negl(λ).

17Attacker A simply runs A∗ on a simulated codeword (c0, c1) generated exactly as in the last hybrid,

and answers to both leakage and tampering queries honestly until A∗ outputs the query (f (i)
0 , f (i)

1) breaking
uniqueness.

Continuously Non-malleable Codes in the Split-State Model 2063

Proof. Note thatO′
maul((c0, c1), (f

(i)
0 , f (i)

1)) outputs (c̃(i)
0 , c̃(i)

1) if and only if �0[i] =
(c̃(i)

0,0, c̃
(i)
1,0), �1[i] = (c̃(i)

0,1, c̃
(i)
1,1), and moreover (c̃(i)

0,0, c̃
(i)
1,0) = (c̃(i)

0,1, c̃
(i)
1,1) := (c̃(i)

0 , c̃(i)
1).

Let us write c̃(i)
0 = (s̃(i)

0 , h̃(i)
1 , π̃

(i)
0 , π̃

(i)
1) and c̃(i)

1 = (s̃(i)
1 , h̃(i)

0 , π̃
(i)
0 , π̃

(i)
1). By Lemma 4,

we know that (c̃(i)
0 , c̃(i)

1) is a valid codeword with overwhelming probability.

First, we claim that Omaul((c0, c1), (f
(i)
0 , f (i)

1)) cannot output �. This is because the
latter would imply that c̃(i)

0 = c0 and c̃(i)
1 = c1, which means (f (i)

0 , f (i)
1) would be of

Type A.
Second, let us argue that Omaul((c0, c1), (f

(i)
0 , f (i)

1)) cannot output ⊥ either. This

is because the latter would imply that either (i) ∃β ∈ {0, 1} : Hash(hk, s̃(i)
β) �= h̃(i)

β ,

or (ii) ∃β ∈ {0, 1} : Ver(ω, h̃(i)
β , (h̃(i)

1−β, π̃
(i)
1−β)) = 0. However, both these conditions

contradict the fact that (c̃(i)
0 , c̃(i)

1) must be valid.

It remains to consider the case whereOmaul((c0, c1), (f
(i)
0 , f (i)

1)) outputs a codeword

(ĉ(i)
0 , ĉ(i)

1) �= (c̃(i)
0 , c̃(i)

1), where (ĉ(i)
0 , ĉ(i)

1) is a valid codeword. Let us generically write

ĉ(i)
0 = f (i)

0 (c0) = (ŝ(i)
0 , ĥ(i)

1 , π̂
(i)
0 , π̂

(i)
1) and ĉ(i)

1 = f (i)
1 (c1) = (ŝ(i)

1 , ĥ(i)
0 , π̂

(i)
0 , π̂

(i)
1) for

the tampered codeword as computed by Omaul((c0, c1), (f
(i)
0 , f (i)

1)). By definition of

O′
maul((c0, c1), (f

(i)
0 , f (i)

1)), however, it must be the case that s̃(i)
0 = ŝ(i)

0 and s̃(i)
1 = ŝ(i)

1 ,

which in turn implies h̃(i)
0 = Hash(hk, s̃(i)

0) = ĥ(i)
0 and h̃1 = Hash(hk, s̃1) = ĥ(i)

1 , and

furthermore (π̃
(i)
0 , π̃

(i)
1) = (π̂

(i)
0 , π̂

(i)
1). Hence, (c̃(i)

0 , c̃(i)
1) = (ĉ(i)

0 , ĉ(i)
1), a contradiction.

�

The statement of the lemma now follows by the above claims, together with a union
bound. �

4.6. Concrete Instantiation

Below, we explain how to instantiate the building blocks required for our code, both
from generic and concrete assumptions.

• Leakage-Resilient Storage As shown in [50,52], this primitive exists uncondi-
tionally. Let F = GF(2k) be the Galois field with 2k elements, and t ∈ N be a
parameter. Given m ∈ {0, 1}k , algorithm LREnc interprets m as an element of F
and outputs random s0, s1 ∈ F

t subject to 〈s0, s1〉 := ∑t
i=1 s0[i] · s1[i] = m. For

any δ ∈ [0, 1], this yields an �-LRS with � = kt/4 − log(1/δ), where δ is the
statistical distance between the experiments of Definition 4. By Theorem 1, this is
also an augmented (kt/4 − log(1/δ) − 1)-LRS.

• Collision-Resistant Hash Function Let G be a cyclic group of prime order q,
with generators g1, . . . , gt for some parameter t ∈ N. Assuming hardness of the
Discrete Logarithm problem, we can take Hash(hk, s) := ∏t

i=1 g
s[i]
i where s =

(s[1], . . . , s[t]) ∈ Z
t
q and Hash : Zt

q → G.
• True-Simulation Extractable NIZK It is well known that simulation extractable
NIZKs (i.e., NIZKs that are extractable even in case the attacker observes simulated
arguments of possibly false statements) can be obtained for all of NP assuming
(doubly enhanced) trapdoor permutations [51,68,87]. More concretely, using the

2064 S. Faust et al.

collision-resistant hash function from the previous bullet point, we need to consider
the NP-relation:

R(G,g1,...,gt ,q)

hash :=
{

(h, s) : h =
t∏

i=1

gs[i]i

}

⊆ G × Z
t
q .

Following [51], an efficient tSE NIZK for the above relation can be obtained under
the DLIN assumption by combining classical Groth–Sahai NIZKs [74,75] with
Cramer–Shoup encryption [38]. We leave the count of the exact number of group
elements as an exercise to the reader.

5. Application to Tamper-Resilient Security

In this section we revisit the classical application of non-malleable codes to protecting
arbitrary cryptographic primitives against memory-tampering attacks [55,56,84], high-
lighting in particular the benefits that our new notion of continuous non-malleability
brings to the picture.
In what follows, let F(κ, ·) be an efficiently computable functionality taking a secret

key κ ∈ {0, 1}k and value x ∈ {0, 1}∗ as input, and producing some output y ∈ {0, 1}∗.
We are concerned about attackers changing the original key κ into a related key κ̃ , and
observing the effect of such changes at the output. For concreteness, we will focus on
the setting in which the key material is stored into two separate parts of the memory that
can be tampered independently, but the results in this section can be easily extended to
general tampering (parameterized by a tampering family supported by the non-malleable
code). As explained below, we distinguish between stateless and stateful functionalities.

5.1. Stateless Functionalities

In the case of stateless functionalities, the key κ is fixed once and for all. The main idea
is to transform the original functionality F into some kind of “hardened” functionality
F̂ using a non-malleable code � to encode the key. Previous transformations aiming at
protecting stateless functionalities [55,56,84] required to freshly re-encode the key κ

each time the functionality is invoked. Our approach avoids the re-encoding of the key at
each invocation, leading to a stateless transformation. This solves an open question from
[55,56]. Moreover, we consider a setting where the encoded key is stored into a memory
M := (M0,M1) which is much larger than the size needed to store the encoding itself
(say |M0| = |M1| = p(n) where p(n) is polynomial in the length n of the encoding).
When (perfect) erasures are not possible, this feature naturally allows the adversary to
make copies of the initial encoding and tamper continuously with it.
Let us formally define what it means to harden a stateless functionality.

Definition 8. (Stateless hardened functionality) Let � = (Init,Enc,Dec) be a split-
state code in the CRSmodel, with k-bit messages and 2n-bit codewords. LetF : {0, 1}k×
{0, 1}∗ → {0, 1}∗ be a stateless functionality, and δ ∈ {0, 1} be a public value. We

Continuously Non-malleable Codes in the Split-State Model 2065

define a stateless hardened functionality F̂
� := F̂ : {0, 1}2p × {0, 1}∗ → {0, 1}∗ with

p = poly(n) as a tuple of algorithms (Setup,MemCompile,Exec) described as
follows:

• ω̂ ←$ Setup(1λ): Sample ω ←$ Init(1λ), initialize δ = 0, and return ω̂ = (ω, δ).
• (M0,M1) ←$ MemCompile(ω̂, κ): Let (c0, c1) ←$ Enc(ω, κ). Parse ω̂ = (ω, δ).
For β ∈ {0, 1}, store cβ in the first n bits ofMβ ; the remaining bits ofMβ are set
to 0p−n . Define M := (M0,M1).

• y ←$ Exec(ω̂,F,M, x): Parse ω̂ = (ω, δ). In case δ = 1 output ⊥; else, let
c̃β = Mβ [1, . . . , n] for β ∈ {0, 1}. Run κ̃ = Dec(ω, (c̃0, c̃1)): If κ̃ = ⊥, then
output ⊥ and set δ = 1. Else, output y ←$ F(κ, x). Finally, update the CRS to
ω̂ := (ω, δ).

Remark 1. (On δ) The public value δ is just a way how to implement the self-destruct
feature. An alternative approachwould be to let the hardened functionality simply output
a dummy value and overwrite (M0,M1) with the all-zero string. As we do not want to
assume perfect erasures, we use the first approach here.
Note that we assume that δ is untamperable and one-time writable. The latter is

necessary, as an adversary tampering with δ could always switch-off the self-destruct
feature and apply a variant of the attack from [70] to recover the secret state.

Similarly to [55,56,84], security of F̂ is defined via the comparison of a real and
an ideal experiment. The real experiment features an adversary A interacting with F̂;
the adversary is allowed to honestly run the functionality on any chosen input, but
also to modify the memory and retrieve a bounded amount of information from it. The
ideal experiment features a simulator S that is given black-box access to the original
functionality F and to the adversary A, but is not allowed any tampering or leakage
query. The two experiments are formally described below.

Experiment RealF̂,A(λ, κ). First ω̂ ←$ Setup(1λ) and
(M0,M1) ←$ MemCompile(ω̂, κ) are run, and ω̂ is given to A. Then, A can issue
the following commands polynomially many times (in any order):

• 〈Leak, (g(j)
0 , g(j)

1)〉: In response to the j-th leakage query compute�
(j)
0 = g(j)

0 (M0)

and �
(j)
1 = g(j)

1 (M1), and output �(j) := (�
(j)
0 ,�

(j)
1).

• 〈Tamper, (f (j)
0 , f (j)

1)〉: In response to the j-th tampering query compute M̃0 =
f (j)
0 (M0) andM̃1 = f (j)

1 (M1), and replaceM = (M0,M1)withM̃ = (M̃0,M̃1).
• 〈Eval, x (j)〉: In response to the j-th evaluationquery run y(j) ←$ Exec(ω̂,F,M, x (j)):
If y(j) = ⊥, output ⊥ and self-destruct; else, output y(j).

At the end of the experiment, A outputs a bit that is an arbitrary function of its view (and
this is also the output of the experiment).

Experiment IdealF,A,S(λ, κ). The simulator sets up the CRS ω̂ = (ω, δ) and is given
black-box access to the functionality F(κ, ·) and the adversary A. At the end of the
experiment, A outputs a bit that is an arbitrary function of its view (and this is also the
output of the experiment).

2066 S. Faust et al.

Definition 9. (Continuous tamper simulatability)Let� be a split-state encoding scheme
in the CRS model and consider a stateless functionality F with corresponding hardened

functionality F̂ := F̂
�
. We say that � is �-leakage continuously tamper simulatable in

the split-state model (for stateless functionalities), if for all PPT adversaries A leaking
at most � bits from each memory part, there exists a PPT simulator S such that for any
initial state κ ∈ {0, 1}k :

{
RealF̂,A(λ, κ)

}

λ∈N ≈c
{
IdealF,A,S(λ, κ)

}
λ∈N .

The theorem below says that any continuously non-malleable split-state code is auto-
matically continuously tamper simulatable.

Theorem 4. Let � be any �-leakage-resilient continuously super18 non-malleable
split-state code in the CRS model. Then � is �-leakage continuously tamper simulatable
in the split-state model (for stateless functionalities).

Proof. Consider the following simulatorS. At the outset,S samplesω ←$ Init(1λ) and
sets δ = 0, yielding ω̂ = (ω, δ). Then, it samples a random encoding of zero, namely
(c0, c1) ←$ Enc(ω, 0k) and sets Mβ [1, . . . , n] := cβ for β ∈ {0, 1}. The remaining
bits of (M0,M1) are set to 0p−n . Next, S runs A(1λ, ω̂) and answers to its queries
alternating between the following two modes (starting with the normal mode):

• Normal Mode. Given state (M0,M1), while A continues issuing queries, answer
as follows:

· 〈Leak, (g(j)
0 , g(j)

1)〉: Upon input the j-th leakage query, compute �
(j)
β =

g(j)
β (Mβ) for β ∈ {0, 1}, and reply with (�

(j)
0 ,�

(j)
1).

· 〈Tamper, (f (j)
0 , f (j)

1)〉: Upon input the j-th tampering query, compute M̃β =
f (j)
β (Mβ) for β ∈ {0, 1}. Let (c̃0, c̃1) := (M̃0[1, . . . , n],M̃1[1, . . . , n]). If

(c̃0, c̃1) = (c0, c1), continue in the current mode. Else, go to the overwritten
mode with state (M0,M1) := (M̃0,M̃1), and, if Dec(ω, (c̃0, c̃1)) = ⊥,
update the CRS to ω̂ := (ω, 1).

· 〈Eval, x j 〉: Upon input the j-th evaluation query, invoke F(κ, ·) to get
y(j) ←$ F(κ, x (j)) and reply with y(j).

• Overwritten Mode. Given state M := (M0,M1), while A continues issuing
queries, answer as follows:

· 〈Leak, (g(j)
0 , g(j)

1)〉: Upon input the j-th leakage query, compute �
(j)
β =

g(j)
β (Mβ) for β ∈ {0, 1}, and reply with (�

(j)
0 ,�

(j)
1).

· 〈Tamper, (f (j)
0 , f (j)

1)〉: Upon input the j-th tampering query (f (j)
0 , f (j)

1),

compute M̃β = f (j)
β (Mβ) for β ∈ {0, 1}. Let (c̃0, c̃1) :=

(M̃0[1, . . . , n],M̃1[1, . . . , n]). If (c̃0, c̃1) = (c0, c1), go to the normal mode

18We stress that weak non-malleability actually suffices for this application. We use super non-malleability
for simplicity (and to be consistent with the rest of the paper).

Continuously Non-malleable Codes in the Split-State Model 2067

with state (M0,M1) := (M̃0,M̃1). Else, continue in the current mode, and,
if Dec(ω, (c̃0, c̃1)) = ⊥, update the CRS to ω̂ := (ω, 1).

· 〈Eval, x (j)〉: Upon input the j-th evaluation query, run y(j) ←$ Exec(ω̂,F,

M, x (j)) and reply with y(j).

Intuitively, since the code is non-malleable, the adversary can either keep the encoding
of the secret key unchanged or overwrite it with the encoding of an unrelated value. These
two cases are captured in the above modes: The simulator starts in the normal mode and
then, whenever the adversary modifies the initial encoding, it switches to the overwritten
mode. However, note that the adversary can use the extra space to keep a copy of the
original encoding and place it back at some later point in time. When this happens,
the simulator switches back to the normal mode; this feature is important to maintain
simulation.
By contradiction, assume that there exists a PPT attackerA, and some key κ ∈ {0, 1}k ,

such that the following holds for the above defined simulator S:

∣∣∣P
[
RealF̂,A(λ, κ) = 1

]
− P

[
IdealF,A,S(λ, κ) = 1

]∣∣∣ ≥ 1/poly(λ). (1)

We build a PPT attacker A′ breaking continuous non-malleability of the code �. A
description of A′ follows:

Attacker A′ for (Init,Enc,Dec) :
1. Upon receiving the CRS ω, forward (m0 := κ,m1 := 0k) to the chal-

lenger.
2. Initialize κ̃ := ε, and mode to normal. Set δ = 0, and pass ω̂ := (ω, δ)

to A.
3. Upon input a command 〈Tamper, (f (j)

0 , f (j)
1)〉 from A, define the func-

tions fpad : {0, 1}n → {0, 1}p and fcut : {0, 1}p → {0, 1}n as fpad(x) =
(x ||0p−n) and fcut(x ||x ′) = x , for any x ∈ {0, 1}n and x ′ ∈ {0, 1}p−n .
Query the tampering oracle Omaul((c0, c1), ·) with the pair of functions
(f̂ (j)

0 , f̂ (j)
1), where for each β ∈ {0, 1} function f̂ (j)

β is defined as

f̂ (j)
β (·) := fcut ◦ f (j)

β ◦ f (j−1)
β ◦ · · · ◦ f (1)

β ◦ fpad(·). (2)

Then:

• If the oracle returns ⊥, update the CRS to ω̂ := (ω, 1).
• If the oracle returns �, set mode to normal.
• If the oracle returns a codeword c̃(j) := (c̃(j)

0 , c̃(j)
1), set mode to

overwritten and overwrite κ̃ := Dec(ω, (c̃(j)
0 , c̃(j)

1)).

4. Upon input a command 〈Leak, (g(j)
0 , g(j)

1)〉 fromA, queryoracleO�
leak(c0, ·)

and O�
leak(c1, ·) with functions ĝ(j)

0 and ĝ(j)
1 , where for each β ∈ {0, 1}

function ĝ(j)
β is defined as

ĝ(j)
β (·) := g(j)

β ◦ f (i)
β ◦ · · · ◦ f (1)

β ◦ fpad(·), (3)

2068 S. Faust et al.

where i is the index of the last tampering query. Then, forward the answer
(�

(j)
0 ,�

(j)
1) to A.

5. Upon input a command 〈Eval, x (j)〉 from A, if δ = 1 return ⊥ to A.
Else, proceed as follows:

• If mode = normal, let y(j) ←$ F(κ, x (j)) and return y(j) to A.
• Else, if mode = overwritten, let y(j) ←$ F(κ̃, x (j)) and return

y(j) to A.

6. Upon receiving a guess b′ from A, output b′ and terminate.

For the analysis, first note that A′ runs in polynomial time. Next, we claim that the
simulation done by A′ is perfect. This is because:

• TheCRS ω̂ is distributed identically to theCRS inRealF̂,A,κ
(λ) and IdealF,A,S,κ (λ).

• Depending on the target encoding (c0, c1) being either an encoding of κ or an
encoding of 0k , the queries of A are answered exactly as in RealF̂,A,κ

(λ) or in
IdealF,A,S,κ (λ). More precisely:

· Tampering queries are handled using the oracle Omaul((c0, c1), ·). However,
note that A′ cannot directly forward the tampering functions (f (j)

0 , f (j)
1) to

this oracle. In fact: (i) Each of f (j)
0 , f (j)

1 maps p bits into p bits, whereas
A′’s tampering oracle expects functions mapping n bits into n bits; (ii) In both
RealF̂,A,κ

(λ) and IdealF,A,S,κ (λ) the tampering functions are applied to the
current memory content (M0,M1), whereas the tampering oracle always uses
the target codeword (c0, c1).
However, the reduction can easily handle this mismatch by padding each part
of the target codeword with zeroes, recover the current memory, and define the
tampered codeword to be the first n bits of M̃0 := f (j)

0 (M0) and M̃1 :=
f (j)
1 (M1) (cf. Eq. (2)).

· Leakage queries are handled using the oraclesO�
leak(c0, ·) andO�

leak(c1, ·). By
a similar argument as above, the reduction perfectly emulates such queries by
adjusting them as in Eq. (3). Furthermore, ifA leaks atmost � bits from each side
of the memory, A′ leaks at most � bits from each side of the target codeword.

· Evaluation queries are perfectly emulated. Indeed, whenever mode equals
normal, the reduction answers evaluation queries by running F on key κ (this
corresponds to the normal mode of simulator S). Similarly, whenever mode
equals overwritten, the reduction answers evaluation queries by running
F on the current tampered key κ̃ which results from applying the tampering
functions to the initial memory (this corresponds to the overwritten mode of
simulator S).

It follows that in case (c0, c1) is an encoding of κ , the reduction perfectly emulates the
view of A in RealF̂,A,κ

(λ). Similarly, when (c0, c1) is an encoding of 0k , the reduction
perfectly emulates the view of A in IdealF̂,SA,κ

(λ). Hence, Eq. (1) implies

∣∣P
[
Tamper�,A′(λ, 0) = 1

] − P
[
Tamper�,A(λ, 1) = 1

]∣∣ ≥ 1/poly(λ),

Continuously Non-malleable Codes in the Split-State Model 2069

a contradiction. �
5.2. Stateful Functionalities

In the case of stateful functionalities, the function F has a secret state σ that is updated
at each invocation, i.e., (σ ′, y) ←$ F(σ, x). As the state gets updated, in this setting we
inherently need to re-encode the new state after each execution.
Furthermore, since we do not assume erasures in our model, the following subtlety

arises. An adversary can first copy some old (encoded) state to a different part of the
memory, and later replace the current (encoded) state by the old one. This essentially
corresponds to a reset attack, that cannot be simulated given only black-box access to
the original functionality. To overcome this obstacle, our transformation leverages an
untamperable public counter γ ∈ N that helps us detecting whenever the functionality
is reset to a previous state, in which case a self-destruct is triggered; note that such a
counter can be implemented using log(λ) bits (plus the additional bit to implement the
self-destruct mechanism).19

Below, we define what it means to harden a stateful functionality.

Definition 10. (Stateful hardened functionality) Let � = (Init,Enc,Dec) be a split-
state code in the CRS model, with (k + log(λ))-bit messages and 2n-bit codewords. Let
F : {0, 1}k × {0, 1}∗ → {0, 1}k × {0, 1}∗ be a stateful functionality, δ ∈ {0, 1}, γ ∈
{0, 1}λ be a public values. We define a stateful hardened functionality F̂

� := F̂ :
{0, 1}2p × {0, 1}∗ → {0, 1}2p × {0, 1}∗ where p = poly(n) as a tuple of algorithms
(Setup,MemCompile,Exec) described as follows:

• ω̂ ←$ Setup(1λ): Sample ω ←$ Init(1λ), initialize (γ, δ) = (1, 0), and return ω̂ :=
(ω, γ, δ).

• (M0,M1) ←$ MemCompile(ω̂, σ): Parse ω̂ = (ω, γ, δ). Let
(c0, c1) ←$ Enc(ω, σ ||1). For β ∈ {0, 1}, store cβ in the first n bits of Mβ ; the
remaining bits ofMβ are set to 0p−n . Define M := (M0,M1).

• y ←$ Exec(ω̂,F,M, x): Parse ω̂ = (ω, γ, δ). In case δ = 1 output ⊥; else, let
c̃β = Mβ [1, . . . , n] for β ∈ {0, 1}. Run σ̃ ||γ̃ = Dec(ω, (c̃0, c̃1)): If either σ̃ = ⊥
or γ̃ �= γ , then output⊥ and set δ = 1. Else, output y such that (y, σ ′) ←$ F(σ̃ , x),
run (c′

0, c
′
1) ←$ Enc(ω, σ ′||γ + 1), and for each β ∈ {0, 1} write c′

β in the first n
bits of Mβ . Finally, update the CRS to ω̂ := (ω, γ + 1, δ).

Remark 2. (On (γ, δ)) As in the case of stateless functionalities, we require δ to be
untamperable and one-time writable (cf. Remark 1). Moreover, the counter γ is assumed
to be untamperable and poly-time writable. The latter is necessary, as otherwise the
attacker can use the extra memory to reset the functionality to a previous valid state,
which cannot be simulated with black-box access to the original functionality.

19Without assuming an untamperable counter, one can still get continuous tamper simulatability if the sim-
ulator is allowed to reset the original functionality. This essentially allows to protect cryptographic primitives
with so-called resettable security (see, e.g., [19,72,88]).

2070 S. Faust et al.

Security of a stateful hardened functionality is defined analogously to the stateless case
(cf. Definition 9). We show the following result:

Theorem 5. Let � be any �-leakage-resilient continuously super non-malleable split-
state code in the CRS model. Then � is �-leakage continuously tamper simulatable in
the split-state model (for stateful functionalities).

Proof. Similarly to the proof of Theorem 4, we describe a simulator S running in
experiment IdealF,A,S(λ, σ) which simulates the view of adversary A in the experiment
RealF̂,A(λ, σ) for every possible initial state σ ∈ {0, 1}k . As usual, the simulator S is
given black-box access to A (which can issue Tamper, Leak, and Eval commands),
and to the reactive functionality F(σ, ·) with initial state σ . In order to simplify the
simulator, we are going to assume that the attacker A issues commands in rounds, where
each round consist exactly of one leakage query, one tampering query, and one execute
query (in this order). A generalization is straightforward.
At the outset, S samples ω ←$ Init(1λ) and sets (γ, δ) = (1, 0), yielding ω̂ :=

(ω, γ, δ). Next, S runs A(1λ, ω̂) and answers to its queries using the following two
modes (starting with the normal mode):

• Normal Mode. Given state (M0,M1), while A continues issuing queries, answer
as follows:

· Sample (c(j)
0 , c(j)

1) ←$ Enc(ω, 0k ||0log λ), and letMβ [1, . . . , n] := cβ for β ∈
{0, 1}. If j = 1 (i.e., during the first round), the remaining bits of (M0,M1)

are set to 0p−n .
· 〈Leak, (g(j)

0 , g(j)
1)〉: Upon input the j-th leakage query, compute �

(j)
β =

g(j)
β (Mβ) for β ∈ {0, 1}, and reply with (�

(j)
0 ,�

(j)
1).

· 〈Tamper, (f (j)
0 , f (j)

1)〉: Upon input the j-th tampering query, compute M̃β =
f (j)
β (Mβ) for β ∈ {0, 1}. Let (c̃0, c̃1) := (M̃0[1, . . . , n],M̃1[1, . . . , n]). If

(c̃0, c̃1) = (c(j)
0 , c(j)

1), continue in the current mode. Else, go to the overwrit-
ten mode with state (M0,M1) := (M̃0,M̃1), and, if Dec(ω, (c̃0, c̃1)) ∈
{⊥, σ̃ ||γ̃ } for some γ̃ �= γ , update the CRS to ω̂ := (ω, γ, 1).

· 〈Eval, x (j)〉: Upon input the j-th evaluation query, invokeF(σ, ·) to obtain y(j)

s.t. (σ ′, y(j)) ←$ F(σ, x (j)), where σ is the current state of the functionality and
σ ′ is the new state20 (which is unknown to S), and reply with y(j). Update the
CRS to ω̂ := (ω, γ + 1, δ).

• Overwritten Mode. Given state M := (M0,M1), while A continues issuing
queries, answer as follows:

· 〈Leak, (g(j)
0 , g(j)

1)〉: Upon input the j-th leakage query, compute �
(j)
β =

g(j)
β (Mβ) for β ∈ {0, 1}, and reply with (�

(j)
0 ,�

(j)
1).

· 〈Tamper, (f (j)
0 , f (j)

1)〉: Upon input the j-th tampering query (f (j)
0 , f (j)

1),

compute M̃β = f (j)
β (Mβ) for β ∈ {0, 1}. Let (c̃0, c̃1) := (M̃0[1, . . . , n],

20After such a query, the functionality internally re-defines σ := σ ′.

Continuously Non-malleable Codes in the Split-State Model 2071

M̃1[1, . . . , n]). Continue in the current mode with state (M0,M1) :=
(M̃0,M̃1), and, if Dec(ω, (c̃0, c̃1)) ∈ {⊥, σ̃ ||γ̃ } for some γ̃ �= γ , update
the CRS to ω̂ := (ω, γ, 1).

· 〈Eval, x (j)〉: Upon input the j-th evaluation query, run
(σ ′, y(j)) ←$ Exec(ω̂,F,M, x (j)) and reply with y(j). Compute
(c′

0, c
′
1) ←$ Enc(ω, σ ′||γ + 1), and update the first n bits of Mβ to cβ for

each β ∈ {0, 1}, and the CRS to ω̂ := (ω, γ + 1, δ).

The intuition behind the above simulation strategy is similar to that in the proof of
Theorem 4. One important difference is the fact that, after the simulator switches to the
overwritten mode, it never goes back to the normal mode. Intuitively, this is because the
untamperable counter ensures that the attacker can never copy an old state back to the
first part of the memory. A further difficulty in the analysis is that in the case of stateful
functionalities the state is re-encoded after each invocation, and thus we cannot directly
reduce to the security of the underlying continuously non-malleable code.

Experiment Hyb(i)
F,A,S(λ, σ). In order to overcome the above difficulty, we consider

a sequence of mental experiments. Let q ∈ poly(λ) be an upper bound on the total
number of queries (and thus rounds). For all i ∈ [q], consider the following hybrid
experiment where the simulator runs a modified normal mode and the same overwritten
mode.

• First ω̂ ←$ Setup(1λ) is run, and ω̂ is given to A.
• For the first i rounds, A’s commands are answered exactly as in experiment
IdealF,A,S(λ, σ).

• Starting from round i+1, if the simulatorS is already in the overwritten mode, then
continue simulating as in the ideal world. Otherwise, proceed with the following
modified normal mode:

· Sample (c(j)
0 , c(j)

1) ←$ Enc(ω, σ ||γ), and let Mβ [1, . . . , n] := cβ for β ∈
{0, 1}. If j = 1 (i.e., during the first round), the remaining bits of (M0,M1)

are set to 0p−n .
· 〈Leak, (g(j)

0 , g(j)
1)〉: As in the ideal world.

· 〈Tamper, (f (j)
0 , f (j)

1)〉: As in the ideal world.
· 〈Eval, x (j)〉:Upon input the j-th evaluationquery, run (σ ′, y(j)) ←$ F(σ, x (j))

where σ is the current state of the functionality and σ ′ is the new state, and reply
with y(j). Redefine σ := σ ′, and update the CRS to ω̂ := (ω, γ := γ + 1, δ).

Clearly, {Hyb(q)

F,A,S(λ, σ)}λ∈N ≡ {IdealF,A,S(λ, σ)}λ∈N. Moreover,

{Hyb(0)
F,A,S(λ, σ)}λ∈N ≡ {RealF̂,A(λ, σ)}λ∈N.This is because themodified normalmode

of the simulator corresponds to answering A’s commands exactly as in the real experi-
ment. Hence, the theorem follows by the lemma below.

Lemma 7. ∀σ ∈ {0, 1}k,∀i ∈ [q] : {Hyb(i−1)
F,A,S(λ, σ)}λ∈N

c≈ {Hyb(i)
F,A,S(λ, σ)}λ∈N.

2072 S. Faust et al.

Proof. Fix i ∈ [q]. By contradiction, assume that there exists a PPT attacker A, and
some state σ ∈ {0, 1}k , such that the following holds for the above defined simulator S:

∣∣∣P
[
Hyb(i−1)

F,A,S(λ, σ) = 1
]

− P

[
Hyb(i)

F,A,S(λ, σ) = 1
]∣∣∣ ≥ 1/poly(λ). (4)

We build a PPT attacker A′ breaking continuous non-malleability of the code �. A
description of A′ follows:

Attacker A′ for (Init,Enc,Dec) :
1. Upon receiving the CRS ω, set (γ, δ) = (1, 0), and pass ω̂ := (ω, γ, δ)

to A.
2. For each round j ≤ i − 1, reply to A’s commands as described in the

ideal experiment. Let σ := σ (i) and ω̂ = (ω, i, δ) be, respectively, the
current state21 of the functionality and the CRS at the end of the (i−1)-th
round.

3. Forward (m0 := σ (i)||i,m1 := 0k ||0log λ) to the challenger, and initialize
σ̃ ||γ̃ := ε and mode to normal. In case the simulation of the first
i − 1 tampering queries has already caused the simulator to enter the
overwritten mode, output a random b′ and terminate; else, continue.

4. For each round j ≥ i , upon input a command 〈Tamper, (f (j)
0 , f (j)

1)〉
from A, query the tampering oracle Omaul((c0, c1), ·) with the pair of
functions (f̂ (j)

0 , f̂ (j)
1) of Eq. (2). Then:

• If the oracle returns ⊥, update the CRS to ω̂ := (ω, γ, 1).
• If the oracle returns �, do nothing.
• If the oracle returns a codeword c̃(j) := (c̃(j)

0 , c̃(j)
1), set mode to

overwritten and overwrite σ̃ ||γ̃ := Dec(ω, (c̃(j)
0 , c̃(j)

1)). If γ̃ �=
γ , update the CRS to ω̂ := (ω, γ, 1).

5. For each round j ≥ i , upon input a command 〈Leak, (g(j)
0 , g(j)

1)〉 from
A, query oracle O�

leak(c0, ·) and O�
leak(c1, ·) with the functions ĝ(j)

0 and

ĝ(j)
1 of Eq. (3). Then, forward the answer (�

(j)
0 ,�

(j)
1) to A.

6. For each round j ≥ i , upon input a command 〈Eval, x (j)〉 from A, if
δ = 1 return ⊥ to A. Else, proceed as follows:

• If mode = normal, let (σ ′, y(j)) ←$ F(σ, x (j)) and return y(j) to
A.

• If mode = overwritten, let (σ ′, y(j)) ←$ F(σ̃ , x (j)) and return
y(j) to A.

• Update the CRS to ω̂ = (ω, γ + 1, δ), and re-define σ := σ ′.
7. Upon receiving a guess b′ from A, output b′ and terminate.

For the analysis, first note that A′ runs in polynomial time. Next, we claim that the
simulation done by A′ is perfect. This is because:

21Note that the reduction can compute σ (i), as it receives the initial state σ as auxiliary input.

Continuously Non-malleable Codes in the Split-State Model 2073

• The CRS ω̂ is distributed identically to the CRS in Hyb(i−1)
F,A,S(λ, σ) and

Hyb(i)
F,A,S(λ, σ).

• The first i − 1 leakage/tampering/execute queries are answered as in the ideal
experiment, which corresponds to the way such queries are answered in both
Hyb(i−1)

F,A,S(λ, σ) and Hyb(i−1)
F,A,S(λ, σ).

• Let W be the event that the simulation has already entered the overwritten mode
while answering the first i − 1 tampering queries. Note that conditioning on W,
the random variables Hyb(i−1)

F,A,S(λ, σ) and Hyb(i)
F,A,S(λ, σ) are identical, and thus

Eq. (4) implies that P [¬W] ≥ 1/poly(λ).
• For each round j ≥ i , conditioning on ¬W and depending on the target encoding

(c0, c1) being either an encoding of σ (i)||i or an encoding of 0k ||0log λ, the queries of
A are answered exactly as inHyb(i−1)

F,A,S(λ, σ) or inHyb(i)
F,A,S(λ, σ). More precisely:

· The remaining leakage and tampering queries are handled using the oracle
Omaul((c0, c1), ·). As in the proof of Theorem 4, the reduction needs to adjust
the leakage/tampering functions taking into account the initial padding of the
memory and the previous tampering queries. This can be done using Eq. (2)
and Eq. (3) as before.

· The remaining evaluation queries are perfectly emulated. Indeed, whenever
mode equals normal, the reduction answers evaluation queries by running
F on the current state σ (this corresponds to the normal mode of simulator
S). Similarly, whenever mode equals overwritten, the reduction answers
evaluation queries by running F on the current tampered state σ̃ which results
from applying the tampering functions to the initial memory (this corresponds
to the overwritten mode of simulator S).

It follows that in case (c0, c1) is an encoding of σ (i)||i and conditioning on ¬W, the
reduction perfectly emulates the view of A in Hyb(i−1)

F,A,S(λ, σ). Similarly, when (c0, c1)

is an encoding of 0k ||0log λ and conditioning on ¬W, the reduction perfectly emulates
the view of A in Hyb(i)

F,A,S(λ, σ). Finally, P [¬W] ≥ 1/poly(λ), and additionally

conditioning on W we have that P
[
b′ = b

] = 1/2. Hence, we have obtained:

∣
∣P

[
Tamper�,A′ (λ, 0) = 1

] − P
[
Tamper�,A′ (λ, 1) = 1

]∣∣

=
∣∣
∣∣P [W] · P [

Tamper�,A′ (λ, 0) = 1|W] + P [¬W] · P [
Tamper�,A′ (λ, 0) = 1|¬W

]

− P [W] · P [
Tamper�,A′ (λ, 1) = 1|W] − P [¬W] · P [

Tamper�,A′ (λ, 1) = 1|¬W
]
∣
∣∣
∣

≥ 1

poly(λ)
·
∣∣
∣P

[
Hyb(i−1)

F,A,S(λ, σ) = 1
]

− P

[
Hyb(i)

F,A,S(λ, σ) = 1
]∣∣
∣

≥ 1/poly(λ),

a contradiction. This concludes the proof. �

2074 S. Faust et al.

Acknowledgements

Open access funding provided by Università degli Studi di Roma La Sapienza within
the CRUI-CARE Agreement.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] D. Aggarwal, Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–385 (2015).
[2] D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M. Prabhakaran, Optimal computational

split-state non-malleable codes, in TCC (2016), pp. 393–417.
[3] D. Aggarwal, Y. Dodis, T. Kazana, M. Obremski, Non-malleable reductions and applications, in STOC

(2015), pp. 459–468.
[4] D. Aggarwal, Y. Dodis, S. Lovett, Non-malleable codes from additive combinatorics, in STOC (2014),

pp. 774–783.
[5] D. Aggarwal, Y. Dodis, S. Lovett, Non-malleable codes from additive combinatorics. SIAM J. Comput.

47(2), 524–546 (2018).
[6] D. Aggarwal, N. Döttling, J, B. Nielsen, M. Obremski, E. Purwanto, Continuous non-malleable codes

in the 8-split-state model, in EUROCRYPT (2019), pp. 531–561.
[7] D. Aggarwal, S. Dziembowski, T. Kazana,M. Obremski, Leakage-resilient non-malleable codes, in TCC

(2015), pp. 398–426.
[8] D. Aggarwal, T. Kazana, M. Obremski, Inception makes non-malleable codes stronger, in TCC (2017),

pp. 319–343.
[9] S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M. Prabhakaran, Explicit non-malleable codes against

bit-wise tampering and permutations, in CRYPTO (2015), pp. 538–557.
[10] S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, M. Prabhakaran, A rate-optimizing compiler for non-

malleable codes against bit-wise tampering and permutations, in TCC (2015), pp. 375–397.
[11] P. Austrin, K.-M. Chung, M. Mahmoody, R. Pass, K. Seth, On the impossibility of cryptography with

tamperable randomness, in CRYPTO (2014), pp. 462–479.
[12] M. Ball, D. Dachman-Soled, S. Guo, T.Malkin, L.-Y. Tan, Non-malleable codes for small-depth circuits,

in FOCS (2018), pp. 826–837.
[13] M. Ball, D. Dachman-Soled, M. Kulkarni, H. Lin, T. Malkin, Non-malleable codes against bounded

polynomial time tampering, in EUROCRYPT (2019), pp. 501–530.
[14] M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin, Non-malleable codes for bounded depth, bounded

fan-in circuits, in EUROCRYPT (2016), pp. 881–908.
[15] M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin. Non-malleable codes from average-case hardness:

AC0, decision trees, and streaming space-bounded tampering, in EUROCRYPT (2018), pp. 618–650.
[16] M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin, Limits to non-malleability, in ITCS (2020), pp.

80:1–80:32.
[17] M. Ball, S. Guo, D. Wichs, Non-malleable codes for decision trees, in CRYPTO (2019), pp. 413–434.
[18] M. Bellare, D. Cash, R. Miller, Cryptography secure against related-key attacks and tampering, in

ASIACRYPT (2011), pp. 486–503.
[19] M. Bellare, M. Fischlin, S. Goldwasser, S. Micali, Identification protocols secure against reset attacks,

in EUROCRYPT (2001), pp. 495–511.

http://creativecommons.org/licenses/by/4.0/

Continuously Non-malleable Codes in the Split-State Model 2075

[20] M. Bellare, T. Kohno, A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications, in EUROCRYPT (2003), pp. 491–506.

[21] M. Bellare, K. G. Paterson, S. Thomson, RKA security beyond the linear barrier: IBE, encryption and
signatures, in ASIACRYPT (2012), pp. 331–348.

[22] D. Boneh, R. A. DeMillo, R. J, Lipton. On the importance of eliminating errors in cryptographic com-
putations, J. Cryptol. 14(2), 101–119 (2001).

[23] G. Brian, A. Faonio, D. Venturi, Continuously non-malleable secret sharing for general access structures,
in TCC (2019), pp. 211–232.

[24] N. Chandran, V. Goyal, P. Mukherjee, O. Pandey, J. Upadhyay, Block-wise non-malleable codes, in
ICALP (2016), pp. 31:1–31:14.

[25] N. Chandran, B. Kanukurthi, S. Raghuraman Information-theoretic local non-malleable codes and their
applications, in TCC (2016), pp. 367–392.

[26] E. Chattopadhyay, V. Goyal, X. Li, Non-malleable extractors and codes, with their many tampered
extensions, in STOC (2016), pp. 285–298.

[27] E. Chattopadhyay, X. Li, Non-malleable codes and extractors for small-depth circuits, and affine func-
tions, in STOC (2017), pp. 1171–1184.

[28] E. Chattopadhyay, D. Zuckerman, Non-malleable codes against constant split-state tampering, in FOCS
(2014), pp. 306–315.

[29] B. Chen, Y. Chen, K. Hostáková, P. Mukherjee, Continuous space-bounded non-malleable codes from
stronger proofs-of-space, in CRYPTO (2019), pp. 467–495.

[30] M. Cheraghchi, V. Guruswami, Non-malleable coding against bit-wise and split-state tampering, in TCC
(2014), pp. 440–464.

[31] M. Cheraghchi, V. Guruswami, Capacity of non-malleable codes. IEEE Trans. Inf. Theory, 62(3), 1097–
1118 (2016).

[32] M. Cheraghchi, V. Guruswami, Non-malleable coding against bit-wise and split-state tampering, J.
Cryptol. 30(1), 191–241 (2017).

[33] S. G. Choi, A. Kiayias, T.Malkin, BiTR: Built-in tamper resilience, inASIACRYPT (2011), pp. 740–758.
[34] S. Coretti, Y. Dodis, B. Tackmann, D. Venturi. Non-malleable encryption: simpler, shorter, stronger, in

TCC (2016), pp. 306–335.
[35] S. Coretti, A. Faonio, D. Venturi, Rate-optimizing compilers for continuously non-malleable codes, in

ACNS (2019), pp. 3–23.
[36] S. Coretti, U. Maurer, B. Tackmann, D. Venturi, From single-bit to multi-bit public-key encryption via

non-malleable codes, in TCC (2015), pp. 532–560.
[37] R. Cramer, I. Damgård, N. Döttling, I. Giacomelli, C. Xing, Linear-time non-malleable codes in the

bit-wise independent tampering model, in ICITS (2017), pp. 1–25.
[38] R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen

ciphertext attack, in CRYPTO (1998), pp. 13–25.
[39] D. Dachman-Soled, Y. T. Kalai, Securing circuits against constant-rate tampering, in CRYPTO (2012),

pp. 533–551.
[40] D. Dachman-Soled, Y. T. Kalai, Securing circuits and protocols against 1/poly(k) tampering rate, in TCC

(2014), pp. 540–565.
[41] D. Dachman-Soled, M. Kulkarni, Upper and lower bounds for continuous non-malleable codes, in PKC

(2019), pp. 519–548.
[42] D. Dachman-Soled, M. Kulkarni, A. Shahverdi, Tight upper and lower bounds for leakage-resilient,

locally decodable and updatable non-malleable codes, in PKC (2017), pp. 310–332.
[43] D. Dachman-Soled, M. Kulkarni, A. Shahverdi, Local non-malleable codes in the bounded retrieval

model, in PKC (2018), pp. 281–311.
[44] D. Dachman-Soled, M. Kulkarni, A. Shahverdi, Tight upper and lower bounds for leakage-resilient,

locally decodable and updatable non-malleable codes, Inf. Comput. p. 268 (2019)
[45] D. Dachman-Soled, F.-H. Liu, E. Shi, H.-S. Zhou, Locally decodable and updatable non-malleable codes

and their applications, in TCC (2015), pp. 427–450.
[46] D. Dachman-Soled, F.-H. Liu, E. Shi, H.-S. Zhou, Locally decodable and updatable non-malleable codes

and their applications. J. Cryptol. 33(1), 319–355 (2020).
[47] I. Damgård, S. Faust, P. Mukherjee, D. Venturi, Bounded tamper resilience: How to go beyond the

algebraic barrier, in ASIACRYPT (2013), pp. 140–160.

2076 S. Faust et al.

[48] I. Damgård, S. Faust, P. Mukherjee, D. Venturi, The chaining lemma and its application, in ICITS (2015),
pp. 181–196.

[49] I. Damgård, T. Kazana, M. Obremski, V. Raj, L. Siniscalchi, Continuous NMC secure against permuta-
tions and overwrites, with applications to CCA secure commitments, in TCC (2018), pp. 225–254.

[50] F. Davì, S. Dziembowski, D. Venturi, Leakage-resilient storage, in SCN (2010), pp. 121–137.
[51] Y. Dodis, K. Haralambiev, A. López-Alt, D. Wichs, Efficient public-key cryptography in the presence

of key leakage, in ASIACRYPT (2010), pp. 613–631.
[52] S. Dziembowski, S. Faust, Leakage-resilient cryptography from the inner-product extractor, in ASI-

ACRYPT (2011), pp. 702–721.
[53] S.Dziembowski, T.Kazana,M.Obremski, Non-malleable codes from two-source extractors, inCRYPTO

(2013), pp. 239–257.
[54] S. Dziembowski, K. Pietrzak, Leakage-resilient cryptography. In FOCS (2008), pp. 293–302.
[55] S. Dziembowski, K. Pietrzak, D. Wichs, Non-malleable codes, in ICS (2010), pp. 434–452.
[56] S. Dziembowski, K. Pietrzak, D. Wichs, Non-malleable codes. J. ACM, 65(4), 20:1–20:32 (2018).
[57] A. Faonio, J. B. Nielsen, Non-malleable codes with split-state refresh, in PKC (2017), pp. 279–309.
[58] A. Faonio, J. B. Nielsen, M. Simkin, D. Venturi, Continuously non-malleable codes with split-state

refresh, in ACNS (2018), pp. 121–139.
[59] A. Faonio, J. B. Nielsen, M. Simkin, D. Venturi, Continuously non-malleable codes with split-state

refresh. Theor. Comput. Sci. 759, 98–132 (2019).
[60] A. Faonio, D. Venturi, Non-malleable secret sharing in the computational setting: adaptive tampering,

noisy-leakage resilience, and improved rate, in CRYPTO (2019), pp. 448–479.
[61] S. Faust, K. Hostáková, P. Mukherjee, D. Venturi, Non-malleable codes for space-bounded tampering,

in CRYPTO (2017), pp. 95–126.
[62] S. Faust, P. Mukherjee, J. B. Nielsen, D. Venturi, Continuous non-malleable codes, in TCC (2014), pp.

465–488.
[63] S. Faust, P. Mukherjee, J. B. Nielsen, D. Venturi, A tamper and leakage resilient von Neumann architec-

ture, in PKC (2015), pp. 579–603.
[64] S. Faust, P. Mukherjee, D. Venturi, D. Wichs, Efficient non-malleable codes and key-derivation for

poly-size tampering circuits, in EUROCRYPT (2014), pp. 111–128.
[65] S. Faust, P. Mukherjee, D. Venturi, D. Wichs, Efficient non-malleable codes and key derivation for

poly-size tampering circuits. IEEE Trans. Inf. Theory 62(12), 7179–7194 (2016).
[66] S. Faust, K. Pietrzak, D. Venturi, Tamper-proof circuits: How to trade leakage for tamper-resilience, in

ICALP (2011), pp. 391–402.
[67] S. Fehr, P. Karpman, B. Mennink, Short non-malleable codes from related-key secure block ciphers.

IACR Trans. Symmetr. Cryptol. 2018(1), 336–352 (2018).
[68] U. Feige, D. Lapidot, A. Shamir, Multiple non-interactive zero knowledge proofs based on a single

random string (extended abstract), in FOCS (1990), pp. 308–317.
[69] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, E. Tromer, Circuits resilient to additive attacks with

applications to secure computation, in STOC (2014), pp. 495–504.
[70] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, Algorithmic tamper-proof (ATP) security:

theoretical foundations for security against hardware tampering, in TCC (2004), pp. 258–277.
[71] V. Goyal, A. Kumar, Non-malleable secret sharing, in STOC (2018), pp. 685–698.
[72] V. Goyal, A. Sahai, Resettably secure computation, in EUROCRYPT (2009), pp. 54–71.
[73] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in

ASIACRYPT (2006), pp. 444–459.
[74] J. Groth, A. Sahai, Efficient non-interactive proof systems for bilinear groups, in EUROCRYPT (2008),

pp. 415–432.
[75] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,

41(5):1193–1232, 2012.
[76] Y. Ishai, M. Prabhakaran, A. Sahai, D.Wagner, Private circuits II: Keeping secrets in tamperable circuits,

in EUROCRYPT (2006), pp. 308–327.
[77] Z. Jafargholi, D. Wichs, Tamper detection and continuous non-malleable codes, in TCC (2015), pp.

451–480.
[78] Y. T. Kalai, B. Kanukurthi, A. Sahai, Cryptography with tamperable and leaky memory, in CRYPTO

(2015), pp. 373–390.

Continuously Non-malleable Codes in the Split-State Model 2077

[79] B. Kanukurthi, S. L. B. Obbattu, S. Sekar, Four-state non-malleable codes with explicit constant rate, in
TCC (2017), pp. 344–375.

[80] B. Kanukurthi, S. L. B. Obbattu, S. Sekar, Four-state non-malleable codes with explicit constant rate. J.
Cryptol. 33(3), 1044–1079 (2020).

[81] A. Kiayias, F.-H. Liu, Y. Tselekounis, Practical non-malleable codes from l-more extractable hash
functions, in CCS (2016), pp. 1317–1328.

[82] A. Kiayias, F.-H. Liu, Y. Tselekounis, Non-malleable codes for partial functions with manipulation
detection, in CRYPTO (2018), pp. 577–607.

[83] A. Kiayias, Y. Tselekounis, Tamper resilient circuits: The adversary at the gates, in ASIACRYPT (2013),
pp. 161–180.

[84] F.-H. Liu, A. Lysyanskaya, Tamper and leakage resilience in the split-state model, in CRYPTO (2012),
pp. 517–532.

[85] R. Ostrovsky, G. Persiano, D. Venturi, I. Visconti. Continuously non-malleable codes in the split-state
model from minimal assumptions, in CRYPTO (2018), pp. 608–639.

[86] K. Pietrzak, Subspace LWE, in TCC (2012), pp. 548–563.
[87] A. D. Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai, Robust non-interactive zero knowl-

edge, in CRYPTO (2001), pp. 566–598.
[88] S. Yilek, Resettable public-key encryption: How to encrypt on a virtual machine, in CT-RSA (2010), pp.

41–56.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Continuously Non-malleable Codes in the Split-State Model
	1. Introduction
	1.1. Continuous Non-malleability
	1.2. Our Contribution
	1.3. Related Work

	2. Preliminaries
	2.1. Notation
	2.2. Collision-Resistant Hashing
	2.3. Non-interactive Zero Knowledge
	2.4. Leakage-Resilient Storage

	3. Continuous Non-Malleability
	3.1. The Definition
	3.2. Codewords Uniqueness

	4. The Code
	4.1. Description
	4.2. Proof Outline
	4.3. Hybrids
	4.4. The Main Reduction
	4.5. Indistinguishability of the Hybrids
	4.5.1. Useful Lemmata
	4.5.2. First Game Hop
	4.5.3. Second Game Hop

	4.6. Concrete Instantiation

	5. Application to Tamper-Resilient Security
	5.1. Stateless Functionalities
	5.2. Stateful Functionalities

	Acknowledgements
	References

