
https://doi.org/10.1007/s00145-022-09424-4
J Cryptol (2022)35:15

Research Article

Succinct Non-Interactive Arguments via Linear
Interactive Proofs∗

Nir Bitansky
Tel Aviv University, Tel Aviv-Yafo, Israel

Alessandro Chiesa
EPFL, Lausanne, Switzerland

alessandro.chiesa@epfl.ch

Yuval Ishai
Technion, Haifa, Israel

Rafail Ostrovsky
Department of Computer Science and Department of Mathematics, UCLA, Los Angeles, CA, USA

rafail@cs.ucla.edu

Omer Paneth
Tel Aviv University, Tel Aviv-Yafo, Israel

omerpa@tauex.tau.ac.il

Communicated by Manoj Prabhakaran

Received 29 October 2016 / Revised 23 February 2022 / Accepted 26 February 2022
Online publication 2 May 2022

Abstract. Succinct non-interactive arguments (SNARGs) enable verifying NP state-
ments with lower complexity than required for classical NP verification. Traditionally,
the focus has been on minimizing the length of such arguments; nowadays, researchers
have focused also on minimizing verification time, by drawing motivation from the
problem of delegating computation. A common relaxation is a preprocessing SNARG,
which allows the verifier to conduct an expensive offline phase that is independent of
the statement to be proven later. Recent constructions of preprocessing SNARGs have

∗N. Bitansky: This research was done while visiting Boston University and IBM T. J. Watson Research
Center. Supported by the Check Point Institute for Information Security, an ISF Grant 20006317, and the
Fulbright program. Y. Ishai Supported by the European Research Council as part of the ERC project CaC
(Grant 259426), ISF Grant 1361/10, and BSF Grant 2008411. Research done in part while visiting UCLA and
IBM T. J. Watson Research Center. R. Ostrovsky: Research supported in part by NSF Grants CNS-0830803;
CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF Grant 2008411,
OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award.
This material is also based upon work supported by the Defense Advanced Research Projects Agency through
the US Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense or the US Government.
O. Paneth: Supported by an NSF Grant 1218461.

© The Author(s) 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09424-4&domain=pdf

15 Page 2 of 72 N. Bitansky et al.

achieved attractive features: they are publicly-verifiable, proofs consist of only O(1)

encrypted (or encoded) field elements, and verification is via arithmetic circuits of size
linear in the NP statement. Additionally, these constructions seem to have “escaped
the hegemony” of probabilistically-checkable proofs (PCPs) as a basic building block
of succinct arguments. We present a general methodology for the construction of pre-
processing SNARGs, as well as resulting new efficiency features. Our contribution is
threefold:

(1) We introduce and study a natural extension of the interactive proof model that consid-
ers algebraically-bounded provers; this new setting is analogous to the common study of
algebraically-bounded “adversaries” in other fields, such as pseudorandomness and ran-
domness extraction. More concretely, in this work we focus on linear (or affine) provers,
and provide several constructions of (succinct two-message) linear interactive proofs (LIPs)
for NP. Our constructions are based on general transformations applied to both linear PCPs
(LPCPs) and traditional “unstructured” PCPs.

(2) We give conceptually simple cryptographic transformations from LIPs to preprocessing
SNARGs, whose security can be based on different forms of linear targeted malleabil-
ity (implied by previous knowledge assumptions). Our transformations convert arbitrary
(two-message) LIPs into designated-verifier SNARGs, and LIPs with degree-bounded ver-
ifiers into publicly-verifiable SNARGs. We also extend our methodology to obtain zero-
knowledge LIPs and SNARGs. Our techniques yield SNARGs of knowledge and thus can
benefit from known recursive composition and bootstrapping techniques.

(3) Following this methodology, we exhibit several constructions achieving new efficiency fea-
tures, such as “single-ciphertext preprocessing SNARGs.” We also offer a new perspective
on existing constructions of preprocessing SNARGs, revealing a direct connection of these
to LPCPs and LIPs.

Keywords. Interactive proofs, Probabilistically-checkable proofs, Succinct argu-
ments, Homomorphic encryption, Zero-knowledge.

1. Introduction

Interactive proofs [62] are central to modern cryptography and complexity theory. One
extensively studied aspect of interactive proofs is their expressibility, culminating with
the result IP = PSPACE [96]. Another aspect, which is the focus of this work, is that
proofs for NP statements can potentially be much shorter than an NP witness and be
verified much faster than the time required for checking the NP witness.

1.1. Background

Succinct interactive arguments. In interactive proofs for NP with statistical sound-
ness, significant savings in communication (let alone verification time) are unlikely
[21,58,67,102]. If we settle for proof systems with computational soundness, known
as argument systems [9], then significant savings can be made. Using collision-resistant
hashes (CRHs) and probabilistically-checkable proofs (PCPs) [16], Kilian [74] showed
a four-message interactive argument for NP where, to prove membership of an instance
x in a given NP language L with NP machine ML , communication and verification
time are bounded by poly(λ + |ML | + |x | + log t), and the prover’s running time is
poly(λ + |ML | + |x | + t). Here, t is the classical NP verification time of ML for the
instance x , λ is a security parameter, and poly is a universal polynomial (independent
of λ, ML , x , and t). We call such argument systems succinct.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 3 of 72 15

Proof of knowledge. A natural strengthening of computational soundness is (compu-
tational) proof of knowledge: it requires that, whenever the verifier is convinced by an
efficient prover, not only can we conclude that a valid witness for the theorem exists,
but also that such a witness can be extracted efficiently from the prover. This property
is satisfied by most proof system constructions, including the aforementioned one of
Kilian [19], and is useful in many applications of succinct arguments.

Removing interaction. Kilian’s protocol requires four messages. A challenge, which is
of both theoretical and practical interest, is the construction of non-interactive succinct
arguments. As a first step in this direction, Micali [82] showed how to construct publicly-
verifiable one-message succinct non-interactive arguments for NP, in the random oracle
model, by applying the Fiat–Shamir heuristic [54] to Kilian’s protocol. In the plain
model, one-message solutions are impossible for hard-enough languages (against non-
uniform provers), so one usually considers the weaker goal of two-message succinct
arguments where the verifier message is generated independently of the statement to be
proven. Following [68], we call such arguments SNARGs. More precisely, a SNARG
for a language L is a triple of algorithms (G, P, V) where: the generator G, given the
security parameter λ, samples a reference string σ and a corresponding verification state
τ (G can be thought to be run during an offline phase, by the verifier, or by someone
the verifier trusts); the (honest) prover P(σ, x, w) produces a proof π for the statement
“x ∈ L” given a witness w; then, V (τ, x, π) verifies the validity of π . Soundness should
hold even if x is chosen depending on σ .

Gentry and Wichs [68] showed that no SNARG can be proven secure via a black-box
reduction to a falsifiable assumption [85]; this may justify using non-standard assump-
tions to construct SNARGs. (Note that [68] rule out SNARGs only for (hard-enough)
NP languages. For the weaker goal of verifying deterministic polynomial-time compu-
tations in various models, there are beautiful constructions relying on standard assump-
tions, such as [3,20,37,38,40,41,52,55,59,77]. We focus on verifying nondeterministic
polynomial-time computations.)

Extending earlier works [1,44,50,83], several works showed how to remove interac-
tion in Kilian’s PCP-based protocol and obtain SNARGs of knowledge (SNARKs) using
extractable collision-resistant hashing [10,11,46,60], or construct MIP-based SNARKs
using fully-homomorphic encryption with an extractable homomorphism property [8].

The preprocessing model. A notion that is weaker than a SNARK is that of a pre-
processing SNARK: here, the verifier is allowed to conduct an expensive offline phase.
More precisely, the generator G takes as an additional input a time bound T , may run
in time poly(λ + T) (rather than poly(λ + log T)), and generates σ and τ that can be
used, respectively, to prove and verify correctness of computations of length at most T .
Bitansky et al. [12] showed that SNARKs can always be “algorithmically improved”;
in particular, preprocessing SNARKs imply ones without preprocessing. (The result of
[12] crucially relies on the fast verification time and the adaptive proof-of-knowledge
property of the SNARK.) Thus, “preprocessing can always be removed” at the expense
of only a poly(λ)-loss in verification efficiency.

Zero knowledge.Another desired feature of SNARKs is zero knowledge, namely hiding
from the verifier anything but the truth of the statement being proved. More concretely,
we aim at constructions of SNARKs that satisfy the standard notion of non-interactive

15 Page 4 of 72 N. Bitansky et al.

zero-knowledge [17]. Previous SNARK constructions, starting from [64] and onward,
achieve zero knowledge at a very small extra cost. This will also be the case for the
main constructions in this work. However, to simplify the exposition, we will start by
focusing on the other features, and discuss the extra zero knowledge feature separately.

1.2. Motivation

The typical approach to construct succinct arguments (or, more generally, other forms of
proof systems with nontrivial efficiency properties) conforms with the following method-
ology: first, give an information-theoretic construction, using some form of probabilistic
checking to verify computations, in a model that enforces certain restrictions on provers
(e.g., the PCP model [10,11,19,44,46,60,74,82] or other models of probabilistic check-
ing [8,72,76,94,95,97,98]); next, use cryptographic tools to compile the information-
theoretic construction into an argument system (where there are no restrictions on the
prover other than it being an efficient algorithm). We refer to the former ingredient as a
probabilistic proof system and to the latter as a cryptographic compiler.

Existing constructions of preprocessing SNARKs seem to diverge from this methodol-
ogy, while at the same time offering several attractive features: such as public verification,
proofs consisting of only O(1) encrypted (or encoded) field elements, and verification
via arithmetic circuits that are linear in the statement.

Groth [64] and Lipmaa [78] (who builds on Groth’s approach) introduced clever tech-
niques for constructing preprocessing SNARKs by leveraging knowledge-of-exponent
assumptions [25,43,71] in bilinear groups. At high level, Groth considered a simple
reduction from circuit satisfaction problems to an algebraic satisfaction problem of
quadratic equations, and then constructed a set of specific cryptographic tools to suc-
cinctly check satisfiability of this problem. Gennaro et al. [56] made a first step to better
separate the “information-theoretic ingredient” from the “cryptographic ingredient” in
preprocessing SNARKs. They formulated a new type of algebraic satisfaction prob-
lems, called Quadratic Span Programs (QSPs), which are expressive enough to allow
for much simpler, and more efficient, cryptographic checking, essentially under the same
assumptions used by Groth. In particular, they invested significant effort in obtaining an
efficient reduction from circuit satisfiability to QSPs. (See Sect. 1.5 for a more detailed
overview of the relation between our work and [56].)

Comparing the latter QSP-based approach to the probabilistic-checking-based
approach described above, we note that a reduction to an algebraic satisfaction problem
is a typical first step, because such satisfaction problems tend to be more amenable to
probabilistic checking. As explained above, cryptographic tools are then usually invoked
to enforce the relevant probabilistic-checking model (e.g., the PCP one). The aforemen-
tioned works [56,64,78], on the other hand, seem to somehow skip the probabilistic-
checking step, and directly construct specific cryptographic tools for checking satisfia-
bility of the algebraic problem itself. While this discrepancy may not be a problem per
se, we believe that understanding it and formulating a clear methodology for the con-
struction of preprocessing SNARKs are problems of great interest. Furthermore, a clear
methodology that separates an information-theoretic probabilistic proof system from a
cryptographic compiler may lead not only to a deeper conceptual understanding, but

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 5 of 72 15

also to concrete improvements to different features of SNARKs (e.g., communication
complexity, verifier complexity, prover complexity, and so on). Thus, we ask:

Is there a generalmethodology for constructing preprocessingSNARKs from
probabilistic proof systems? Which improvements can it lead to?

1.3. Our Results

We present a general methodology for constructing preprocessing SNARKs from suit-
able kinds of probabilistic proof systems. Using different instantiations of this method-
ology, we obtain conceptually simple variants of previous SNARKs, as well as SNARKs
with new efficiency features.

Our methodology starts with a linear PCP,1 a more structured variant of a classical
PCP in which the verifier can make a small number of inner-product queries to a single
proof vector. We transform such a linear PCP into a stronger kind of probabilistic proof
system called a linear interactive proof, and then to a SNARK via a cryptographic
compiler that respects the efficiency features of the linear PCP.

In more detail, our contribution is threefold:

• We introduce a new, information-theoretic probabilistic proof system that extends
the standard interactive proof model by considering algebraically-bounded provers.
Concretely, we focus on linear interactive proofs (LIPs), where both honest and
malicious provers are restricted to computing linear (or affine) functions of messages
they receive over some finite field or ring. We construct succinct two-message LIPs
for NP by applying a simple and general transformation to any linear PCP. We also
present an alternative construction of LIPs from classical PCPs.

• We give cryptographic transformations from (succinct, two-message) LIPs to pre-
processing SNARKs, using different forms of linear targeted malleability [34],
which can be instantiated based on existing knowledge assumptions. More con-
cretely, we assume a “linear-only” encryption scheme that only supports linear
homomorphism. Our transformation is very intuitive: to force a prover to “act lin-
early” on the verifier’s message, as in the LIP soundness guarantee, the preprocessed
common reference string simply includes an encryption of each field or ring element
in the verifier’s LIP message with such a linear-only encryption. This enables the
honest SNARK prover to faithfully compute an encryption of its correct LIP mes-
sage, which the verifier can decrypt. For the case of designated-verifier SNARKs,
this simple idea suffices. To obtain public verification, we require the LIP verifi-
cation to be “simple” (say, testing whether a quadratic function of the answers is
0) and replace the linear-only encryption by a linear-only encoding that supports
“simple” zero-tests (say, via pairing).

• Following this methodology, we obtain several constructions that either simplify
previous ones or exhibit new asymptotic efficiency features. The latter include
“single-ciphertext preprocessing SNARKs” and improved succinctness-soundness
tradeoffs in the designated-verifier setting. We also offer a new perspective on

1A slightly different notion of linear PCP was used in earlier works [72,94,95,97,98] to obtain arguments
for NP with nontrivial efficiency properties. See Sect. 1.4 for a comparison.

15 Page 6 of 72 N. Bitansky et al.

Fig. 1. High-level summary of our transformations.

existing constructions of preprocessing SNARKs: namely, although existing con-
structions do not explicitly invoke PCPs, they can be reinterpreted as using linear
PCPs.

• We also extend our methodology to obtain zero-knowledge LIPs and SNARKs.

We now discuss our results further, starting in Sect. 1.3.1 with the information-theoretic
constructions of LIPs, followed in Sect. 1.3.2 by the cryptographic transformations to
preprocessing SNARKs, and concluding in Sect. 1.3.3 with the new features we are able
to obtain.

1.3.1. Linear Interactive Proofs

The LIP model modifies the traditional interactive proofs model in a way analogous
to the way the common study of algebraically-bounded “adversaries” modifies other
settings, such as pseudorandomness [35,86] and randomness extraction [48,63]. In the
LIP model, both honest and malicious provers are restricted to apply linear (or affine)
functions over a finite field F to messages they receive from the verifier. (The notion
can be naturally generalized to apply over rings.) The choice of these linear functions
can depend on auxiliary input to the prover (e.g., a witness), but not on the verifier’s
messages (Fig. 1).

With the goal of non-interactive succinct verification in mind, we restrict our attention
to (input-oblivious) two-message LIPs for boolean circuit satisfiability problems with
the following template. To verify the relation RC = {(x, w) : C(x, w) = 1} where C is
a boolean circuit, the LIP verifier VLIP sends to the LIP prover PLIP a message q that is a
vector of field elements, depending onC but not on x ; VLIP may also output a verification
state u. The LIP prover PLIP(x, w) applies to q an affine transformation � = (�′, b),
resulting in only a constant number of field elements. The prover’s message a = �′ ·q+b
can then be quickly verified (e.g., with O(|x |) field operations) by VLIP, and the soundness
error is at most O(1/|F|). From here on, we shall use the term LIP to refer to LIPs that
adhere to the above template.

LIP complexity measures. Our constructions provide different tradeoffs among sev-
eral complexity measures of an LIP, which ultimately affect the features of the resulting
preprocessing SNARKs. The two most basic complexity measures are the number of
field elements sent by the verifier and the number of those sent by the prover. An addi-

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 7 of 72 15

tional measure that we consider in this work is the algebraic complexity of the verifier
(when viewed as an F-arithmetic circuit). Specifically, splitting the verifier into a query
algorithm QLIP and a decision algorithm DLIP, we say that it has degree (dQ, dD) if QLIP

can be computed by a vector of multivariate polynomials of total degree dQ each in the
verifier’s randomness, and DLIP by a vector of multivariate polynomials of total degree
dD each in the LIP answers a and the verification state u. Finally, of course, the running
times of the query algorithm, decision algorithm, and prover algorithm are all com-
plexity measures of interest. See Sect. 2.3 for a definition of LIPs and their complexity
measures.

As mentioned above, our LIP constructions are obtained by applying general trans-
formations to two types of PCPs. We now describe each of these transformations and
the features they achieve. Some of the parameters of the resulting constructions are
summarized in Table 1.

LIPs from linear PCPs. A linear PCP (LPCP) of length m is an oracle computing
a linear function π : F

m → F; namely, the answer to each oracle query qi ∈ F
m is

ai = 〈
π , qi

〉
. Note that, unlike in an LIP where different affine functions, given by

a matrix � and shift b, are applied to a message q, in an LPCP there is one linear
function π , which is applied to different queries. (An LPCP with a single query can be
viewed as a special case of an LIP.) This difference prevents a direct use of an LPCP as
an LIP.

Our first transformation converts any (multi-query) LPCP into an LIP with closely
related parameters. Concretely, we transform any k-query LPCP of length m over F into
an LIP with verifier message in F

(k+1)m , prover message in F
k+1, and the same soundness

error up to an additive term of 1/|F|. The transformation preserves the key properties of
the LPCP, including the algebraic complexity of the verifier. Our transformation is quite
natural: the verifier sends q = (q1, . . . , qk+1) where q1, . . . , qk are the LPCP queries
and qk+1 = α1q1 + · · · + αkqk is a random linear combination of these. The (honest)
prover responds with ai = 〈

π , qi
〉
, for i = 1, . . . , k + 1. To prevent a malicious prover

from using inconsistent choices for π , the verifier checks that ak+1 = α1a1 +· · ·+αkak .
By relying on two different LPCP instantiations, we obtain two corresponding LIP

constructions:

• A variant of the Hadamard-based PCP of Arora et al. [4] (ALMSS), extended to
work over an arbitrary finite field F, yields a very simple LPCP with three queries.
After applying our transformation, for a circuit C of size s and input length n, the
resulting LIP for RC has verifier message in F

O(s2), prover message in F
4, and

soundness error O(1/|F|). When viewed as F-arithmetic circuits, the prover PLIP

and query algorithm QLIP are both of size O(s2), and the decision algorithm is of
size O(n). Furthermore, the degree of (QLIP, DLIP) is (2, 2).

• A (strong) quadratic span program (QSP), as defined by Gennaro et al. [56], directly
yields a corresponding LPCP with three queries. For a circuit C of size s and input
length n, the resulting LIP for RC has verifier message in F

O(s), prover message
in F

4, and soundness error O(s/|F|). When viewed as F-arithmetic circuits, the
prover PLIP is of size Õ(s), the query algorithm QLIP is of size O(s), and the
decision algorithm is of size O(n). The degree of (QLIP, DLIP) is (O(s), 2).

15 Page 8 of 72 N. Bitansky et al.

A notable feature of the LIPs obtained above is the very low “online complexity” of
verification: in both cases, the decision algorithm is an arithmetic circuit of size O(n).
Moreover, all the efficiency features mentioned above apply not only to satisfiability of
boolean circuits C , but also to satisfiability of F-arithmetic circuits.

In both the above constructions, the circuit to be verified is first represented as an
appropriate algebraic satisfaction problem, and then probabilistic checking machinery
is invoked. In the first case, the problem is a system of quadratic equations over F, and,
in the second case, it is a (strong) quadratic span program (QSP) over F. These algebraic
problems are the very same problems underlying [56,64,78].

As explained earlier, [56] invested much effort to show an efficient reduction from
circuit satisfiability problems to QSPs. Our work does not subsume nor simplify the
reduction to QSPs of [56], but instead reveals a simple LPCP to check a QSP, and this
LPCP can be plugged into our general transformations. Reducing circuit satisfiability
to a system of quadratic equations over F is much simpler, but generating proofs for
the resulting problem is quadratically more expensive. (Concretely, both [64,78] require
O(s2) computation already in the preprocessing phase). See Sect. 3.1 for more details.

LIPs from traditional PCPs. Our second transformation relies on traditional “unstruc-
tured” PCPs. These PCPs are typically more difficult to construct than LPCPs; however,
our second transformation has the advantage of requiring the prover to send only a single
field element. Concretely, our transformation converts a traditional k-query PCP into a
1-query LPCP, over a sufficiently large field. Here the PCP oracle is represented via its
truth table, which is assumed to be a binary string of polynomial size (unlike the LPCPs
mentioned above, whose truth tables have size that is exponential in the circuit size).
The transformation converts any k-query PCP of proof length m and soundness error ε

into an LIP, with soundness error O(ε) over a field of size 2O(k)/ε, in which the verifier
sends m field elements and receives only a single field element in return. The high-level
idea is to use a sparse linear combination of the PCP entries to pack the k answer bits
into a single field element. The choice of this linear combination uses additional random
noise to ensure that the prover’s coefficients are restricted to binary values, and uses easy
instances of subset-sum to enable an efficient decoding of the k answer bits.

Taking time complexity to an extreme, we can apply this transformation to the PCPs
of Ben-Sasson et al. [28] and get LIPs where the prover and verifier complexity are
both optimal up to polylog(s) factors, but where the prover sends a single element in
a field of size |F| = 2λ·polylog(s). Taking succinctness to an extreme, we can apply our
transformation to PCPs with soundness error 2−λ and O(λ) queries, obtaining an LIP
with similar soundness error in which the prover sends a single element in a field of size
|F| = 2λ·O(1). For instance, using the query-efficient PCPs of Håstad and Khot [69], the
field size is only |F| = 2λ·(3+o(1)).2 (Jumping ahead, this means that a field element can
be encrypted using a single, normal-size ciphertext of homomorphic encryption schemes
such as Paillier or Elgamal even when λ = 100.) On the down side, the degrees of the
LIP verifiers obtained via this transformation are high; we give evidence that this is
inherent when starting from “unstructured” PCPs. See Sect. 3.2 for more details.

2In the case of [69], we do not obtain an input-oblivious LIP, because the queries in their PCP depend on
the input. While it is plausible to conjecture that the queries can be made input-oblivious, we did not check
that.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 9 of 72 15

Table 1. Summary of our LIP constructions.

Thm.
number

Starting
point of LIP
construction

Field
elements in
verifier
message

Field
elements in
prover
message

Algebraic
properties
verifier

Field size for
2−λ

knowledge
error

3.3 Hadamard PCP O(s2) 4 (dQ , dD) = (2, 2) 2λ · O(1)

3.4 QSPs of [56] O(s) 4 (dQ , dD) = (O(s), 2) 2λ · O(s)
3.9 PCPs of [28] Õ(s) 1 None 2λ·polylog(s)

3.10 PCPs of [69] poly(s) 1 None 2λ·(3+o(1))

See each theorem for more details, including the running times of the prover, query, and decision algorithms

Honest-verifier zero-knowledge LIPs. We also show how to make the above LIPs
zero-knowledge against honest verifiers (HVZK). Looking ahead, using HVZK LIPs
in our cryptographic transformations results in preprocessing SNARKs that are zero-
knowledge (against malicious verifiers in the CRS model).

For the Hadamard-based LIP, an HVZK variant can be obtained directly with essen-
tially no additional cost. More generally, we show how to transform any LPCP where
the decision algorithm is of low degree to an HVZK LPCP with the same parameters
up to constant factors (see Sect. 8); this HVZK LPCP can then be plugged into our
first transformation to obtain an HVZK LIP. Both of the LPCP constructions mentioned
earlier satisfy the requisite degree constraints.

For the second transformation, which applies to traditional PCPs (whose verifiers, as
discussed above, must have high degree and thus cannot benefit from our general HVZK
transformation), we show that if the PCP is HVZK (see [47] for efficient constructions),
then so is the resulting LIP; in particular, the HVZK LIP answer still consists of a single
field element.

Proof of knowledge. In each of the above transformations, we ensure not only soundness
for the LIP, but also a proof of knowledge property. Namely, it is possible to efficiently
extract from a convincing affine function � a witness for the underlying statement.
The proof of knowledge property is then preserved in the subsequent cryptographic
compilations, ultimately allowing to establish the proof of knowledge property for the
preprocessing SNARK. As discussed in Sect. 1.1, proof of knowledge is a very desirable
property for preprocessing SNARKs; for instance, it enables to remove the preprocessing
phase, as well as to improve the complexity of the prover and verifier, via the result of
[12].

1.3.2. Preprocessing SNARKs from LIPs

We explain how to use cryptographic tools to transform an LIP into a corresponding
preprocessing SNARK. At high level, the challenge is to ensure that an arbitrary (yet
computationally-bounded) prover behaves as if it was a linear (or affine) function. The
idea, which also implicitly appears in previous constructions, is to use an encryption
scheme with targeted malleability [34] for the class of affine functions: namely, an
encryption scheme that “only allows affine homomorphic operations” on an encrypted
plaintext (and these operations are independent of the underlying plaintexts). Intuitively,

15 Page 10 of 72 N. Bitansky et al.

the verifier would simply encrypt each field element in the LIP message q, send the
resulting ciphertexts to the prover, and have the prover homomorphically evaluate the LIP
affine function on the ciphertexts; targeted malleability ensures that malicious provers
can only invoke (malicious) affine strategies.

We concretize the above approach in several ways, depending on the properties of the
LIP and the exact flavor of targeted malleability; different choices will induce different
properties for the resulting preprocessing SNARK. In particular, we identify natural
sufficient properties that enable an LIP to be compiled into a publicly-verifiable SNARK.
We also discuss possible instantiations of the cryptographic tools, based on existing
knowledge assumptions. (Recall that, in light of the negative result of [68], the use of
nonstandard cryptographic assumptions seems to be justified.)

Designated-verifier preprocessing SNARKs from arbitrary LIPs. First, we show
that any LIP can be compiled into a corresponding designated-verifier preprocessing
SNARK with similar parameters. (Recall that “designated verifier” means that the ver-
ifier needs to maintain a secret verification state.) To do so, we rely on what we call
linear-only encryption: an additively homomorphic encryption that is (a) semantically-
secure, and (b) linear-only. The linear-only property essentially says that, given a pub-
lic key pk and ciphertexts Encpk(a1), . . . ,Encpk(am), it is infeasible to compute a
new ciphertext c′ in the image of Encpk, except by “knowing” β, α1, . . . , αm such that
c′ ∈ Encpk(β +∑m

i=1 αi ai). Formally, the property is captured by guaranteeing that,
whenever A(pk,Encpk(a1), . . . ,Encpk(am)) produces valid ciphertexts (c′

1, . . . , c
′
k),

an efficient extractor E (non-uniformly depending on A) can extract a corresponding
affine function � “explaining” the ciphertexts. As a candidate for such an encryption
scheme, we propose variants of Paillier encryption [88] (as also considered in [56]) and
of Elgamal encryption [51] (in those cases where the plaintext is guaranteed to belong
to a polynomial-size set, so that decryption can be done efficiently). These variants
are “sparsified” versions of their standard counterparts; concretely, a ciphertext does
not only include Encpk(a), but also Encpk(α · a), for a secret field element α. (This
“sparsification” follows a pattern found in many constructions conjectured to satisfy
“knowledge-of-exponent” assumptions.) As for Paillier encryption, we have to consider
LIPs over the ring Zpq (instead of a finite field F); essentially, the same results also hold
in this setting (except that soundness is O(1/ min {p, q}) instead of O(1/|F|)).

We also consider a notion of targeted malleability, weaker than linear-only encryption,
that is closer to the definition template of Boneh et al. [34]. In such a notion, the extractor
is replaced by a simulator. Relying on this weaker variant, we are only able to prove the
security of our preprocessing SNARKs against non-adaptive choices of statements (and
still prove soundness, though not proof of knowledge, if the simulator is allowed to be
inefficient). Nonetheless, for natural instantiations, even adaptive security seems likely
to hold for our construction, but we do not know how to prove it. One advantage of
working with this weaker variant is that it seems to allow for more efficient candidates
constructions. Concretely, the linear-only property rules out any encryption scheme
where ciphertexts can be sampled obliviously; instead, the weaker notion does not, and
thus allows for shorter ciphertexts. For example, we can consider a standard (“non-
sparsified”) version of Paillier encryption. We will get back to this point in Sect. 1.3.3.

For further details on the above transformations, see Sect. 6.1.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 11 of 72 15

Publicly-verifiable preprocessing SNARKs from LIPs with low-degree verifiers.
Next, we identify properties of LIPs that are sufficient for a transformation to publicly-
verifiable preprocessing SNARKs. Note that, if we aim for public verifiability, we cannot
use semantically-secure encryption to encode the message of the LIP verifier, because we
need to “publicly test” (without decryption) certain properties of the plaintext underlying
the prover’s response. The idea, implicit in previous publicly-verifiable preprocessing
SNARK constructions, is to use linear-only encodings (rather than encryption) that do
allow such public tests, while still providing certain one-wayness properties. When using
such encodings with an LIP, however, it must be the case that the public tests support
evaluating the decision algorithm of the LIP and, moreover, the LIP remains secure
despite some “leakage” on the queries. We show that LIPs with low-degree verifiers
(which we call algebraic LIPs), combined with appropriate one-way encodings, suffice
for this purpose.

More concretely, like [56,64,78], we consider candidate encodings in bilinear groups
under similar knowledge-of-exponent and computational Diffie–Hellman assumptions;
for such encoding instantiations, we must start with an LIP where the degree dD of
the decision algorithm DLIP is at most quadratic. (If we had multilinear maps supporting
higher-degree polynomials, we could support higher values ofdD .) In addition todD ≤ 2,
to ensure security even in the presence of certain one-way leakage, we need the query
algorithm QLIP to be of polynomial degree.

Both of the LIP constructions from LPCPs described in Sect. 1.3.1 satisfy these
requirements. When combined with the above transformation, these LIP constructions
imply new constructions of publicly-verifiable preprocessing SNARKs, one of which can
be seen as a simplification of the construction of [64] and the other as a reinterpretation
(and slight simplification) of the construction of [56].

For more details, see Sect. 6.2.

Zero knowledge. In all aforementioned transformations to preprocessing SNARKs, if
we start with an HVZK LIP (such as those mentioned in Sect. 1.3.1) and additionally
require a rerandomization property for the linear-only encryption/encoding (which is
available in all of the candidate instantiations we consider), we obtain preprocessing
SNARKs that are (perfect) zero-knowledge in the CRS model. In addition, for the case
of publicly-verifiable (perfect) zero-knowledge preprocessing SNARKs, the CRS can be
tested, so that (similarly to previous works [56,64,78]) we also obtain succinct ZAPs.
See Sect. 6.3.

1.3.3. New Efficiency Features for SNARKs

We obtain the following improvements in communication complexity for preprocessing
SNARKs.

“Single-ciphertext preprocessing SNARKs”. If we combine the LIPs that we obtained
from traditional PCPs (where the prover returns only a single field element) with “non-
sparsified” Paillier encryption, we obtain (non-adaptive) preprocessing SNARKs that
consist of a single Paillier ciphertext. Moreover, when using the query-efficient PCP
from [69] as the underlying PCP, even a standard-size Paillier ciphertext (with plaintext
group Zpq where p, q are 512-bit primes) suffices for achieving soundness error 2−λ

15 Page 12 of 72 N. Bitansky et al.

with λ = 100. (For the case of [69], due to the queries’ dependence on the input,
the reference string of the SNARK also depends on the input.) Alternatively, using the
sparsified version of Paillier encryption, we can also get security against adaptively-
chosen statements with only two Paillier ciphertexts.

Optimal succinctness. A fundamental question about succinct arguments is how low
can we push communication complexity. More accurately: what is the optimal trade-
off between communication complexity and soundness? Ideally, we would want suc-
cinct arguments that are optimally succinct: to achieve 2−
(λ) soundness against 2O(λ)-
bounded provers, the proof length is O(λ) bits long.

In several existing constructions of succinct arguments, to provide 2−
(λ) soundness
against 2O(λ)-bounded provers, the prover has to communicate ω(λ) bits to the verifier.
Concretely, PCP-based (and MIP-based) solutions require
(λ3) bits of communication.
This also holds for preprocessing SNARKs based on Paillier encryption, which suffer
from subexponential-time attacks. In the case of pairing-based solutions, subexponential-
time attacks are not known to be inherent (this applies to the base groups, relevant to
SNARK constructions, rather than the target group).3

Following our approach, any candidate for linear-only homomorphic encryption that
does not suffer from subexponential-time attacks, would yield other instantiations of
preprocessing SNARKs that are optimally succinct. Currently, the only known such
candidate is Elgamal encryption (say, in appropriate elliptic curve groups) [89]. However,
the problem with using Elgamal decryption in our approach is that it requires to compute
discrete logarithms.

One way to overcome this problem is to ensure that honest proofs are always decrypted
to a known polynomial-size set. This can be done by taking the LIP to be over a field Fp

of only polynomial size, and ensuring that any honest proof π has small �1-norm ‖π‖1,
so that in particular, the prover’s answer is taken from a set of size at most ‖π‖1 · p.
For example, in the two LPCP-based constructions described in Sect. 1.3.1, this norm
is O(s2) and O(s), respectively, for a circuit of size s. This approach, however, has
two caveats: the soundness of the underlying LIP is only 1/poly(λ) and moreover, the
verifier’s running time is proportional to s, and not independent of it, as we usually
require. With such an LIP, we would be able to directly use Elgamal encryption because
linear tests on the plaintexts can be carried out “in the exponent,” without having to take
discrete logarithms.

Finally, a rather generic approach for obtaining “almost-optimal succinctness” is to use
(linear-only) Elgamal encryption in conjunction with any linear homomorphic encryp-
tion scheme (perhaps not having the linear-only property) that is sufficiently secure. Con-
cretely, the verifier sends his LIP message encrypted under both encryption schemes, and
then the prover homomorphically evaluates the affine function on both. The additional
ciphertext can be efficiently decrypted, and can assist in the decryption of the Elgamal
ciphertext. For example, there are encryption schemes based on Ring-LWE [79] that are
conjectured to have quasiexponential security; by using these in the approach we just

3In terms of concrete instantiations, however, existing symmetric-pairing groups are subject to subexpo-
nential attacks, whereas there do exist asymmetric-pairing groups conjectured to be resilient to subexponential
attacks (see e.g., [23]).

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 13 of 72 15

discussed, we can obtain 2−
(λ) soundness against 2O(λ)-bounded provers with Õ(λ)

bits of communication.

Strong knowledge and reusability. Designated-verifier SNARKs typically suffer from
a problem known as the verifier rejection problem: security is compromised if the prover
can learn the verifier’s responses to multiple adaptively-chosen statements and proofs.
For example, the PCP-based (or MIP-based) SNARKs of [8,10,11,46,60] suffer from
the verifier rejection problem because a prover can adaptively learn the encrypted PCP
(or MIP) queries, by feeding different statements and proofs to the verifier and learning
his responses, and since the secrecy of these queries is crucial, security is lost.

Of course, one way to avoid the verifier rejection problem is to generate a new ref-
erence string for each statement and proof. Indeed, this is an attractive solution for the
aforementioned SNARKs because generating a new reference string is very cheap: it
costs poly(λ). However, for a designated-verifier preprocessing SNARK, generating
a new reference string is not cheap at all, and being able to reuse the same reference
string across an unbounded number of adaptively-chosen statements and proofs is a very
desirable property.

A property that is satisfied by all algebraic LIPs (including the LPCP-based LIPs dis-
cussed in Sect. 1.3.1), which we call strong knowledge, is that such attacks are impossible.
Specifically, for such LIPs, every prover either makes the verifier accept with probability
1 or with probability less than O(poly(λ)/|F|). (In Sect. 9, we also show that traditional
“unstructured” PCPs cannot satisfy this property.) Given LIPs with strong knowledge, it
seems that designated-verifier SNARKs that have a reusable reference string can be con-
structed. Formalizing the connection between strong knowledge and reusable reference
string actually requires notions of linear-only encryption that are somewhat more delicate
than those we have considered so far. See details in Sect. 9 for additional discussions.

1.4. Previous Structured PCPs

Ishai et al. [72] proposed the idea of constructing argument systems with nontrivial effi-
ciency properties by using “structured” PCPs and cryptographic primitives with homo-
morphic properties, rather than (as in previous approaches) “unstructured” polynomial-
size PCPs and collision-resistant hashing. We have shown how to apply this basic
approach in order to obtain succinct non-interactive arguments with preprocessing. We
now compare our work to other works that have also followed the basic approach of
[72].

Strong vs. weak linear PCPs. Both in our work and in [72], the notion of a “structured”
PCP is taken to be a linear PCP. However, the notion of a linear PCP used in our work
does not coincide with the one used in [72]. Indeed there are two ways in which one can
formalize the intuitive notion of a linear PCP. Specifically:

• A strong linear PCP is a PCP in which the honest proof oracle is guaranteed to be
a linear function, and soundness is required to hold for all (including nonlinear)
proof oracles.

• A weak linear PCP is a PCP in which the honest proof oracle is guaranteed to be a
linear function, and soundness is required to hold only for linear proof oracles.

15 Page 14 of 72 N. Bitansky et al.

In particular, a weak linear PCP assumes an algebraically-bounded prover, while a strong
linear PCP does not. While Ishai et al. [72] considered strong linear PCPs, in our work
we are interested in studying algebraically-bounded provers, and thus consider weak
linear PCPs.

Arguments from strong linear PCPs. Ishai et al. [72] constructed a four-message
argument system for NP in which the prover-to-verifier communication is short (i.e., an
argument with a laconic prover [67]) by combining a strong linear PCP and (standard)
linear homomorphic encryption; they also showed how to extend their approach to
“balance” the communication between the prover and verifier and obtain a O(1/ε)-
message argument system for NP with O(nε) communication complexity. Let us briefly
compare their work with ours.

First, in this paper we focus on the non-interactive setting, while Ishai et al. focused
on the interactive setting. In particular, in light of the negative result of Gentry and Wichs
[68], this means that the use of non-standard assumptions in our setting (such as linear
targeted malleability) may be justified; in contrast, Ishai et al. only relied on the standard
semantic security of linear homomorphic encryption (and did not rely on linear targeted
malleability properties). Second, we focus on constructing (non-interactive) succinct
arguments, while Ishai et al. focus on constructing arguments with a laconic prover.
Third, by relying on weak linear PCPs (instead of strong linear PCPs) we do not need
to perform (explicitly or implicitly) linearity testing, while Ishai et al. do. Intuitively,
this is because we rely on the assumption of linear targeted malleability, which ensures
that a prover is algebraically bounded (in fact, in our case, linear); not having to perform
proximity testing is crucial for preserving the algebraic properties of a linear PCP (and
thus, e.g., obtain public verifiability) and obtaining O(poly(λ)/|F|) soundness with only
a constant number of encrypted/encoded group elements. (Recall that linearity testing
only guarantees constant soundness with a constant number of queries.)

Turning to computational efficiency, while their basic protocol does not provide the
verifier with any saving in computation, Ishai et al. noted that their protocol actually
yields a batching argument: namely, an argument in which, in order to simultaneously
verify the correct evaluation of � circuits of size S, the verifier may run in time S (i.e.,
in time S/� per circuit evaluation). In fact, a set of works [94,95,97,98] has improved
upon, optimized, and implemented the batching argument of Ishai et al. [72] for the
purpose of verifiable delegation of computation.

Finally, [94] have also observed that QSPs can be used to construct weak linear PCPs;
while we compile weak linear PCPs into LIPs, [94] (as in previous work) compile weak
linear PCPs into strong ones. Indeed, note that a weak linear PCP can always be compiled
into a corresponding strong one, by letting the verifier additionally perform linearity
testing and self-correction; this compilation does not affect proof length, increases query
complexity by only a constant multiplicative factor, and guarantees constant soundness.

Remark 1.1. The notions of (strong or linear) PCP discussed above should not be
confused with the (unrelated) notion of a linear PCP of Proximity (linear PCPP) [31,80],
which we now recall for the purpose of comparison.

Given a field F, an F-linear circuit [100] is an F-arithmetic circuit C : F
h → F

� in
which every gate computes an F-linear combination of its inputs; its kernel, denoted

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 15 of 72 15

ker(C), is the set of all w ∈ F
h for which C(w) = 0�. A linear PCPP for a field F is an

oracle machine V with the following properties: (1) V takes as input an F-linear circuit
C and has oracle access to a vector w ∈ F

h and an auxiliary vector π of elements in F,
(2) if w ∈ ker(C) then there exists π so that Vw,π (C) accepts with probability 1, and
(3) if w is far from ker(C) then Vw,π (C) rejects with high probability for every π .

Thus, a linear PCPP is a proximity tester for the kernels of linear circuits (which are
not universal), while a (strong or weak) linear PCP is a PCP in which the proof oracle
is a linear function.

1.5. Related and Subsequent Work

In this section we include a more detailed comparison with the work of Gennaro et
al. [56] (GGPR), which is the most closely related to the current work, as well as some
subsequent works in this area.

Comparison with GGPR. Our work can be seen as providing a conceptually simple
general methodology that not only captures close variants4 of the SNARKs from GGPR
(as well as earlier SNARKs from [64,78]), but can also be instantiated in other useful
ways. In more detail, GGPR consider the QSP constraint satisfaction problem, and
show how to directly compile it into a SNARK. This is similar to the previous works
of Groth [64] and Lipmaa [78], except that the QSP representation is quadratically
more efficient. In contrast, our starting point is a linear interactive proof—a new kind
of probabilistic information-theoretic proof system, which we show how to build from
any (classical or linear) PCP. Only then, we compile such LIPs into SNARKs. The
LIP abstraction also admits a natural zero-knowledge variant, which in the QSP-based
approach is part of the cryptographic compiler. When using a LIP based on the QSP
construction of GGPR, we end up with a slightly different SNARK from that of GGPR,
which is in fact slightly less succinct (8 vs. 7 bilinear group elements). Indeed, the GGPR
construction makes an additional optimization thanks to compiling QSPs directly.

Whereas QSPs (as well as their arithmetic QAP variant) are tied to polynomials and to
quadratic verification, the linear PCP and LIP primitives are more general. GGPR-style
linear PCPs still give the best efficiency for most applications, however, other linear
PCPs have proven useful in this work and in subsequent works [7,22,87]. For example,
we show that a LIP based on the Hadamard linear PCP, which is not captured by a QSP,
yields a very simple SNARK construction with quadratic CRS size. The single-query
linear PCP (or LIP) we obtain from a classical PCP, which serves as a basis for “single-
ciphertext SNARKs,” is also not captured by a QSP. Applications in subsequent works
are discussed below.

Subsequent developments. An influential work of Groth [65], building on a 2-element
LIP implicit in [45], obtained a (publicly verifiable) SNARK requiring only 3 bilinear
group elements (or roughly 1000 bits), and left open the possibility of a SNARK with 2
group elements. The latter would follow from a LIP with a linear decision procedure.

4The main SNARK from GGPR incorporates an additional optimization that reduces the number of bilinear
group elements from 8 to 7, whereas our framework only yields a SNARK with 8 group elements.

15 Page 16 of 72 N. Bitansky et al.

However, the existence of such a LIP was ruled out in [65], settling an open question
posed in the conference version of this work.

These barriers from [65] were recently circumvented in [22] by relaxing either the
soundness or the completeness requirement. Settling for inverse-polynomial soundness,
practical designated-verifier SNARKs for small circuits with only 2 group elements
were obtained by applying a variant of the packing transformation from this work to the
Hadamard PCP. Moreover, a 1-element LIP with a linear decision procedure, negligible
soundness error, and non-negligible (but sub-constant) completeness error follows from
theNP-hardness of approximating a problem related to linear codes, implying 2-element
laconic arguments forNPwith negligible soundness error and sub-constant completeness
error. Finally, a plausible (but yet unproven) hardness of approximation result would
imply a 1-element laconic argument with predictable answers, which would in turn
imply witness encryption [57].

Several other kinds of “linear” probabilistic proof systems in the spirit of LIP were
used in subsequent works. For instance, a variant of LIP was used in [13] to obtain
sublinear-communication arguments for arithmetic circuits in which the prover runs in
linear time. Fully linear proof systems, where linear queries apply jointly to the input
and the proof vector, were used for sublinear zero-knowledge proofs on secret-shared
data and information-theoretic secure multiparty computation [7].

We refer the reader to Thaler’s recent survey [99] for an overview of SNARKs based
on Linear PCP (Chapter 14) and comparison to other approaches to practical arguments
(Chapter 15). Earlier expositions appear in [7, Section 2], [18, Section 5], and [73].

1.6. Organization

In Sect. 2, we introduce the notions of LPCPs and LIPs. In Sect. 3, we present our
transformations for constructing LIPs from several notions of PCPs. In Sect. 4, we give
the basic definitions for preprocessing SNARKs. In Sect. 5, we define the relevant notions
of linear targeted malleability, as well as candidate constructions for these. In Sect. 6, we
present our transformations from LIPs to preprocessing SNARKs. In Sect. 7, we discuss
two constructions of algebraic LPCPs. In Sect. 8, we present our general transformation
to obtain HVZK for LPCPs with low-degree decision algorithms. In Sect. 9, we discuss
the notion of strong knowledge and its connection to designated-verifier SNARKs with
a reusable reference string.

2. Definitions of LIPs and LPCPs

We begin with the information-theoretic part of the paper, by introducing the basic
definitions of LPCPs, LIPs, and relevant conventions.

2.1. Polynomials, Degrees, and Schwartz–Zippel

Vectors are denoted in bold, while their coordinates are not; for example, we may write
a to denote the ordered tuple (a1, . . . , an) for some n. A field is denoted F; we always
work with fields that are finite. We say that a multivariate polynomial f : F

m → F has
degree d if the total degree of f is at most d. A multivalued multivariate polynomial

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 17 of 72 15

f : F
m → F

μ is a vector of polynomials (f1, . . . , fμ) where each fi : F
m → F is a

(single-valued) multivariate polynomial.
A very useful fact about polynomials is the following:

Lemma 2.1. (Schwartz–Zippel) Let F be any field. For any nonzero polynomial
f : F

m → F of total degree d and any finite subset S of F,

Pr
s←Sm

[
f (s) = 0

]
≤ d

|S| .

In particular, any two distinct polynomials f, g : F
m → F of total degree d can agree

on at most a d/|S| fraction of the points in Sm.

2.2. Linear PCPs

A linear probabilistically-checkable proof (LPCP) system for a relation R over a field F

is one where the PCP oracle is restricted to compute a linear function π : F
m → F of the

verifier’s queries. Viewed as a traditional PCP, π has length |F|m (and alphabet F). For
simplicity, we ignore the computational complexity issues in the following definition,
and refer to them later when they are needed.

Definition 2.2. (Linear PCP (LPCP)) Let R be a binary relation, F a finite field, PLPCP

a deterministic prover algorithm, and VLPCP a probabilistic oracle verifier algorithm. We
say that the pair (PLPCP, VLPCP) is a (input-oblivious) k-query linear PCP for R over F

with knowledge error ε and query length m if it satisfies the following requirements:

• Syntax On any input x and oracle π , the verifier V π
LPCP(x) makes k input-oblivious

queries to π and then decides whether to accept or reject. More precisely, VLPCP con-
sists of a probabilistic query algorithm QLPCP and a deterministic decision algorithm
DLPCP working as follows. Based on its internal randomness, and independently of
x , QLPCP generates k queries q1, . . . , qk ∈ F

m to π and state information u; then,
given x , u, and the k oracle answers a1 = 〈

π , q1
〉
, . . . , ak = 〈

π , qk
〉
, DLPCP accepts

or rejects.
• Completeness For every (x, w) ∈ R, the output of PLPCP(x, w) is a description of

a linear function π : F
m → F such that V π

LPCP(x) accepts with probability 1.
• Knowledge There exists a knowledge extractor ELPCP such that for every linear

function π∗ : F
m → F if the probability that V π∗

LPCP(x) accepts is greater than ε then
Eπ∗

LPCP(x) outputs w such that (x, w) ∈ R.5

Furthermore, we say that (PLPCP, VLPCP) has degree (dQ, dD) if, additionally,

1. the query algorithm QLPCP is computed by a degree dQ arithmetic circuit (i.e., there
are k polynomials p1, . . . , pk : F

μ → F
m and state polynomial p : F

μ → F
m′

, all
of degree dQ , such that the LPCP queries are q1 = p1(r), . . . , qk = pk(r) and
the state is u = p(r) for a random r ∈ F

μ), and

5In particular, (PLPCP, VLPCP) has soundness error ε: for every x such that (x, w) 	∈ R for all w, and for
every linear function π∗ : F

m → F, the probability that Vπ∗
LPCP(x) accepts is at most ε.

15 Page 18 of 72 N. Bitansky et al.

Fig. 2. Diagram of an LPCP and an input-oblivious two-message LIP.

2. the decision algorithm DLPCP is computed by a degree dD arithmetic circuit (i.e.,
for every input x there is a test polynomial tx : F

m′+k → F
η of degree dD such

that tx (u, a1, . . . , ak) = 0η if and only if DLPCP(x,u, a1, . . . , ak) accepts).

Finally, for a security parameter λ, we say that (PLPCP, VLPCP) is an algebraic LPCP
(for λ) if it has degree (poly(λ), poly(λ)).

Remark 2.3. (Infinite relations R) When R is an infinite relation ∪�∈NR�, both
VLPCP = (QLPCP, DLPCP) and PLPCP also get as input 1�. In this case, all parameters
k,m, μ,m′, η may also be a function of �.

Some of the aforementioned properties only relate to the LPCP verifier VLPCP, so we
will also say things like “VLPCP has degree...,” i.e., using the verifier as the subject (rather
than the LPCP).

Honest-verifier zero-knowledge LPCPs. We also consider honest-verifier zero-
knowledge (HVZK) LPCPs. In an HVZK LPCP, soundness or knowledge is defined
as in a usual LPCP, and HVZK is defined as in a usual HVZK PCP. For convenience,
let us recall the definition of a HVZK PCP:

Definition 2.4. (Honest-verifier zero-knowledge PCP (HVZK PCP)) A PCP system
(PPCP, VPCP) for a relation R, where PPCP is also probabilistic, is δ-statistical HVZK
if there exists a simulator SPCP, running in expected polynomial time, for which the
following two ensembles are δ-close (δ can be a function of the field, input length, and
so on):

{
SPCP(x)

}
(x,w)∈R and

{
View

(
V

πx,w
PCP (x)

) | πx,w ← PPCP(x, w)
}
(x,w)∈R ,

where View represents the view of the verifier, including its coins and the induced
answers according to π .

If the above two distributions are identically distributed then we say that (PPCP, VPCP)

is perfect HVZK (Fig. 2).

2.3. Linear Interactive Proofs

A linear interactive proof (LIP) is defined similarly to a standard interactive proof [62],
except that each message sent by a prover (either an honest or a malicious one) must
be a linear function of the previous messages sent by the verifier. In fact, it will be

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 19 of 72 15

convenient for our purposes to consider a slightly weaker notion that allows a malicious
prover to compute an affine function of the messages. While we will only make use of
two-message LIPs in which the verifier’s message is independent of its input, below we
define the more general notion.

Definition 2.5. (Linear Interactive Proof (LIP)) A linear interactive proof over a
finite field F is defined similarly to a standard interactive proof [62], with the following
differences.

• Each message exchanged between the prover PLIP and the verifier VLIP is a vector
qi ∈ F

m over F.
• The honest prover’s strategy is linear in the sense that each of the prover’s messages

is computed by applying some linear function �i : F
m → F

k to the verifier’s
previous messages (q1, . . . ,qi). This function is determined only by the input x ,
the witness w, and the round number i .

• Knowledge should only hold with respect to affine prover strategies �∗ = (�, b),
where � is a linear function, and b is some affine shift.

Analogously to the case of LPCPs (Definition 2.2), we say that a two-message LIP is
input-oblivious if the verifier’s messages do not depend on the input x . In such a case
the verifier can be split into a query algorithm QLIP that outputs the query q and possibly
a verification state u, and a decision algorithm DLIP that takes as input u, x , and the
LIP answer � · q. We also consider notions of degree and algebraic LIPs, also defined
analogously to the LPCP case.

Remark 2.6. (LPCPs and LIPs over rings) The notions of LPCP and an LIP can be
easily extended to be over a ring rather than over a field. One case of particular interest is
LIPs over ZN , where N is the product of two primes p and q. (LIPs over ZN are needed,
e.g., when used in conjunction with Paillier encryption; see Sect. 5.3.) All of our results
generalize, rather directly, to the case of ZN , where instead of achieving soundness-error
O(1/|F|), we achieve soundness O(1/ min {p, q}). For simplicity, when presenting most
results, we shall restrict attention to fields.

Remark 2.7. (Honest-verifier zero knowledge) We also consider an honest-verifier
zero-knowledge variant of LIPs (HVZK LIPs), which is defined analogously to Defini-
tion 2.4. In this case, the honest prover is probabilistic.

Remark 2.8. (LIP vs. LPCP) Note that a one-query LPCP is an LIP where the prover
returns a single field element; however, when the prover returns more than one field
element, an LIP is not a one-query LPCP. In this paper we construct both LIPs where
the prover returns more than a single field element (see Sect. 3.1) and LIPs where the
prover returns a single field element (see Sect. 3.2).

3. Constructions of LIPs

We present two transformations for constructing LIPs, in Sects. 3.1, and 3.2, respectively.

15 Page 20 of 72 N. Bitansky et al.

3.1. LIPs From LPCPs

We show how to transform any LPCP into a two-message LIP with similar parameters.
Crucially, our transformation does not significantly affect strong knowledge or algebraic
properties of the LPCP verifier. Note that a non-trivial transformation is indeed required
in general because the LIP verifier cannot simply send to the LIP prover the queries
q1, . . . , qk generated by the LPCP verifier. Unlike in the LPCP model, there is no
guarantee that the LIP prover will apply the same linear function to each of these queries;
instead, we only know that the LIP prover will apply some affine function � to the
concatenation of q1, . . . , qk . Thus, we show how to transform any LPCP (PLPCP, VLPCP)

with knowledge error ε into a two-message LIP (PLIP, VLIP) with knowledge error at most
ε + 1

|F| . If the LPCP has k queries of length m and is over a field F, then the LIP verifier
VLIP will send (k + 1)m field elements and receive (k + 1) field elements from the LIP
prover PLIP. The idea of the transformation is for VLIP to run VLPCP and then also perform
a consistency test (consisting of also sending to PLIP a random linear combination of the
k queries of VLPCP and then verifying the obvious condition on the received answers).

More precisely, we construct a two-message LIP (PLIP, VLIP) from an LPCP (PLPCP,

VLPCP) as follows:

Construction 3.1. Let (PLPCP, VLPCP) be a k-query LPCP over F with query length m.
Define a two-message LIP (PLIP, VLIP) as follows.

• The LIP verifier VLIP runs the LPCP verifier VLPCP to obtain k queries q1, . . . , qk ∈
F
m, draws α1, . . . , αk in F uniformly at random, and sends to the LIP prover PLIP

the (k + 1)m field elements obtained by concatenating the k queries q1, . . . , qk
together with the additional query qk+1 := ∑k

i=1 αiqi .
• The LIP prover PLIP runs the LPCP prover PLPCP to obtain a linear function

π : F
m → F, parses the (k + 1)m received field elements as k + 1 queries of

m field elements each, applies π to each of these queries to obtain k + 1 corre-
sponding field elements a1, . . . , ak+1, and sends these answers to the LIP verifier
VLIP.

• The LIP verifier VLIP checks that ak+1 = ∑k
i=1 αi ai (if this is not the case, it rejects)

and decides whether to accept or reject by feeding the LPCP verifier VLPCP with the
answers a1, . . . , ak.

Lemma 3.2. (From LPCP to LIP) Suppose (PLPCP, VLPCP) is a k-query LPCP for a
relation R over F with query length m and knowledge error ε. Then, (PLIP, VLIP) from
Construction 3.1 is a two-message LIP for R over F with verifier message in F

(k+1)m,
prover message in F

k+1, and knowledge error ε + 1
|F| . Moreover,

• if (PLPCP, VLPCP) has strong knowledge, then (PLIP, VLIP) also does, and
• if (PLPCP, VLPCP) has an algebraic verifier of degree (dQ, dD), then (PLIP, VLIP) has
one with degree (dQ, max{2, dD}).

Proof. Syntactic properties and completeness are easy to verify. Furthermore, since the
construction of VLIP from VLPCP only involves an additional quadratic test, the degree of
VLIP is (dQ, max{2, dD}). We are left to argue knowledge (and strong knowledge).

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 21 of 72 15

Let � : F
(k+1)m → F

k+1 be an affine strategy of a potentially malicious LIP prover
P∗
LIP. We specify � by (k + 1)2 linear functions π i, j : F

m → F for i, j ∈ {1, . . . , k + 1}
and a constant vector γ = (γ1, . . . , γk+1) ∈ F

k+1 such that the i-th answer of P∗
LIP is

given by ai := ∑k+1
j=1

〈
π i, j , q j

〉+ γi . It suffices to show that, for any choice of queries
q1, . . . , qk , exactly one of the following conditions holds:

• ai = 〈
πk+1,k+1, qi

〉
for all i ∈ [k], or

• with probability greater than 1 − 1
|F| over α1, . . . , αk , P∗

LIP does not pass the con-
sistency check.

Indeed, the above tells us that if � makes VLIP accept with probability greater than
ε + 1

|F| , then πk+1,k+1 makes VPCP accept with probability greater than ε. Knowledge
(and strong knowledge) thus follow as claimed.

To show the above, fix a tuple of queries, and assume that, for some i∗ ∈ [k], ai∗ 	=〈
πk+1,k+1, qi∗

〉
. For the consistency check to pass, it should hold that:

k∑

i=1

αi

⎛

⎝
k+1∑

j=1

〈
π i, j , q j

〉+ γi

⎞

⎠ =
k+1∑

j=1

〈
πk+1, j , q j

〉+ γk+1.

Equivalently,

k+1∑

j=1

k∑

i=1

αi
〈
π i, j , q j

〉+
k∑

i=1

αiγi =
k+1∑

j=1

〈
πk+1, j , q j

〉+ γk+1.

Breaking the first summation using the equality qk+1 = ∑k
j=1 α jq j , we get:

k∑

j=1

k∑

i=1

αi
〈
π i, j , q j

〉+
k∑

i=1

αi

〈

π i,k+1,

⎛

⎝
k∑

j=1

α jq j

⎞

⎠
〉

+
k∑

i=1

αiγi

=
k∑

j=1

〈
πk+1, j , q j

〉+
〈

πk+1,k+1,

k∑

j=1

α jq j

〉

+ γk+1.

Rearranging, we see that the consistency check reduces to verifying the following equa-
tion:

k∑

i, j=1

αiα j
〈
π i,k+1, q j

〉+
k∑

i=1

αi

⎛

⎝
k∑

j=1

〈
π i, j , q j

〉− 〈
πk+1,k+1, qi

〉+ γi

⎞

⎠

−
(

k∑

i=1

〈
πk+1,i , qi

〉+ γk+1

)

= 0.

15 Page 22 of 72 N. Bitansky et al.

Because
∑k+1

j=1

〈
π i∗, j , q j

〉 + γi∗ = ai∗ 	= 〈
πk+1,k+1, qi∗

〉
, the coefficient of αi∗ in the

above polynomial is non-zero. Hence, by the Schwartz–Zippel Lemma (see Lemma 2.1),
the identity holds with probability at most 1

|F| . �
In light of the two LPCP constructions described in Sect. 7, we deduce the following

two theorems.

Theorem 3.3. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean
circuit of size s. There is an input-oblivious two-message LIP for RC with knowledge
error O(1/|F|), verifier message in F

O(s2), prover message in F
4, and degree (2, 2).

Furthermore:

• the LIP prover PLIP is an arithmetic circuit of size O(s2);
• the LIP query algorithm QLIP is an arithmetic circuit of size O(s2);
• the LIP decision algorithm DLIP is an arithmetic circuit of size O(n).

Theorem 3.4. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean
circuit of size s. There is an input-oblivious two-message LIP for RC with knowledge
error O(s/|F|), verifier message in F

O(s), prover message in F
4, and degree (O(s), 2).

Furthermore:

• the LIP prover PLIP is an arithmetic circuit of size Õ(s);
• the LIP query algorithm QLIP is an arithmetic circuit of size O(s);
• the LIP decision algorithm DLIP is an arithmetic circuit of size O(n).

3.1.1. Zero-Knowledge

The LIPs we obtain by via above transformation can all be made honest-verifier zero-
knowledge (HVZK) by starting with an HVZK LPCP. For this purpose, we show in
Sect. 8 a general transformation from any LPCP with dD = O(1) to a corresponding
HVZK LPCP, with only small overhead in parameters.

3.2. LIPs From (Traditional) PCPs

We present a second general construction of LIPs. Instead of LPCPs, this time we rely on
a traditional k-query PCP in which the proof π is a binary string of lengthm = poly(|x |).
While any PCP can be viewed as an LPCP (by mapping each query location q ∈ [m] to
the unit vector eq equal to 1 at the q-th position and 0 everywhere else), applying the
transformation from Sect. 3.1 yields an LIP in which the prover’s message consists of
k + 1 field elements. Here we rely on the sparseness of the queries of an LPCP that is
obtained from a PCP in order to reduce the number of field elements returned by the
prover to 1. (In particular, the transformation presented in this section does not apply to
either of the LPCPs we construct in Sect. 7, because they do not have sparse queries.)
The construction relies on the easiness of solving instances of subset sum in which each
integer is bigger than the sum of the previous integers (see [81]).
Fact 3.5. There is a quasilinear-time algorithm for the following problem:

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 23 of 72 15

• input: Non-negative integers w1, . . . , wk, a such that each wi is bigger than the
sum of the previous w j .

• output: A binary vector (a1, . . . , ak) ∈ {0, 1}k such that a = ∑k
i=1 aiwi (if one

exists).

(All integers are given in binary representation.)

The following construction uses a parameter � that will affect the soundness error. We
assume that the field F is of a prime order p where p > 2k� and identify its elements
with the integers 0, . . . , p − 1.

Construction 3.6. Let (PPCP, VPCP) be a k-query PCP with proof length m. Define an
LIP (PLIP, VLIP) over F as follows.

• The LIP verifier VLIP runs the PCP verifier VPCP to obtain k distinct query locations
q1, . . . , qk ∈ [m], picks a sequence of k random field elements

w1 ← [0, � − 1], w2 ← [�, 2� − 1], w3 ← [3�, 4� − 1], . . . ,
wk ← [(2k−1 − 1)�, 2k−1� − 1],

and sends to the LIP prover PLIP the vector q = ∑k
i=1 wi eqi , where e j is the j-th

unit vector in F
m.

• The LIP prover PLIP responds by applying to q the linear function π : F
m → F

whose coefficients are specified by the m bits of the PCP generated by the PCP
prover PPCP. Let a denote the field element returned by PLIP.

• The LIP verifier VLIP applies the subset sum algorithm of Fact 3.5 to find (a1,

. . . , ak) ∈ {0, 1}k such that a = ∑k
i=1 aiwi (if none exists it rejects) and decides

whether to accept by feeding the PCP verifier VPCP with a1, . . . , ak.

Lemma 3.7. (From PCP to LIP) Suppose (PPCP, VPCP) is a k-query PCP for a relation
R with proof length m and knowledge error ε, and F is a field of prime order p with
p > 2k�. Then (PLIP, VLIP) from Construction 3.6 is a two-message LIP for R over F

with verifier message in F
m, prover message in F, and knowledge error ε + 2k

�
.

Proof. Because the prover message is in F (i.e., the prover returns a single field ele-
ment) the prover strategy is an affine function �∗ : F

m → F (i.e., as in an LPCP, see
Remark (2.8)). Let π∗ : F

m → F be a linear function and γ ∗ ∈ F be a constant such
that �∗(q) = 〈π∗, q〉 + γ ∗ for all q ∈ F

m .
We say that query positions q1, . . . , qk ∈ [m] are invalid with respect to �∗ if γ ∗ 	= 0

or there is i ∈ {1, . . . , k} such that �∗(eqi) 	∈ {0, 1}. It suffices to show that, for any
strategy �∗ as above, conditioned on any choice of invalid query positions q1, . . . , qk
by VLIP, the probability of VLIP accepting is bounded by 2k/�. Indeed, for queries for
which �∗ is valid, it holds that �∗(qi) = 〈π∗, qi 〉 ∈ {0, 1} corresponding a traditional
PCP oracle π∗, so that the knowledge guarantees of (PPCP, VPCP) would kick in.

The above follows from the sparseness of the answers a that correspond to valid
strategies and the high entropy of the answer resulting from any invalid strategy. Con-

15 Page 24 of 72 N. Bitansky et al.

cretely, fix any candidate solution (a1, . . . , ak) ∈ {0, 1}k and pick w1, . . . , wk as in
Construction 3.6. Since each wi is picked uniformly from an interval of size �,

w1,...,wk

⎡

⎣ �∗ ·
(

k∑

i=1

wi eqi

)

=

k∑

i=1

aiwi

⎤

⎦

=w1,...,wk

[〈

π∗,
k∑

i=1

wi eqi

〉

+ γ ∗ =
k∑

i=1

aiwi

]

=w1,...,wk

[
k∑

i=1

(π∗
qi − ai)wi + γ ∗ = 0

]

≤ 1

�
.

Indeed, noting that
∑k

i=1(π
∗
qi − ai)wi + γ ∗ is a degree-1 polynomial in the variables

w1, . . . , wk ,

• if there is i ∈ {1, . . . , k} such that �∗(eqi) 	∈ {0, 1} then the coefficient of wi is non-
zero (since ai ∈ {0, 1}) and thus, by the Schwartz–Zippel Lemma (see Lemma 2.1),
the probability that the polynomial vanishes is at most 1/�; and

• if instead for all i ∈ {1, . . . , k} it holds that �∗(eqi) ∈ {0, 1} then it must be that
γ ∗ 	= 0; if there is i ∈ {1, . . . , k} such that π∗

qi 	= ai then the same argument as in
the previous bullet holds; otherwise, γ ∗ = 0 with probability 0 since we know that
γ ∗ 	= 0.

By a union bound, the probability that there exists solution (a1, . . . , ak) ∈ {0, 1}k such
that �(

∑k
i=1 wi eqi) = ∑k

i=1 aiwi is at most 2k/�. Hence, the subset sum algorithm
will fail to find a solution and VLIP will reject except with at most 2k/� probability. �

By setting � := 2k/ε, we obtain the following corollary:

Corollary 3.8. Suppose (PPCP, VPCP) is a k-query PCP for a relation R with proof
length m and knowledge error ε, and F is a field of prime order p with p > 22k/ε.
Then (PLIP, VLIP) from Construction 3.6 is a two-message LIP forR over F with verifier
message in F

m, prover message in F, and knowledge error 2ε.

There are many PCPs in the literature (e.g., [4,5,16,29,30,32,33,49,53,66,70,80,84,
90,93]), optimizing various parameters.

Focusing on asymptotic time complexity, perhaps the most relevant PCPs for our
purposes here are those of Ben-Sasson et al. [28]. They constructed PCPs where, to prove
and verify that a random-access machine M accepts (x, w) within t steps for some w

with |w| ≤ t , the prover runs in time (|M | + |x | + t) · polylog(t) and the verifier runs in
time (|M | + |x |) · polylog(t) (while asking polylog(t) queries, for constant soundness).
Invoking Corollary 3.8 with these PCPs, one can deduce the following theorem.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 25 of 72 15

Theorem 3.9. LetF be a finite field andC : {0, 1}n×{0, 1}h → {0, 1} a boolean circuit
of size s. There is an input-oblivious two-message LIP forRC with knowledge error 2−λ,

verifier message in F
Õ(s), prover message in F, and |F| > 2λ·polylog(s). Furthermore:

• the LIP prover PLIP runs in time Õ(s);
• the LIP query algorithm QLIP runs in time Õ(s) + λ · n · polylog(s);
• the LIP decision algorithm DLIP runs in time λ · n · polylog(s).

(All the above running times are up to polylog(|F|) factors.)

Focusing on communication complexity instead, we can invoke Corollary 3.8 with
the query-efficient PCPs of Håstad and Khot [69], which have λ + o(λ) queries for
soundness 2−λ. (Because their PCPs have a query algorithm that depends on the input,
we only obtain an LIP where the verifier’s message depends on the input; it is plausible
that [69] can be modified to be input oblivious, but we did not check this.)

Theorem 3.10. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean
circuit of size s. There is a two-message LIP forRC with knowledge error 2−λ, verifier
message in F

poly(s), prover message in F, and |F| > 2λ·(3+o(1)). Furthermore:

• the LIP prover PLIP runs in time poly(s);
• the LIP query algorithm QLIP runs in time poly(s) + λ · n · polylog(s);
• the LIP decision algorithm DLIP runs in time λ · n · polylog(s).

(All the above running times are up to polylog(|F|) factors.)

The verifiers of the PCPs of Ben-Sasson et al. [28] (used to derive Theorem 3.9) and
of Håstad and Khot [69] (used to derive Theorem 3.10) do not have low degree, and
thus the LIPs they induce via our transformation are not algebraic. In Sect. 9, we give
evidence that this is inherent, proving that no PCP (for a hard enough language) can
have low-degree verifiers (or even satisfy a weaker, but still useful, property that we call
“strong knowledge”).

3.2.1. Zero-Knowledge

In Sect. 3.1.1 we discussed a generic transformation from any LPCP with dD = O(1) to
a corresponding HVZK LPCP. A (traditional) PCP does not typically induce an LPCP
with dD = O(1). Thus, if we want to obtain an HVZK LIP through Construction 3.6,
we need a different approach.

We observe that if we plug into Construction 3.6 a PCP that is HVZK (see Defini-
tion 2.4), then the corresponding LIP is also HVZK.

Lemma 3.11. In Lemma 3.7, if (PPCP, VPCP) is a HVZK PCP then (PLIP, VLIP) is a
HVZK LIP.

15 Page 26 of 72 N. Bitansky et al.

4. Definitions of SNARKs and Preprocessing SNARKs

We now turn to the cryptographic part of this work. We define the notions of a SNARK
and a preprocessing SNARK. Our definitions follow those in previous works (see for
instance, [10,64]).

We first recall the universal relation [19], which provides us with a canonical form to
represent verification-of-computation problems. Because such problems typically arise
in the form of algorithms (e.g., “is there w that makes program P accept (x, w)?”), we
adopt the universal relation relative to random-access machines [6,39].

Definition 4.1. Theuniversal relation is the setRU of instance-witness pairs (y, w) =(
(M, x, t), w

)
, where |y|, |w| ≤ t and M is a random-access machine, such that M

accepts (x, w) after at most t steps.6 We denote by LU the universal language corre-
sponding to RU .

We now proceed to define SNARGs and preprocessing SNARGs. A succinct non-
interactive argument (SNARG) is a triple of algorithms (G, P, V) that works as follows.
The (probabilistic) generator G, on input the security parameter λ (presented in unary)
and a time bound T , outputs a reference string σ and a corresponding verification state
τ . The honest prover P(σ, y, w) produces a proof π for the instance y = (M, x, t) given
a witness w, provided that t ≤ T ; then V (τ, y, π) verifies the validity of π .

The SNARG is adaptive if the prover may choose the statement after seeing σ ,
otherwise, it is non-adaptive; the SNARG is fully-succinct if G runs “fast,” otherwise,
it is of the preprocessing kind.

Definition 4.2. A triple of algorithms (G, P, V) is a SNARG for the relation R ⊆ RU
if the following conditions are satisfied:

1. Completeness
For every large enough security parameter λ ∈ N, every time bound T ∈ N, and every
instance-witness pair (y, w) = (

(M, x, t), w
) ∈ R with t ≤ T ,

Pr

[
V (τ, y, π) = 1

∣∣∣∣
(σ, τ) ← G(1λ, T)

π ← P(σ, y, w)

]
= 1 .

2. Soundness (depending on which notion is considered)

• non-adaptive: For every polynomial-size prover P∗, every large enough secu-
rity parameter λ ∈ N, every time bound T ∈ N, and every instance y =
(M, x, t) for which � w s.t. (y, w) ∈ R,

Pr

[
V (τ, y, π) = 1

∣∣∣∣
(σ, τ) ← G(1λ, T)

π ← P∗(σ, y)

]
≤ negl(λ) .

6While the witness w for an instance y = (M, x, t) has size at most t , there is no a-priori polynomial
bounding t in terms of |x |. Also, the restriction that |y|, |w| ≤ t simplifies notation but comes with essentially
no loss of generality: see [27] for a discussion of how to deal with “large inputs” (i.e., x or w much larger than
t , in the model where M has random access to them).

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 27 of 72 15

• adaptive: For every polynomial-size prover P∗, every large enough security
parameter λ ∈ N, and every time bound T ∈ N,

Pr

[
V (τ, y, π) = 1

� w s.t. (y, w) ∈ R

∣∣∣∣
(σ, τ) ← G(1λ, T)

(y, π) ← P∗(σ)

]
≤ negl(λ) .

3. Efficiency
There exists a universal polynomial p (independent of R) such that, for every large
enough security parameter λ ∈ N, every time bound T ∈ N, and every instance
y = (M, x, t) with t ≤ T ,

• the generator G runs in time

{
p(λ + log T) for a fully-succinctSNARG

p(λ + T) for a preprocessingSNARG
;

• the prover P runs in time{
p(λ + |M | + |x | + t + log T) for a fully-succinct SNARG

p(λ + |M | + |x | + T) for a preprocessing SNARG
;

• the verifier V runs in time p(λ + |M | + |x | + log T);
• an honestly generated proof has size p(λ + log T).

Proof of knowledge. A SNARG of knowledge (SNARK) is a SNARG where soundness

is strengthened as follows:

Definition 4.3. A triple of algorithms (G, P, V) is a SNARK for the relation R if
it is a SNARG for R where adaptive soundness is replaced by the following stronger
requirement:

• Adaptive proof of knowledge7 For every polynomial-size prover P∗ there exists a
polynomial-size extractor E such that for every large enough security parameter
λ ∈ N, every auxiliary input z ∈ {0, 1}poly(λ), and every time bound T ∈ N,

Pr

⎡

⎣V (τ, y, π) = 1
(y, w) /∈ R

∣∣∣∣∣∣

(σ, τ) ← G(1λ, T)

(y, π) ← P∗(z, σ)

w ← E(z, σ)

⎤

⎦ ≤ negl(λ) .

One may want to distinguish between the case where the verification state τ is allowed
to be public or needs to remain private: a publicly-verifiable SNARK (pvSNARK) is
one where security holds even if τ is public; in contrast, a designated-verifier SNARK
(dvSNARK) is one where τ needs to remain secret.

Zero-knowledge. A zero-knowledge SNARK (or “succinct NIZK of knowledge”) is a
SNARK satisfying a zero-knowledge property. Namely, zero knowledge ensures that
the honest prover can generate valid proofs for true theorems without leaking any infor-
mation about the theorem beyond the fact that the theorem is true (in particular, without
leaking any information about the witness that he used to generate the proof for the

7One can also formulate weaker proof of knowledge notions. In this work we focus on the above strong
notion.

15 Page 28 of 72 N. Bitansky et al.

theorem). Of course, when considering zero-knowledge SNARKs, the reference string
σ must be a common reference string that is trusted, not only by the verifier, but also by
the prover.

Definition 4.4. A triple of algorithms (G, P, V) is a (perfect) zero-knowledge
SNARK for the relation R if it is a SNARK for R and, moreover, satisfies the fol-
lowing property:

• Zero Knowledge
There exists a stateful interactive polynomial-size simulator S such that for all stateful
interactive polynomial-size distinguishers D, large enough security parameter λ ∈ N,
every auxiliary input z ∈ {0, 1}poly(λ), and every time bound T ∈ N,

Pr

⎡

⎣
t ≤ T

(y, w) ∈ RU
D(π) = 1

∣∣∣∣∣∣

(σ, τ) ← G(1λ, T)

(y, w) ← D(z, σ)

π ← P(σ, y, w)

⎤

⎦

= Pr

⎡

⎣
t ≤ T

(y, w) ∈ RU
D(π) = 1

∣∣∣∣∣∣

(σ, τ, trap) ← S(1λ, T)

(y, w) ← D(z, σ)

π ← S(z, σ, y, trap)

⎤

⎦ .

As usual, Definition 4.4 can be relaxed to consider the case in which the distributions
are only statistically or computationally close.

As observed in [11], dvSNARKs (resp., pvSNARKs) can be combined with zero-
knowledge (not-necessarily-succinct) non-interactive arguments (NIZKs) of knowledge
to obtain zero-knowledge dvSNARKs (resp., pvSNARKs). This observation immedi-
ately extends to preprocessing SNARKs, thereby providing a generic method to construct
zero-knowledge preprocessing SNARKs from preprocessing SNARKs.

In this work, we also consider more “direct,” and potentially more efficient, ways to
construct zero-knowledge preprocessing SNARKs by relying on various constructions
of HVZK LIPs (and without relying on generic NIZKs). See Sect. 6.3.

(We note that when applying the transformations of [12], e.g., to remove preprocess-
ing, zero knowledge is preserved.8)

Multiple theorems. A desirable property (especially so when preprocessing is expen-
sive) is the ability to generate σ once and for all and then reuse it in polynomially-
many proofs (potentially by different provers). Doing so requires security also against
provers that have access to a proof-verification oracle. While for pvSNARKs this multi-
theorem proof of knowledge property is automatically guaranteed, this is not the case
for dvSNARKs. In Sect. 9, we formally define and discuss this stronger notion of secu-
rity, and show that some of our dvSNARKs achieve this security notion because of the
“strong knowledge” of the underlying LIPs. (We note that, like zero-knowledge above,

8The definition of proof of knowledge of a SNARK (Definition 4.3) says that the extractor is given the
same inputs that are given to the prover, but nothing else; in particular, the extractor does not receive any
trapdoor. The transformation of Bitansky et al. [12] crucially relies on this fact. Thus, if one is interested in
constructing a zero-knowledge SNARK via the result of [11] and then invoke the result of [12], one must
be mindful to rely on (not-necessarily-succinct) non-interactive arguments of knowledge where the extractor
does not require a trapdoor. (E.g., the extractor in [2] does not require a trapdoor.)

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 29 of 72 15

the multi-theorem proof-of-knowledge property is preserved by the transformations of
[12].)

OUR FOCUS. In this work we study preprocessing SNARKs, where (as stated in
Definition 4.2) the generator G may run in time polynomial in the security parameter λ

and time bound T .

4.1. Preprocessing SNARKs for Boolean Circuit Satisfaction Problems

In Sect. 4, we have defined SNARKs for the universal relation. In this work, at times it
will be more convenient to discuss preprocessing SNARKs for boolean circuit satisfac-
tion problems rather than for the universal relation.9 We thus briefly sketch the relevant
definitions, and also explain how preprocessing SNARKs for boolean circuit satisfaction
problems suffice for obtaining preprocessing SNARKs, with similar efficiency, for the
universal relation. (Indeed, because we are often interested in the correctness of algo-
rithms, and not boolean circuits, it is important that this transformation be efficient!)

We begin by introducing boolean circuit satisfaction problems:

Definition 4.5. The boolean circuit satisfaction problem of a boolean circuit
C : {0, 1}n × {0, 1}h → {0, 1} is the relation RC = {(x, w) ∈ {0, 1}n × {0, 1}h :
C(x, w) = 1}; its language is denoted LC . For a family of boolean circuits C ={
C� : {0, 1}n(�) × {0, 1}h(�) → {0, 1}}

�∈N, we denote the corresponding infinite relation
and language by RC = ⋃

�∈NRC�
and LC = ⋃

�∈N LC�
.

A preprocessing SNARK for a uniform family of boolean circuits C is defined anal-
ogously to a preprocessing SNARK for the universal relation, with only small syntactic
modifications. The (probabilistic) generator G, on input the security parameter λ and an
index � for the circuit C� : {0, 1}n(�) × {0, 1}h(�) → {0, 1}, outputs a reference string σ

and a corresponding verification state τ . (Both τ and σ can be thought to include λ and
�.) Given w, the honest prover P(σ, x, w) produces a proof π attesting that x ∈ LC�

;
then, V (τ, x, π) verifies the validity of π . As for efficiency, we require that there exists
a universal polynomial p (independent of the family C) such that for every large enough
security parameter λ ∈ N, index � ∈ N, and input x ∈ {0, 1}n(�):

• the generator G runs in time p(λ + |C�|);
• the prover P runs in time p(λ + |C�|);
• the verifier V runs in time p(λ + |x | + log |C�|);
• an honestly generated proof has size p(λ + log |C�|).

We can also consider the case where C is a non-uniform family, in which case G and P
will get as additional input the circuit C�.

We show how to obtain a preprocessing SNARK forRU from preprocessing SNARKs
for uniform families of boolean circuits. To do so, we need to introduce the notion of a
universal RAM simulator:

9This is because our information-theoretic constructions (see Sect. 3), which we use toward the construction
of preprocessing SNARKs, are more conveniently stated for boolean circuit satisfaction problems.

15 Page 30 of 72 N. Bitansky et al.

Definition 4.6. Let n ∈ N. We say that a boolean circuit family Cn = {CT : {0, 1}n ×
{0, 1}h(T) → {0, 1}}T is a universal RAM simulator for n-bit instances if, for every
y = (M, x, t) with |y| = n, CT (y, ·) is satisfiable if and only if y ∈ LU and t ≤ T .
A witness map of Cn , denoted w, is a function such that, for every y = (M, x, t) with
|y| = n and t ≤ T , if (y, w) ∈ RU then CT (y,w(T, y, w)) = 1. An inverse witness
map of Cn , denoted w−1, is a function such that, for every y = (M, x, t) with |y| = n
and t ≤ T , if CT (y, w′) = 1 then (y,w−1(T, y, w′)) ∈ RU .

Construction 4.7. For every n ∈ N, given a preprocessing SNARK (G, P, V) for a
universal RAM simulator Cn (for n-bit instances) with (efficient) witness map w and
inverse witness mapwit−1, we construct a preprocessing SNARK (G ′

n, P
′
n, V

′
n) for those

pairs (y, w) in the universal relation with |y| = n as follows:

• G ′
n(1

λ, T) := G(1λ, T);
• P ′

n(σ, y, w) := P(σ, y,w(T, y, w));
• V ′

n(τ, y, π) := V (τ, y, π).

Claim 4.8. (G ′
n, P

′
n, V

′
n) is a preprocessing SNARK for pairs (y, w) in the universal

relation with |y| = n.

Proof. The existence ofwit−1 ensures that proof of knowledge is preserved. Concretely,
a knowledge extractor E ′

n for a prover convincing V ′
n would first run a knowledge

extractor for the same prover convincing V and then run wit−1 to obtain a suitable
witness.

The efficiency of C, w, and w−1 has direct implications to the efficiency of (G ′
n, P

′
n,

V ′
n). Concretely:

• Let f (T) := |CT |. The growth rate of f (T) affects the efficiency of G ′
n and P ′

n ,
because the efficiency of G and P depends on |CT |. So, for instance, if G and
P run in time |CT |2 · poly(λ) and f (T) =
(T 2), then G ′

n and P ′
n run in time

(T 4) · poly(λ).
• The running time ofw affects the running time of P ′

n . Indeed, P ′
n must first transform

the witness w for y into a witness w′ for CT (y, ·), and only then he can invoke P .
So, for instance, even if f (T) = Õ(T) but w runs in time
(T 3), then P ′

n will run
in time
(T 3).

• The running time of w−1 sometimes affects the running time of G ′
n , P ′

n , and V ′
n .

Indeed, if the proof of knowledge property of (G ′
n, P

′
n, V

′
n) is used in a security

reduction (e.g., verifying the correctness of cryptographic computations) then the
slower w−1 is the more expensive is the security reduction, and thus the larger
the security parameter has to be chosen for (G, P, V). A larger security parameter
affects the efficiency of all three algorithms.

We thus wish the growth rate of f (T) to be as small as possible, and that w and w−1 be
as fast as possible. The reduction from RAM computations to circuits of Ben-Sasson et
al. [27] implies that there is a universal RAM simulator where f (T) = Õ(T) and both
w and w−1 run in sequential time Õ(T) (or in parallel time O((log T)2)). �

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 31 of 72 15

Next, we show how to remove the restriction on the instance size, by using collision-
resistant hashing. (Indeed, (G ′

n, P
′
n, V

′
n) only handles instances y with |y| = n.) Let

H = {Hλ}λ∈N be a collision-resistant hash-function family such that functions in Hλ

map {0, 1}∗ to {0, 1}λ. For any h ∈ Hλ and instance y, define yh to be the instance
(Uh, h(x), poly(λ) + O(t)), where Uh is a universal random-access machine that, on
input (x̃, w̃), parses w̃ as ((M, x, t), w), verifies that x̃ = h(M, x, t), and then runs
M(x, w) for at most t steps. Because we can assume a uniform super-polynomial upper
bound on t , say t ≤ λlog λ, there is a constant c > 0 for which we can assume that
|yh | = λc.

Construction 4.9. We construct a preprocessing SNARK (G ′′, P ′′, V ′′) for the univer-
sal relation as follows:

• G ′′(1λ, T) outputs (σ̃ , τ̃) := (
(σ, h), (τ, h)

)
where (σ, τ) ← G ′

λc (1
λ, T) and

h ← Hλ;
• P ′′(σ̃ , y, w) := P ′

λc (σ, yh, (y, w));
• V ′′(τ̃ , y, π) := V ′

λc (τ, yh, π).

Claim 4.10. (G ′′, P ′′, V ′′) is a preprocessing SNARK for the universal relation.

Proof. The required efficiency follows readily by construction. The proof of knowledge
also follow directly: applying the extractor of the underlying system, we either obtain
a valid witness for the statement y, or a collision. The latter is ruled out by collision
resistance. �

In sum, asymptotically,we incur in essentially no overhead if we focus on constructing
preprocessing SNARKs for uniform families of boolean circuits.

5. Linear-Only Encryption and Encodings

We introduce and discuss the two cryptographic tools used in this paper. First, in Sect. 5.1,
we present linear-only encryption and then, in Sect. 5.2, linear-only one-way encodings.
In Sect. 5.3, we discuss candidate instantiations for both. Later, in Sect. 6, we describe
how to use these tools in our transformations from LIPs to SNARKs (or SNARGs).

5.1. Linear-Only Encryption

At high-level, a linear-only encryption scheme is a semantically-secure encryption
scheme that supports linear homomorphic operations, but does not allow any other
form of homomorphism.

We first introduce the syntax and correctness properties of linear-only encryption;
then its (standard) semantic-security property; and finally its linear-only property. In
fact, we consider two formalizations of the linear-only property (a stronger one and a
weaker one).

Syntax and correctness.A linear-only encryption scheme is a tuple of algorithms (Gen,

Enc,Dec,Add, ImVer) with the following syntax and correctness properties:

15 Page 32 of 72 N. Bitansky et al.

• Given a security parameter λ (presented in unary), Gen generates a secret key sk
and a public key pk. The public key pk also includes a description of a field F

representing the plaintext space.
• Enc and Dec are (randomized) encryption and (deterministic) decryption algo-

rithms working in the usual way.
• Add(pk, c1, . . . , cm, α1, . . . , αm) is a homomorphic evaluation algorithm for linear

combinations. Namely, given a public key pk, ciphertexts
{
ci ∈ Encpk(ai)

}
i∈[m],

and field elements {αi }i∈[m], Add computes an evaluated ciphertext ĉ ∈
Encpk(

∑
i∈[m] αi ai).

• ImVersk(c′) tests, using the secret key sk, whether a given candidate ciphertext c′
is in the image of Encpk.

Remark 5.1. Because in most of this paper we restrict attention to LPCPs and LIPs over
fields, we present linear-only encryption schemes for the case where plaintexts belong
to a field. The definition naturally extends to the case where plaintexts belong to a ring.
Typically, we are interested in the ring ZN for either the case where N is a prime p (in
which case the ring Zp is isomorphic to the field Fp) or where N is the product of two
primes. (See corresponding Remark (2.6) in the LIP definition.)

Remark 5.2. A symmetric-key variant of linear-only encryption can be easily defined.
While ultimately a private-key linear homomorphic encryption implies a public-key one
[92], using a private-key encryption could, in principle, have efficiency benefits.

Remark 5.3. The linear homomorphism property can be relaxed to allow for cases
where the evaluated ciphertext ĉ is not necessarily in the image of Encpk, but only
decrypts to the correct plaintext; in particular, it may not be possible to perform further
homomorphic operations on such a cipher.

Semantic security. Semantic security of linear-only encryption is defined as usual.
Namely, for any polynomial-size adversary A and large enough security parameter λ ∈
N:

Pr

⎡

⎢⎢
⎣b

′ = b

∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(a0, a1) ← A(pk)
b ← {0, 1}

b′ ← A
(
pk,Encpk(ab)

)

⎤

⎥⎥
⎦ ≤ 1

2
+ negl(λ) .

Linear-only homomorphism. The linear-only (homomorphism) property essentially
says that, given a public key pk and ciphertexts (c1, . . . , cm), it is infeasible to compute a
new ciphertext c′ in the image ofEncpk, except by evaluating an affine combination of the
ciphertexts (c1, . . . , cm). (Affinity accounts for adversaries encrypting plaintexts from
scratch and then adding them to linear combinations of the ci .) Formally, the property is
captured by guaranteeing that, whenever the adversary produces a valid ciphertext, it is
possible to efficiently extract a corresponding affine function “explaining” the ciphertext.

Definition 5.4. An encryption scheme has the linear-only (homomorphism) property
if for any polynomial-size adversary A there is a polynomial-size extractor E such that,

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 33 of 72 15

for any sufficiently large λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and any plaintext
generator M,

Pr

⎡

⎢⎢⎢⎢
⎣

∃ i ∈ [k] s.t.
ImVersk(c

′
i) = 1

and
Decsk(c

′
i) 	= a′

i

∣∣∣∣∣∣∣∣∣∣

(sk, pk) ← Gen(1λ)

(a1, . . . , am) ← M(pk)
(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))

(c′1, . . . , c′k) ← A(pk, c1, . . . , cm ; z)
(�, b) ← E(pk, c1, . . . , cm ; z)

(a′
1, . . . , a′

k)

 ← � · (a1, . . . , am)
 + b

⎤

⎥⎥⎥⎥
⎦

≤ negl(λ) ,

where � ∈ F
k×m and b ∈ F

k .

Remark 5.5. (On the auxiliary input z) In Definition 5.4, the polynomial-size extractor
is required to succeed for any (adversarial) auxiliary input z ∈ {0, 1}poly(λ). This require-
ment seems rather strong considering the fact that z could potentially encode arbitrary
circuits. For example, z could encode a circuit that, given as input public key pk, out-
puts Encpk(x) where x = fs(pk) and fs is some hardwired pseudorandom function.
In this case, the extractor would be required to (efficiently) reverse engineer the circuit,
which seems to be a rather strong requirement (or even an impossible one, under certain
obfuscation assumptions).

While for presentational purposes Definition 5.4 is simple and convenient, it can
be relaxed to only consider specific “benign” auxiliary-input distributions. Indeed, in
our application, it will be sufficient to only consider a truly-random auxiliary input z.
(Requiring less than that seems to be not expressive enough, because we would at least
like to allow the adversary to toss random coins.)

An analogous remark holds for both Definitions 5.8 and 5.17.

Remark 5.6. (Oblivious ciphertext sampling) Definition 5.4 has a similar flavor to plain-
text awareness. In fact, an encryption scheme cannot satisfy the definition if it allows for
“oblivious sampling” of ciphertexts. (For instance, both standard Elgamal and Paillier
encryption do.) Thus, the set of strings c that are valid (i.e., for which ImVersk(c) = 1)
must be “sparse.” Later on, we define a weaker notion of linear-only encryption that
does not have this restriction.

Remark 5.7. In order for Definition 5.4 to be non-trivial, the extractor E has to be
efficient (for otherwise it could run the adversary A, obtain A’s outputs, decrypt them, and
then output a zero linear function and hard-code the correct values in the constant term).
As for the equivalent formulation in Remark (5.11), for similar reasons the simulator
S has to be efficient; additionally, requiring statistical indistinguishability instead of
computational indistinguishability does not strengthen the assumption.

Linear targeted malleability. We also consider a weaker variant of the linear-only
property, which we call linear targeted malleability. (Indeed, the definition follows the
lines of the notion of targeted malleability proposed by Boneh et al. [34], when restricted
to the class of linear, or affine, functions.)

15 Page 34 of 72 N. Bitansky et al.

Definition 5.8. An encryption scheme has the linear targeted malleability property
if for any polynomial-size adversary A and plaintext generator M there is a polynomial-
size simulator S such that, for any sufficiently large λ ∈ N, and any auxiliary input
z ∈ {0, 1}poly(λ), the following two distributions are computationally indistinguishable:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pk,
a1, . . . , am,

s,
Decsk(c′

1), . . . ,Decsk(c
′
k)

∣∣∣∣∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(s, a1, . . . , am) ← M(pk)
(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))

(c′
1, . . . , c

′
k) ← A(pk, c1, . . . , cm; z)

where
ImVersk(c′

1) = 1, . . . , ImVersk(c′
k) = 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

and ⎧
⎪⎪⎨

⎪⎪⎩

pk,
a1, . . . , am,

s,
a′

1, . . . , a
′
k

∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(s, a1, . . . , am) ← M(pk)
(�, b) ← S(pk; z)

(a′
1, . . . , a

′
k)

 ← � · (a1, . . . , am)
 + b

⎫
⎪⎪⎬

⎪⎪⎭

where � ∈ F
k×m , b ∈ F

k , and s is some arbitrary string (possibly correlated with the
plaintexts).

Remark 5.9. Definition 5.8 can be further relaxed to allow the simulator to be inefficient.
Doing so does not let us prove knowledge but still enables us to prove soundness (i.e.,
obtain a SNARG instead of a SNARK). See Remark (6.4) in Sect. 6.1.

As mentioned above, Definition 5.8 is weaker than Definition 5.4, as shown by the
following lemma.

Lemma 5.10. If a semantically-secure encryption scheme has the linear-only property
(Definition 5.4), then it has the linear targeted malleability property (Definition 5.8).

Proof sketch. Let E be the (polynomial-size) extractor of a given polynomial-size
adversary A. We use E to construct a (polynomial-size) simulator S for A. The simulator
S simply runs E on fake ciphertexts:

• S(pk; z) ≡
1. (c1, . . . , cm) ← (Encpk(0), . . . ,Encpk(0));
2. (y, c′

1, . . . , c
′
k) ← A(pk, c1, . . . , cm; z);

3. (�, b) ← E(pk, c1, . . . , cm; z);
4. output (y,�, b).

By invoking semantic security and the extraction guarantee of E , we can show that S
works. The proof follows by a standard hybrid argument. First we consider an experiment
where S gives A and E an encryption of a ← M(pk), rather than an encryption of zeros,
and argue computational indistinguishability by semantic security. Then we can show
that the output in this hybrid experiment is statistically close to that in the real experiment
by invoking the extraction guarantee. �

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 35 of 72 15

A converse to Lemma 5.10 appears unlikely, because Definition 5.8 seems to allow for
encryption schemes where ciphertexts can be obliviously sampled while Definition 5.4
does not.

Remark 5.11. (Alternative formulation) To better compare Definition 5.8 with Defini-
tion 5.4, we now give an equivalent formulation of Definition 5.4. For any polynomial-
size adversary A there is a polynomial-size simulator S such that, for any sufficiently
large λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and any plaintext generator M, the
following two distributions are computationally indistinguishable:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pk,
a1, . . . , am,

c1, . . . , cm,

outsk(c′
1), . . . ,outsk(c

′
k),

z

∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(a1, . . . , am) ← M(pk)
(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))

(c′
1, . . . , c

′
k) ← A(pk, c1, . . . , cm; z)

⎫
⎪⎪⎬

⎪⎪⎭

where outsk(c′) :=
{
Decsk(c′) if ImVersk(c′) = 1

⊥ if ImVersk(c′) = 0
, and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pk,
a1, . . . , am,

c1, . . . , cm,

a′
1, . . . , a

′
k,

z

∣∣∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(a1, . . . , am) ← M(pk)
(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))

(�, b) ← S(pk, c1, . . . , cm; z)
(a′

1, . . . , a
′
k)

 = � · (a1, . . . , am)
 + b

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where � ∈ F
k×m and b ∈ F

k , with the convention that if the i-th row of � is left empty
then a′

i := ⊥.

5.2. Linear-Only One-Way Encoding

Unlike linear-only encryption schemes, linear-only encoding schemes allow to publicly
test for certain properties of the underlying plaintexts without decryption (which is now
allowed to be inefficient). In particular, linear-only encoding schemes cannot satisfy
semantic security. Instead, we require that they only satisfy a certain one-wayness prop-
erty.

We now define the syntax and correctness properties of linear-only encoding schemes,
their one-wayness property, and their linear-only property.

Syntax and correctness. A linear-only encoding scheme is a tuple of algorithms (Gen,

Enc,SEnc,Test,Add, ImVer) with the following syntax and correctness properties:

• Given a security parameter λ (presented in unary), Gen generates a public key pk.
The public key pk also includes a description of a field F representing the plaintext
space.

• Encoding can be performed in two modes: Encpk is an encoding algorithm that
works in linear-only mode, and SEncpk is a deterministic encoding algorithm that
works in standard mode.

15 Page 36 of 72 N. Bitansky et al.

• As in linear-only encryption, Add(pk, c1, . . . , cm, α1, . . . , αm) is a homomorphic
evaluation algorithm for linear combinations. Namely, given a public keypk, encod-
ings

{
ci ∈ Encpk(ai)

}
i∈[m], and field elements {αi }i∈[m], Add computes an evalu-

ated encoding ĉ ∈ Encpk(
∑

i∈[m] αi ai). Also, Add works in the same way for any
vector of standard-mode encodings

{
ci ∈ SEncpk(ai)

}
i∈[m].

• ImVerpk(c′) tests whether a given candidate encoding c′ is in the image of Encpk
(i.e., in the image of the encoding in linear-only mode).

• Test
(
pk, t,Encpk(a1), . . . ,Encpk(am),SEncpk(ã1), . . . ,SEncpk(ãm̃)

)
is a pub-

lic test for zeros of t . Namely, given a public key pk, a test polynomial t : F
m+m̃ →

F
η, encodings Encpk(ai), and standard-mode encodings SEncpk(ãi), Test tests

whether t(a1, . . . , am, ã1, . . . , ãm̃) = 0η.

Remark 5.12. (Degrees supported by Test) In this work, we restrict our attention to
the case in which Test only takes as input test polynomials t of at most quadratic degree.
This restriction comes from the fact that, at present, the only candidates for linear-only
one-way encoding schemes that we know of are based on bilinear maps, which only let
us support testing of quadratic degrees. (See Sect. 5.3.) This restriction propagates to the
transformation from algebraic LIPs discussed in Sect. 6.2, where we must require that the
degree of the LIP query algorithm is at most quadratic. Nonetheless our transformation
holds more generally (for query algorithms of poly(λ) degree), when given linear-only
one-way encoding schemes that support tests of the appropriate degree.

�-power one-wayness. In our main application of transforming algebraic LIPs into
public-verifiable preprocessing SNARKs (see Sect. 6.2), linear-only encoding schemes
are used to (linearly) manipulate polynomial evaluations over F. The notion of one-
wayness that we require is that, given polynomially-many encodings of low-degree
polynomials evaluated at a random point s, it is hard to find s.

Definition 5.13. A linear-only encoding scheme satisfies �-power one-wayness if for
every polynomial-size A and all large enough security parameter λ ∈ N,

Pr

⎡

⎢⎢⎢⎢
⎣
s∗ = s

∣∣∣∣∣∣∣∣∣∣

pk ← Gen(1λ)

s ← F

(c1, . . . , c�) ← (
Encpk(s), . . . ,Encpk(s�)

)

(c̃1, . . . , c̃�) ← (
SEncpk(s), . . . ,SEncpk(s�)

)

s∗ ← A
(
pk, c1, . . . , c�, c̃1, . . . , c̃�

)

⎤

⎥⎥⎥⎥
⎦

≤ negl(λ).

Our constructions of preprocessing SNARKs from LIPs also involve manipulations
of multivariate polynomials. Thus, we are in fact interested in requiring a more general
property of multivariate �-power one-wayness.

Definition 5.14. A linear-only encoding scheme satisfies multivariate �-power one-
wayness if, for every polynomial-size A, large enough security parameter λ ∈ N, and

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 37 of 72 15

μ-variate polynomials (p1, . . . , p�) of total degree at most �:

Pr

⎡

⎢⎢⎢⎢
⎣

p∗ 	≡ 0
and

p∗(s) = 0

∣∣∣∣∣∣∣∣∣∣

pk ← Gen(1λ)

s ← F
μ

(c1, . . . , c�) ← (
Encpk(p1(s)), . . . ,Encpk(p�(s))

)

(c̃1, . . . , c̃�) ← (
SEncpk(p1(s)), . . . ,SEncpk(p�(s))

)

p∗ ← A
(
pk, c1, . . . , c�, c̃1, . . . , c̃�

)

⎤

⎥⎥⎥⎥
⎦

≤ negl(λ) ,

where �, �,μ are all poly(λ), and p∗ is a μ-variate polynomial.

For the case of univariate polynomials (i.e., μ = 1), it is immediate to see that Defini-
tion 5.14 is equivalent to Definition 5.13; this follows directly from the fact that univariate
polynomials over finite fields can be efficiently factored into their roots [15,24,42,101].
We show that the two definitions are equivalent also for any μ = poly(λ), provided that
the encoding scheme is rerandomizable; indeed, in the instantiation discussed in this
paper the encoding is deterministic and, in particular rerandomizable.

Proposition 5.15. If Enc,SEnc are rerandomizable (in particular, if deterministic),
then (univariate) �-power one-wayness implies (multivariate) �-power one-wayness
for any μ = poly(λ).

Proof. Assume that A violates the μ-variate �-power one-wayness with probability ε

for a vector of polynomials (p1, . . . , p�). We use A to construct a new adversary A′ that
breaks (univariate) �-power one-wayness with probability at least ε/μ�.

Given input
(
pk,Encpk(s), . . . ,Encpk(s�),SEncpk(s), . . . ,SEncpk(s�)

)
, A′ first

samples i ∈ [μ] and s1, . . . , si−1, si+1, . . . , sμ ∈ F at random. Then, thinking of s as
si and s as (s1, . . . , sμ), A′ uses the linear homomorphism and rerandomization to
sample (Encpk(p1(s)), . . . ,Encpk(p�(s)),SEncpk(p1(s)), . . . ,SEncpk(p�(s))

)
and

feeds these to A, who in turn outputs a polynomial p∗. Next, A′ does the following:

1. Let p∗
1 = p∗, and set j := 1.

2. While j < i and p∗
j (x j , x j+1, . . . , xμ) 	≡ 0:

(a) Decompose p∗
j according to the x j -monomials: p∗

j (x j , . . . , xμ) =
∑�

k=0 x
k
j p

∗
j+1,k(x j+1, . . . , xμ).

(b) Set p∗
j+1 to be the non-zero polynomial p∗

j+1,k with minimal k.
(c) Set j := j + 1.

3. After computing p∗
i , restrict the μ − i last variables to s, i.e., compute the xi -

univariate polynomial p∗
i (xi , si+1, . . . , sμ), and factor it to find at most � roots;

finally, output one of the roots at random as a guess for s = si .

To analyze the success probability of A′, we rely on the following claim:

15 Page 38 of 72 N. Bitansky et al.

Claim 5.16. If p∗ 	≡ 0 and p∗(s1, . . . , sμ) = 0, then there exists i ∈ [μ] such that:

p∗
i (x, si+1, . . . , sμ) 	≡ 0

p∗
i (si , si+1, . . . , sμ) = 0.

Proof of Claim 5.16. The proof is by induction on i . The base case is when i = 1, for
which it holds that:

p∗
1(s1, . . . , sμ) = 0

p∗
1(x1, . . . , xμ) 	≡ 0.

For any i with 2 < i < μ, suppose that:

p∗
i (si , . . . , sμ) = 0

p∗
i (xi , . . . , xμ) 	≡ 0

p∗
i (xi , si+1, . . . , sμ) ≡ 0;

then, by the construction of p∗
i+1 from p∗

i ,

p∗
i+1(si+1, . . . , sμ) = 0

p∗
i+1(xi+1, . . . , xμ) 	≡ 0.

If this inductive process reaches p∗
μ, then it holds that:

p∗
μ(sμ) = 0

p∗
μ(xμ) 	≡ 0,

which already satisfies the claim. �

Note that A′ guesses the i guaranteed by Claim 5.16 with probability 1/μ, and hence,
with the same probability, finds a non-trivial polynomial that vanishes at the challenge
point s = si ; in such a case, A′ thus guesses s correctly, from among at most � roots,
with probability at least 1/�. The overall probability of success of A′ is at lest ε/μ�,
and this concludes the proof of Proposition 5.15.

Linear-only homomorphism. The linear-only property of linear-only one-way encod-
ing schemes is defined analogously to the case of linear-only encryption. Essentially,
it says that, given the public key pk, encodings in linear-only mode (Encpk(a1), . . . ,

Encpk(am)), and possibly additional encodings in standard mode (SEncpk(ã1), . . . ,

SEncpk(ãm̃)), it is infeasible to compute a new encoding c′ in the image ofEncpk, except
by evaluating an affine combination of the encodings (Encpk(a1), . . . ,Encpk(am)); in
particular, “standard mode” encodings in the image of SEncpk cannot be “moved into”
the image of Encpk. Formally, the property is captured by guaranteeing that, when-
ever the prover produces a valid new encoding, it is possible to efficiently extract the
corresponding affine combination.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 39 of 72 15

Definition 5.17. A linear encoding scheme has the linear-only (homomorphism)
property if for any polynomial-size adversary A there is a polynomial-size extractor
E such that for any sufficiently large λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ), and
any plaintext generator M:

Pr

⎡

⎢⎢⎢⎢⎢⎢
⎣

(a′
1, . . . , a

′
k)

 = � · (a1, . . . , am)
 + b
and

∃ i ∈ [k] : ImVersk(c′
i) = 1 but c′

i 	∈ Encpk(a′
i)

∣∣∣∣∣∣∣∣∣∣∣∣

pk ← Gen(1λ)

(a1, . . . , am , ã1, . . . , ãm̃) ← M(pk)
(c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am))

(c̃1, . . . , c̃m̃) ← (SEncpk(ã1), . . . ,SEncpk(ãm̃))

(c′
1, . . . , c

′
k) ← A(pk, c1, . . . , cm , c̃1, . . . , c̃m̃ ; z)

(�, b) ← E(pk, c1, . . . , cm , c̃1, . . . , c̃m̃ ; z)

⎤

⎥⎥⎥⎥⎥⎥
⎦

≤ negl(λ),

where � ∈ F
k×m and b ∈ F

k .

5.3. Instantiations

We discuss candidates for our notions of linear-only encryption and one-way encoding
schemes.

Linear-only property (and linear targeted malleability) from Paillier encryption.
Paillier encryption [88] has plaintext group (ZN ,+), where N is a product of two λ-bit
primes p and q. (See Remarks (2.6) and (5.1).) We consider two variants of Paillier
encryption:

• A “single-ciphertext” variant with linear targeted malleability. We assume that
standard Paillier encryption satisfies Definition 5.8. Note that this variant cannot
satisfy Definition 5.4 (which is stronger, as shown in Lemma 5.10), because it
is easy to “obliviously sample” valid Paillier ciphertexts without “knowing” the
corresponding plaintext. (See Remark (5.6).)

• A “two-ciphertext” variant with linear-only property. In order to (heuristi-
cally) prevent oblivious sampling, we can “sparsify” the ciphertext space of Paillier
encryption by following the template of knowledge-of-exponent assumptions. Con-
cretely, an encryption of a plaintext a consists of Encpk(a) and Encpk(α · a) for
a secret random α ∈ ZN ; additionally, an image verification algorithm ImVersk
checks this linear relation. (This candidate is also considered in [56].) We then
assume that this variant of Paillier encryption satisfies Definition 5.4.

Because Paillier encryption is based on the decisional composite residuosity assumption,
it suffers from factoring attacks, and thus security for succinct arguments based on the
above instantiations can only be assumed to hold against subexponential-time provers
(specifically, running in time 2o(λ

1/3)).

Linear-only property (and linear targeted malleability) from Elgamal encryption.
Elgamal encryption [51] has plaintext group (Zp,×) for a large prime p, and is con-
jectured to resist subexponential-time attacks when implemented over elliptic curves
[89].

We are interested in additive, rather than multiplicative, homomorphism for plaintexts
that belong to the field Fp (whose elements coincide with those of Zp). Thus, we would
like the plaintext group to be (Zp,+) instead. The two groups (Zp,×) and (Zp,+) are

15 Page 40 of 72 N. Bitansky et al.

in fact isomorphic via the function that maps a plaintext a to a new plaintext ga(mod p),
where g is a primitive element of Fp. Unfortunately, inverting this mapping is computa-
tionally inefficient: in order to recover the plaintext a from ga(mod p), the decryption
algorithm has to compute a discrete logarithm base g; doing so is inefficient when a can
be any value. Thus, a naive use Elgamal encryption in our context presents a problem.

Nonetheless, as explained in Sect. 1.3.3, we can still use Elgamal encryption in our
context by ensuring that the distribution of the honest LIP prover’s answers, condi-
tioned on any choice of verifier randomness, has a polynomial-size support. Doing so
comes with two caveats: it results in succinct arguments with only 1/poly(λ) security
and (possibly) a slow online verification time (but, of course, with proofs that are still
succinct).

Here too, to prove security, we can consider single-ciphertext and two-ciphertext vari-
ants of Elgamal encryption that we assume satisfy Definitions 5.8 and 5.4, respectively.

Linear-only property (and linear targeted malleability) from Benaloh encryption.
Benaloh encryption [14] generalizes the quadratic-residuosity-based encryption scheme
of Goldwasser and Micali [61] to higher residue classes; it can support any plaintext
group (Zp,+) where p is polynomial in the security parameter. Unlike Elgamal encryp-
tion (implemented over elliptic curves) and similarly to Paillier encryption, Benaloh
encryption is susceptible to subexponential-time attacks.

As before, we can consider single-ciphertext and two-ciphertext variants of Benaloh
encryption that we assume satisfy Definitions 5.8 and 5.4, respectively. Because we are
restricted to p = poly(λ), succinct arguments based on Benaloh encryption can only
yield 1/poly(λ) security.

Linear-only one-way encodings from KEA in bilinear groups. In order to obtain
publicly-verifiable preprocessing SNARKs (see Sect. 6.2), we seek linear-only encod-
ings that have poly(λ)-power one-wayness and allow to publicly test for zeroes of
poly(λ)-degree polynomials. For this, we use the same candidate encoding over bilinear
groups, and essentially the same assumptions, as in [56,64,78]; because of the use of
bilinear maps, we will in fact only be able to publicly test for zeros of quadratic polyno-
mials. The corresponding construction can be instantiated with conjectured exponential
security. Indeed, subexponential-time attacks against the base groups (relevant to the
security in pairing-based SNARK constructions) are not known to be inherent. (In terms
of concrete instantiations, however, existing symmetric-pairing groups are subject to
subexponential attacks, whereas there do exist asymmetric-pairing groups conjectured
to be resilient to subexponential attacks, for instance [23].)

For the sake of completeness, and since the construction does not correspond directly
to a known encryption scheme as in the examples above, we give the basic construction
and relevant assumptions. For the sake of simplicity, we describe the construction and
relevant assumption in the setting of symmetric pairings, but the construction could
naturally be adapted to the setting of asymmetric pairings.

The encoding is defined over a bilinear group ensemble {Gλ}λ∈N where each (G, GT) ∈
Gλ is a pair of groups of prime order p ∈ (2λ−1, 2λ) with an efficiently-computable
pairing e : G × G → GT. A public key pk includes the description of the groups
and g, gα ∈ G, where g ∈ G

∗ is a generator and α ← Fp is random. The encoding
is deterministic: the linear-only mode encoding is Encpk(a) := (ga, gαa), and the

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 41 of 72 15

standard-mode encoding is SEncpk(a) := ga . Public image verification is as follows:
ImVerpk(f, f ′) outputs 1 if and only if e(f, gα) = e(g, f ′). Public testing of quadratic
polynomials can also be done using the pairing: for {(gi , gα

i)}i∈[m] = {Encpk(ai)}i∈[m]
and {g̃i }i∈[m̃] = {SEncpk(ãi)}i∈[m̃],Test uses g1, . . . , gm and g̃1, . . . , g̃m̃ and the pairing
to test zeros for a quadratic polynomial t . The required cryptographic assumptions are:

Assumption 5.18. (KEA and poly-power DL in bilinear groups) There exists an
efficiently-samplable group ensemble {Gλ}λ∈N, where each (G, GT) ∈ Gλ are groups
of prime order p ∈ (2λ−1, 2λ) having a corresponding efficiently-computable pairing
e : G × G → GT, such that the following properties hold.

1. Knowledge of exponent For any polynomial-size adversary A there exists a
polynomial-size extractor E such that for all large enough λ ∈ N, any auxiliary
input z ∈ {0, 1}poly(λ),10 and any group element sampler S,

Pr

⎡

⎢⎢⎢⎢
⎣

f ′ = f α
∏

i∈[t] g
πi
i 	= f

∣∣∣∣∣∣∣∣∣∣

(G, GT) ← Gλ

(g1, . . . , gt) ← S(G, GT)

α ← Fp

(f, f ′) ← A(G, GT, g1, gα
1 , . . . , gt , gα

t ; z)
(π1, . . . , πt) ← E(G, GT, g1, gα

1 , . . . , gt , gα
t ; z)

⎤

⎥⎥⎥⎥
⎦

≤ negl(λ).

2. Hardness of poly-power discrete logarithms For any polynomial-size adversary
A, polynomial t = poly(λ), all large enough λ ∈ N, and generator sampler S:

Pr

⎡

⎢⎢
⎣s

′ = s

∣∣∣∣∣∣∣∣

(G, GT) ← Gλ

s ← Fp

g ← S(G) where 〈g〉 = G

s′ ← A(G, GT, g, gs, gs
2
. . . , gs

t
)

⎤

⎥⎥
⎦ ≤ negl(λ) .

Remark 5.19. (Lattice-based candidates) In principle, we may also consider as candi-
dates lattice-based encryption schemes (e.g., [91]). However, our confidence that these
schemes satisfy linear-only properties may be more limited, as they can be tweaked to
yield fully-homomorphic encryption schemes [36].

6. Preprocessing SNARKs from LIPs

We describe how to combine LIPs and linear-only encryption and encodings in order to
construct preprocessing SNARKs. Before describing our transformations, we make two
technical remarks.

SNARKs and LIPs for boolean circuit families. Since the LIPs that we have presented
so far are for boolean circuit satisfaction problems, it will be convenient to construct
here preprocessing SNARKs for boolean circuit satisfaction problems. As explained in

10It is possible to restrict the definition to specific auxiliary input distributions. See Remark (5.5).

15 Page 42 of 72 N. Bitansky et al.

Sect. 4.1, such preprocessing SNARKs imply preprocessing SNARKs for the universal
relation RU with similar efficiency.

Also, for the sake of simplicity, the LIP constructions that we have presented so far are
for satisfiability of specific boolean circuits. However, all of these constructions directly
extend to work for any family of boolean circuits C = {C�}�∈N, in which case all the LIP
algorithms (e.g., VLIP = (QLIP, DLIP) and PLIP) will also get as input 1� (as foreshadowed
in Remark (2.3)). If the circuit family C is uniform, all the LIP algorithms are uniform
as well. If the circuit family C is non-uniform, then QLIP and PLIP will also get a circuit
C� as auxiliary input (in addition to 1�).

Field size depending on λ. Definition 2.5 (and Definition 2.2) are with respect to a fixed
field F. However, since the knowledge error of a LIP (or LPCP) typically decreases with
the field size, it is often convenient to let the size of F scale with a security parameter
λ. In fact, when combining a LIP with some of our linear-only encryption and encoding
candidates, letting F scale with λ is essential, because security will only hold for a large
enough plaintext space. (For example, this is the case for the Elgamal-like linear-only
encoding described in Sect. 5.3). All of the LIP constructions described in Sects. 3.1
and 3.2 do work for arbitrarily large fields, and we can assume that (PLIP, VLIP) simply
get as additional input the description of the field; abusing notation, we will just denote
this description by Fλ.

6.1. Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs

We describe how to combine a LIP and linear-only encryption to obtain a designated-
verifier preprocessing SNARK.

Construction 6.1. Let {Fλ}λ∈N be a field ensemble (with efficient description and
operations). Let C = {C�}�∈N be a family of circuits. Let (PLIP, VLIP) be an input-
oblivious two-message LIP for the relation RC , where for the field Fλ, the verifier
message is in F

m
λ , the prover message is in F

k
λ, and the knowledge error is ε(λ). Let

E = (Gen,Enc,Dec,Add, ImVer) be a linear-only encryption scheme whose plain-
text field, for security parameter λ, is Fλ. We define a preprocessing SNARK (G, P, V)

for RC as follows.

• G(1λ, 1�) invokes the LIP query algorithm QLIP(Fλ, 1�) to generate an LIPmessage
q ∈ F

m
λ along with a secret state u ∈ F

m′
, generates (sk,pk) ← Gen(1λ),

computes ci ← Encpk(qi) for i ∈ [m], defines σ := (pk, c1, . . . , cm) and τ :=
(sk,u), and outputs (σ, τ). (Assume that both (σ, τ) contain � and the description
of the field Fλ).

• P(σ, x, w) invokes the LIP prover algorithm PLIP(Fλ, 1�, x, w) to get a matrix
� ∈ F

k×m
λ representing its message function, invokes the homomorphic Add to

generate k ciphertexts c′
1, . . . , c

′
k encrypting � · q, defines π := (c′

1, . . . , c
′
k), and

outputs π .
• V (τ, x, π), verifies, for i ∈ [k], that ImVersk(c′

i) = 1, lets ai := Decsk(c′
i) and

outputs the decision of DLIP(Fλ, 1�, x,u, (a1, . . . , ak)).

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 43 of 72 15

Lemma 6.2. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is a
linear-only encryption scheme. Then, (G, P, V) from Construction 6.1 is a designated-
verifier preprocessing SNARK with knowledge error O(ε(λ)) + negl(λ). Furthermore:

• time(G) = time(QLIP) + poly(λ) · m,
• time(P) = time(PLIP) + poly(λ) · k2 · m,
• time(V) = time(DLIP) + poly(λ) · k,
• |σ | = poly(λ) · m, |τ | = poly(λ) + m′, and |π | = poly(λ) · k.

Proof. Completeness follows readily from the completeness of (PLIP, VLIP) and the
correctness of E . Efficiency follows readily from that of (PLIP, VLIP). We thus focus on
establishing the knowledge property.

Let P∗ be a malicious polynomial-size prover. We construct a knowledge extractor
E for P∗ in two steps: E(σ, z), given common reference string σ and auxiliary input z,
first invokes the linear-only extractor E ′(σ, z) for P∗ (on the same input (σ, z) as P∗) to
obtain an LIP affine transformation �∗ “explaining” the encryptions output by P∗; in
the second step, E invokes the LIP extractor ELIP with oracle access to �∗ and on input
the statement chosen by P∗ to obtain an assignment for the circuit.

We now argue that E works as required. First, we claim that, except with negligible
probability, whenever P∗(σ, z) produces a statement x and proof c′ = (c′

1, . . . , c
′
k)

accepted by the verifier, the extracted �∗ is such that DLIP(Fλ, 1�, x,u, a∗) = 1, where
u is the private state of the verifier and a∗ = �∗(q). Indeed, by the linear-only property
of E (see Definition 5.4), except with negligible probability, whenever the verifier is
convinced, a∗ = �∗(q) is equal to a = Decsk(c′), which is accepted by the LIP
decision algorithm.

Second, we claim that, due to semantic security of E , except with probability
4ε + negl(λ), whenever the verifier accepts, the extracted proof �∗ is not only “locally
satisfying” but “globally satisfying,” and thus the LIP extractor ELIP is guaranteed to
extract from �∗ a witness for x .

Assume toward contradiction that for some noticeable δ(λ), it holds with probability
4ε+δ that DLIP(Fλ, 1�, x,u,�∗(q)) = 1, and yet E�∗

LIP (x) fails to output a valid witness
for x . We describe a reduction that breaks the semantic security of E . The reduction
applies QLIP(Fλ, 1�) to sample two random queries q0,q1 along with corresponding
states u0,u1. It then submits q0,q1 to a challenger and gets back a public key pk and
encryption of Encpk(qb), it then runs the extractor with σ = (pk,Encpk(qb)) (and
auxiliary input z) and obtains �∗. We consider two events:

• Event F : E�∗
LIP (x) fails to output a valid witness for x

• Event D: DLIP(Fλ, 1�, x,u0,�
∗(q0)) 	= DLIP(Fλ, 1�, x,u1,�

∗(q1)).

If F and D both occur, the reduction outputs the unique bit β such that DLIP(Fλ, 1�,

x,uβ,�∗(qβ)) = 1; otherwise, the reduction outputs a random guess β. We next show
that the reduction guesses b with noticeable advantage over 1/2. For this, we shall prove:

1. Both F and D occur at least with noticeable probability δ.
2. If both F and D occur, the reduction guesses β = b with constant advantage;

specifically, with probability 2/3.

15 Page 44 of 72 N. Bitansky et al.

First, by our assumption toward contradiction

Pr[DLIP(Fλ, 1�, x,ub,�∗(qb)) = 1 ∧ F] ≥ 4ε + δ.

Second, since ELIP fails to extract from �∗, and q1−b,u1−b are sampled independently
of �∗,

Pr
[
DLIP(Fλ, 1�, x,u1−b,�

∗(q1−b)) = 1|F
]

≤ ε.

We now have

Pr [D|F] ≥ Pr
[
DLIP(Fλ, 1�, x,ub,�∗(qb)) = 1|F

]

− Pr
[
DLIP(Fλ, 1�, x,u1−b,�

∗(q1−b)) = 1|F
]

≥ 4ε + δ

Pr[F] − ε.

In particular,

Pr [D ∧ F] ≥ 3ε + δ ≥ δ.

Furthermore,

Pr [β = b|F ∧ D] ≥ 1 − Pr
[
DLIP(Fλ, 1�, x,u1−b,�

∗(q1−b)) = 1|F ∧ D
]

= 1 − Pr
[
DLIP(Fλ, 1�, x,u1−b,�

∗(q1−b)) = 1 ∧ D|F]
Pr [D|F]

≥ 1 − ε

3ε + δ
≥ 2/3.

This concludes the proof. �

Designated-verifier non-adaptive preprocessing SNARKs from linear targetedmal-
leability.We also consider a notion that is weaker than linear-only encryption: encryption
with linear targeted malleability (see Definition 5.8). For this notion, we are still able to
obtain, via the same Construction 6.1, designated-verifier preprocessing SNARKs, but
this time only against statements that are non-adaptively chosen.

Lemma 6.3. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is an
encryption scheme with linear targeted malleability. Then, (G, P, V) from Construc-
tion 6.1 is a designated-verifier non-adaptive preprocessing SNARK with knowledge
error ε(λ) + negl(λ).

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 45 of 72 15

Proof. Let P∗ be a malicious polynomial-size prover, which convinces the verifier for
infinitely many false statements x . By the targeted malleability property (see Defini-
tion 5.8), there exists a polynomial-size simulator S (depending on P∗) such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk,
q,

u,

a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(q,u) ← QLIP

c ← Encpk(q)

c′ ← P∗(pk, c; x)
where

ImVersk(c′) = 1
a ← Decsk(c′)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈c

⎧
⎪⎪⎨

⎪⎪⎩

pk,
q,

u,

a

∣∣∣∣∣∣∣∣

(sk,pk) ← Gen(1λ)

(q,u) ← QLIP

(�, b) ← S(pk; x)
a ← � · q + b

⎫
⎪⎪⎬

⎪⎪⎭
,

where q is the LIP query and u is the LIP verification state.
If P∗ convinces the verifier to accept with probability at least ε + δ for some notice-

able δ, then, with at least the same probability, the distribution on the left satisfies that
DLIP(x,u, a) = 1. Because this condition is efficiently testable, the simulated distribu-
tion on the right satisfies the same condition with probability at least ε + δ/2. However,
in this distribution the generation of q and u is independent of the generation of the
simulated affine function �′ = (�, b). Therefore, by averaging, there is a δ/2 frac-
tion of �′ such that, with probability at least ε over the choice of q and u, it holds
that DLIP(x,u,�q + b) = 1. This yields an extractor whose expected running time is
2/δ = λO(1). The extractor repeatedly samples (sk,pk) applies the simulator S(pk; x)
and then applies the LIP extractor attempting to extract from �′ = (�, b). �

Remark 6.4. (Inefficient simulator) As mentioned in Remark (5.9), Definition 5.8
can be weakened by allowing the simulator to be inefficient. In such a case, we are
able to obtain designated-verifier non-adaptive preprocessing SNARGs (note the lack
of the knowledge property), via essentially the same proof as the one we gave above for
Lemma 6.3.

Remark 6.5. (A word on adaptivity) One can strengthen Definition 5.8 by allowing
the adversary to output an additional (arbitrary) string y, which the simulator must be
able to simulate as well. Interpreting this additional output as the adversary’s choice
of statement, a natural question is whether the strengthened definition suffices to prove
security against adaptively-chosen statements as well.

Unfortunately, to answer this question in the positive, it seems that a polynomial-size
distinguisher should be able to test whether a statement y output by the adversary is a
true or false statement. This may not be possible if y encodes an arbitrary NP statement
(and for the restricted case of deterministic polynomial-time computations, the approach
we just described does in fact work.)

We stress that, while we do not know how to prove security against adaptively-chosen
statements, we also do not know of any attack on the construction in the adaptive case.

15 Page 46 of 72 N. Bitansky et al.

6.2. Publicly-Verifiable Preprocessing SNARKs from Algebraic LIPs

We show how to transform any LIP with degree (dQ, dD) = (poly(λ), 2) to a publicly-
verifiable preprocessing SNARK using linear-only one-way encodings with quadratic
tests. The restriction to quadratic tests (i.e., dD ≤ 2) is made for simplicity, because
we only have one-way encoding candidates based on bilinear maps. As noted in
Remark (5.12), the transformation can in fact support any dD = poly(λ), given one-way
encodings with corresponding dD-degree tests.

Construction 6.6. Let {Fλ}λ∈N be a field ensemble (with efficient description and oper-
ations). Let C = {C�}�∈N be a family of circuits. Let (PLIP, VLIP) be an input-oblivious
two-message LIP for the relation RC , where for field Fλ, the verifier message is in F

m
λ ,

the prover message is in F
k
λ, and the knowledge error is ε(λ); assume that the verifier

degree is (dQ, dD) = (poly(λ), 2). Let E = (Gen,Enc,SEnc,Test,Add, ImVer) be
a linear-only one-way encoding scheme whose plaintext field, for security parameter λ,
is Fλ. We define a preprocessing SNARK (G, P, V) forRC as follows.

• G(1λ, 1�) invokes the LIP query algorithm QLIP(Fλ, 1�) to generate an LIP mes-
sage q ∈ F

m
λ along with a secret state u ∈ F

m′
, generates pk ← Gen(1λ),

lets ci ← Encpk(qi) for i ∈ [m], c̃i ← SEncpk(ui) for i ∈ [m′], defines
σ := (pk, c1, . . . , cm) and τ := (pk, c̃1, . . . , c̃m′), and outputs (σ, τ). (Assume
that both (σ, τ) contain � and the description of the field Fλ).

• P(σ, x, w) invokes the LIP prover algorithm PLIP(Fλ, 1�, x, w) to get a matrix
� ∈ F

k×m
λ representing its message function, invokes the homomorphic Add to

generate k encodings c′
1, . . . , c

′
k for � · q, defines π := (c′

1, . . . , c
′
k), and outputs

π .
• V (τ, x, π) verifies that ImVerpk(c′

i) = 1 for i ∈ [k], lets tx : F
k+m′ → F

η be
the quadratic polynomial given by DLIP(Fλ, 1�, x, . . .), and accepts if and only if
Test

(
pk, tx , c′

1, . . . , c
′
k, c̃1, . . . , c̃m′

) = 1.

Lemma 6.7. Suppose that the LIP (PLIP, VLIP) has knowledge error ε(λ) and E is
a linear-only one-way encoding scheme. Then (G, P, V) from Construction 6.6 is a
publicly-verifiable preprocessing SNARK with knowledge error ε(λ) + negl(λ). Fur-
thermore:

• time(G) = time(QLIP) + poly(λ) · m,
• time(P) = time(PLIP) + poly(λ) · k2 · m,
• time(V) = poly(λ) · time(DLIP),
• |σ | = poly(λ) · m, |τ | = poly(λ) · m′, and |π | = poly(λ) · k.

Proof. Completeness follows readily from the completeness of (PLIP, VLIP) and the
correctness of E . Efficiency as claimed above follows readily from that of the underlying
LIP. We thus focus on establishing the knowledge property.

Let P∗ be a malicious polynomial-size prover. As in the designated-verifier case, we
construct its knowledge extractor E in two steps: first invoke the linear-only extractor
E ′ for P∗ (on the same input (σ, z) as P∗) to obtain an LIP affine transformation �∗
“explaining” the encryptions output by P∗, and then the LIP extractor ELIP (with oracle

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 47 of 72 15

access to �∗ and on input the statement chosen by P∗) to obtain an assignment for the
circuit.

We now argue that E works as required. (Differently from the designated verifier case
(see proof of Lemma 6.2), we now rely on poly(λ)-power one-wayness (Definition 5.13)
of the linear-only encoding scheme, instead of semantic security.)

First, we claim that, except with negligible probability, whenever P∗(σ, z) produces a
statement x and proof c′ = (c′

1, . . . , c
′
k) accepted by the verifier, the extracted �∗ is such

that tx (�∗(q),u) = 0. Indeed, by the linear-only property of E (see Definition 5.17),
except with negligible probability, whenever the verifier is convinced, it holds that c′ ∈
Encpk(�∗(q)) (i.e., c′ encodes the plaintext �∗(q)); moreover, since the verifier only
accepts if Test

(
pk, tx , c′, c̃

) = 1, where c̃ = (c̃1, . . . , c̃m′) is the (standard-mode)
encoding of u, it indeed holds that tx (�∗(q),u) = 0.

Second, recall that the query q(r) and state u(r) are polynomials in the randomness
r of QLIP of degrees dQ and dD , respectively. Accordingly, tx (�∗(q(r)),u(r)) is a
(dQdD)-degree polynomial in the randomness r of the query algorithm QLIP. We claim
that tx (�∗(q(r)),u(r)) ≡ 0, i.e., it is vanishes everywhere; in particular, �∗ is a (per-
fectly) convincing LIP affine function. Indeed, if that is not the case, then, since tx is of
degree dQ · dD = poly(λ), we can use the extractor E to break the poly(λ)-power one-
wayness of the linear-only scheme (see Definitions 5.13 and 5.14). Specifically, given
encodings of poly(λ) polynomials in r, we manage to find a poly(λ)-degree polynomial
tx (�∗(q(·)),u(·)) that vanishes on r, but not everywhere. �

6.3. Resulting Preprocessing SNARKs

We now state what preprocessing SNARKs we get by applying our different transfor-
mations. Let C = {C�} be a circuit family where C� is of size s = s(�) and input size
n = n(�). Table 2 summarizes (most) of the preprocessing SNARKs obtained from our
LIP constructions (from Sects. 3.1 and 3.2) and computational transformations (from
Sects. 6.1 and 6.2).

Zero-knowledge and ZAPs. As mentioned before, if the LIP is HVZK then the corre-
sponding preprocessing SNARK is zero-knowledge (against malicious verifiers in the
CRS model), provided that linear-only encryption (or one-way encoding) are rerandom-
izable; all of our candidates constructions are rerandomizable.

As mentioned in Sect. 3.1.1, both of our LIP constructions based on LPCPs can
be made HVZK (either via the general transformation described in Sect. 8 or via
construction-specific modifications discussed in Sect. 7). As for the LIP constructions
based on traditional PCPs, we need to start with an HVZK PCP. For efficient such
constructions, see [47].

The zero-knowledge preprocessing SNARKs we obtain are arguments of knowledge
where the witness can be extracted without a trapdoor on the CRS; this is unlike what
happens in typical NIZKs (based on standard assumptions). This property is crucial
when recursively composing SNARKs as in [12].

Finally, the zero-knowledge SNARKs we obtain are, in fact, perfect zero-knowledge.
Moreover, for the case of publicly-verifiable (perfect) zero-knowledge preprocessing

15 Page 48 of 72 N. Bitansky et al.

Ta
bl
e
2.

Su
m

m
ar

y
of

m
os

to
f

ou
r

pr
ep

ro
ce

ss
in

g
SN

A
R

K
co

ns
tr

uc
tio

ns
.

L
IP

T
hm

.
St

ar
tin

g
po

in
to

f
L

IP
co

ns
tr

uc
tio

n
#

C
ip

he
rt

ex
ts

(o
r

en
co

di
ng

s)
in

re
fe

re
nc

e
st

ri
ng

#
C

ip
he

rt
ex

ts
(o

r
en

co
di

ng
s)

in
pr

oo
f

V
er

ifi
ca

tio
n

tim
e

A
da

pt
iv

e
or

no
na

da
pt

iv
e

Pu
bl

ic
or

de
si

gn
at

ed
A

ss
um

pt
io

n

3.
3

H
ad

am
ar

d
PC

P
O

(s
2
)

4
n

·p
ol

y(
λ
)

N
on

ad
ap

tiv
e

D
es

ig
na

te
d

Pa
ill

ie
r

T
M

”
”

”
8

”
A

da
pt

iv
e

D
es

ig
na

te
d

Pa
ill

ie
r

L
O

E
C

”
”

”
8

”
A

da
pt

iv
e

Pu
bl

ic
B

ili
ne

ar
L

O
E

D
3.

4
Q

SP
s

of
[5

6]
O

(s
)

4
n

·p
ol

y(
λ
)

N
on

ad
ap

tiv
e

D
es

ig
na

te
d

Pa
ill

ie
r

T
M

”
”

”
8

”
A

da
pt

iv
e

D
es

ig
na

te
d

Pa
ill

ie
r

L
O

E
C

”
”

”
8

”
A

da
pt

iv
e

Pu
bl

ic
B

ili
ne

ar
L

O
E

D
3.

9
PC

Ps
of

[2
8]

Õ
(s

)
1

n
·p

ol
y(

λ
)

N
on

ad
ap

tiv
e

D
es

ig
na

te
d

Pa
ill

ie
r

T
M

”
”

”
2

”
A

da
pt

iv
e

D
es

ig
na

te
d

Pa
ill

ie
r

L
O

E
C

T
he

gr
ay

-r
ow

co
ns

tr
uc

tio
ns

ac
hi

ev
e

ne
w

fe
at

ur
es

co
m

pa
re

d
to

pr
ev

io
us

w
or

k.
A

bo
ve

,P
ai
ll
ie
r
T
M

st
an

ds
fo

r
Pa

ill
ie

r
en

cr
yp

tio
n

as
su

m
ed

to
sa

tis
fy

D
efi

ni
tio

n
5.

8,
Pa

il
li
er

L
O
E
C

st
an

ds
fo

ra
va

ri
an

to
fP

ai
lli

er
en

cr
yp

tio
n

as
su

m
ed

to
sa

tis
fy

D
efi

ni
tio

n
5.

4,
an

d
B
il
in
ea
r
L
O
E
D

st
an

ds
fo

ro
ne

-w
ay

en
co

di
ng

s
in

bi
lin

ea
rg

ro
up

s
th

at
w

e
as

su
m

e
sa

tis
fy

D
efi

ni
tio

n
5.

17
.S

ee
Se

ct
.5

.3
fo

r
a

di
sc

us
si

on
ab

ou
ti

ns
ta

nt
ia

tio
ns

.R
ec

al
lt

ha
ta

da
pt

iv
ity

is
a

cr
uc

ia
lp

ro
pe

rt
y

in
or

de
r

to
be

ne
fit

fr
om

th
e

re
cu

rs
iv

e
co

m
po

si
tio

n
te

ch
ni

qu
es

of
B

ita
ns

ky
et

al
.[

12
]

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 49 of 72 15

SNARKs, the CRS can be tested, so that (similarly to previous works [56,64,78]) we
also obtain succinct ZAPs.

7. Two LPCPs for Circuit Satisfaction Problems

We describe two ways of obtaining algebraic LPCPs for boolean circuit satisfaction
problems (see Definition 4.5). For simplicity, in this section (as well as in Sects. 3.1 and
3.2), we focus on relations RC where C is a fixed boolean circuit. All the discussions
can be naturally extended to relations RC where C is a uniform boolean circuit family.

7.1. An LPCP from the Hadamard Code

We begin with a very simple LPCP, which is the well-known Hadamard-based PCP
of Arora et al. [4] (ALMSS), naturally extended to work over an arbitrary finite field
F. Since we only require soundness against linear proof oracles, there is no need to
apply linearity testing and self-correction as in the original PCP of ALMSS. This makes
the construction of the LPCP and its analysis even simpler, and has the advantage of
yielding knowledge error O(1/|F|) with a constant number of queries. The resulting
LPCP verifier will have degree (2, 2), so that the LPCP is algebraic.

We now formulate the properties of the simplified version of the Hadamard-based
PCP in the arithmetic setting:

Claim 7.1. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit
of size s. There is a 3-query LPCP for RC with knowledge error 2/|F|, query length
s + s2, and degree (2, 2). Furthermore:

• the LPCP prover PLPCP is an arithmetic circuit of size O(s2);
• the LPCP query algorithm QLPCP is an arithmetic circuit of size O(s2);
• the LPCP decision algorithm DLPCP is an arithmetic circuit of size O(n).

Construction and analysis. It is convenient to formulate our variant of the ALMSS
construction for a relationR(x, w) defined by an arithmetic (rather than boolean) circuit
over F. In the following, an arithmetic circuit may contain addition gates of unbounded
fan-in and multiplication gates of fan-in 2; both types of gates can have unbounded fan-
out. A sequence of one or more nodes (gates or inputs) defines the output of the circuit.
The size of the circuit is defined as the total number of nodes. We say that an arithmetic
circuit C : F

n × F
h → F

� is satisfied on a given input if all of the outputs are 0; that is,
the corresponding relation is defined as RC := {(x,w) ∈ F

n × F
h : C(x,w) = 0�}.

The standard problem for boolean circuit satisfaction can be easily reduced to the
problem of arithmetic circuit satisfaction with only constant overhead.

Claim 7.2. (From boolean circuit satisfaction to arithmetic circuit satisfaction) Let F

be a finite field, n an input length parameter, and h an output length parameter. There
exist efficient (in fact, linear-time) transformations (arith, inp,wit,wit−1) such that, for

15 Page 50 of 72 N. Bitansky et al.

any boolean circuit C : {0, 1}n ×{0, 1}h → {0, 1} (with AND, OR, and NOT gates) and
input x ∈ {0, 1}n, the following conditions hold:

• arith(C) outputs an arithmetic circuit C ′ : F
n+1 × F

h → F
h+1;

• inp(x) outputs an input x ∈ F
n+1;

• there is w ∈ {0, 1}h s.t. C(x, w) = 1 if and only if there is w ∈ F
h s.t. C ′(x,w) =

0h+1;
• if (x, w) ∈ RC thenwit(C, x, w) outputs a witnessw ∈ F

h such that (x,w) ∈ RC ′ ;
• if (x,w) ∈ RC ′ then wit−1(C ′, x,w) outputs a witness w ∈ {0, 1}h such that (x,

w) ∈ RC .

Proof sketch. Let x = (−1, x1, . . . , xn). The circuit C ′(x,w) emulates the computa-
tion of C on (x,w), using the constant −1 to emulate OR and NOT gates, and treating
the entries of w as bits of w. (For instance, NOT(z) can be computed as 1 + (−1) · z.)
The first output of C ′ is equal to 1 − C(x,w) (for all w ∈ {0, 1}h). The remaining h
outputs of C ′ are used to ensure that any satisfying w ∈ F

h is a bit vector. This is done
by outputting wi · (1 − wi) for i ∈ {1, . . . , h}. �

We now proceed to describe the construction of the LPCP for an arithmetic circuit
C : F

n×F
h → F

�. We let zi denote the value of the i-th wire ofC given input x ∈ F
n and

witnessw ∈ F
h , where we assume that zi = xi for i ∈ {1, . . . , n} and zs−�+1, . . . , zs are

the values of the output wires (which are supposedly 0). The honest prover uses a linear
oracle π whose coefficient vector includes z1, . . . , zs , and zi · z j for all i, j ∈ {1, . . . , s}.
The verifier needs to check that: (1) the coefficient vector is consistent with itself (namely,
the entry which supposedly contained zi ·z j is indeed the product of the entries containing
zi and z j); (2) zi = xi for i ∈ {1, . . . , n}; (3) zs−i = 0 for i ∈ {0, . . . , � − 1}; and (4)
for every gate, the given value for its output wire is consistent with the given values for
its input wires.

The first condition can be verified with two queries: the first query asks for a random
linear combination of the zi and the second query asks for the linear combination of
the zi · z j that corresponds to the square of the first query. The verifier checks that the
second answer is the square of the first answer. It follows from the Schwartz–Zippel
Lemma (cf. Lemma 2.1) that if condition (1) is violated then this test will fail except
with at most 2/|F| probability. Conditions 2, 3, 4 are tested together using a single query
by taking a random linear combination with coefficient vector r of the left hand sides of
the following equations:

• zi = xi for i = 1, . . . , n;
• z j = 0 for j = s − (� − 1), . . . , s;
• (∑k

j=1 zi j
)− zk = 0 for each addition gate with input wires i1, . . . , ik and output

wire k;
• zi · z j − zk = 0 for each multiplication gate with input wires i, j and output wire k.

Note that this random linear combination can be efficiently transformed into a ran-
dom linear combination of the coefficients zi and zi · z j . The verifier accepts if the
answer is equal to the corresponding linear combination of the right hand side, namely
to
∑n

i=1 ri xi . Assuming that condition (1) is satisfied, this test fails with probability at
most 1/|F|.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 51 of 72 15

Overall, we get a 3-query LPCP with knowledge error 2/|F| = O(1/|F|), query length
s + s2 = O(s2) and degree (2, 2). The construction is summarized as follows:

Construction 7.3. Let F be a finite field and C : F
n × F

h → F
� an arithmetic circuit

over F of size s.
LPCP prover algorithm PLPCP. Given (x,w) ∈ F

n × F
h such that C(x,w) = 1,

compute the values z1, . . . , zs of all wires in C(x,w), and output the linear function
π : F

s+s2 → F defined by the coefficients zi for all i ∈ [s] and zi · z j for all i, j ∈ [s].
LPCP query algorithm QLPCP. The query algorithm QLPCP has hardcoded in it:

• A matrix AC ∈ F
s×(s+s2)

• A vector bC ∈ F
s−n

Both AC and bC can be computed efficiently (in fact, in linear time) from C. The query
algorithm QLPCP outputs queries q1, q2, q3 ∈ F

s+s2
that are computed as follows:

1. sample a random vector r = (r1, r2) ∈ F
2s ; denote by rx the first n coordinates

of r1 and by rC the last s − n coordinates of r1;
2. set q1 := r1 · AC;
3. the first s elements of q2 is the vector r2 and the last s2 elements are 0;
4. the first s elements of q3 are 0 and the last s2 element are r2[i] · r2[j] for all

i, j ∈ [s].
Additionally the query algorithm QLPCP outputs the state information u = (uC , rx)
where uC = 〈rC , bC 〉.
LPCP decision algorithm DLPCP. Given input x, state u = (uC , rx), and answers
a1, a2, a3 ∈ F, verify that

tx (u, a1, a2, a3) :=
(
a1 − (uC + 〈rx, x〉), a2

2 − a3

)
= (0, 0).

Remark 7.4. (HVZK variant) To make the LPCP of Claim 7.1 an HVZK LPCP, we
could apply the general transformation presented in Sect. 8. However, there is a transfor-
mation specific to the LPCP of Claim 7.1 that introduces almost no overhead. Essentially,
the prover can simply concatenate a random element to the linear function he generates;
this can be interpreted as adding a dummy wire to the circuit and assigning to it a ran-
dom value; the verifier then reasons in terms of this new circuit. In fact, the idea we just
described is a very simple instance of the transformation in Sect. 8, which generalizes
it to work for any LPCP.

7.2. An LPCP from Quadratic Span Programs

Next, we note that an LPCP with linear query algorithm and quasilinear prover algorithm
can be easily obtained by going through the quadratic span programs of Gennaro et al.
[56]; this gain is at the expense of the degree of the query algorithm which now becomes
O(s) instead of 2.

15 Page 52 of 72 N. Bitansky et al.

Claim 7.5. Let F be a finite field and C : {0, 1}n × {0, 1}h → {0, 1} a boolean circuit
of size s. There is a 3-query LPCP forRC with knowledge error O(s/|F|), query length
O(s), and degree (O(s), 2). Furthermore:

• the LPCP prover PLPCP is an arithmetic circuit of size Õ(s);
• the LPCP query algorithm QLPCP is an arithmetic circuit of size O(s);
• the LPCP decision algorithm DLPCP is an arithmetic circuit of size O(n).

Construction and analysis. We present the definition of a quadratic span program
satisfiability problem, based on the definition of a strong quadratic-span program (QSP)
in [56].

Definition 7.6. [56, Definition 5] Let F be a finite field. The QSP satisfiability prob-
lem over F of a (strong) QSP Q = (n,m, d, V, W, t), where V = (

vi (z)
)

0≤i≤m and

W = (
wi (z)

)
0≤i≤m are two vectors of polynomials of degree d over F and t is a poly-

nomial over F, is the relation:

RQ :=
{
(
x, (a, b, h)

) : t (z) ·
(
d−1∑

i=0

hi · zi
)

=
(

v0(z) +
n∑

i=1

xi · vi (z) +
m−n∑

i=1

ai · vi+n(z)

)

·
(

w0(z) +
m∑

i=1

bi · wi (z)

)}

,

where x ∈ F
n , a ∈ F

m−n , b ∈ F
m , and h ∈ F

d .

Gennaro et al. [56] have shown that there is a very efficient reduction from boolean
circuit satisfiability problems to QSP satisfiability problems:

Claim 7.7. [56] Let F be a field. There exist transformations (qsp, inp,wit,wit−1)

such that, for any boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} and input x ∈ {0, 1}n,
the following conditions hold:

• qsp(C) outputs a QSP Q where m = O(|C |), d = O(|C |), and n′ = O(n);
moreover, Q is sparsely represented;

• inp(x) outputs an input x ∈ F
n′
;

• there is w ∈ {0, 1}h s.t. C(x, w) = 1 if and only if there is w s.t. (x,w) ∈ RQ;
• if (x, w) ∈ RC then wit(C, x, w) outputs a witness w such that (x,w) ∈ RQ;
• if (x,w) ∈ RQ then wit−1(Q, x,w) outputs a witness w ∈ {0, 1}h such that

(x, w) ∈ RC .

Moreover, qsp, inp,wit−1 run in linear time and wit runs in quasilinear time.

We now give a construction of an LPCP for a QSP satisfiability problem:

Construction 7.8. Let F be a field and Q = (n,m, d, V, W, t) a (strong) QSP.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 53 of 72 15

LPCP prover algorithm PLPCP. Given (x, (a, b, h)) such that (x, (a, b, h)) ∈ RQ,
output the linear function π : F

2m−n+d → F defined by π := (a, b, h) (i.e., the con-
catenation of the coefficients vectors).
LPCP query algorithm QLPCP. Select a random point r ∈ F and output the queries
q1, q2, q3 ∈ F

2m−n+d defined as follows:

• the first m−n elements of q1 are vi (r) for all n < i ≤ m and the last m+d element
are 0;

• the first m − n and the last d elements of q2 are 0 and the remaining m elements
are wi (r) for all 0 < i ≤ m;

• the first (m − n) + m elements of q3 are 0 and the last d elements are r i for all
0 ≤ i < d.

Additionally, the algorithm outputs the state information u := ({vi (r)}0≤i≤n , w0(r),
t (r)) ∈ F

n+2.
LPCP decision algorithm DLPCP.Given input x, state u = ({vi (r)}0≤i≤n , w0(r), t (r)),
and answers a1, a2, a3, verify that

tx (u, a1, a2, a3) :=
(

v0(r) +
n∑

i=1

xi · vi (r) + a1

)

· (w0(r) + a2) − a3 · t (r) = 0.

We now prove that Construction 7.8 has the desired properties. Correctness follows
from the construction. Next, fix a linear function π∗ : F

2m−n+d → F and view it as
π∗ = (a∗, b∗, h∗) for some a∗ ∈ F

m−n , b∗ ∈ F
m , and h∗ ∈ F

d . Suppose that V π∗
LPCP(x)

accepts with more than 2d/|F| probability. By construction, we have that:

Pr
r←F

[(

v0(r) +
n∑

i=1

xi · vi (r) +
m−n∑

i=1

a∗
i · vi+n(r)

)

·
(

w0(r) +
m∑

i=1

b∗
i · wi (r)

)

−
(
d−1∑

i=0

h∗
i · r i

)

· t (r) = 0

]

>
2d

|F| .

By the Schwartz–Zippel Lemma (cf. Lemma 2.1), we deduce that:

(

v0(z) +
n∑

i=1

xi · vi (z) +
m−n∑

i=1

a∗
i · vi+n(z)

)

·
(

w0(z) +
m∑

i=1

b∗
i · wi (z)

)

=
(
d−1∑

i=0

h∗
i · zi

)

· t (z).

We conclude that (x, (a∗, b∗, h∗)) ∈ RQ . We thus have a 3-query LPCP for RQ with
knowledge error 2d/|F|, query length 2m − n + d, and degree (d, 2). Furthermore, the
LPCP prover PLPCP runs in time O(m + d), the LPCP query algorithm QLPCP runs in
time O(m + d) (since it only has to produce random evaluations of polynomials), and
the LPCP decision algorithm DLPCP runs in time O(n).

15 Page 54 of 72 N. Bitansky et al.

Invoking Claim 7.7, we obtain 3-query LPCP for RC , where C : {0, 1}n × {0, 1}h →
{0, 1} is a boolean circuit of size s, with knowledge error O(s/|F|), query length O(s),
and degree (O(s), 2). Furthermore, the LPCP prover PLPCP runs in time Õ(s), the LPCP
query algorithm QLPCP runs in time O(s), and the LPCP decision algorithm DLPCP runs
in time O(n).

Remark 7.9. (HVZK variant) To make the LPCP of Claim 7.5 an HVZK LPCP, we
could apply the general transformation presented in Sect. 8. However, Gennaro et al. [56]
give a transformation for the specific case of QSPs that introduces almost no overhead.
Their transformation is rather different from our general transformation and exploits
special features of QSPs. At a very high-level, we first pad each of the LPCP answers with
a random field element, and then add terms to the proof that allow a verifier to cancel the
noise, but without leaking any further information. In particular, in our transformation,
the verifier has to make sure that these additional terms are properly structured, and
doing so requires additional tests. Instead, [56] use the special QSP structure: instead of
padding the LPCP answers with random field elements, they add randomized factors of
the target polynomial t to the answers, and this is already sufficient to force the prover
to stick to the proper structure, and does not require additional structure tests.

8. HVZK for LPCPs with Low-Degree Decision Algorithm

We describe a general transformation that takes any LPCP with dD = 2 to a correspond-
ing LPCP that is HVZK, with only a small overhead in parameters. (With additional work,
the transformation can in fact be extended to work for dD = O(1).)

Theorem 8.1. There exists an efficient compiler that takes any LPCP (PLPCP, VLPCP)

with dD = 2 into an LPCP (P ′
LPCP, V

′
LPCP) with the following properties:

• if (PLPCP, VLPCP) has knowledge error ε then (P ′
LPCP, V

′
LPCP) has knowledge error

ε + O(1/|F|);
• (P ′

LPCP, V
′
LPCP) is O(1/|F|)-statistical HVZK (and can be made perfect HVZK if

V ′
LPCP is allowed to sample its randomness from F − {0} instead of F);

• if (PLPCP, VLPCP) has query length m, k queries, private state of length m′, η test
polynomials, and degree (dQ, 2), then (P ′

LPCP, V
′
LPCP) has query length O(ηk4(m+

m′)), O(k + η) queries, private state of length O(k2m′), O(η) test polynomials,
and degree (dQ, 2).

Remark 8.2. (Parameters) Typically (and this is the case for both of the LPCP con-
structions of Sect. 7), k and η are constants and m′ < m (e.g., m is proportional to the
size of the circuit to be verified and m′ is proportional to the input size of the circuit).
For such typical choices, (P ′

LPCP, V
′
LPCP) has the same parameters as (PLPCP, VLPCP), up

to constant factors.
Of course, because the transformation guaranteed by Theorem 8.1 is generic, opti-

mizations are often possible in specific cases to, e.g., reduce the number of queries. For

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 55 of 72 15

instance, the two LPCP constructions described in Sect. 7 have HVZK variants with
almost no overhead (see Remarks 7.4 and 7.9).

The rest of this section contains the proof of Theorem 8.1. Let us begin with the
high-level idea.

The high-level idea. The LPCP prover adds to each of the original LPCP answers ai
a random element ξi ; clearly, the distribution of these new answers is independent of
the witness used by the prover, and thus the new answers are HVZK. Unfortunately,
this modification allows the LPCP verifier to only compute a noisy evaluation of the test
polynomial, namely tx (u, a+ξ), when instead the verifier needed a noiseless evaluation.
To recover soundness without breaking HVZK, the verifier needs to learn the difference
� = tx (u, a + ξ) − tx (u, a), but nothing else. We show how the prover can do this by
adding suitable crossterms to the linear function, and letting the verifier test that the new
linear function, which includes these crossterms, has the correct “structure.” We now
concretize this high-level idea by proceeding in three steps.

Step 1: soundness against provers respecting quadratic tensor relations. In our
transformation, an honest LPCP proof π is mapped to a new proof π ′ = (π1, . . . ,πc)

that must satisfy a set T of quadratic tensor relations; a quadratic tensor relation is a
triple (i, j, k) ∈ [c]3, that corresponds to the requirement π i = π j ⊗ πk .11 Thus, we
can write:

T = {
π i� = π j� ⊗ πk�

}β
�=1 ,

where a ⊗ b = (ai · b j)i, j is the tensor product of vectors a and b. We say that β is the
size of T . In our construction, T is independent of the input x , so we focus our attention
to this case.

We begin by showing that any LPCP that is secure against T -respecting provers (for
some given T) can be transformed into a corresponding LPCP against arbitrary provers,
with a small overhead in parameters and while maintaining HVZK. For a given set of
quadratic tensor relations T , we say that an LPCP has soundness (or knowledge) error ε

against T -respecting provers if it has soundness (or knowledge) error ε against proofs
that satisfy all the quadratic tensor relations in T .

Claim 8.3. There exists an efficient LPCP transformation T such that, for any set of
quadratic tensor relations T , the following properties hold:

• Security: If (PLPCP, VLPCP) is an LPCP for a relation R with knowledge error ε

against T -respecting provers, then (P ′
LPCP, V

′
LPCP) := T(T , PLPCP, VLPCP) is an

LPCP for R with knowledge error ε + O(1/|F|).
• Zero-Knowledge Preservation: If (PLPCP, VLPCP) is δ-statistical HVZK then (P ′

LPCP,

V ′
LPCP) is (δ + 1/|F|)-statistical HVZK. (If V ′

LPCP is allowed to sample randomness
from F − {0} instead of F then (P ′

LPCP, V
′
LPCP) can be made δ-statistical HVZK.)

11More precisely, T must also specify c ∈ N and how to parse the vector π ′ into component vectors
π1, . . . , πc . We notationally ignore this small detail. We assume that the same i cannot appear in more than
one triple and that each vector π i has at least two coordinates. Note that there cannot be “cycles” such as
(i, j, k) and (k, j ′, i) both being in T .

15 Page 56 of 72 N. Bitansky et al.

• Efficiency: If T has size β, (PLPCP, VLPCP) has query length m, k queries, η test
polynomials, and degree (dQ, dD), then (P ′

LPCP, V
′
LPCP) has query length O(m),

k + O(β) queries, η + β test polynomials, and degree (dQ, max {dD, 2}).

Proof sketch. We sketch the transformation T and an argument for its correctness;
a detailed description of the transformation can be found after the proof sketch, in
Construction 8.4.

The transformation leverages the fact that any quadratic tensor relation can be checked
with only 3 queries and a quadratic decision predicate. Concretely, given two vectors
a and b and another vector c, to test whether c = a ⊗ b, we can sample two random
vectors ra and rb, and test whether

〈c, ra ⊗ rb〉 = 〈a, ra〉 · 〈b, rb〉 .

By the Schwartz–Zippel Lemma (see Lemma 2.1), if the quadratic tensor relation does
not hold, then the test passes with probability at most 2/|F|.

Thus, letting π∗ = (π1, . . . ,πc) be a potentially malicious proof, if we want to test
whether π∗ satisfies the set of quadratic tensor relations T , we proceed as follows. For
each (i, j, k) ∈ T , generate queries qi , q j , qk to π∗ so that

〈
π∗, qi

〉 = 〈
π i , r j ⊗ rk

〉

〈
π∗, q j

〉 = 〈
π j , r j

〉

〈
π∗, qk

〉 = 〈πk, rk〉

where r j and rk are random vectors of suitable length,12 and then test whether
〈
π∗, qi

〉 =〈
π∗, q j

〉 · 〈π∗, qk
〉
.

While the solution described in the previous paragraph does provide suitable security
and efficiency guarantees, it does not preserve HVZK, because the additional “structure”
queries may reveal information about the witness. To fix this problem, we proceed as
follows. For each quadratic tensor relation c = a ⊗ b, we modify the part of the proof
corresponding to it, as well as the verifier’s “structure” queries for it. Specifically, we
extend the vectors a,b, c to a′ = (a|ξa), b′ = (b|ξb), c′ = a′ ⊗ b′, where ξa and ξb
are random field elements; similarly, the verifier’s “structure” queries ra, rb, ra ⊗ rb
are extended to r′

a = (ra|ra), r′
b = (rb|rb), r′

a ⊗ r′
b, where ra and rb are random field

elements. The two query answers
〈
a′, r′

a
〉

and
〈
b′, r′

b

〉
are now truly random conditioned

on ra and rb being non-zero, and hence can be simulated.13 In addition,
〈
c′, r′

a ⊗ r′
b

〉
can

be simulated by taking the product of the simulated answers. As for the queries of the
original LPCP, these can be appropriately padded with zeros so that the answers to them

12If the same j or k appears in multiple triples in T , there is no need to sample a new random vector.
13Here is where we lose 1/|F| in statistical distance between the honest distribution and the simulated

distribution. If, however, the honest verifier could sample randomness from the set F − {0} (instead of F as
required by the definition), then this loss can be avoided at the expense of an additional 1/|F| factor in the
knowledge error. (Note that mapping the uniform distribution on F to the uniform distribution on F − {0} is
not a low-degree operation so, if we want to ensure that d ′

Q = dQ , then we cannot simply let V ′
LIP do this, but

we must supply him with the uniform distribution on F − {0}.)

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 57 of 72 15

are not affected by the changes to the proof; the answers to these queries are simulatable,
when assuming that the original LPCP is HVZK. Overall, the modification to preserve
HVZK does not change the number of queries, and increases their length m by at most
a factor of 1 + 1

m < 2.
This concludes the proof sketch for Claim 8.3. �

Construction 8.4. (Transformation for Claim 8.3) Let (PLPCP, VLPCP) be an LPCP for
R that is secure against T -respecting provers, for some set of quadratic tensor relations
T of size β. Parse a proof π as follows:

π =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π1
...

πα

πα+1
...

πα+β

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π1
...

πα

π j1 ⊗ πk1
...

π jβ ⊗ πkβ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where c = α+β is the number of components inπ and (α+1, j1, k1), . . . , (α+β, jβ, kβ)

are the β triples in T . (We can always relabel triples in T so that the β components of
π constrained by a tensor relation in T appear after any unconstrained component.)
Note that each of j1, . . . , jβ, k1, . . . , kβ can be any index in [α + β] (always subject to
the condition that are no “cycles” in T).

Construct the LPCP (P ′
LPCP, V

′
LPCP) as follows.

• The prover P ′
LPCP. Given (x, w) ∈ R, P ′

LPCP invokes PLPCP(x, w) to obtain a proof
π as above, samples random ξ ∈ F

α+β , and outputs the proofπ ′ defined as follows:

π ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π ′
1
...

π ′
α

π ′
α+1
...

π ′
α+β

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(π1|ξ1)
...

(πα|ξα)

(π ′
j1

⊗ π ′
k1

|ξα+1)

...

(π ′
jβ

⊗ π ′
kβ

|ξα+β)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let us explain the mapping from π to π ′ in words. Let us assume without loss of
generality that the triples (α + 1, j1, k1), . . . , (α + β, jβ, kβ) are labeled so that
they are in a “topological order”: namely, if � < �′ then it cannot be that j� or k�

is equal to α + �′. (A topological order exists because there are no cycles in T .)
We first pad each of the components π1, . . . ,πα with a random element to obtain
π ′

1, . . . ,π
′
α . Then, for � = 1, . . . , β (in this order), we padπ ′

j�
⊗π ′

k�
with a random

element to obtain π ′
α+�; because of the topological order, when defining π ′

α+�, we
have already defined both π ′

j�
and π ′

k�
.

• The query algorithm Q′
LPCP. The query algorithm Q′

LPCP invokes QLPCP to obtain
queries q1, . . . , qk and a state u, and then produces and outputs (along with u)

15 Page 58 of 72 N. Bitansky et al.

new queries
q(1)

1 , . . . , q(1)
k , q(2)

s1
, . . . , q(2)

sγ , q(3)
α+1, . . . , q

(3)
α+β,

where s1, . . . , sγ are the (distinct) indices in the set { j}(i, j,k)∈T ∪{k}(i, j,k)∈T ; note
that γ ≤ 2β. The new queries are defined as follows.

· The queries q(1)
1 , . . . , q(1)

k correspond to the original queries q1, . . . , qk to π .

In other words, we construct each q(1)
j so that

〈
π ′, q(1)

j

〉
= 〈

π , q j

〉
.

Since π ′ contains π (and some new terms), each q(1)
j can be obtained from

q j via suitable padding with zeros (in the locations corresponding to the new
terms).

· The remaining queries are for testing the tensor structure in away that preserves
HVZK:

∗ For � ∈ [γ], q(2)
s� is constructed so that

〈
π ′, q(2)

s�

〉
=
〈
π ′
s� , (r

(2)
s� |r (2)

s�)
〉

=
⎧
⎨

⎩

〈
π s� , r

(2)
s�

〉
+ ξs�r

(2)
s� if s� ∈ {1, . . . , α}

〈
π ′

js�−α
⊗ π ′

ks�−α
, r(2)

s�

〉
+ ξs�r

(2)
s� if s� ∈ {α + 1, . . . , α + β} ,

where r(2)
s� is a random vector (of suitable length) and r (2)

s� is a random field
element.
∗ For � ∈ [β], q(3)

α+� is constructed so that

〈
π ′, q(3)

α+�

〉
=
〈
π ′

α+�, ((r
(2)
j�

|r (2)
j�

) ⊗ (r(2)
k�

|r (2)
k�

)|r (3)
α+�)

〉

=
〈
π ′

j� ⊗ π ′
k�

, (r(2)
j�

|r (2)
j�

) ⊗ (r(2)
k�

|r (2)
k�

)
〉
+ ξα+�r

(3)
α+�,

where r (3)
α+� is a random field element.

• The decision algorithm D′
LPCP. The decision algorithm D′

LPCP invokes DLPCP on the

answers a(1)
1 , . . . , a(1)

k and checks that a(3)
α+1 = a(2)

j1
a(2)
k1

, . . . , a(3)
α+β = a(2)

jβ
a(2)
kβ

.

Step 2: fromhigher-degree tensor relations to quadratic tensor relations.The notion
of a set of tensor relations introduced in the previous step can of course be extended to
relations of more than 2 vectors. In general, a set of tensor relations T is a set of tuples of
potentially different length; we say that a vector π = (π1, . . . ,πc) satisfies a set of tensor
relations in T if for every tuple (i, j, k, . . . , z) ∈ T it holds that π i = π j⊗πk⊗· · ·⊗π z .
(As before, we require tuples in T to not form cycles, etc.; see Footnote 11.)

We describe a (zero-knowledge preserving) transformation that maps any LPCP that
is secure against T -respecting provers, for some T containing tensor relations that are at

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 59 of 72 15

most cubic, into a corresponding LPCP that is secure against T ′-respecting provers, for a
corresponding set of quadratic tensor relations T ′. (While not needed here, the transfor-
mation can be extended to deal with arbitrary sets of tensor relations; see Remark (8.6).)

Claim 8.5. There exists an efficient LPCP transformation Q such that, for any set of
at-most-cubic tensor relations T , the following properties hold:

• Security: If (PLPCP, VLPCP) is an LPCP for a relation R with knowledge error ε

against T -respecting provers, then (T ′, P ′
LPCP, V

′
LPCP) := Q(T , PLPCP, VLPCP) is an

LPCP for R with knowledge error ε against T ′-respecting provers, where T ′ is a
set of quadratic tensor relations.

• Zero-Knowledge Preservation: If (PLPCP, VLPCP) is δ-statistical HVZK then so is
(P ′

LPCP, V
′
LPCP). (In particular, perfect HVZK is preserved.)

• Efficiency: If (PLPCP, VLPCP) has query length m, k queries, η test polynomials,
and degree (dQ, dD), then (P ′

LPCP, V
′
LPCP) has query length O(m), k queries, η test

polynomials, and degree (dQ, dD). Furthermore, if T has size β then T ′ has size
O(β).

Proof sketch. The idea is to simply split every cubic tensor into two quadratic tensors.
Namely, for every tensor relation π i = π j ⊗ πk ⊗ π� in T , we let T ′ require the two
tensor relations π i ′ = π j ⊗ πk and π i = π i ′ ⊗ π�, for some new index i ′. With this
modification the length of the proof at most doubles and, moreover, the size of T ′ is at
most 2β = O(β). �

While it is possible to test cubic tensor relations “directly,” in a manner that is anal-
ogous to the way we test quadratic tensor relations in the proof of Claim 8.3, doing so
requires decision predicates of cubic degree, which we wish to avoid. Claim 8.5 thus
lets us move from cubic tensor relations to quadratic tensor relations before any tensor
relations are tested.

Remark 8.6. Claim 8.5 can be extended to handle any set of tensor relations T , and not
only quadratic ones. Concretely, a tensor relation over d vectors can be split into (d −1)

quadratic tensor relations. The corresponding parameter changes to the new proof length
and size of T ′ can be easily deduced.

Step 3: from LPCP to HVZK LPCP against tensor-respecting provers. We describe
a transformation that maps any LPCP into a corresponding perfect HVZK LPCP, with
similar parameters, that is secure against T -respecting provers for a certain set of at-
most-cubic tensor relations T .

Claim 8.7. There exists an efficient LPCP transformation Z with the following prop-
erties:

• Security: If (PLPCP, VLPCP) is an LPCP for a relationR with knowledge error ε and
dD = 2, then (P ′

LPCP, V
′
LPCP) := Z(PLPCP, VLPCP) is a perfect HVZK LPCP for R

with knowledge error ε + O(1/|F|) against T -respecting provers for some set of
at-most-cubic tensor relations T .

15 Page 60 of 72 N. Bitansky et al.

• Efficiency: If (PLPCP, VLPCP) has query length m, k queries, state length m′, η test
polynomials, and degree (dQ, 2), then (P ′

LPCP, V
′
LPCP) has query length O(ηk4(m+

m′)), k + η + 1 queries, state length O(k2m′), η + 1 test polynomials, and degree
(dQ, 2). Furthermore, T has size β = 3η.

Proof. Recall that, for an input x , we denote by tx (u1, . . . , um′ , a1, . . . , ak) the
(quadratic) test polynomial of the decision algorithm DLPCP(x, . . .). In general, tx is a
η-dimensional multivariate polynomial; however, to simplify notation, we describe our
construction for the case η = 1 and then, in Remark (8.9), explain how the construction
can be extended to the case η > 1 (and what is the effect on the parameters).

Define the padding polynomial (of tx) to be:

�tx (u1, . . . , um′ , a1, . . . , ak, ξ1, . . . , ξk) = tx (u1, . . . , um′ , a1 + ξ1, . . . , ak + ξk)

− tx (u1, . . . , um′ , a1, . . . , ak).

Note that �tx can be expanded to:

�tx (u1, . . . , um′ , a1, . . . , ak, ξ1, . . . , ξk)

=
∑

(i, j)∈[m′]×[k]
cu⊗ξ
x,i, j uiξ j +

∑

(i, j)∈[k]×[k]
ca⊗ξ
x,i, j aiξ j

+
∑

(i, j)∈[k]×[k]
cξ⊗ξ
x,i, jξiξ j ,

for some coefficients cu⊗ξ
x,i, j , c

a⊗ξ
x,i, j , and cξ⊗ξ

x,i, j ; we denote the corresponding coefficients
vectors by

cu⊗ξ
x =

(
cu⊗ξ
x,i, j

)

(i, j)∈[m′]×[k] , c
a⊗ξ
x =

(
ca⊗ξ
x,i, j

)

(i, j)∈[k]×[k] , c
ξ⊗ξ
x =

(
cξ⊗ξ
x,i, j

)

(i, j)∈[k]×[k] .

Construction 8.8. Construct (P ′
LPCP, V

′
LPCP) from (PLPCP, VLPCP) as follows:

• The prover P ′
LPCP. Given (x, w) ∈ R, P ′

LPCP invokes PLPCP(x, w) to obtain a proof
π ∈ F

m, samples a random ξ ∈ F
k , and outputs the proof π ′ defined as follows:

π ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π

ξ

cu⊗ξ
x

ca⊗ξ
x

cξ⊗ξ
x

ξ ⊗ cu⊗ξ
x

π ⊗ ξ ⊗ ca⊗ξ
x

ξ ⊗ ξ ⊗ cξ⊗ξ
x

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 61 of 72 15

In other words, π ′ has 8 component vectors, and we can define T as the set

T := {(6, 2, 3), (7, 1, 2, 4), (8, 2, 2, 5)}.

• The query algorithm Q′
LPCP. The query algorithm Q′

LPCP invokes QLPCP to
obtain queries q1, . . . , qk and a state u, and then produces new queries
q ′

1, . . . , q
′
k, q

′
k+1, q

′
k+2. Specifically:

· For each j ∈ [k], the prefix of q ′
j is q j , and the suffix is a unit vector e j , which

is 1 in the j-th position and zero otherwise. In other words, we construct q ′
j so

that:
〈
π ′, q ′

j

〉
= 〈

π , q j

〉+ ξ j .

· The vector q ′
k+1 takes a random combination of the elements cu⊗ξ

x , ca⊗ξ
x , cξ⊗ξ

x .
In other words, q ′

k+1 consists of a random vector r padded with zeros so that

〈
π ′, q ′

k+1

〉 = 〈(
cu⊗ξ
x , ca⊗ξ

x , cξ⊗ξ
x

)
, r
〉
.

· The vector q ′
k+2 consists of several copies of each of q1, . . . , qk and u, and of

zeros, so that

〈
π ′, q ′

k+2

〉 = �tx (u,
〈
π , q1

〉
, . . . ,

〈
π , qk

〉
, ξ) = �tx (u, a, ξ).

As for the state, Q′
LPCP outputs u

′ = (u, r).
• The decision algorithm D′

LPCP. Given u′ = (u, r) and answers
(
a′

1, . . . , a
′
k+2

)
,

D′
LPCP checks that tx (u, a′

1, . . . , a
′
k) = a′

k+2 and a′
k+1 =

〈(
cu⊗ξ
x , ca

′⊗ξ
x , cξ⊗ξ

x

)
, r
〉
,

where tx is the test polynomial of DLPCP(x, . . .).

Remark 8.9. (Multi-dimensional test polynomials) As mentioned above, to simplify
notation, we have defined the padding polynomial and given Construction 8.8 for the
case η = 1. For the general case of η-dimensional polynomial tx with η > 1, we
proceed as follows. Instead of defining a single padding polynomial, we define η padding

polynomials�tx ,i , each with its own coefficients ci =
(
cu⊗ξ
x,i , ca⊗ξ

x,i , cξ⊗ξ
x,i

)
. Accordingly,

the third, fourth, and fifth row of the proof π ′ are extended to η corresponding rows;
similarly for the sixth, eight, and tenth row of π ′. The query q ′

k+1 is modified to include
η random vectors r1, . . . , rη; indeed, the linear combination checking the correctness of
c1, . . . , cη can be taken simultaneously for all of the ci (rather than for each ci separately).
The last query q ′

k+2 is replaced by η queries q ′
k+2, . . . , q

′
k+η+1, each according to the

appropriate �tx ,i .

First, note that the degree of (P ′
LPCP, V

′
LPCP) is the same as that of (PLPCP, VLPCP): we

have only introduced linear operations to both query and decision polynomials.
Next, let us argue that (P ′

LPCP, V
′
LPCP) has the claimed knowledge error. Assuming

that the vectors (cu⊗ξ
x , ca⊗ξ

x , cξ⊗ξ
x) appear correctly in the proof π ′ and the prover is

15 Page 62 of 72 N. Bitansky et al.

T -respecting, then (P ′
LPCP, V

′
LPCP) has the exact same knowledge error as in (PLPCP,

VLPCP), because then the verifier exactly computes tx (u, a). If instead the vectors
(cu⊗ξ

x , ca⊗ξ
x , cξ⊗ξ

x) are not computed properly, then the random linear combination test
will fail except with probability 1/|F|. Thus, the knowledge error of (P ′

LPCP, V
′
LPCP) is at

most ε + 1/|F|.
To see that (P ′

LPCP, V
′
LPCP) is perfect HVZK, note that the honest verifier does

not learn from an honest proof any information except for the fact that tx (u, a) =
tx (u,

〈
π , q1

〉
, . . . ,

〈
π , qk

〉
) = 0. More formally, the answers a′

1, . . . , a
′
k can all be simu-

lated by random independent elements; the answer a′
k+1 can be simulated by just taking a

random combination of (cu⊗ξ
x , ca⊗ξ

x , cξ⊗ξ
x); and the difference a′

k+2 = �tx (u, a, ξ) can
be simulated simply as tx (u, a′), where u is an honestly generated state for the verifier
and a′ are the simulated answers a′

1, . . . , a
′
k .

Combining Claims 8.7, 8.5, and 8.3 completes the proof of Theorem 8.1.

9. Multi-Theorem Designated-Verifier SNARKs via Strong Knowledge

A desirable property of SNARKs is the ability to generate the reference string σ , once and
for all, and then reuse it to produce polynomially-many proofs (potentially by different
provers). Doing so is especially desirable for preprocessing SNARKs, where generating
σ afresh is expensive.

However, being able to securely reuse σ requires security also against provers
that have access to a proof-verification oracle. For publicly-verifiable SNARKs, this
multi-theorem proof of knowledge is automatically guaranteed. For designated-verifier
SNARKs, however, multi-theorem proof of knowledge needs to be required explicitly as
an additional property. Intuitively, this is achieved by ensuring that the verifier’s response
“leaks” only a negligible amount of information about the verification state τ (for then
malicious prover strategies that create a significant correlation between τ and the event
of the verifier rejecting are ruled out).14

Security against such provers can be formulated for (computational) soundness or
proof of knowledge, both in the non-adaptive and adaptive settings. Because in this
paper we are typically interested in adaptive proof of knowledge, we formulate it in this
setting.

Definition 9.1. A triple of algorithms (G, P, V) is a multi-theorem SNARK for the
relation R ⊆ RU if it is a SNARK for R where adaptive proof of knowledge (Defini-
tion 4.3) is replaced by the following stronger requirement:

• Multi-theorem adaptive proof of knowledge
For every polynomial-size prover P∗, there exists a polynomial-size extractor E such
that for every large enough security parameter λ ∈ N, auxiliary input z ∈ {0, 1}poly(λ),

14Note that O(log λ)-theorem soundness always holds; the “non-trivial” case is whenever ω(log λ). Weaker
solutions to support more theorems include simply assuming that the verifier’s responses remain secret, or
re-generating σ every logarithmically-many rejections, e.g., as in [37,55,59,75,77].

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 63 of 72 15

and time bound T ∈ N,

Pr

⎡

⎣V (τ, y, π) = 1
(y, w) /∈ R

∣∣∣∣∣∣

(σ, τ) ← G(1λ, T)

(y, π) ← P∗ V (τ,·,·)(z, σ)

w ← E(z, σ)

⎤

⎦ ≤ negl(λ).

As15 discussed in Sect. 1.3.3, the PCP-based (or MIP-based) SNARKs of [8,10,11,44,
46,60,83] are not multi-theorem SNARKs, because a malicious prover can adaptively
learn the encrypted PCP (or MIP) queries (whose secrecy is crucial for security), just by
feeding different proofs to the verifier and learning his responses. In this paper, some of
the designated-verifier preprocessing SNARKs that we construct satisfy multi-theorem
proof of knowledge (under suitable assumptions), and some do not.

Concretely, an interesting property that is satisfied by algebraic LIPs, which we call
strong knowledge, is that such “correlation attacks” are impossible: roughly, every
LIP prover either makes the LIP verifier accept with probability 1 or with probabil-
ity less than O(poly(λ)/|F|). Designated-verifier preprocessing SNARKs constructed
from such LIPs can thus be shown to have the multi-theorem property. Details follow.

Definition 9.2. An LPCP (PLPCP, VLPCP)with knowledge error ε has strongknowledge
error if for every input x and every linear function π∗ : F

m → F, the probability that
V π∗
LPCP(x) accepts is either 1 or at most ε. (When we are not paying attention to the

knowledge properties of the LPCP, we shall call this property strong soundness.) An
analogous definition holds for LIPs.

For sufficiently large field F, algebraic LPCPs and LIPs have the strong knowledge
error property, as proved in the following lemma.

Lemma 9.3. Let (PLPCP, VLPCP) be an LPCP over F with knowledge error ε; if
(PLPCP, VLPCP) has degree (dQ, dD), then (PLPCP, VLPCP) has strong knowledge error

max{ε, dQdD
|F| }. An analogous statement holds for (input-oblivious two-message) LIPs.

Proof. Since (PLPCP, VLPCP) has knowledge error ε, it also has knowledge error
max{ε, dQdD

|F| }. We are now only left to show that, for every input x and linear func-

tion π∗, if Pr[V π∗
LPCP(x) = 1] > max{ε, dQdD

|F| } ≥ dQdD
|F| then Pr[V π∗

LPCP(x) = 1] = 1.
Indeed, letting tx be the test polynomial, p the state polynomial, p1, . . . , pk the query
polynomials of VLPCP,

Pr
[
V π∗
LPCP(x) = 1

] = Pr
r←Fμ

[
tx
(
p(r),

〈
π∗, p1(r)

〉
, . . . ,

〈
π∗, pk(r)

〉) = 0η
]

= Pr
r←Fμ

[
a(r) = 0η

]
,

15One can also consider a weaker variant of Definition 9.1 where the extractor, just like the prover, has
oracle access to the proof-verification oracle V (τ, ·, ·). Doing so allows the extractor, for instance, to run the
prover.

15 Page 64 of 72 N. Bitansky et al.

where a is the polynomial of degree dQdD defined by a(r) := tx
(
p(r),

〈
π∗, p1(r)

〉
, . . . ,〈

π∗, pk(r)
〉)

. By the Scwartz–Zippel Lemma (cf. Lemma 2.1), if Pr[V π∗
LPCP(x) = 1] >

dQdD
|F| then a ≡ 0η and thus Pr[V π∗

LPCP(x) = 1] = 1.
A similar argument proves the analogous statement for LIPs. �

Do LIPs with strong knowledge exist? In Sect. 3, we presented two types of LIP
constructions.

• Both LIPs constructed in Sect. 3.1 are algebraic (as they are based on algebraic
LPCPs) and hence, because of Lemma 9.3, do enjoy strong knowledge.

• In contrast, the LIPs constructed in Sect. 3.2 are not algebraic and also do not
enjoy strong knowledge (or soundness). The reason is that those LIPs are based on
traditional PCPs that do not enjoy strong knowledge (or soundness).

In fact, we now prove that no (traditional) PCP (for a hard-enough language) can enjoy
strong soundness, so that the lack of strong knowledge (or soundness) for the LIPs
constructed in Sect. 3.2 is inherent. Concretely, we show that if a language L has a
(traditional) PCP with strong soundness, then it can be decided quite easily.

Definition 9.4. Let � : N → N be a function. The complexity class MA(�) is the set of
languages L for which there exists a probabilistic polynomial-time Turing machine M
such that, for every instance x ,

• if x ∈ L , then there is y ∈ {0, 1}�(|x |) such that Pr[M(x, y) = 1] > 2/3;
• if x 	∈ L , then for every y ∈ {0, 1}�(|x |) it holds that Pr[M(x, y) = 0] > 2/3.

Theorem 9.5. Let (PPCP, VPCP) be a k-query PCP with proof length m for a language
L, where k and m are functions of the input size. If (PPCP, VPCP) has strong soundness
error 1/3, then L ∈ MA(2k(logm + 1)).

Proof. Because (PPCP, VPCP) has strong soundness error 1/3, for every x and π , either
Pr[V π

PCP(x) = 1] = 1 or Pr[V π
PCP(x) = 1] ≤ 1/3. (See Definition 2.2.) It suffices to

show that, for every x ∈ L and π such that Pr[V π
PCP(x) = 1] = 1, there is S ⊆ [m] of

size at most 2k for which Pr[V (π |S ,1|[m]\S)
PCP (x) = 1] = 1, where (π |S, 1|[m]\S) is the PCP

oracle that is the same as π at the locations in S and is equal to 1 at all other locations.
Indeed, to see that the latter is sufficient, consider the MA verifier that, on input x and
candidate witness (S, π |S) ∈ {0, 1}2k(logm+1), runs VPCP with (π |S, 1|[m]\S) and accepts
if and only if VPCP does; by the above claim and the completeness of (PPCP, VPCP), for
any x ∈ L , there is a witness that makes the MA verifier accept with probability 1;
furthermore, for every x /∈ L , the (strong) soundness of (PPCP, VPCP) implies that the
MA verifier accepts with probability at most 1/3 regardless of the witness.

To prove the aforementioned claim, fix any such x ∈ L and define S ⊆ [m] to be the set
of positions that are queried by VPCP with probability at least 1/2; by averaging |S| ≤ 2k.
(While S may depend on x , it may not depend on the PCP proof.) Let π ∈ {0, 1}m be

a PCP oracle for which Pr[V π
PCP(x) = 1] = 1. We show that also Pr[V (π |S ,1|[m]\S)

PCP (x) =
1] = 1, or else strong soundness is violated. Indeed, assume toward contradiction that

this is not the case, then by strong soundness Pr[V (π |S ,1|[m]\S)
PCP (x) = 1] ≤ 1/3. Consider

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 65 of 72 15

a sequence of hybrid PCP oracles π0, . . . , πm−|S| defined as follows: starting from
π0 = π , we set the bits outside of S one by one (in any fixed order) to 1, until we
get πm−|S| = (π |S, 1|[m]\S). By strong soundness, there exist i ∈ [m − |S|] such that
Pr[V πi−1

PCP (x) = 1] = 1 and Pr[V πi
PCP(x) = 1] ≤ 1/3. However, πi−1 and πi only

differ on a single position j ∈ [m] \ S that, in particular, is queried with probability
at most 1/2, implying that Pr[V πi−1

PCP (x) = 1] − Pr[V πi
PCP(x) = 1] ≤ 1/2, leading to a

contradiction. �

FromLIPswith strongknowledge tomulti-theoremdesignated-verifier preprocess-
ing SNARKs. At high level, the fact that LIPs with strong knowledge make “correlation
attacks” impossible gives strong intuition for why such LIPs should give rise (through
our transformation from Sect. 6.1) to designated-verifier preprocessing SNARKs with
the multi-theorem property.

However, formalizing this intuition seems to require a notion of linear-only encryption
that is stronger than the one introduced in Sect. 5.1. Specifically, we need to be able
to repeatedly extract from a malicious prover in order to simulate its queries to the
proof-verification oracle. Doing so raises difficulties similar to the case of plaintext-
aware encryption (see [25,26]), and seems to be solvable via “interactive extractability
assumptions” [25,26,46].

We now provide a definition of linear-only encryption that, together with strong knowl-
edge, suffices to obtain multi-theorem SNARKs. We thus obtain a confirmation that using
strong knowledge is a “conceptually correct” method serving as a good heuristic toward
the construction of multi-theorem SNARKs (despite the fact that we need to make fairly
strong cryptographic assumptions to formalize this step).

Linear-only homomorphism with interactive extraction. A linear-only encryption
scheme with interactive extraction is the same as a (standard) linear-only encryption
(Definition 5.4), except that it has a stronger extraction guarantee. Recall that the (stan-
dard) linear-only property says that whenever an efficient adversary, given a public key
pk and ciphertexts (c1, . . . , cm), produces a ciphertext c′ in the image of Encpk, there
is an efficient extractor that outputs a corresponding affine function “explaining” the
ciphertext (or, more accurately, the underlying plaintext) as an affine combination of (c1,

. . . , cm) (or, more accurately, their underlying plaintexts). While the standard definition
only guarantees “one-time” extraction, the interactive definition gives the adversary the
option to interact with the extractor and try to repeatedly sample additional ciphertexts
c′

2, c
′
3, . . . given the previously-extracted affine combinations. The definition below is

along the same lines as definitions in [25,26,46].

Definition 9.6. An encryption scheme has the linear-only property with interactive
extraction if, for any polynomial-size (interactive) adversary A, there is a polynomial-
size (interactive) extractor E such that, for any sufficiently large λ ∈ N, any auxiliary
input z ∈ {0, 1}poly(λ), and any plaintext generator M, A wins the following game with
negligible probability:

1. Generation step:

• (sk,pk) ← Gen(1λ);

15 Page 66 of 72 N. Bitansky et al.

• (a1, . . . , am) ← M(pk);
• (c1, . . . , cm) ← (Encpk(a1), . . . ,Encpk(am)).

2. For i ∈ {1, . . . , |A|}:
• (c′

i,1, . . . , c
′
i,k) ← A(pk, c1, . . . , cm; e1, . . . , ei−1; z);

• ei ← E(pk, c1, . . . , cm; i; z), where ei is either an affine function (�i , bi) or
it is ⊥.

3. A wins if there exists some i ∈ [|A|], such that any one of the following holds:

• The extractor fails to identify that A outputs an invalid cipher. Namely, there
exists j ∈ [k] such that ImVersk(c′

i, j) 	= 1 and ei 	= ⊥.
• The extractor fails to produce an affine function that explains the ciphertext

produced by A. Namely, there exists j ∈ [k] such that ImVersk(c′
i, j) = 1 and

one of the following conditions hold: (1) ei = ⊥, or (ii) Decsk(c′
i, j) 	= a′

j

where ei = (�i , bi) 	= ⊥ and (a′
i,1, . . . , a

′
i,k)

 ← �i · (a1, . . . , am)
 + bi .

Remark 9.7. (Instantiations) While Definition 9.6 seems stronger than Definition 5.4,
all the instantiations described in Sect. 5.3 are plausible candidates for satisfying it.
(In particular, [25,26,46] considered “knowledge of exponent assumptions” satisfying
a similar requirement.)

We now show that in Lemma 6.2, provided that the linear-only encryption satis-
fies Definition 9.6 and the LIP has strong knowledge error, we obtain a multi-theorem
SNARK (again through Construction 6.1).

Lemma 9.8. Suppose that the LIP (PLIP, VLIP) has strong knowledge error poly(λ)/|F|
and E is a linear-only encryption scheme with interactive extraction (Definition 9.6).
Then, (G, P, V) from Construction 6.1 is a multi-theorem designated-verifier prepro-
cessing SNARK.

Proof. We show that any polynomial-size adversary A that can access the proof-
verification oracle V (τ, ·, ·) can be transformed into a new polynomial-size adversary
A′ that cannot access V (τ, ·, ·) such that, except with negligible probability, the output
of A′ is equal to the (final) output of A. The lemma then follows by applying Lemma 6.2
with adversary A′ where the random coins used by A′ are used as auxiliary input.

First, we use A to define a new interactive adversary IA that (following the template
of Definition 9.6) works as follows. Given a public key pk and ciphertexts (c1, . . . , cm),
IA runs A and simulates the proof-verification oracle V (τ, ·, ·) for A. Specifically, when
A outputs the first query (y1, π1) to V (τ, ·, ·), IA proceeds as follows:

1. IA outputs the tuple of ciphers π1 and then receives e1 from the extractor;
2. if e1 = ⊥, IA answers A’s query (y1, π1) with 0;
3. otherwise, ei is an affine function (�1, b1), and IA runs the LIP verification pro-

cedure using fresh coins; namely, it samples (u, q) ← QLIP, computes d1 =
DLIP(u,�1 · q
 + b1), and then answers A’s query (y1, π1) with d1. (Note that u
is sampled independently of the state contained in the verification state τ , which
is unknown to IA.)

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 67 of 72 15

Then, IA continues to run A, each time simulating the answers of V (τ, ·, ·) the same way
it simulated its first answer. Finally, when A produces its final output (y f , π f), IA also
outputs (y f , π f). By the interactive extraction guarantee (see Definition 9.6), IA has a
corresponding polynomial-size extractor E such that, when IA and E play the extraction
game, IA wins with negligible probability.16

Next, we use IA and E to define a new (non-interactive) adversary A′ that works as
follows. Given a public key pk and ciphertexts (c1, . . . , cm), A′ runs the extraction game
between IA and E , and then outputs the final output (y f , π f) of IA. Note that A′ does
not require access to V (τ, ·, ·).

We claim that, except with negligible probability, the output of A′ is equal to the (final)
output of A. To show this, it suffices to argue that, except with negligible probability,
the answers provided by IA to A and those provided by V (τ, ·, ·) are equal. And indeed:

• Whenever A makes a query (yi , πi) where πi contains a ciphertext c′ such that
ImVersk(c′) 	= 1, V (τ, ·, ·) returns 0. In such a case, the extractor E outputs ⊥,
and so IA answers A’s query with 0.

• For any other query (yi , πi) of A, except with negligible probability, E outputs
(�i , bi) that explains A’s output; i.e., Decsk(c′

i, j) = a′
j for all j ∈ [k], where

(a′
i,1, . . . , a

′
i,k)

 ← �i · (a1, . . . , am)
 + bi . We now consider two cases.
The first case is where (�i , bi) convinces the LIP verifier with probability 1; in this case,
both V (τ, ·, ·) and IA return 1.
The second case is where (�i , bi) does not always convince the LIP verifier; in partic-
ular, by the strong knowledge guarantee, (�i , bi) convinces the LIP verifier with only
negligible probability. We argue that, in this case, except with negligible probability, both
V (τ, ·, ·) and IA return 0. This clearly holds for IA, because it samples fresh queries and
state from QLIP. The fact that this is also the case for V (τ, ·, ·) follows from semantic
security. For, if this were not the case, IA and E could be used to produce an affine func-
tion that causes V (τ, ·, ·) to accept and yet does not satisfy all but a negligible fraction of
(u, q) ∈ QLIP; this would allow to efficiently distinguish this encrypted LIP query from
an encrypted random LIP query.

The proof of the lemma is now complete. �

Acknowledgements

We thank Eli Ben-Sasson, Ran Canetti, Prahladh Harsha, Eran Tromer, Daniel Wichs,
and David Wu for helpful discussions and comments. We also thank the reviewers of
JoC for their comments.

Funding Open access funding provided by EPFL Lausanne.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

16More precisely, we should invoke the interactive extraction guarantee on the interactive adversary I ′A that
is equal to IA except that it outputs only π f instead of (y f , π f).

15 Page 68 of 72 N. Bitansky et al.

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Fast verification
of any remote procedure call: Short witness-indistinguishable one-round proofs for NP. InProceedings of
the 27th International Colloquium onAutomata, Languages andProgramming, ICALP ’00, pp. 463–474,
2000.

[2] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Proceedings of the 4th Theory
of Cryptography Conference, TCC ’07, pp. 118–136, 2007.

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In Proceedings of the 37th International Colloquium on Automata, Languages
and Programming, ICALP ’10, pp. 152–163, 2010.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary
version in FOCS ’92.

[5] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. Journal
of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[6] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings.
In Proceedings on 9th Annual ACM Symposium on Theory of Computing, STOC ’77, pp. 30–41, 1977.

[7] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear PCPs. In Proceedings of the 39th Annual International Cryptology
Conference, CRYPTO ’19, pp. 67–97, 2019.

[8] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs and
their efficiency benefits. In Proceedings of the 32nd Annual International Cryptology Conference,
CRYPTO ’12, pp. 255–272, 2012.

[9] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal
of Computer and System Sciences, 37(2):156–189, 1988.

[10] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran
Tromer. The hunting of the SNARK. Journal of Cryptology, 30(4):989–1066, 2017.

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pp. 326–349, 2012.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrap-
ping for SNARKs and proof-carrying data. In Proceedings of the 45th ACM Symposium on the Theory
of Computing, STOC ’13, pp. 111–120, 2013.

[13] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In Proceedings of the
23rd International Conference on the Theory and Applications of Cryptology and Information Security,
ASIACRYPT ’17, pp. 336–365, 2017.

[14] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on Selected Areas of
Cryptography, pp. 120–128, 1994.

[15] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation,
24(111):713–735, 1970.

[16] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylog-
arithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91,
pp. 21–32, 1991.

http://creativecommons.org/licenses/by/4.0/

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 69 of 72 15

[17] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2–4, 1988, Chicago, Illinois, USA, pp. 103–112, 1988.

[18] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In
Proceedings of the 39th Annual International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT ’20, pp. 677–706, 2020.

[19] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal on Com-
puting, 38(5):1661–1694, 2008. Preliminary version appeared in CCC ’02.

[20] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computation over
large datasets. In Proceedings of the 31st Annual International Cryptology Conference, CRYPTO ’11,
pp. 111–131, 2011.

[21] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Infor-
mation Processing Letters, 25(2):127–132, 1987.

[22] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and witness encryp-
tion from groups. InProceedings of the 40th Annual International Cryptology Conference, CRYPTO ’20,
pp. 776–806, 2020.

[23] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Proceed-
ings of the 12th InternationalWorkshop in Selected Areas in Cryptography, 12th InternationalWorkshop,
SAC ’05, pp. 319–331, 2005.

[24] Michael Ben-Or. Probabilistic algorithms in finite fields. In Proceedings of the 22nd Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’81, pp. 394–398, 1981.

[25] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Proceedings of the 24th Annual International Cryptology Conference,
CRYPTO ’04, pp. 273–289, 2004.

[26] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without random
oracles. InProceedings of the 10th InternationalConference on the Theory andApplication ofCryptology
and Information Security, ASIACRYPT ’04, pp. 48–62, 2004.

[27] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems. InProceedings of the 4th Innovations inTheoretical
Computer Science Conference, ITCS ’13, pp. 401–414, 2013.

[28] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of
probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Com-
puting, STOC ’13, 2013.

[29] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust PCPs of
proximity, shorter PCPs and applications to coding. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, STOC ’04, pp. 1–10, 2004.

[30] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs veri-
fiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, CCC ’05, pp. 120–134, 2005.

[31] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-query PCPPs are long.ACM
Transactions on Computation Theory, 1(2):7:1–7:49, 2009. Preliminary version appeared in ICALP ’08.

[32] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on Com-
puting, 38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[33] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low degree tests
and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, STOC ’03, pp. 612–621, 2003.

[34] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic encryption for restricted
computations. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pp. 350–366, 2012.

[35] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pp. 41–51, 2007.

[36] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’11, 2011.

15 Page 70 of 72 N. Bitansky et al.

[37] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using fully homomor-
phic encryption. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10,
pp. 483–501, 2010.

[38] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with stream-
ing interactive proofs. In Proceedings of the 3rd Innovations in Theoretical Computer Science Confer-
ence, ITCS ’12, pp. 90–112, 2012.

[39] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of
the 4th Annual ACM Symposium on Theory of Computing, STOC ’72, pp. 73–80, 1972.

[40] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of computation. In Proceed-
ings of the 6th International Conference on Information Theoretic Security, volume 7412 of ICITS ’12,
pp. 37–61, 2012.

[41] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive proofs.
Proceedings of the VLDB Endowment, 5(1):25–36, 2011.

[42] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation, 36(154):587–592, 1981.

[43] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Pro-
ceedings of the 11th Annual International Cryptology Conference, CRYPTO ’92, pp. 445–456, 1992.

[44] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability assumption. In
Proceedings of the 4th Conference on Computability in Europe, CiE ’08, pp. 175–185, 2008.

[45] George Danezis, Cedric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with appli-
cations to succinct NIZK arguments. In Proceedings of the 20th International Conference on the Theory
and Application of Cryptology and Information Security, ASIACRYPT ’14, pp. 532–550, 2014.

[46] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communi-
cation. In Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pp. 54–74, 2012.

[47] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low communication 2-prover
zero-knowledge proofs for NP. In Proceedings of the 11th Annual International Cryptology Conference,
CRYPTO ’92, pp. 215–227, 1992.

[48] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial sources.
Computational Complexity, 18(1):1–58, 2009.

[49] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.
[50] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold. Succinct NP proofs

and spooky interactions, December 2004. Available at www.openu.ac.il/home/mikel/papers/spooky.ps.
[51] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Transactions on Information Theory, 31(4):469–472, 1985.
[52] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix com-

putations, with applications. In Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS ’12, pp. 501–512, 2012.

[53] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. Preliminary version
in FOCS ’91.

[54] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Proceedings of the 6th Annual International Cryptology Conference, CRYPTO ’87, pp.
186–194, 1987.

[55] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In Proceedings of the 30th Annual International Cryptology Confer-
ence, CRYPTO ’10, pp. 465–482, 2010.

[56] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT ’13, pp. 626–645, 2013.

[57] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In
Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, pp. 467–476, 2013.

[58] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded communication.
Information Processing Letters, 67(4):205–214, 1998.

www.openu.ac.il/home/mikel/papers/spooky.ps

Succinct Non-Interactive Arguments via Linear Interactive Proofs Page 71 of 72 15

[59] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs
for Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08,
pp. 113–122, 2008.

[60] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejection prob-
lem from designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456, 2011.

[61] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[62] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAMJournal onComputing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[63] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pp. 407–418,
2005.

[64] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th
International Conference on the Theory and Application of Cryptology and Information Security, ASI-
ACRYPT ’10, pp. 321–340, 2010.

[65] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings of the 35th Annual
International Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT ’16,
pp. 305–326, 2016.

[66] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length. Journal of
the ACM, 53:558–655, July 2006. Preliminary version in STOC ’02.

[67] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover. Com-
putational Complexity, 11(1/2):1–53, 2002.

[68] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11,
pp. 99–108, 2011.

[69] Johan Håstad and Subhash Khot. Query efficient PCPs with perfect completeness. Theory of Computing,
1(1):119–148, 2005.

[70] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity.Computational Complexity,
9(3–4):157–201, Dec 2000. Preliminary version in STACS ’91.

[71] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In Proceed-
ings of the 18th Annual International Cryptology Conference, CRYPTO ’98, pp. 408–423, 1998.

[72] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short PCPs. In Pro-
ceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity, CCC ’07, pp.
278–291, 2007.

[73] Yuval Ishai. Zero-knowledge proofs from information-theoretic proof systems. zkproof.org blog
post https://zkproof.org/2020/08/12/information-theoretic-proof-systems, 2020.

[74] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, STOC ’92, pp. 723–732, 1992.

[75] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with preprocessing
for LOGSNP. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
pp. 355–366, 2006.

[76] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Colloquium on
Automata, Languages and Programming, ICALP ’08, pp. 536–547, 2008.

[77] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of the 29th
Annual International Cryptology Conference, CCC ’09, pp. 143–159, 2009.

[78] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge argu-
ments. In Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pp. 169–189, 2012.

[79] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Proceedings of the 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT ’10, pp. 1–23, 2010.

[80] Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual IEEE Conference
on Computational Complexity, CCC ’12, 2012.

[81] Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE
Transactions on Information Theory, 24(5):525–530, Sep 1978.

https://zkproof.org/2020/08/12/information-theoretic-proof-systems

15 Page 72 of 72 N. Bitansky et al.

[82] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000.
Preliminary version appeared in FOCS ’94.

[83] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology,
2(4):343–363, 2008.

[84] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM, 57:1–29,
June 2008. Preliminary version appeared in FOCS ’08.

[85] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual Interna-
tional Cryptology Conference, CRYPTO ’03, pp. 96–109, 2003.

[86] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and applications. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90, pp. 213–223,
1990.

[87] Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive proofs. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5–8, 2020, pp. 1096–115. SIAM, 2020.

[88] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceed-
ings of the 17th International Conference On Theory And Application Of Cryptographic Techniques,
EUROCRYPT ’99, pp. 223–238, 1999.

[89] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from a Weil descent. In
Proceedings of the 18th International Conference on the Theory and Application of Cryptology and
Information Security, ASIACRYPT ’12, 2012.

[90] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94, pp. 194–203, 1994.

[91] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, STOC ’05, pp. 84–93, 2005.

[92] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Proceedings of the 8th
Theory of Cryptography Conference, TCC ’11, pp. 219–234, 2011.

[93] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, STOC ’97, pp. 475–484, 1997.

[94] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael Walfish.
Resolving the conflict between generality and plausibility in verified computation. In Proceedings of the
8th EuoroSys Conference, EuroSys ’13, pp. 71–84, 2013.

[95] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification
of remote computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems, HotOS ’11, pp. 29–29, 2011.

[96] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
[97] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems

for outsourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed
System Security Symposium, NDSS ’12, pp. ???–???, 2012.

[98] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish.
Taking proof-based verified computation a few steps closer to practicality. In Proceedings of the 21st
USENIX Security Symposium, Security ’12, pp. 253–268, 2012.

[99] Justin Thaler. Proofs, arguments, and zero-knowledge. http://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.pdf, 2021.

[100] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical Foundations of
Computer Science, Volume 53 of Lecture Notes in Computer Science, pp. 162–176. 1977.

[101] Joachim Von Zur Gathen and Daniel Panario. Factoring polynomials over finite fields: a survey. Journal
of Symbolic Computation, 31(1-2):3–17, Jan 2001.

[102] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming, ICALP ’05, pp. 140–152, 2005.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

	Succinct Non-Interactive Arguments via Linear Interactive Proofs
	1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Our Results
	1.3.1. Linear Interactive Proofs
	1.3.2. Preprocessing SNARK s from LIP s
	1.3.3. New Efficiency Features for SNARK s

	1.4. Previous Structured PCPs
	1.5. Related and Subsequent Work
	1.6. Organization

	2. Definitions of LIP s and LPCP s
	2.1. Polynomials, Degrees, and Schwartz–Zippel
	2.2. Linear PCP s
	2.3. Linear Interactive Proofs

	3. Constructions of LIP s
	3.1. LIP s From LPCP s
	3.1.1. Zero-Knowledge

	3.2. LIP s From (Traditional) PCP s
	3.2.1. Zero-Knowledge

	4. Definitions of SNARK s and Preprocessing SNARK s
	4.1. Preprocessing SNARK s for Boolean Circuit Satisfaction Problems

	5. Linear-Only Encryption and Encodings
	5.1. Linear-Only Encryption
	5.2. Linear-Only One-Way Encoding
	5.3. Instantiations

	6. Preprocessing SNARK s from LIP s
	6.1. Designated-Verifier Preprocessing SNARK s from Arbitrary LIP s
	6.2. Publicly-Verifiable Preprocessing SNARK s from Algebraic LIP s
	6.3. Resulting Preprocessing SNARK s

	7. Two LPCP s for Circuit Satisfaction Problems
	7.1. An LPCP from the Hadamard Code
	7.2. An LPCP from Quadratic Span Programs

	8. HVZK for LPCP s with Low-Degree Decision Algorithm
	9. Multi-Theorem Designated-Verifier SNARK s via Strong Knowledge
	Acknowledgements
	References

