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Abstract. The differential-linear attack, combining the power of the two most effective
techniques for symmetric-key cryptanalysis, was proposed by Langford and Hellman
at CRYPTO 1994. From the exact formula for evaluating the bias of a differential-
linear distinguisher (JoC 2017), to the differential-linear connectivity table technique
for dealing with the dependencies in the switch between the differential and linear
parts (EUROCRYPT 2019), and to the improvements in the context of cryptanalysis
of ARX primitives (CRYPTO 2020, EUROCRYPT 2021), we have seen significant
development of the differential-linear attack during the last four years. In this work,
we further extend this framework by replacing the differential part of the attack by
rotational-XOR differentials. Along the way, we establish the theoretical link between
the rotational-XOR differential and linear approximations and derive the closed formula
for the bias of rotational differential-linear distinguishers, completely generalizing the
results on ordinary differential-linear distinguishers due to Blondeau, Leander, and Ny-
berg (JoC 2017) to the case of rotational differential-linear cryptanalysis. We then revisit
the rotational cryptanalysis from the perspective of differential-linear cryptanalysis and
generalize Morawiecki et al.’s technique for analyzing Keccak, which leads to a prac-
tical method for estimating the bias of a (rotational) differential-linear distinguisher
in the special case where the output linear mask is a unit vector. Finally, we apply
the rotational differential-linear technique to the cryptographic permutations involved
in FRIET, Xoodoo, Alzette, and SipHash. This gives significant improvements
over existing cryptanalytic results, or offers explanations for previous experimental dis-
tinguishers without a theoretical foundation. To confirm the validity of our analysis,
all distinguishers with practical complexities are verified experimentally. Moreover, we
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discuss the possibility of applying the rotational differential-linear technique to S-box-
based designs or keyed primitives, and propose some open problems for future research.

Keywords. Differential-linear cryptanalysis, Rotational cryptanalysis, ARX, FRIET,
Xoodoo, Alzette, SipHash.

1. Introduction

The practical security of a symmetric-key primitive is determined by evaluating its
resistance against an almost exhaustive list of known cryptanalytic techniques. Therefore,
it is of essential importance to generalize existing cryptanalytic methods or develop
new techniques. Sometimes the boundary between the two can be quite blurred. For
example, the development of the invariant attacks [1–3], polytopic cryptanalysis [4],
division properties [5,6], rotational cryptanalysis [7,8], etc., in recent years belongs to
these two approaches.

Another approach is to employ known techniques in combination to enhance the effec-
tiveness of the individual attacks. The boomerang [9] and differential-linear cryptanalysis
are the best examples. In particular, during the past four years, we have seen significant
advancements in the development of the differential-linear cryptanalysis introduced by
Langford and Hellman at CRYPTO 1994 [10], which combines the power of the two
most important techniques (differential and linear attacks) for symmetric-key cryptanal-
ysis. Our work starts with an attempt to further extend the differential-linear framework
by replacing the differential part of this cryptanalytic technique with rotational-XOR
differentials.
Rotational and Rotational-XOR Cryptanalysis. Rotational cryptanalysis was first for-
mally introduced in [8] by Khovratovich and Nikolic, where the evolution of the so-
called rotational pair (x, x ≪ t) through a target cipher was analyzed. The rotational
properties of the building blocks of ARX primitives were then applied to the rotational
rebound attack on the hash function Skein [11], and later were refined to consider a chain
of modular additions [12]. Recently, cryptanalytic results of ARX-based permutations
Chaskey and Chacha with respect to rotational cryptanalysis were reported [13,14].
Apart from the ARX constructions, permutations built with logical operations without
modular additions, also known as AND-RX or LRX [15] primitives, are particularly
interesting with respect to rotational attacks. In 2010, Morawiecki et al. applied this
technique to distinguish the round-reduced Keccak- f [1600] permutation by feeding
in rotational pairs and observing the bias of the XOR of the (i + t)-th and i-th bits
of the corresponding outputs, where t is the rotation offset and the addition should be
taken modulo the size of the rotated word [16]. We will come back to Morawiecki et
al.’s technique and show that it has an intimate relationship with the so-called rotational
differential-linear cryptanalysis we proposed in Sect. 3. To thwart rotational attacks, con-
stants which are not rotation-invariant can be injected into the data path. Still, in certain
cases, it is possible to overcome this countermeasure with some ad-hoc techniques.

Later, Ashur and Liu [7] generalized the concept of rotational pair by considering the
propagation of a data pair (x, x ′) that is related by the so-called rotational-XOR (RX)
difference (x ≪ t) ⊕ x ′ = δ. The cryptanalytic technique based on RX-difference
was named as rotational-XOR cryptanalysis. Note that when the RX-difference of the
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pair (x, x ′) is zero, it degenerates to a rotational pair. RX cryptanalysis integrates the
effect of constants into the analysis, and it has been successfully applied to many ARX
or AND-RX designs [17,18]. Hereafter, we refer both rotational and rotational-XOR
cryptanalysis as rotational cryptanalysis, or in a general sense, rotational cryptanalysis
contains all the statistical attacks requiring chosen data (e.g., plaintexts) with certain
rotational relationships.
Differential-linear Cryptanalysis. Given an encryption function E , we divide it into two
consecutive subparts E0 and E1. Let δ → Δ be a differential for E0 with probability p,
and Γ → γ be a linear approximation for E1 with bias εΓ,γ = Pr[Γ · y ⊕ γ · E1(y) =
0]− 1

2 . Then, the overall bias Eδ,γ of the differential-linear distinguisher can be estimated
with the piling-up lemma [19] as

Eδ,γ = Pr[γ · (E(x) ⊕ E(x ⊕ δ)) = 0] − 1

2
= (−1)Γ ·Δ · 2pε2

Γ,γ , (1)

since γ · (E(x) ⊕ E(x ⊕ δ)) can be decomposed into the XOR sum of the following
three terms:

⎧
⎪⎨

⎪⎩

Γ · (E0(x) ⊕ E0(x ⊕ δ)),

Γ · E0(x ⊕ δ) ⊕ γ · E(x ⊕ δ),

Γ · E0(x) ⊕ γ · E(x).

The derivation of Eq. (1) not only relies on the independence of E0 and E1, but also the
assumption

Pr[Γ · (E0(x) ⊕ E0(x ⊕ δ)) = 0 | E0(x) ⊕ E0(x ⊕ δ) �= Δ] = 1

2
, (2)

under which we have Pr[Γ · (E0(x) ⊕ E0(x ⊕ δ)) = 0] = 1
2 + (−1)Γ ·Δ

2 p.
However, it has long been observed that Eq. (2) may fail in many cases, and multiple

linear approximations have to be taken into account to make the estimates more accu-
rate [10,20,21]. In [22], Blondeau, Leander, and Nyberg presented a closed formula for
the overall bias Eδ,γ based on the link between differential and linear attacks [23] under
the sole assumption that E0 and E1 are independent. However, this closed formula is
generally not applicable in practice even if E0 and E1 are independent, since it requires
the computation of the exact bias εδ,v = Pr[v · (E0(x) ⊕ E0(x ⊕ δ)) = 0] − 1

2 for all
v.1 Moreover, in some cases, the dependency between E0 and E1 can be significant.
Inspired by the boomerang-connectivity table (BCT) and its successful applications in
the context of boomerang attacks [24], Bar-On, Dunkelman, Keller, and Weizman in-
troduced the differential-linear connectivity table (DLCT) [25], where the target cipher
is decomposed as E = E1 ◦ Em ◦ E0 and the actual differential-linear probability of the
middle part Em is determined by experiments, fully addressing the issue of dependency

1Unlike the estimation of the probability of a differential with a large number of characteristics, a partial
evaluation of the differential-linear distinguisher without the full enumeration of intermediate masks can be
inaccurate, since both positive and negative biases occur.
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in the switch between E0 and E1. (The effect of multiple characteristics and approxima-
tions still has to be handled by the framework of Blondeau et al. [22].) Beierle, Leander,
and Todo presented several improvements to the framework of differential-linear attacks
with a special focus on ARX ciphers at CRYPTO 2020 [26]. At EUROCRYPT 2021,
Coutinho and Neto proposed a new technique for finding better linear approximations
in ARX ciphers, leading to further improvement in the cryptanalysis of ChaCha [27].
Most recently, Broll et al. proposed several new improvements, and improved attacks
on Chaskey and Serpent are obtained [28].

Our Contribution. We start from the natural idea to extend the framework of differential-
linear attacks by replacing the differential part with rotational-XOR differentials. Specif-
ically, given a pair of data with RX-difference δ = (x ≪ t) ⊕ x ′ and a linear
mask γ , a rotational differential-linear distinguisher of a cipher E exploits the bias
of γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)), where rot(·) is some rotation-like operation.

We then present an informal formula similar to Eq. (1) to estimate the bias of a
rotational differential-linear distinguisher by the probability of the rotational-XOR dif-
ferential covering E0 and the biases of the linear approximation and its rotated version
covering E1, where E = E1 ◦ E0. This formula, as in the case of ordinary differential-
linear cryptanalysis, requires certain assumptions that may not hold in practice.

Following Blondeau, Leander, and Nyberg’s method [22], we derive the closed formu-
las for the bias of a rotational differential-linear distinguisher in both the standard and
multidimensional cases, completely generalizing the results on ordinary differential-
linear distinguishers due to Blondeau, Leander, and Nyberg to the case of rotational
differential-linear cryptanalysis. While these formulas are of theoretical interest, they
can be hardly applied in practice since this type of formulas involve the computation of
correlations of exponentially many trails which is impossible in most situations.

Then, we focus our attention on the special case of rotational differential-linear
cryptanalysis where the output linear mask γ is a unit vector. In this case, the bias
Pr[ei · (rot( f (x)) ⊕ f (rot(x) ⊕ δ)) = 0] − 1

2 is

Pr
[
(E(x)) j ⊕ (E(x ′))i = 0

] − 1

2
= 1

2
− Pr

[
(E(x)) j �= (E(x ′))i

]
, (3)

for some i and j , where x ′ = rot(x)⊕δ. With this formulation, we immediately realize
that Morawiecki et al.’s approach [16] gives rise to an efficient method for evaluating
the biases of rotational differential-linear distinguishers, as well as ordinary differential-
linear distinguishers whose output linear masks are unit vectors. We generalize some
results from Morawiecki et al.’s work and arrive at formulas which are able to predict
Pr[( f (x)) j �= f (x ′)i ] based on the information Pr[x j �= xi ] for many common op-
erations f appearing in ARX designs. In particular, we give the explicit formula for
computing the differential-linear and rotational differential-linear probability for an n-
bit modular addition with O(n) operations, while a direct application of Bar-On et al.’s
approach [25] based on the fast Fourier transformation (FFT) by treating the modular
addition as an 2n ×n S-box would require a complexity of O(22n). The probability eval-
uation can be iteratively applied for an ARX or AND-RX construction. Nevertheless,
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Table 1. A summary of the results. R-DL = rotational differential-linear, DL = differential-linear, LC = linear
characteristic DC = differential characteristic.

Permutation Type #Round Probability/correlation Ref.
Theoretical Experimental

FRIET R-DL 6 2−5.81 2−5.12 Sect. 5
R-DL 7 2−9.81 2−9.12 Sect. 5
LC 7 2−29 – [29]
R-DL 8 2−17.81 2−17.2 Sect. 5
LC 8 2−40 – [29]
R-DL 13 2−117.81 – Sect. 5

Xoodoo DC 3 2−36 – [30]
R-DL 4 1 1 Sect. 5

Alzette DC 4 2−6 – [31]
R-DL 4 2−11.37 2−7.35 Sect. 6
DL 4 2−0.27 2−0.1 Sect. 6

We show differentials with probabilities and LC/DL/R-DL with correlations

we note that the accuracy of the probability evaluation is affected by the dependency
among the neighbor bits.

We apply the technique of rotational differential-linear cryptanalysis to the crypto-
graphic permutations involved in FRIET, Xoodoo and Alzette. For FRIET, we find
a 6-round rotational differential-linear distinguisher with a correlation 2−5.81, and it can
be extended to a practical 8-round rotational differential-linear distinguisher with a cor-
relation of 2−17.81. As a comparison, the correlation of the best known 8-round linear
trail of FRIET is 2−40. Moreover, our 6-round distinguisher for FRIET can be further
extended to a 13-round one. For Xoodoo, we identify a 4-round rotational differential-
linear distinguisher with a correlation 1, while previous best result for Xoodoo is a
3-round differential with a probability 2−36. For Alzette, the 64-bit ARX-box, we
find a 4-round differential-linear distinguisher with a correlation 2−0.27 and a 4-round
rotational differential-linear distinguisher with a correlation 2−11.37. A summary of the
results is shown in Table 1, where all distinguishers with practical complexities are
experimentally verified.

From the above summarization, we can see that the rotational differential-linear tech-
nique can be notably effective against unkeyed cryptographic permutations constructed
from modulo additions and basic bitwise operations like AND and XOR. To investigate
the applicability of the rotational differential-linear technique with respect to S-box-
based designs and keyed primitives, we experimentally apply the method to Midori.
Along the way, we give some insight into the difficulties of applying this technique to
such primitives. Finally, we propose several open problems deserving further investiga-
tions.

Remark 1. This paper is the journal version of [32]. The main difference can be sum-
marized as follows. First of all, this work solves the open problem proposed in [32],
establishing the theoretical link between the rotational-XOR differential and linear ap-
proximations and deriving the closed formula for the bias of rotational differential-linear
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distinguishers, completely generalizing the results on ordinary differential-linear distin-
guishers due to Blondeau, Leander, and Nyberg [22] to the case of rotational differential-
linear cryptanalysis. Secondly, this work investigates the possibility of applying the
rotational differential-linear technique to S-box-based designs and keyed primitives,
discusses the source of difficulties and proposes new open problems deserving further
investigation.

Outline. Section 2 introduces the notations and preliminaries for rotational-XOR and
linear cryptanalysis. We propose the rotational differential-linear cryptanalysis and es-
tablish the theoretical link between the rotational-XOR cryptanalysis and linear crypt-
analysis in Sect. 3. This is followed by Sect. 4 where we explore the methods for evalu-
ating the biases of rotational differential-linear distinguishers. In Sect. 5 and Sect. 6, we
apply the techniques developed in previous sections to AND-RX and ARX primitives.
In Sect. 7, we conclude the paper and discuss the possibilities of applying the rotational
differential-linear technique to S-box-based designs and keyed primitives.

2. Notations and Preliminaries

Let F2 = {0, 1} be the field with two elements. We denote by xi the i-th bit of a bit string
x ∈ F

n
2. For a vectorial Boolean function F : F

n
2 → F

m
2 with y = F(x) ∈ F

m
2 ,

its i-th output bit yi is denoted by (F(x))i . For an n-bit string x , we use the in-
dexing scheme x = (xn−1, · · · , x1, x0). In addition, concrete values in F

n
2 are spec-

ified in hexadecimal notations. For example, we use 1111 to denote the binary string
(0001 0001 0001 0001)2.

The XOR-difference and rotational-XOR difference with offset t of two bit strings x
and x ′ in F

n
2 are defined as x ⊕x ′ and (x ≪ t)⊕x ′, respectively. For the rotational-XOR

difference δ = (x ≪ t) ⊕ x ′, we may omit the rotation offset and write δ = ←−x ⊕ x ′ or
δ = rot(x) ⊕ x ′ to make the notation more compact when it is clear from the context.
Moreover, by abusing the notation, ←−x and rot(x) may rotate the entire string x or
rotate the substrings of x to the left separately with a common offset, depending on the
context. For instance, in the analysis of Keccak- f , we rotate each lane of the state by
certain amount [16]. Correspondingly, −→x and rot−1(x) rotate x or its substrings to
the right. Similar to differential cryptanalysis with XOR-difference, we can define the
probability of an RX-differential as follows.

Definition 1. (RX-differential probability) Let f : F
n
2 → F

n
2 be a vectorial Boolean

function. Let α and β be n-bit words. Then, the RX-differential probability of the RX-
differential α → β for f is defined as

Pr[α RX−→ β] = 2−n#
{

x ∈ F
n
2 : rot( f (x)) ⊕ f (rot(x) ⊕ α) = β

}

Finally, the definitions of correlation, bias, and some lemmas concerning Boolean
functions together with the piling-up lemma are needed.
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Definition 2. ([33,34]) The correlation of a Boolean function f : F
n
2 → F2 is defined

as cor( f ) = 2−n(#{x ∈ F
n
2 : f (x) = 0} − #{x ∈ F

n
2 : f (x) = 1}).

Definition 3. ([33,34]) The bias ε( f ) of a Boolean function f : F
n
2 → F2 is defined

as 2−n#{x ∈ F
n
2 : f (x) = 0} − 1

2 .

From Definition 2 and Definition 3, we can see that cor( f ) = 2ε( f ).

Definition 4. Let f : F
n
2 → F2 be a Boolean function. The Walsh-Hadamard transfor-

mation takes in f and produces a real-valued function f̂ : F
n
2 → [−2n, 2n] ⊆ R such

that

∀w ∈ F
n
2, f̂ (w) =

∑

x∈Fn
2

f (x)(−1)x ·w.

Definition 5. Let f : F
n
2 → F2 and g : F

n
2 → F2 be two Boolean functions. The

convolutional product of f and g is a Boolean function defined as

∀y ∈ F
n
2, ( f 	 g)(y) =

∑

x∈Fn
2

g(x) f (x ⊕ y).

Lemma 1. ([34], Corollary 2) Let f̂ be the Walsh-Hadamard transformation of f .
Then, the Walsh-Hadamard transformation of f̂ is 2n f .

Lemma 2. ([34], Proposition 6) (̂ f 	 g)(z) = f̂ (z)ĝ(z) and thus ̂( f 	 f ) = ( f̂ )2.

Lemma 3. (Piling-up Lemma [19]) Let Z0, · · · , Zm−1 be m independent binary ran-
dom variables with Pr[Zi = 0] = pi . Then, we have that

Pr
[
Z0 ⊕ · · · ⊕ Zm−1 = 0

] = 1

2
+ 2m−1

m−1∏

i=0

(

pi − 1

2

)

,

or alternatively, 2 Pr
[
Z0 ⊕ · · · ⊕ Zm−1 = 0

] − 1 = ∏m−1
i=0 (2pi − 1) .

3. Rotational Differential-Linear Cryptanalysis

A natural extension of the differential-linear cryptanalysis is to replace the differential
part of the attack by rotational-XOR (RX) differentials. Let E = E1 ◦ E0 be an en-
cryption function. Assume that we have an RX-differential δ → Δ covering E0 with
Pr[rot(E0(x)) ⊕ E0(rot(x) ⊕ δ) = Δ] = p and a linear approximation Γ → γ of
E1 such that

{
εΓ,γ = Pr

[
Γ · y ⊕ γ · E1(y) = 0

] − 1
2

εrot−1(Γ ),rot−1(γ ) = Pr
[
rot−1(Γ ) · y ⊕ rot−1(γ ) · E1(y) = 0

] − 1
2

,
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Fig. 1. A high-level illustration of a rotational-differential linear approximation.

where the probabilities are computed over randomly chosen y. This configuration is
shown in Fig. 1.

Let x ′ = rot(x) ⊕ δ. If the assumption

Pr
[
Γ · (rot(E0(x)) ⊕ E0(x ′)) = 0 | rot(E0(x)) ⊕ E0(x ′) �= Δ

] = 1

2
(4)

holds, we have

Pr
[
Γ · (rot(E0(x)) ⊕ E0(x ′)) = 0

] = 1

2
+ (−1)Γ ·Δ

2
p.

Since γ · (rot(E(x)) ⊕ E(x ′)
)

can be written as

γ · rot(
E(x)

) ⊕ Γ · rot(
E0(x)

) ⊕ Γ · (
rot(E0(x)) ⊕ E0(x ′)

) ⊕ Γ · E0(x ′) ⊕ γ · E(x ′),

where the underlined part cancels out, and thus

γ ·
(

rot(E(x)) ⊕ E(x ′)
)

= rot

(

rot−1(γ ) · E(x) ⊕ rot−1(Γ ) · E0(x)

)

⊕ Γ ·
(

rot(E0(x)) ⊕ E0(x ′)
)

⊕ Γ · E0(x ′) ⊕ γ · E(x ′).

Consequently, the bias of the rotational differential-linear distinguisher can be estimated
by piling-up lemma as

ER-DL
δ,γ =Pr[γ · (

←−
E (x) ⊕ E(x ′))=0]− 1

2
=(−1)Γ ·Δ 2p εΓ,γ εrot−1(Γ ),rot−1(γ ), (5)

and the corresponding correlation of the distinguisher is

CR-DL
δ,γ = 2ER-DL

δ,γ = (−1)Γ ·Δ 4p εΓ,γ εrot−1(Γ ),rot−1(γ ). (6)



Rotational Differential-Linear Cryptanalysis Revisited Page 9 of 45 3

We can distinguish E from random permutations if the absolute value of ER−DL
δ,γ or

CR-DL
δ,γ is sufficiently high. Note that if we set the rotation offset to zero, the rotational

differential-linear attack is exactly the ordinary differential-linear cryptanalysis. There-
fore, the rotational differential-linear attack is a strict generalization of the ordinary
differential-linear cryptanalysis.

A rotational differential-linear distinguisher can be extended by appending linear ap-
proximations at the end. Given a rotational differential-linear distinguisher of a function
f with a bias

εδ,γ = Pr
[
γ · (rot( f (x)) ⊕ f (rot(x) ⊕ δ)) = 0

] − 1

2
,

and a linear approximation (γ, μ) over a function g with

{
εγ,μ = Pr

[
γ · x ⊕ μ · g(x) = 0

] − 1
2 ,

εrot−1(γ ),rot−1(μ) = Pr
[
rot−1(γ ) · x ⊕ rot−1(μ) · g(x) = 0

] − 1
2 ,

we can compute the bias of the rotational differential-linear distinguisher of h = g ◦ f
with input RX-difference δ and output linear mask μ by the piling-up lemma. Since

μ · (rot(h(x)) ⊕ h(rot(x) ⊕ δ)) = γ · (rot( f (x)) ⊕ f (rot(x) ⊕ δ))

⊕ γ · rot( f (x)) ⊕ μ · rot(h(x))

⊕ γ · f (rot(x) ⊕ δ) ⊕ μ · h(rot(x) ⊕ δ)

,

the bias of the rotational differential-linear distinguisher can be estimated as

Pr [μ · (rot(h(x)) ⊕ h(rot(x) ⊕ δ)) = 0] − 1

2
= 4εδ,γ εγ,μ εrot−1(γ ),rot−1(μ).

(7)

However, as in ordinary differential-linear attacks, the assumption described by Eq. (4)
may not hold in practice, and we prefer a closed formula for the bias ER-DL

δ,γ without this
assumption for much the same reasons leading to Blondeau et al.’s work [22]. Also, we
would like to emphasize that if Eqs. (5) and (7) are used to estimate the bias, we should
verify the results experimentally whenever possible.

3.1. Link Between RX-Cryptanalysis and Linear Cryptanalysis

In [22], Blondeau et al. proved the following theorem based on the general link between
differential and linear cryptanalysis [23].

Theorem 1. ([22]) If E0 and E1 are independent, the bias of a differential-linear
distinguisher with input difference δ and output linear mask γ can be computed as

Eδ,γ =
∑

v∈Fn
2

εδ,vc2
v,γ , (8)
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for all δ �= 0 and γ �= 0, where

{
εδ,v = Pr[v · (E0(x) ⊕ E0(x ⊕ δ)) = 0] − 1

2

cv,γ = cor(v · y ⊕ γ · E1(y))
.

To replay Blondeau et al.’s technique in an attempt to derive the rotational differential-
linear counterpart of Eq. (8), we have to first establish the relationship between rotational
differential-linear cryptanalysis and linear cryptanalysis.

Let F : F
n
2 → F

n
2 be a vectorial Boolean function. The cardinality of the set

{
x ∈ F

n
2 : ←−

F (x) ⊕ F(
←−x ⊕ a) = b

}

is denoted by ξF (a, b), and the correlation of u · x ⊕ v · F(x) is cor(u · x ⊕ v · F(x)).

Let
←−
F−→ : F

n
2 → F

n
2 be the vectorial Boolean function mapping x to

←−
F (

−→x ). It is easy to
show that

cor
(

u · x ⊕ v · ←−
F−→(x)

)
= cor

(−→u · x ⊕ −→v · F(x)
)
.

In what follows, we are going to establish the relationship between

ξF (a, b), cor(u · x ⊕ v · F(x)), and cor(−→u · x ⊕ −→v · F(x)).

Definition 6. Given a vectorial Boolean function F : F
n
2 → F

n
2, the Boolean function

θF : F
2n
2 → F2 is defined as

θF (x, y) =
{

1 if y = F(x),

0 otherwise.
(9)

Lemma 4. Let F : F
n
2 → F

n
2 be a vectorial Boolean function. Then for any (a, b) ∈

F
2n
2 , we have ξF (a, b) = (θ←−

F−→
	 θF )(a, b).

Proof. According to Definition 5, we have

(

θ←−
F−→

	 θF

)

(a, b) =
∑

x ||y∈F2n
2

θ←−
F−→

(x, y)θF (a ⊕ x, b ⊕ y)

=
∑

x∈Fn
2

∑

y∈Fn
2

θ←−
F−→

(x, y)θF (a ⊕ x, b ⊕ y)

=
∑

x∈Fn
2

θ←−
F−→

(
x,

←−
F−→(x)

)
θF

(
a ⊕ x, b ⊕ ←−

F−→(x)
)

=
∑

x∈Fn
2

θF

(
a ⊕ x, b ⊕ ←−

F−→(x)
)
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= #
{

x ∈ F
n
2 : b ⊕ ←−

F−→(x) = F(a ⊕ x)
}

= ξF (a, b).

�

Lemma 5. Let F : F
n
2 → F

n
2 be a vectorial Boolean function. Then for any (a, b) ∈

F
2n
2 , we have cor(a · x ⊕ b · F(x)) = 2−n θ̂F (a, b), and thus

cor
(

a · x ⊕ b · ←−F−→(x)
)

= 1

2n
θ̂←−

F−→
(a, b).

Proof. According to Definition 4, we have

θ̂F (a, b) =
∑

x ||y∈F2n
2

θF (x, y)(−1)(x ||y)·(a||b)

=
∑

x∈Fn
2

∑

y∈Fn
2

θF (x, y)(−1)a·x⊕b·y

=
∑

x∈Fn
2

(−1)a·x⊕b·F(x)

= 2ncor(a · x ⊕ b · F(x)).

�

For a vectorial Boolean function F : F
n
2 → F

n
2, we will denote

cor(−→u · x ⊕ −→v · F(x))cor(u · x ⊕ v · F(x))

by λF (u, v). When F is clear from the context, we may omit F and use λ(u, v) for the
sake of simplicity.

Theorem 2. The link between RX-differentials and linear approximations can be sum-
marized as

ξF (a, b) =
∑

u,v∈Fn
2

(−1)u·a⊕v·bλF (u, v) = λ̂F (a, b). (10)

Also, we have

22nλF (u, v) =
∑

a,b∈Fn
2

(−1)u·a⊕v·bξF (a, b) = ξ̂F (u, v). (11)

Proof. According to Lemma 4,

ξF (a, b) = (θ←−
F−→

	 θF )(a, b). (12)
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Applying Lemma 1 to Eq. (12) gives

22nξF (a, b) = ̂
̂(θ←−
F−→

	 θF )(a, b).

Then, according to Lemma 2, we have

22nξF (a, b) = ̂
̂(θ←−
F−→

	 θF )(a, b) = ̂̂
θ←−

F−→
θ̂F (a, b).

Since θ̂←−
F−→

θ̂F = 22ncor(u · x ⊕ v · ←−
F−→(x))cor(u · x ⊕ v · F(x)) due to Lemma 5,

22nξF (a, b) = ̂̂
θ←−

F−→
θ̂F (a, b)

= 22n
∑

u||v∈F2n
2

(−1)(u||v)·(a||b)cor(u · x ⊕ v · ←−
F−→(x))cor(u · x ⊕ v · F(x))

= 22n
∑

u,v∈Fn
2

(−1)u·a⊕v·bcor(u · x ⊕ v · ←−
F−→(x))cor(u · x ⊕ v · F(x))

= 22n
∑

u,v∈Fn
2

(−1)u·a⊕v·bcor(−→u · x ⊕ −→v · F(x))cor(u · x ⊕ v · F(x))

= 22n
∑

u,v∈Fn
2

(−1)u·a⊕v·bλF (u, v)

= 22n λ̂F (a, b),

that is,

ξF (a, b) = λ̂F (a, b). (13)

Applying Lemma 1 to Eq. (13) gives ξ̂F (u, v) = 22nλF (u, v). �

If the function F is rotation invariant, i.e.,
←−−
F(x) = F(

←−x ), then we have cor(−→u ·x⊕−→v ·
F(x)) = cor(u·x⊕v·F(x)). As a result, the theoretical link between rotational-XOR and
linear cryptanalysis degenerates to the link between ordinary differential cryptanalysis
and linear cryptanalysis. Based on the link between differential and linear cryptanalysis,
Blondeau et al. derive a closed formula for the bias of an ordinary differential-linear
distinguisher as shown in Eq. (8). In addition, Theorem 2 implies the following corollary.

Corollary 1. Pr

[

a
RX−→
F

b

]

= 2−n ∑
u,v∈Fn

2
(−1)u·a⊕v·bλF (u, v).
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Proof. Let ξF (a, b) denote the cardinality of
{

x ∈ F
n
2 : ←−

F (x) ⊕ F(
←−x ⊕ a) = b

}
.

Then, Pr

[

a
RX−→
F

b

]

= 2−nξF (a, b), where ξF (a, b) = ∑
u,v∈Fn

2
(−1)u·a⊕v·bλF (u, v)

according to Theorem 2. �

Corollary 2. λF (u, v) = 1
2n

∑
a,b∈Fn

2
(−1)u·a⊕v·b Pr

[

a
RX−→
F

b

]

.

Proof. It comes from Eq. (11) of Theorem 2. �

3.2. The Bias of a Rotational Differential-Linear Distinguisher

We now try to mimic Blondeau et al.’s approach to obtain a closed formula for the bias
of a rotational differential-linear distinguisher. Note that this attempt was failed in [32],
and it was noted that this was due to a fundamental difference between rotational-XOR
differentials and ordinary differentials: the output RX-difference is not necessarily zero
when the input RX-difference rot(x) ⊕ x ′ is zero. In the following, we show that
the difficulty brought by the difference is only technical and does not prevent us from
deriving the closed formula.

Definition 7. Let V ⊆ F
n
2 be a linear space and δ ∈ F

n
2 be a given vector. The proba-

bility of an RX-differential from δ to V is defined as

Pr

[

δ
RX−→
F

V

]

=
∑

b∈V

Pr

[

δ
RX−→
F

b

]

.

Definition 8. Let F : F
n
2 → F

n
2 be a vectorial Boolean function. The probability of the

RX-differential from a linear space U ⊆ F
n
2 to a linear space V ⊆ F

n
2 for F is defined

as

Pr

[

U
RX−→
F

V

]

= 1

2n · |U |#
{
(x, a) ∈ F

n
2 × U : ←−

F (x) ⊕ F(
←−x ⊕ a) ∈ V

}

= 1

2n · |U |#
{
(x, a, b) ∈ F

n
2 × U × V : ←−

F (x) ⊕ F(
←−x ⊕ a) = b

}

= 1

|U |
∑

a∈U

∑

b∈V

Pr

[

a
RX−→
F

b

]

= 1

|U |
∑

a∈U

Pr

[

a
RX−→
F

V

]

.

Denote by sp(δ) the linear space spanned by δ. According to Definition 8 and Defini-
tion 7, we have

Pr

[

sp(δ)
RX−→
F

V

]

= 1

2
Pr

[

δ
RX−→
F

V

]

+ 1

2
Pr

[

0
RX−→
F

V

]

,
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which implies that

Pr

[

δ
RX−→
F

V

]

= 2 Pr

[

sp(δ)
RX−→
F

V

]

− Pr

[

0
RX−→
F

V

]

. (14)

Note that an additive subgroup H of F
n
2 is also a linear subspace of F

n
2. Thus, we can

define the orthogonal space of H as H⊥ = {x ∈ F
n
2 : ∀y ∈ H, x · y = 0}.

Lemma 6. ([35]) Let H be an additive subgroup of F
n
2 , and f : F

n
2 → R be a function.

Then,

f (x) =
∑

h∈H
(−1)x ·h =

{
|H|, x ∈ H⊥

0, x /∈ H⊥ .

Proof. Let {h1, · · · , hc}be a basis ofH, and thusH = {τ1h1+· · ·+τchc : (τ1, · · · , τc) ∈
F

c
2} has totally 2c elements. Consequently, we have

∑

h∈H
(−1)x ·h =

∑

(τ1,··· ,τc)∈Fc
2

(−1)x ·(τ1h1+···+τchc)

=
∑

(τ1,··· ,τc)∈Fc
2

(−1)x ·τ1h1 · · · (−1)x ·τchc

=
∑

τ1∈F2

(−1)x ·τ1h1 · · ·
∑

τc∈F2

(−1)x ·τchc

= (1 + (−1)x ·h1) · · · (1 + (−1)x ·hc ),

which equals to |H| = 2c if and only if x · h1 = · · · = x · hc = 0. �

By setting H = F
n
2, Lemma 6 implies the following corollary.

Corollary 3. 2−n ∑
u∈Fn

2
(−1)x ·u = δ(x), where

δ(x) =
{

1, x = 0

0, x �= 0
.

Theorem 3. Let U and V be linear spaces in F
n
2 , then we have

Pr

[

U⊥ RX−→
F

V ⊥
]

= 1

|V |
∑

u∈U
v∈V

λ(u, v),

where λ(u, v) = cor(−→u · x ⊕ −→v · F(x))cor(u · x ⊕ v · F(x)).
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Proof. According to Definition 8 and Corollary 1, we have

Pr

[

U⊥ RX−→
F

V ⊥
]

= 1

|U⊥|
∑

a∈U⊥
b∈V ⊥

Pr

[

a
RX−→
F

b

]

= 1

|U⊥|
∑

a∈U⊥
b∈V ⊥

1

2n

∑

u∈Fn
2

v∈Fn
2

(−1)u·a⊕v·bλ(u, v)

= 1

2n
· 1

|U⊥|
∑

u∈Fn
2

v∈Fn
2

λ(u, v)
∑

a∈U⊥
(−1)u·a ∑

b∈V ⊥
(−1)v·b.

Applying Lemma 6 gives

Pr

[

U⊥ RX−→
F

V ⊥
]

= 1

2n
· 1

|U⊥| · |U⊥| · |V ⊥|
∑

u∈U
v∈V

λ(u, v)

= 1

|V |
∑

u∈U
v∈V

λ(u, v).

�

Lemma 7. Let λ(u, v) denote cor(−→u · x ⊕ −→v · F(x))cor(u · x ⊕ v · F(x)). Then, for
u �= 0, λ(u, 0) = 0, and λ(0, 0) = 1.

Proof. λ(u, 0) =
(

1
2n

∑
a∈Fn

2
(−1)u·a

) (
1

2n

∑
b∈Fn

2
(−1)

−→u ·b
)

. According to Corollary 3,

λ(u, 0) = δ(u)δ(
−→u ) = δ(u). �

Lemma 8. For Δ, w ∈ F
n
2 , we have

Pr

[

Δ
RX−→
F

sp(w)⊥
]

= 1

2

∑

u∈sp(Δ)⊥
λF (u, w) − 1

2

∑

u∈Fn
2\sp(Δ)⊥

λF (u, w) + 1

2
. (15)

Proof. According to Eq. (14), we have

Pr

[

Δ
RX−−→
F

sp(w)⊥
]

= 2 Pr

[

sp(Δ)
RX−→
F

sp(w)⊥
]

− Pr

[

0
RX−→
F

sp(w)⊥
]

= 2 · 1

2

∑

u∈sp(Δ)⊥
v∈sp(w)

λ(u, v) − 1

2

∑

u∈Fn
2

v∈sp(w)

λ(u, v) (Theorem 3)
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= 1

2

∑

u∈sp(Δ)⊥
v∈sp(w)

λ(u, v) − 1

2

⎛

⎜
⎜
⎜
⎝

∑

u∈Fn
2

v∈sp(w)

λ(u, v) −
∑

u∈sp(Δ)⊥
v∈sp(w)

λ(u, v)

⎞

⎟
⎟
⎟
⎠

= 1

2

∑

u∈sp(Δ)⊥
v∈sp(w)

λ(u, v) − 1

2

∑

u∈Fn
2\sp(Δ)⊥

v∈sp(w)

λ(u, v)

Since sp(w) = {0, w}, Pr

[

Δ
RX−→
F

sp(w)⊥
]

is equal to

1

2

∑

u∈sp(Δ)⊥
λ(u, w) − 1

2

∑

u∈Fn
2\sp(Δ)⊥

λ(u, w) + 1

2

∑

u∈sp(Δ)⊥
λ(u, 0) − 1

2

∑

u∈Fn
2\sp(Δ)⊥

λ(u, 0).

Then, applying Lemma 7 gives

Pr

[

Δ
RX−→
F

sp(w)⊥
]

= 1

2

∑

u∈sp(Δ)⊥
λ(u, w) − 1

2

∑

u∈Fn
2\sp(Δ)⊥

λ(u, w) + 1

2
.

�

Theorem 4. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are RX-
differentially independent, that is, for all (a, b) ∈ F

n
2 × F

n
2 ,

Pr

[

a
RX−→
E

b

]

=
∑

Δ∈Fn
2

Pr

[

a
RX−→
E0

Δ

]

· Pr

[

Δ
RX−→
E1

b

]

,

then we have

Pr

[

δ
RX−→
E

sp(w)⊥
]

− 1

2
=

∑

u∈Fn
2

(

Pr

[

δ
RX−→
E0

sp(u)⊥
]

− 1

2

)

· λE1(u, w).

Proof. Substituting Eq. (15) into the right-hand side of

Pr

[

δ
RX−→
E

sp(w)⊥
]

− 1

2
=

∑

Δ∈Fn
2

Pr

[

δ
RX−→
E0

Δ

]

Pr

[

Δ
RX−→
E1

sp(w)⊥
]

− 1

2

gives

1

2

⎛

⎜
⎜
⎜
⎝

∑

Δ∈Fn
2

u∈sp(Δ)⊥

Pr

[

δ
RX−→
E0

Δ

]

λ(u, w) −
∑

Δ∈Fn
2

u∈Fn
2\sp(Δ)⊥

Pr

[

δ
RX−→
E0

Δ

]

λ(u, w)

⎞

⎟
⎟
⎟
⎠

. (16)
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Since S = {(u,Δ) : Δ ∈ F
n
2, u ∈ sp(Δ)⊥} = {(u,Δ) : u ∈ F

n
2,Δ ∈ sp(u)⊥} and

thus (Fn
2, F

n
2)\S = {(u,Δ) : Δ ∈ F

n
2, u ∈ F

n
2\sp(Δ)⊥} = {(u,Δ) : u ∈ F

n
2,Δ ∈

F
n
2\sp(u)⊥}, Eq. (16) can be written as

1

2

⎛

⎜
⎜
⎜
⎝

∑

u∈Fn
2

Δ∈sp(u)⊥

Pr

[

δ
RX−→
E0

Δ

]

λ(u, w) −
∑

u∈Fn
2

Δ∈Fn
2\sp(u)⊥

Pr

[

δ
RX−→
E0

Δ

]

λ(u, w)

⎞

⎟
⎟
⎟
⎠

= 1

2

⎛

⎝
∑

u∈Fn
2

Pr

[

δ
RX−→
E0

sp(u)⊥
]

λ(u, w) −
∑

u∈Fn
2

Pr

[

δ
RX−→
E0

F
n
2\sp(u)⊥

]

λ(u, w)

⎞

⎠

=
∑

u∈Fn
2

(

Pr

[

δ
RX−→
E0

sp(u)⊥
]

− 1

2

)

λ(u, w).

3.2.1. The Multidimensional Case

Let U and W be subspaces of F
n
2, we define the bias of the rotational differential-liner

distinguisher in the multidimensional case by

ER-DL
U,W = Pr

[

U⊥\{0} RX−→
E

W ⊥
]

− 1

|W | .

Lemma 9. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are RX-
differentially independent, that is, for all (a, b) ∈ F

n
2 × F

n
2 ,

Pr

[

a
RX−→
E

b

]

=
∑

Δ∈Fn
2

Pr

[

a
RX−→
E0

Δ

]

· Pr

[

Δ
RX−→
E1

b

]

,

then for all u, w ∈ F
n
2 , we have λE (u, w) = ∑

v∈Fn
2
λE0(u, v)λE1(v,w).

Proof. According to Corollary 2, we have

λE (u, w) = 1

2n

∑

a,b∈Fn
2

(−1)u·a⊕w·b Pr

[

a
RX−→
E

b

]

.

Since E = E1 ◦ E0 are RX-differentially independent, gives

λE (u, w) = 1

2n

∑

a,b∈Fn
2

(−1)u·a⊕w·b ∑

c∈Fn
2

Pr

[

a
RX−→
E0

c

]

· Pr

[

c
RX−→
E1

b

]

.
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Applying Corollary 1, λE (u, w) can be computed as

1

22n

∑

c∈Fn
2

∑

m,v∈Fn
2

∑

a∈Fn
2

(−1)(u⊕m)·a⊕c·vλE0(m, v)
∑

b∈Fn
2

(−1)w·b Pr

[

c
RX−→
E1

b

]

= 1

23n

∑

m,v,s,p∈Fn
2

λE0(m, v)λE1(p, s)
∑

a∈Fn
2

(−1)(u⊕m)·a ∑

b∈Fn
2

(−1)(w⊕s)·b ∑

c∈Fn
2

(−1)(v⊕p)·c

=
∑

m,v,s,p∈Fn
2

λE0(m, v)λE1(p, s)δ(u ⊕ m)δ(w ⊕ s)δ(v ⊕ p) (Corollary 3)

=
∑

v∈Fn
2

λE0(u, v)λE1(v,w)

�

Theorem 5. If two parts E0 and E1 of an n-bit block cipher E = E1 ◦ E0 are RX-
differentially independent, that is, for all (a, b) ∈ F

n
2 × F

n
2 ,

Pr

[

a
RX−→
E

b

]

=
∑

Δ∈Fn
2

Pr

[

a
RX−→
E0

Δ

]

· Pr

[

Δ
RX−→
E1

b

]

,

then we have

ER-DL
U,W = 2

|W |
∑

v∈Fn
2

εR-DL
U,v CR-DL

v,W

where εR-DL
U,v = Pr

[

U⊥\{0} RX−→
E0

sp(v)⊥
]

and CR-DL
v,W = ∑

w∈W\{0} λE1(v,w).

Proof. According to the Theorem 3, we have

Pr

[

U⊥ RX−→
E0

sp(w)⊥
]

= 1

2

∑

u∈U
v∈sp(w)

λE0(u, v)

= 1

2

∑

u∈U

λE0(u, w) + 1

2

∑

u∈U

λE0(u, 0)

= 1

2

∑

u∈U

λE0(u, w) + 1

2
.

Thus,

2 Pr

[

U⊥ RX−→
E0

sp(w)⊥
]

− 1 =
∑

u∈U

λE0(u, w). (17)
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For any subspaces U , W of F
n
2, we have

Pr

[

U⊥ RX−→
E

W ⊥
]

= 1

|W |
∑

u∈U
w∈W

λE (u, w) (Theorem 3)

= 1

|W |
∑

u∈U
w∈W
v∈Fn

2

λE0(u, v)λE1(v,w) (Lemma 9)

= 1

|W |
∑

v∈Fn
2

∑

u∈U

λE0(u, v)
∑

w∈W

λE1(v,w)

=
∑

v∈Fn
2

1

|W |
(

2 Pr

[

U⊥ RX−→
E0

sp(v)⊥
]

− 1

) ∑

w∈W

λE1(v,w) (Eq. 17)

Thus, when U⊥ = 0 = (Fn
2)⊥,

Pr

[

U⊥ RX−→
E

W ⊥
]

=
∑

v∈Fn
2

1

|W |
(

2 Pr

[

0
RX−→
E0

sp(v)⊥
]

− 1

) ∑

w∈W

λE1(v,w)

According to Definition 8, for any F , the following relation holds:

(|U⊥| − 1) Pr

[

U⊥\{0} RX−→
F

W ⊥
]

= (|U⊥| − 1)

⎛

⎝
1

|U⊥| − 1

∑

a∈U⊥\{0}
Pr

[

a
RX−→
F

W ⊥
]
⎞

⎠

=
∑

a∈U⊥
Pr

[

a
RX−→
F

W ⊥
]

− Pr

[

0
RX−→
F

W ⊥
]

= |U⊥| Pr

[

U⊥ RX−→
F

W ⊥
]

− Pr

[

0
RX−→
F

W ⊥
]

.

Then,

(|U⊥| − 1) Pr

[

U⊥\{0} RX−→
E

W ⊥
]

= |U⊥|
∑

v∈Fn
2

1

|W | (2 Pr

[

U⊥ RX−→
E0

sp(v)⊥
]

− 1)
∑

w∈W

λE1(v,w)

−
∑

v∈Fn
2

1

|W |
(

2 Pr

[

0
RX−→
E0

sp(v)⊥
]

− 1

) ∑

w∈W

λE1(v,w)

= 1

|W |
∑

v∈Fn
2

(

2

(

|U⊥| Pr

[

U⊥ RX−→
E0

sp(v)⊥
]

− Pr

[

0
RX−→
E0

sp(v)⊥
])

− (|U⊥| − 1)

)
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∑

w∈W

λE1(v,w)

= 1

|W |
∑

v∈Fn
2

(

2(|U⊥| − 1) Pr

[

U⊥\{0} RX−→
E0

sp(v)⊥
]

−
(
|U⊥| − 1

)) ∑

w∈W

λE1(v,w).

Dividing both sides by |U⊥| − 1 gives

Pr

[

U⊥\{0} RX−→
E

W ⊥
]

= 2

|W |
∑

v∈Fn
2

(

Pr

[

U⊥\{0} RX−→
E0

sp(v)⊥
]

− 1

2

) ∑

w∈W

λE1(v,w).

Denote Pr

[

U⊥\{0} RX−→
E0

sp(v)⊥
]

− 1
2 by g(v). Then, Pr

[

U⊥\{0} RX−→
E

W ⊥
]

is

2

|W |
∑

v∈Fn
2

g(v)
∑

w∈W,w �=0

λE1(v,w) + 2

|W |
∑

v∈Fn
2

g(v)
∑

w∈W

λE1(v, 0). (18)

According to Lemma 7,

2

|W |
∑

v∈Fn
2

g(v)
∑

w∈W

λE1(v, 0) = 2

|W |g(0), (19)

where g(0) = Pr

[

U⊥\{0} RX−→
E0

sp(0)⊥
]

− 1
2 = 1 − 1

2 = 1
2 . Consequently, substituting

Eq. (19) into Eq. (18) gives

Pr

[

U⊥\{0} RX−→
F

W ⊥
]

= 2

|W |
∑

v∈Fn
2

(

Pr

[

U⊥\{0} RX−→
E0

sp(v)⊥
]

− 1

2

) ∑

w∈W,w �=0

λE1(v,w) + 1

|W | .

�

We would like to remark that while these closed formulas are of theoretical interest,
typically it is impossible to apply them in practice since they require the computation of
the correlations of an exponentially large number of trails. Next, we consider a special
case where the estimation of the overall bias can be computed efficiently.

3.3. Morawiecki et al.’s Technique Revisited

In [16], Morawiecki et al. performed a rotational cryptanalysis on the Keccak- f per-
mutation E . In this attack, the probability of

Pr
[
(E(x))i−t �= (E(x ≪ t))i

]
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was exploited to distinguish the target. In what follows, we show that Morawiecki et
al.’s technique can be regarded as a special case of the rotational differential-linear
framework.

Eventually, what we exploit in a rotational differential-linear attack associated with
an input RX-difference δ ∈ F

n
2 and an output linear mask γ ∈ F

n
2 is the abnormally high

absolute bias or correlation of the Boolean function

γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)).

Following the notation of [22], let sp(γ ) ⊆ F
n
2 be the linear space spanned by γ , and

sp(γ )⊥ = {u ∈ F
n
2 : ∀v ∈ sp(γ ), u · v = 0} be the orthogonal space of sp(γ ).

We then define two sets D0 and D1 which form a partition of F
n
2:

{
D0 = {

x ∈ F
n
2 : rot(E(x)) ⊕ E(rot(x) ⊕ δ) ∈ sp(γ )⊥

}

D1 = {
x ∈ F

n
2 : rot(E(x)) ⊕ E(rot(x) ⊕ δ) ∈ F

n
2 − sp(γ )⊥

} .

Under the above notations, for any x ∈ D0, γ · (rot(E(x))⊕ E(rot(x)⊕ δ)) = 0 and
for any x ∈ D1, γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)) = 1.

Thus, the higher the absolute value of

|D0| − |D1| = 2ncor(γ · (rot(E(x)) ⊕ E(rot(x) ⊕ δ))),

the more effective the attack is.
If γ = ei is the i-th unit vector, we have sp(γ ) = {0, ei } and sp(γ )⊥ contains all

vectors whose i-th bit is 0. In this case,

|D0| − |D1| = 2n − 2|D1|
= 2n − 2n+1 (Pr[ei · (rot(E(x)) ⊕ E(rot(x) ⊕ δ)) = 1])
= 2n − 2n+1 (Pr[(E(x))i−t �= (E(rot(x) ⊕ δ))i ])
= 2n − 2n+1 (

Pr[(E(x))i−t �= (E(x ′)i ]
)
.

Therefore, the effectiveness of the rotational differential-linear attack can be completely
characterized by Pr[(E(x))i−t �= (E(x ′))i ]. In the next section, we show how to compute
this type of probabilities for the target cipher.

4. Evaluate the Bias of Rotational Differential-Linear Distinguishers with Output
Masks Being Unit Vectors

According to the previous section, for a rotational differential-linear distinguisher with
an input RX-difference δ and output linear mask ei , the bias of the distinguisher can be
completely determined by

Pr
[
(E(x))i−t �= (E(x ′))i

]
, where x ′ = x ≪ t ⊕ δ,
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and we call it the rotational differential-linear probability or R-DL probability. Note that
for a random pair (x, x ′ = x ≪ t ⊕ δ) with rotational-XOR difference δ ∈ F

n
2, we

have

Pr
[
xi−t �= x ′

i

] = 1 + (−1)1−δi

2
,

for 0 ≤ i < n. Therefore, what we need is a method to evaluate the probability

Pr
[
(F(x))i−t �= (F(x ′))i

]

for 0 ≤ i < m − 1, where F : F
n
2 → F

m
2 is a vectorial Boolean function that represents

a component of E . Then, with certain independence assumptions, we can iteratively
determine the probability Pr[(E(x))i−t �= (E(x ′))i ].

Observation 1. Let F : F
n
2 → F

m
2 be a vectorial Boolean function. Assume that the

input pair (x, x ′) satisfies Pr
[
xi−t �= x ′

i

] = pi for 0 ≤ i < n, where x, x ′ ∈ F
n
2 . For

u ∈ F
n
2 , we define the set Su = {(x, x ′) ∈ F

n
2 ×F

n
2 : (x ≪ t)⊕ x ′ = u} with #Su = 2n.

Let yi and y′
i be the i-th bit of F(x) and F(x ′) respectively for 0 ≤ i < m. Then, we

have

Pr
[
yi−t �= y′

i

] =
∑

u∈Fn
2

Pr
[
yi−t �= y′

i |(x, x ′) ∈ Su
]

Pr
[
(x, x ′) ∈ Su

]

=
∑

u∈Fn
2

Pr
[
yi−t �= y′

i |(x, x ′) ∈ Su
]

n−1∏

i=0

((1 − ui ) − (−1)ui pi )

= 1

2n

∑

u∈Fn
2

#{(x, x ′) ∈ Su : yi−t �= y′
i }

n−1∏

i=0

((1 − ui ) − (−1)ui pi ).

The observation is inspired by Morawiecki et al.’s work on rotational cryptanaly-
sis [16] where, given a rotational pair, the bias of the output pair being unequal at certain
bit is calculated for one-bit AND, NOT, and XOR. In the following, we reformulate and
generalize their propagation rules in terms of rotational differential-linear probability.
Note that all these rules can be derived from Observation 1.

Proposition 1. (AND-rule) Let a, b, a′, and b′ be n-bit strings with Pr
[
ai−t �= a′

i

] = pi

and Pr
[
bi−t �= b′

i

] = qi . Then,

Pr
[
(a ∧ b)i−t �= (a′ ∧ b′)i

] = 1

2
(pi + qi − pi qi ).

Proposition 2. (XOR-rule) Let a, b, a′, and b′ be n-bit strings with Pr
[
ai−t �= a′

i

] = pi

and Pr
[
bi−t �= b′

i

] = qi . Then,

Pr
[
(a ⊕ b)i−t �= (a′ ⊕ b′)i

] = pi + qi − 2pi qi .
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Proposition 3. (NOT-rule) Let a and b be n-bit strings with Pr
[
ai−t �= bi

] = pi . Then,
Pr

[
āi−t �= b̄i

] = pi .

Next, we consider constant additions. Let (x, x ′) ∈ F
2n
2 be a data pair with Pr

[
xi−t �= x ′

i

]

= pi for some integer t and c ∈ F
n
2 be a constant. Then, Pr

[
(x ⊕ c)i−t �= (x ′ ⊕ c)i

] =
Pr

[
xi−t ⊕ x ′

i �= ci−t ⊕ ci
]
. In [16], only the cases where ci−t ⊕ci = 1 or ci−t = ci = 0

are considered. We generalize the rule for constant addition from [16] to the following
proposition with all possibilities taken into account.

Proposition 4. (Adjusted C-rule) Let a and a′ be n-bit strings with Pr
[
ai−t �= a′

i

] = pi

and c ∈ F
n
2 be a constant. Then, we have

Pr
[
(a ⊕ c)i−t �= (a′ ⊕ c)i

] =
{

1 − pi , ci−t ⊕ ci = 1

pi , ci−t ⊕ ci = 0

4.1. Propagation of R-DL Probabilities in Arithmetic Operations

For functions with AND-RX or LRX construction, such as the permutation Keccak- f ,
the propagation of the R-DL probability can be evaluated by the propositions previously
shown, under the independency assumptions on the neighboring bits. However, when
dependency takes over, even if a function can be expressed as a Boolean circuit, a
direct application of the AND, XOR, NOT, and adjusted C-rule may lead to errors that
accumulated during the iterated evaluation. One such example is the modular addition.
In the following, we will derive the propagation rules of the differential-linear (DL)
probability and R-DL probability for an n-bit modular addition.

Lemma 10. (carry-rule) Let ς : F
3
2 → F2 be the carry function

ς(x0, x1, x2) = x0x1 ⊕ x1x2 ⊕ x0x2.

Let a, b, c, a′, b′, and c′ be binary random variables with

p0 = Pr
[
a �= a′] , p1 = Pr

[
b �= b′] , p2 = Pr

[
c �= c′] .

Then, we have that

Pr
[
ς(a, b, c) �= ς(a′, b′, c′)

] = p0 p1 p2 − p0 p1 + p0 p2 + p1 p2

2
+ p0 + p1 + p2

2
.

Proof. We prove the carry-rule with Observation 1 by enumerating u ∈ F
3
2. For u =

(0, 0, 0), Pr
[
ς(a, b, c) �= ς(a′, b′, c′)|a = a′, b = b′, c = c′] = 0. For u = (0, 0, 1),

Pr
[
ς(a, b, c) �= ς(a′, b′, c′)|a = a′, b = b′, c �= c′] = Pr [a ⊕ b = 1] = 1/2 and

∏2
i=0((1 − ui ) + (−1)1−ui pi ) = (1 − p0)(1 − p1)p2.
Similarly, one can derive the expression for all u ∈ F23 , and we omit the details.The

overall probability of the event ab ⊕ ac ⊕ bc �= a′b′ ⊕ a′c′ ⊕ b′c′ is p0 p1 p2 − (p0 p1 +
p0 p2 + p1 p2)/2 + (p0 + p1 + p2)/2. �
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Based on the carry-rule, we can immediately prove the following two theorems on
the DL and R-DL probabilities for n-bit modulo additions.

Theorem 6. (�-rule for DL) Let x, y and x ′, y′ be n-bit string, such that Pr
[
xi �= x ′

i

] =
pi and Pr

[
yi �= y′

i

] = qi . Then, the differential-linear probability for modular addition
can be computed as

Pr
[
(x � y)i �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si

where s0 = 0 and

si+1 = pi qi si − pi qi + pi si + qi si

2
+ pi + qi + si

2
, i ≤ n − 1

Proof. For inputs x and y, denote the carry by

c = (x � y) ⊕ x ⊕ y = (cn−1, · · · , c1, c0),

where c0 = 0, ci+1 = xi yi ⊕ xi ci ⊕ yi ci . Similarly, for x ′ and y′, denote the carry by
c′ = (c′

n−1, · · · , c′
1, c′

0). Let si denote the probability Pr
[
ci �= c′

i

]
. Then, s0 = 0 and for

i ≥ 1, the event ci �= c′
i is equivalent to

xi−1 yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1 �= x ′
i−1 y′

i−1 ⊕ x ′
i−1c′

i−1 ⊕ y′
i−1c′

i−1.

Therefore, si can be computed as

pi−1qi−1si−1 − (pi−1qi−1 + pi−1qi−1 + qi−1si−1) /2 + (pi−1 + qi−1 + si−1) /2

according to Lemma 10. Since x � y = x ⊕ y ⊕ c, and x ′ � y′ = x ′ ⊕ y′ ⊕ c′, with the
XOR-rule, we have

Pr
[
(x � y)i �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si .

�

Example 1. Consider an 8-bit modular addition with input difference being a = 7 and
b = 7. Then, for 0 ≤ i ≤ 7, we have

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The output DL-probabilities are given in Table 2 according to the �-rule. The proba-
bilities predicted in the table are verified by running through the 16-bit input space. In
addition, we verified the �-rule in DL with all input differences on an 8-bit modular
addition. Under the precision level given in Table 2, the experiments match the theo-
retical prediction perfectly. In fact, we performed the experiments for all possible input
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Table 2. DL-probabilities of an 8-bit modular addition with input differences a = b = 7 by theoretical
evaluation, which are confirmed by experiments.

i 0 1 2 3 4 5 6 7

pi 0 2−1 2−0.415037 2−0.192645 2−1.19265 2−2.19265 2−3.19265 2−4.19265

difference (a, b) ∈ F
8
2 ×F

8
2, and the experimental results perfectly match the theoretical

predictions. The source code for the experiments can be obtained at https://github.com/
YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.

As for the rotational differential-linear cryptanalysis of an n-bit modular addition,
a left rotation by t bits is applied to the operands. Firstly, we present the �-rule for
RX-difference with a rotation offset t = 1.

Theorem 7. (�-rule for RL, t = 1) Given random n-bit strings x, y and x ′, y′ such that
x ′ = (x ≪ 1) ⊕ a, y′ = (y ≪ 1) ⊕ b, where Pr

[
xi−1 �= x ′

i

] = pi , Pr
[
yi−1 �= y′

i

] =
qi . Then, with the assumption

s0 = Pr
[
cn−1 �= c′

0

] = Pr
[
xn−2 yn−2 ⊕ xn−2cn−2 ⊕ yn−2cn−2 = 0

] ≈ 1/2,

the rotational differential-linear probability of the modular addition can be computed
as

Pr
[
(x � y)i−1 �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si ,

where s1 = Pr
[
c0 �= c′

1

] = Pr
[
x ′

0 y′
0 �= 0

] = 1/4,

si+1 = pi qi si − pi qi + pi si + qi si

2
+ pi + qi + si

2
, 2 ≤ i ≤ n − 1.

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0), and

x ′ = (x ′
n−1, · · · , x ′

1, x ′
0) = (xn−2 ⊕ an−1, · · · , x0 ⊕ a1, xn−1 ⊕ a0),

y′ = (y′
n−1, · · · , y′

1, y′
0) = (yn−2 ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0).

Let c = (cn−1, · · · , c0) = (x � y)⊕x ⊕ y and c′ = (c′
n−1, · · · , c′

0) = (x ′� y′)⊕x ′⊕ y′
be the two carries, where c0 = 0, ci+1 = ς(xi , yi , ci ) = xi yi ⊕ yi ci ⊕ xi ci , c′

0 = 0, and
c′

i+1 = ς(x ′
i , y′

i , c′
i ) = x ′

i y′
i ⊕ y′

i c
′
i ⊕ x ′

i c
′
i . Since

Pr
[
(x � y)i−1 �= (x ′ � y′)i

] = Pr
[
xi−1 ⊕ yi−1 ⊕ ci−1 �= x ′

i ⊕ y′
i ⊕ c′

i

]
,

applying the XOR-rule given by Proposition 2 gives

Pr
[
(x � y)i−1 �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si .

https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Table 3. RL-probabilities of an 8-bit modular addition with input differences a, b = 7.

i 0 1 2 3 4 5 6 7

p 2−1 2−2 2−0.678072 2−0.29956 2−1.29956 2−2.29956 2−3.29956 2−4.29956

rot(x) = x ≪ 1. The index i represents the position of the output bit

Let si denote the probability Pr
[
ci−1 �= c′

i

]
. Then, s1 = Pr

[
c0 �= c′

1

] = Pr
[
c′

1 �= 0
] =

Pr
[
x ′

0 y′
0 �= 0

] = 1/4. For i > 1, si is equal to

Pr
[
ci−1 �= c′

i

] = Pr
[
xi−2 yi−2 ⊕ xi−2ci−2 ⊕ yi−2ci−2 �= x ′

i−1 y′
i−1 ⊕ x ′

i−1c′
i−1 ⊕ y′

i−1c′
i−1

]

= pi−1qi−1si−1 − pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+ pi−1 + qi−1 + si−1

2

according to the carry-rule given by Lemma 10. �

Example 2. Consider an 8-bit modular addition with input RX-difference (left rotate
by 1-bit) being a = 7 and b = 7, which implies that

p0 = p1 = p2 = 1, p3 = p4 = p5 = p6 = p7 = 0,

q0 = q1 = q2 = 1, q3 = q4 = q5 = q6 = q7 = 0.

The R-DL probability of the i-th output bit, 0 ≤ i < 8 is given in Table 3. The proba-
bilities predicted for i ≥ 2 are verified by running through the 16-bit input space, and
the probability for i = 0 is 2−1.01132 by experiment.

The experiments on an 8-bit modular addition show that the theoretical estimation of
the DL and R-DL probabilities match the experiments well, except that the approximation
in R-DL probability for the least significant bit has a marginal error in precision.

With a similar deduction, we give the following theorem for computing the R-DL
probability through a modular addition under the condition that rot(x) = x ≪ t , for
an integer 2 ≤ t ≤ n − 1.

Theorem 8. (�-rule for RL for arbitrary t > 1) Given random n-bit strings x, y
and x ′, y′ such that x ′ = x ≪ t ⊕ a, y′ = y ≪ t ⊕ b, where Pr

[
xi−t �= x ′

i

] =
pi , Pr

[
yi−t �= y′

i

] = qi . Then, with the assumption

{
s0 = Pr

[
cn−t �= c′

0

] = Pr
[
xn−t−1 yn−t−1 ⊕ xn−t−1cn−t−1 ⊕ yn−t−1cn−t−1 �= 0

] ≈ 1/2

st = Pr
[
c0 �= c′

t

] = Pr
[
x ′

t−1 y′
t−1 ⊕ x ′

t−1c′
t−1 ⊕ y′

t−1c′
t−1 �= 0

] ≈ 1/2

the rotational differential-linear probability of the modular addition for i ≥ 0 can be
computed as

Pr
[
(x � y)i−t �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si ,
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where for 1 ≤ i ≤ n − 1, and i �= t ,

si+1 = pi qi si − pi qi + pi si + qi si

2
+ pi + qi + si

2
.

Proof. Denote x = (xn−1, · · · , x1, x0), y = (yn−1, · · · , y1, y0), then

x ′ = ((x ′
n−1, · · · , x ′

1, x ′
0) = (xn−1−t ⊕ an−1, · · · , xn−t+1 ⊕ a1, xn−t ⊕ a0)

y′ = ((y′
n−1, · · · , y′

1, y′
0) = (yn−1−t ⊕ bn−1, · · · , y0 ⊕ b1, yn−1 ⊕ b0).

Let c = (cn−1, · · · , c1, c0) and c′ = (c′
n−1, · · · , c′

1, c′
0) be the carries. Let si denote

the probability Pr
[
ci−t �= c′

i

]
. According to the assumptions, s0 = st = 1/2. For all

i /∈ {0, t},

si = Pr
[
ci−t �= c′

i

]

= Pr
[
x ′

i−1 y′
i−1 ⊕ x ′

i−1c′
i−1 ⊕ y′

i−1c′
i−1

�= xn−t+i−1 yn−t+i−1 ⊕ xn−t+i−1cn−t+i−1 ⊕ cn−t+i−1 yn−t+i−1
]

= pi−1qi−1si−1 − pi−1qi−1 + pi−1si−1 + qi−1si−1

2
+ pi−1 + qi−1 + si−1

2
.

Then, we have

Pr
[
(x � y)i−t �= (x ′ � y′)i

] = pi + qi + si − 2pi qi − 2pi si − 2qi si + 4pi qi si .

�

The �-rules for DL and R-DL allows us to compute the partial DLCT of an n-
bit modular addition accurately and efficiently. A naive application of Bar-On et al.’s
approach [25] based on the fast Fourier transformation (FFT) by treating the modular
addition as a 2n × n S-box would require a complexity of O(22n), where it requires
a complexity of O(n22n) to obtain the n rows of the DLCT whose output masks are
the unit vectors. In contrast, with the �-rule for DL, given the input difference, the DL-
probability for all output masks that are unit vectors can be evaluated inO(n) operations,
which achieves an exponential speed-up.

Remark 2. Theorems 7 and 8 have several restrictions. Firstly, they hold with some as-
sumptions on certain carry bits and the independence of the neighboring bits, which may
introduce inaccuracies into the evaluations of the correlations. Nevertheless, the theo-
rems match the experimental results quite well. Secondly, these theorems only consider
the cases where the output masks are unit vectors. We leave the problem of evaluating the
correlations with arbitrary output masks and weakening or getting rid of the assumptions
as future work.



3 Page 28 of 45 Y. Liu et al.

4.2. Finding Input Differences for Local Optimization

According to Propositions 1 and 2, for x and y in F2, if Pr
[
x �= x ′] = p1, Pr

[
y �= y′] =

p2, we have

Pr
[
xy �= x ′y′] = 1

2
(p1 + p2 − p1 p2), Pr

[
x ⊕ y �= x ′ ⊕ y′] = p1 + p2 − 2p1 p2.

Obviously, Pr
[
xy �= x ′y′] is in the interval [0, 0.5] and Pr

[
x ⊕ y �= x ′ ⊕ y′] is in the

interval [0, 1]. Moreover, a behavior of Pr
[
x ⊕ y �= x ′ ⊕ y′] is that it collapses to 1

2
(e.g., correlation zero) whenever one of p1 and p2 is 1

2 . This observation suggests that
the input probabilities should be biased from 1

2 as much as possible. Otherwise, the
probabilities will rapidly collapse to 1

2 for all one-bit output masks after a few iterative
evaluations of the round function.

In order to find distinguishers that cover as many rounds of a function F as possible,
our strategy is to look for an input RX-difference δ, such that the DL or R-DL probability
after one or a few propagations still has a relatively large imbalance for all the output
masks whose Hamming weights are one. Therefore, we can define the objective function
to maximize the summation of the absolute biases:

∑

i

(| Pr [ei · (rot( f (x)) ⊕ f (rot(x) ⊕ δ)) = 0] − 1/2|) . (20)

For 8-bit modular additions, we observed that the absolute DL and R-DL bias are
relatively large when the input RX-differences are either with a large Hamming weight
or a small weight. For instance, with RX-difference (x ≪ 1) ⊕ x ′, when the input
differences are a = 0 and b = 1, the RL-probabilities are given as follows for ei with
i = 0, 1, . . . , 7.

2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8.

Whereas for a = ff and b = ff, the RL-probabilities are given as follows for ei , i =
0, 1, . . . , 7.

2−1, 2−2, 2−0.678072, 2−0.29956, 2−0.142019, 2−0.0692627, 2−0.0342157, 2−0.0170064.

When the size of the operands are large (e.g., n = 32), it is difficult to find the optimal
input difference manually. Next, we show the optimal input RX-difference with respect
to the objective function given by Eq. (20) in a 32-bit modular addition. See Appendix A
for the search of such differences.

Example 3. Consider the R-DL probability for a 32-bit modular addition withrot(x) =
x ≪ 1. With input RX-differences

a = 7ffffffc, b = 7ffffffe,
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Fig. 2. View of the state.

the objective function in Eq. 20 is maximized, and the R-DL probabilities Pr
[
ei ·

(rot(x � y) ⊕ ((rot(x) ⊕ a) � (rot(y) ⊕ b))) = 1
]

for 0 ≤ i ≤ 31 are shown
as follows.

i 0 1 2 3 4 5 6 7
pi 0.5 0.75 0.5 0.75 0.875 0.9375 0.96875 0.984375
i 8 9 10 11 12 13 14 15
pi 0.992188 0.996094 0.998047 0.999023 0.999512 0.999756 0.999878 0.999939
i 16 17 18 19 20 – 31

pi 0.999969 0.999985 0.999992 0.999996 1

5. Applications to AND-RX Primitives

In this section, we apply the rotational differential-linear technique to the AND-RX per-
mutations involved in FRIET and Xoodoo, and significant improvements are obtained.
To confirm the validity of the results, all distinguishers with practical complexities are
experimentally verified, and the source code is available.2

5.1. Distinguishers for Round-Reduced FRIET

FRIET is an authenticated encryption scheme with built-in fault detection mechanisms
proposed by Simon et al. at EUROCRYPT 2020 [29]. FRIET is a permutation-based
design, and in this work, we only analyze its underlying permutation FRIET-P, which
is an iterative design with 24 rounds.

The core permutation FRIET-P employed in FRIET operates on a 4×128 = 512-bit
state arranged into a rectangular with 4 rows (called limbs) and 128 columns (called
slices) as shown in Fig. 2. The permutation FRIET-P is an iterative design with its
round function grci visualized in Fig. 3, where a, b, and c ∈ F

128
2 are the four limbs (see

Fig. 2) of the input state and rci is the round constant for the i-th round.
By design, the round function grci is slice-wise code-abiding for the parity code

[4, 3, 2]F2 , meaning that every slice of the output state is a code word if every slice of

2https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.

https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Fig. 3. Round functions of Friet-PC and Friet-P.

the input state is a code word. Mathematically, it means that a + b + c = d implies
a′ + b′ + c′ = d ′. This slice-wise code-abiding property is inherited by the permutation
FRIET-P = grct−1 ◦· · ·◦grc1 ◦grc0 . Consequently, faults will be detected if some output
slice is not a code word when all of the slices of the input state are code words. Note
that the behavior of the permutation FRIET-PC is identical to FRIET-P by design if we
ignore the limb d.

5.1.1. Practical Distinguishers for FRIET-PC

Since a distinguisher for the permutationFRIET-PC directly translates to a distinguisher
for FRIET-P, we focus on the permutation FRIET-PC. Let (a, b, c) and (a′, b′, c′) in
F

128×3
2 be the input pair of the permutation with RX-differences

Δa = (a ≪ t) ⊕ a′, Δb = (b ≪ t) ⊕ b′, Δc = (c ≪ t) ⊕ c′.

In our analysis, we only consider input RX-differences such that wt (Δa) + wt (Δb) +
wt (Δc) ≤ 1.

According to the adjusted C-rule (see Proposition 4), the constant addition injects
an RX-difference c ⊕ (c ≪ t) to the state, and alters the R-DL-probabilities when
the corresponding bits in c ⊕ (c ≪ t) is nonzero. A rule-of-thumb for choosing the
rotational amount is to minimize the weight of the RX-difference introduced by the round
constants, so that the effect of the constants on destroying the rotational propagation is
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Table 4. Distinguishers for reduced-round FRIET-PC with rotation offset t = 4.

Round Δa Δb Δc γa γb γc Correlation
Theoretical Experimental

1 0 0 0 1 0 0 1 1
2 0 0 0 1 0 0 1 1
3 0 0 0 1 0 0 1 1
4 0 0 0 0 1 0 1 1
5 0 0 1 0 0 400000000000000000000 2−0.96 2−0.83

6 0 0 10000 0 0 40000 2−5.81 2−5.12

presumably decreased. The first six round constants of FRIET-PC are (in Hexadecimal)

1111,11100000,1101,10100000,101,10110000.

To minimize the Hamming weight of the RX-differences from the round constants, one of
the best rotational operations is to rotate left by 4 bits, such that the consecutive nonzero
nibbles cancel themselves as many as possible. Then, the injected RX-differences due
to the round constants are

10001,100100000,10111,111100000,1111,111010000.

With the AND-rule, XOR-rule and adjusted C-rule, the R-DL probability can be
evaluated given the input RX-differences with wh(Δa) + wh(Δb) + wh(Δc) ≤ 1 and
the output linear mask ei . Table 4 shows the rotational differential-linear distinguishers
with the largest absolute correlation we found in reduced-round FRIET-PC, where
Δa,Δb,Δc are the input RX-differences, and γa, γb, γc are the output masks for the
limbs a, b, c, respectively.

For FRIET-PC reduced to 4-round, an R-DL distinguisher with correlation 1 is de-
tected, with input RX-differences (0, 0, 0) and output masks (0, 1, 0). For 5-, 6-round
FRIET-PC, we found practical rotational differential-linear distinguishers with correla-
tion 2−0.96 and 2−5.81, respectively. All the distinguishers shown in Table 4 are verified
experimentally with 224 random plaintexts.

5.1.2. Extending the Practical Distinguishers

According to the discussion of Sect. 3, we can extend a rotational differential-linear
distinguisher by appending a linear approximation γ → μ, and the bias of the extended
distinguisher can be computed with Eq. (7). Consequently, this extension is optimal when
εγ,μ and εrot−1(γ ),rot−1(μ) reach their largest possible absolute values simultaneously.
For FRIET-PC, we always have εγ,μ = εrot−1(γ ),rot−1(μ), and thus we can focus on
finding an optimal linear approximation γ → μ.

Here, we take the 6-round R-DL distinguisher shown in Table 4 and append optimal
linear approximations to extend it. The output linear mask of the 6-round distinguisher is
(0,0,40000). In Table 5, we list the correlations of the optimal linear approximations
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Table 5. Correlation of optimal linear trails found in round-reduced FRIET-PC with the input masks
(0,0,40000).

# Round 1 2 3 4 5 6 7
Correlation 2−2 2−6 2−12 2−20 2−30 2−42 2−56

for round-reduced FRIET-PC whose input masks are (0,0,40000), which are found
with the SMT-based approach [36].

The optimal 1-round linear trail we found has output masks

μa = 00000000000000020000000000040000

μb = 00004000000000020000000000040000

μc = 00000000000080020000000000060000.

Thus, a 7-round distinguisher can be built by concatenating the 6-round distinguisher
with a 1-round linear approximation, and the estimated correlation is 2−5.81 × 2−2×2 =
2−9.81. In our experiments, with 224 randomly chosen pairs of inputs satisfying the
input RX-difference, the output difference under the specified mask are biased with a
correlation approximately 2−9.12. Similarly, by appending a 2-round linear trail with
output masks

μa = 00000000000000030000000000060000

μb = 00006000000000010000000030020000

μc = 600000000000c0010000000000030000.

at the end of the 6-round rotational differential-linear distinguisher, we get a 8-round
RL-distinguisher with a correlation 2−17.81. And with 240 pairs of inputs satisfying the
input RX-difference, we find the experimental correlation of the 8-round distinguisher
is 2−17.2. As a comparison, the 7-, 8-round linear trails presented in the specification of
FRIET-PC have correlation 2−29 and 2−40, respectively. With the linear trails shown
in Table 5, the concatenated distinguisher can reach up to 13 rounds, with an estimated
correlation 2−117.81.

5.2. Distinguishers for Round-Reduced Xoodoo

Xoodoo [30] is a 384-bit lightweight cryptographic permutation whose primary target
application is in the Farfalle construction [37]. The state of Xoodoo is arranged into a
4 × 3 × 32 cuboid and the bit at a specific position is accessed as a[x][y][z]. One round
of Xoodoo consists of the following operations.

a[x][y][z] = a[x][y][z] ⊕
∑

y

a[x − 1][y][z − 5] ⊕
∑

y

a[x − 1][y][z − 14]

a[x][1][z] = a[x − 1][1][z], a[x][2][z] = a[x][2][z − 11]
a[0][0] = a[0][0] ⊕ RCi



Rotational Differential-Linear Cryptanalysis Revisited Page 33 of 45 3

a[x][y][z] = a[x][y][z] ⊕ ((a[x][y + 1][z] + 1) ∗ (a[x][y + 2][z]))
a[x][1][z] = a[x][1][z − 1], a[x][2][z] = a[x − 1][2][z − 8]

The total number of rounds in Xoodoo is 12, and in some modes (Farfalle [37]
for instance), the core permutation calls a 6-round Xoodoo permutation. The round
constants of Xoodoo are shown in the following, and for Xoodoo reduced to r rounds,
the round constants are c−(r−1), · · · , c0.

c−11 = 00000058, c−8 = 000000D0, c−5 = 00000060, c−2 = 000000F0

c−10 = 00000038, c−7 = 00000120, c−4 = 0000002C, c−1 = 000001A0

c−9 = 000003C0, c−6 = 00000014, c−3 = 00000380, c0 = 00000012

Given input difference being all-zero, i.e., the input pair is exactly a rotational pair,
let the rotation amount be left-rotate by 1-bit. We find that after 3 rounds of Xoodoo,
there are still many output bits that are highly biased, with the largest correlation being
1 and the one-bit mask at position (1, 0, 16). This suggests a nonzero mask 10000 at
the lane (1, 0). However, extending one extra round, we no longer see any significant
correlation.

Noticing that the round constant is XORed into the state right after the first two linear
operations, one can control the input RX-difference such that the difference is cancelled
by the injection of the first-round constant. As a result, it gains one round free at the
beginning, and we are able to construct a 4-round distinguishers for Xoodoo. When
the left-rotational amount is set to 1-bit, the RX-difference of the first constant c−3 is
00000480. This suggests that if we take input RX-differences

a[0][0] = 484ccc80;a[0][1] = 484cc800;a[0][2] = 484cc800;
a[1][0] = 3ab9821a;a[1][1] = 3ab9821a;a[1][2] = 3ab9821a;
a[2][0] = 37b6cde9;a[2][1] = 37b6cde9;a[2][2] = 37b6cde9;
a[3][0] = 45a3f0cb;a[3][1] = 45a3f0cb;a[3][2] = 45a3f0cb.

The RX-difference after the first round of Xoodoo will be all zero. Hence, we are
able to find a 4-round distinguishers with significant correlations. We find a rotational
differential-linear distinguishers with correlation 1 with the output mask being 10000
at lane (1, 0) and zero for the rest lanes. Another two distinguishers with the same
correlation are found with output mask 20000 at lane (1, 1) and 1000000 at lane
(3, 2).

6. Applications to ARX Primitives

In this section, we apply the rotational differential-linear technique to the ARX per-
mutations involved in Alzette and SipHash, and the source code for experimental
verifications is available.3

3https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.

https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective
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Fig. 4. A 4-round Alzette instance.

6.1. Application in the 64-Bit ARX-Box Alzette

At CRYPTO 2020, Beierle et al. presented a 64-bit ARX-box Alzette [31] that is
efficient for software implementation. The design is along the same research line with a
previous design called SPARX [38] with a 32-bit ARX-box where a long trail argument
was proposed for deriving a security bound in ARX ciphers. Figure 4 shows an instance
of Alzette with an input (x, y) ∈ F

32
2 × F

32
2 .

The differential and linear properties of the 4-round Alzette instance shown in
Fig. 4 are comparable to the 8-bit S-box of AES. The optimal differential characteristic
in Alzette has a probability of 2−6. In addition, because of the modular additions
in Alzette and the diffusion, the designers showed by division property that the
Alzette may have full degree in all its coordinates.

In the following, we present the rotational differential-linear and differential-linear
distinguishers of Alzette found with the techniques in Sect. 4. The constant c =
B7E15162 (the first constant in SPARX-based design Sparkle-128) is considered for
illustration.
Rotational differential-linear distinguisher. In Sect. 4.2, (7ffffffc,7fffffffe) is
found to be optimal in 32-bit modular addition under the objective function considered in
Example 3. Here, the difference can be used as the input difference of the first modular
addition in Alzette. Because of the right rotation by 31 bits before the modular
addition, the input RX-difference toAlzette is (7ffffffc,3ffffffff).4 With an
iterative evaluation on the steps in Alzette, we found that the second least significant
bit is biased. Specifically, with an output mask (2,0), the RL-probability is 0.500189,
that is a correlation 2−11.37. By taking 228 pairs of random plaintexts, the experimental
correlation of the distinguisher is 2−7.35. In addition, we checked all input RX-differences
(a, b) with Hamming weight wt (a) + wt (b) = 1, but no rotational differential-linear
distinguisher is found.

4In Appendix B, the evaluation of this distinguisher by Theorem 4 is demonstrated.



Rotational Differential-Linear Cryptanalysis Revisited Page 35 of 45 3

Fig. 5. A comparison between the differential-linear probability in Alzette by theoretical computation and
by experiment. The index shows the index of the nonzero bit in the unit-vector output mask. For instance,
when the index is 0, the output mask is (0,1), and when the index is 63, it is (80000000,0).

Differential-linear distinguisher. For all input differences with Hamming weight 1, we
compute the differential-linear probability of Alzette with the technique in Sect. 4.
The best found distinguisher has an input difference (80000000,0) and output mask
(80000000,0), with a probability of 0.086, equivalently, a correlation of 2−0.27. By
experiment verification with 228 pairs of random plaintexts, the correlation is 2−0.1.

The following Fig. 5 shows a comparison of the probability for an input difference
(80000000,0) and output masks (1 ≪ t,0) (for all integer t ∈ [0, 31]), by our eval-
uation technique and the experiment with 224 pairs of random plaintexts. The theoretical
evaluation matches the experiment within a tolerable fluctuation.

Comparing with RL-distinguishers and DL-distinguisher found in Alzette, the
latter is significantly stronger. Also, it is interesting to notice that input differences with
low Hamming weight often lead to good differential-linear distinguishers in Alzette,
whereas we did not find any rotational differential-linear distinguisher with low-weight
RX-differences when the rotational offset is greater than zero. The influence of the
constants in RL-distinguishers may be the main cause.

6.2. Experimental Distinguishers for SipHash Explained

SipHash [39], designed by Aumasson and Bernstein, is a family of ARX-based pseu-
dorandom functions optimized for short inputs. Instances of SipHash are widely de-
ployed in practice. For example, SipHash-2-4 is used in the dnscache instances
of all OpenDNS resolvers and employed as hash() in Python for all major plat-
forms (https://131002.net/siphash/#us).

In [40], from a perspective of differential cryptanalysis, a bias of the difference distri-
bution of one particular output bit for 3-roundSipHash is observed when the Hamming
weight of the input difference is one. For instance, with input difference a = 1, He and
Yu showed that the output difference is biased at the 27-th bit with a correlation 2−6

https://131002.net/siphash/#us
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by experiments. This observation was obtained through extensive experiments, and the
theoretical reason behind these distinguishers is unclear as stated by He and Yu:

... we are not concerned about why it shows a rotation property or why
it reaches such a bias level. However, a great number of experiments can
support those observations. (see [40, Section 4.2, Page 11])

According to the discussion of Sect. 3.3, the bias of E(x)⊕ E(x ⊕δ) observed in [40]
is equivalent to the bias of

ei · (E(x) ⊕ E(x ⊕ δ)).

It can be interpreted in the differential-linear framework and analyzed with the theo-
retical approach presented in Sect. 4. Here, we apply the rules for modular addition and
XOR, and compute the DL-probability of the 3-round distinguisher found in SipHash.
With our technique, we confirm that the 3-round differential-linear distinguisher with
the aforementioned difference and mask, the predicted correlation is 2−6.6 which is close
to He and Yu’s experiments.

In addition, we can explain the observation on the rotation property with the �-rule
in differential-linear. We will adopt the notations that are used in Theorem 6.

Because the input difference in their experiment has only one nonzero bit, we consider
the DL-probability of an n-bit modular addition where the input difference is (ek, 0),
for an integer k.

Then, for a pair of inputs (x, y) and (x ′, y′), the probability pk = Pr
[
xk �= x ′

k

] = 1.
And for the remaining bits, pi = Pr

[
xi �= x ′

i

]
, i �= k and qi = Pr

[
yi , y′

i

]
are equal to

zero.
Let si = Pr

[
ς(x, y)i �= ς(x ′, y′)

]
. We have s0, · · · , sk = 0, sk+t = 2−t , 1 ≤ t ≤

n − 1 − k. As a result, the DL-probabilities through the modular addition at the i-th bit
is given by Pi = Pr

[
(x � y)i �= (x ′ � y′)i

]
, 0 ≤ i ≤ n − 1, where

Pr
[
(x � y)i �= (x ′ � y′)i

] =
{

0, i ≤ k

2−i+k, otherwise
(21)

By rotating the input difference (1 ≪ k, 0) to the left by one bit, the differential-linear
probability for the i-th bit of the output

←−
Pi is equal to 2−i+k+1 for k + 1 < i ≤ n − 1,

and to zero for i ≤ k + 1.
It is obvious that the by rotating the differential-linear probability in Eq. (21), we

obtain the probabilities
←−
Pi for all but the least significant bit, where

←−
P0 = 0 and Pn−1 =

2−n−1+k . Nevertheless, the error is negligible if n − k is large, and it holds for large
modular additions such as the 64-bit one adopted in SipHash.

For input differences with Hamming weight more than 1, a similar rotational property
can be observed for the �-rule in differential-linear. And it gives a straightforward
intuition on the rotational property observed in the differential-linear distinguishers of
SipHash.
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7. Conclusion and Future Work

We extend the differential-linear framework by using rotational-XOR differentials in the
differential part of the framework, and we name the resulting cryptanalytic technique
as rotational differential-linear cryptanalysis. We derive a closed formula for the bias of
a rotational differential-linear distinguisher under the sole assumption of the indepen-
dence between the rotational-XOR differential part and linear part. Moreover, we show
that Morawiecki et al.’s technique can be generalized to estimate the bias of a rotational
differential-linear distinguisher whose output linear mask is a unit vector. We apply our
method to the permutations involved in FRIET, Xoodoo, Alzette, and SipHash,
which leads to significant improvements over existing cryptanalytic results or explana-
tions for previous experimental distinguishers without a theoretical foundation.

Finally, we make an initial attempt to apply the rotational differential-linear technique
to keyed primitives and S-box-based designs, and discuss the difficulties we encountered
along the way. This sections serves to motivate further researches in this direction.
Keyed Primitives. The most fundamental discrepancy between ordinary differential and
rotational differential cryptanalysis lies in the effect of secret key additions on the inter-
mediate differences of the (rotational) differential trails.

In ordinary differential cryptanalysis, let (x, x ′) ∈ F
n
2 be a pair of data and k ∈ F

n
2

be a secret key. The key addition operation has no effect on the difference of x and x ′
since (x ⊕ k) ⊕ (x ′ ⊕ k) = x ⊕ x ′. In rotational differential cryptanalysis, the situation
is completely different. Let (x, x ′) be a pair of data with x ′ = (x ≪ t) ⊕ δ. Then, the
rotational difference of the pair obtained by performing the key addition operation is

((x ⊕ k) ≪ t) ⊕ (x ′ ⊕ k) = δ ⊕ (k ⊕ (k ≪ t)),

which is key-dependent (this fact is also reflected in Proposition 4). This brings some
difficulties in searching for good rotational differential trails. One way to overcome
this issue is to impose some constraints on the key values such that k ⊕ (k ≪ t) is
somewhat predictable. For example, we may require k ⊕ (k ≪ t) to be some constant.
This approach leads to weak key attacks. Therefore, we conclude that in general it is
difficult to apply rotational differential-linear cryptanalysis to keyed primitives.
S-box-based Permutations. Due to the rotational property of modular addition and bit-
wise operations, rotational cryptanalysis finds successful applications in ARX or AND-
RX ciphers, whereas S-box-based designs are less studied and intuitively techniques
employing RX differences would not be quite effective against S-box-based designs due
to the lack of strong rotational properties of general S-boxes. Nevertheless, we still try
to apply this technique to certain S-box-based permutations to gain some concrete un-
derstandings. For S-box-based designs, one could consider different types of rotations.
Assuming that the S-box layer consists t parallel applications of an s × s S-box, we can
have different rotations illustrated in Fig. 6.

Previous studies focus on the rotation of S-boxes and the rotational invariance through
the rounds (e.g., [41]). More generally, if one uses a linear function instead of a rotation,
attacks that explore self-similarities in LS-designs have been proposed, see for example
the invariant permutation attacks [2]. The rotation shown in Fig. 6b on LS-design can
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Fig. 6. Main types of rotations in S-box-based permutations.

Table 6. Maximum entries of the rDDTs for 16 optimal 4-bit S-boxes.

Offset S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

t = 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
t = 1 5 4 4 4 4 5 5 4 5 5 5 5 5 4 4 6
t = 2 4 6 4 4 6 5 6 8 4 6 4 4 6 4 6 5
t = 3 5 4 4 4 4 5 5 4 5 5 5 5 5 4 4 6

be regarded as a special type of permutation on the state, and it can be of interest if such
a rotation commutes with the linear layer.

In this section, we aim at finding rotational properties within the S-boxes, namely
given an S-box S : F

s
2 → F

s
2, find differences a, b ∈ F2s , such that

S(
←−x ⊕ a) ⊕ ←−−

S(x) = b

holds with a high probability. Analogous to the DDT of an S-box, we can define the
rotational difference distribution table.

Definition 9. (rDDT table) Given an s-bit S-box S : F
s
2 → F

s
2, we define the rotational

difference distribution table (rDDT) as a 2s × 2s table T, such that

T[α][β] = #{x ∈ F
s
2|S(

←−x ⊕ α) ⊕ ←−−
S(x) = β}.

In [42], Leander and Poschmann show that up to affine equivalence, there are only 16
different optimal S-boxes with respect to linear and differential cryptanalyses. Table 6
shows the maximal entries in the rDDT tables for the 16 optimal 4-bit S-box presented
in [42], see Appendix C for details, where t is the rotation offset of the underlying
rotational difference.

It is interesting to observe that the differentially 4-uniform S-boxes permit RX-
difference transitions with a higher probability than ordinary differentials.

Some S-boxes have a rotational property by design. For example, the four 8-bit S-
boxes of Midori-128 [43] are constructed with the 4-bit S-box

Sb1 = [0x1,0x0,0x5,0x3,0xe,0x2,0xf,0x7,0xd,0xa,0x9,0xb,0xc,0x8,0x4,0x6],
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Fig. 7. Four S-boxes of Midori-128 [43].

whose internal structure is depicted in Fig. 7.
Note that the swap of the two 4-bit inputs to SSbi leads to the swap of the output

nibbles. Namely, SSbi (aL ||aR) = (bL ||bR) implies SSbi (aR ||aL) = (bR ||bL).
In a different notation: SSbi (x ≪ 4) = (SSbi (x)) ≪ 4. The reason behind this

property is that the two layers of bit permutation in SSbi are the inverse of each other.
Consider the difference propagation. Assume the input pair of values to the S-box

being (x1||x0) and ((x0 ⊕ δL)||(x1 ⊕ δR)). Then, the probability for the output pair
being (y1||y0) and ((y1 ⊕ dL)||(y0 ⊕ dR)) is the same as normal difference propagation
from (δL ||δR) to (dR ||dL) through the S-box. In other words, the output difference (in
ordinary difference definition) is rotated/swapped.

Pr((δL ||δR)
R X−−→ (dL ||dR)) = Pr((δL ||δR) → (dR ||dL)).

As we have already show, SSbi (x ≪ 4) = (SSbi (x)) ≪ 4. The ShuffleCell
operation merely moves the cells around, so the rotation on each cell is preserved. For
the MixColumn operation,

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x3
x2
x1
x0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

y3
y2
y1
y0

⎞

⎟
⎟
⎠ , and

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x3 ≪ 4
x2 ≪ 4
x1 ≪ 4
x0 ≪ 4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

y3 ≪ 4
y2 ≪ 4
y1 ≪ 4
y0 ≪ 4

⎞

⎟
⎟
⎠ (22)

The round key of Midori-128 is the same for every round, so if the round key has
a rotation property on each cell, the rotational property will pass though key addition as
well. And it leaves us with the constant addition.
Constant addition For Midori-128, the constants are 0 or 1 for each cell. When the
constant is 0, it has no effect on the propagation of rotational property. When the constant
is 1,

(dL ||dR) = (aL ||aR) ⊕ (0000||0001), (d ′
L ||d ′

R) = (aR ||aL) ⊕ (0000||0001)
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therefore, (d ′
L ||d ′

R) = ((dL ||dR) ≪ 4) ⊕ (0001||0001). The first round constant of
Midori-128 is

⎛

⎜
⎜
⎝

0 0 1 0
0 1 0 0
0 0 1 1
1 1 1 1

⎞

⎟
⎟
⎠ .

And it injects an RX-difference

⎛

⎜
⎜
⎝

0 0 11 0
0 11 0 0
0 0 11 11
11 11 11 11

⎞

⎟
⎟
⎠

into the state.
In the following, we give an example on 2-round rotational differential in Midori-

128 (without the second SR and MC).

⎛

⎜
⎜
⎝

00 02 5a 00
20 00 00 00
78 00 00 00
99 01 00 00

⎞

⎟
⎟
⎠

−→
SB

⎛

⎜
⎜
⎝

00 01 05 00
01 00 00 00
05 00 00 00
11 14 00 00

⎞

⎟
⎟
⎠

−→
S R

⎛

⎜
⎜
⎝

00 00 00 14
00 01 11 00
00 00 00 05
00 01 00 05

⎞

⎟
⎟
⎠

−−→
MC

⎛

⎜
⎜
⎝

00 00 11 00
00 01 00 14
00 00 11 11
00 01 11 11

⎞

⎟
⎟
⎠

−−−→
ARC

⎛

⎜
⎜
⎝

00 00 00 00
00 10 00 14
00 00 00 00
11 10 00 00

⎞

⎟
⎟
⎠

−→
SB

⎛

⎜
⎜
⎝

00 00 00 00
00 80 00 40
00 00 00 00
99 09 00 00

⎞

⎟
⎟
⎠

The probability of the RX-differential is 2−24. Note that it is possible to choose the
round key difference such that it cancels out the RX-difference injected by the first
round constant, and this can give an RX-differential characteristic with probability up to
one in this case, and it is indeed better than an optimal 2-round differential characteristic.
However, as discussed above, such a gain in the early rounds may not be preserved for
more rounds, because of the heavy RX-differences injected by the round constants in
each round, and the trivial key schedule makes it difficult to cancel out using a fixed
RX-difference in the round keys. Therefore, comparing with the optimal differential
characteristics, the RX-characteristic is generally weaker when the number of rounds
covered by the trail is large. For S-box-based primitives with a nontrivial key schedule,
we expect it to be more challenging to find a good rotational distinguisher. Finally,
we would like to propose an open problem concerning the distinguishers employed
in [26,44,45].

Definition 10. Let f : F
n
2 → F

n
2 be a vectorial Boolean function, and A and B be two

subsets of F
n
2. For (δ, λ, γ ) ∈ F

n
2 ×F

n
2 ×F

n
2, the correlation of the generalized rotational
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differential-linear distinguisher of f is defined as

2n

|A||B|
∑

x∈D
(−1)λ· f (x)⊕γ · f (

←−x ⊕δ),

where D = {x ∈ F
n
2 : f (x) ∈ A and f (

←−x ⊕ δ) ∈ B}.
Then, can we derive a closed formula for the correlation of the generalized rotational
differential-linear distinguisher of E = E1 ◦ E2 under the assumption that E0 and E1
are independent?
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A. Finding Input Differences for Local Optimization with the Gurobi Optimizer

In Sect. 4, we presented a rotational differential-linear distinguisher for the 32-bit modular addition, such that
the function

∑n−1
i=0 (| Pr

[
ei · (rot( f (x)) ⊕ f (rot(x) ⊕ δ)) = 0

]−1/2|) is maximized. This solution can be
found with the Gurobi optimizer by converting the problem into a quadratic constraint programming problem.
The problem we consider here is to find the input RX-differences a, b, such that the value of the following
objective function is maximized:

n−1∑

i=0

(| Pr
[
ei · (rot(x � y) ⊕ ((rot(x) ⊕ a) � (rot(y) ⊕ b))) = 0

] − 1/2|). (23)

We assume that the input difference is some fixed value. Thus, the initial R-DL probabilities are zero or one.
The constraints are all nonlinear, quadratic for AND-rule and XOR-rule, and cubic in �-rule.
Quadratic constraint programming(QCP) is a class of programming problems that optimize an objective
function (quadratic or linear) given a set of quadratic constraints. The constraints can be inequalities or
equations, and when it is the second case, the problem is called non-convex. The optimizer Gurobi can solve
some QCP problems, convex or non-convex, and returns one or many solutions for the optimization. When the
problem is non-convex, the optimizer solves it with a mixed-interger programming (MIP) strategy. In addition,
the constraints in AND-rule and XOR-rule involves quadratic terms that are the cross-product of variables,
that is to say, there is no terms with the form a2, such constraints are called bilinear constraints.

http://creativecommons.org/licenses/by/4.0/
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To call Gurobi optimizer for QCP solving with Python, we need to set the following parameters for the model.

import gurobipy as gp
from gurobipy import GRB
from gurobipy import abs_
m = gp.Model("qcp")
m.params.NonConvex = 2

The intermediate probabilities during the evaluation are allocated as variables between 0 and 1, particularly
the initial probabilities are integers.

a = m.addVar(0.0,1.0,0.0,name="a")
z = m.addVar(0.0,1.0,0.0,GRB.INTEGER,name="z")

To add a constraint, for instance, the XOR-rule a + b − 2ab = p, the clause to add is

m.addConstr(a + b - 2*a*b == p,"p")

After setting all constraints, we call m.optimize() to solve the model.

B. Evaluate the Rotational Differential-Linear Correlation with Theorem 4

In this section, we evalute the rotational differential-linear distinguisher of the alzette box presented in Sect. 6.1.
With input RX-difference

(7ffffffc,3ffffffff),

and output mask (2,0), the experimental correlation of the distinguisher is 2−7.35.
Split the 4-round alzette to two parts, each with two rounds. For the second part, we set to find good linear
approximation with input mask (v1, v0) and output mask (2,0), such that

λ((v1, v0), (2,0)) = cor((v1, v0), (2,0)) · cor((−→v1 , −→v0 ), (1,0))

is significant. With an SMT solver, we can find the following linear trails automatically.

L1 : (01000002,03800002)
1r−→ (00000002,02000000)

1r−→ (2,0)

L2 : (01000002,03800002)
1r−→ (00000003,02000000)

1r−→ (2,0)

L3 : (01800002,03000002)
1r−→ (00000003,02000000)

1r−→ (2,0)

L4 : (01800002,03000002)
1r−→ (00000002,02000000)

1r−→ (2,0)

Each gives a correlation λ((v1, v0)), (2,0)) = 2−4. With the linear masks (v1, v0), we experimentally
obtain the correlation of the truncated differential in the first two rounds, where the input RX-difference is
(7ffffffc,3ffffffff) and output RX-difference is in the orthogonal space of the mask (v1, v0). The cor-
relation is−2−3.83 with the mask (01000002,03800002), and 2−3.46 with the mask (01800002,03000002).
By Theorem 4, the formula sums up over all intermediate masks

Pr

[

δ
RX−−→
E

sp(w)⊥
]

− 1

2
=

∑

u∈Fn
2

(

Pr

[

δ
RX−−→
E0

sp(u)⊥
]

− 1

2

)

· λE1 (u, w),

which evaluates to 2−4 · 2−3.46 + 2−4 · 2−3.46 − 2−4 · 2−3.83 − 2−4 · 2−3.83 = 2−8.6. It gives a close
estimation to the experimental correlation of the distinguisher 2−7.35.



Rotational Differential-Linear Cryptanalysis Revisited Page 43 of 45 3

C. Optimal 4-Bit S-Boxes

S1 = {0,1,2,3,4,6,8,A,5,B,C,F,7,9,D,E}
S2 = {0,1,2,3,4,6,8,A,5,B,C,F,7,D,9,E}
S3 = {0,1,2,3,4,6,8,A,5,B,C,F,7,E,9,D}
S4 = {0,1,2,3,4,6,8,A,5,B,C,F,D,E,7,9}
S5 = {0,1,2,3,4,6,8,A,5,B,C,F,E,D,9,7}
S6 = {0,1,2,3,4,6,8,B,5,9,C,E,D,7,A,F}
S7 = {0,1,2,3,4,6,8,B,5,9,C,E,D,A,7,F}
S8 = {0,1,2,3,4,6,8,B,5,9,C,F,7,D,A,E}
S9 = {0,1,2,3,4,6,8,B,5,C,9,D,E,7,A,F}
S10 = {0,1,2,3,4,6,8,B,5,C,9,D,E,A,7,F}
S11 = {0,1,2,3,4,6,8,B,5,C,D,7,9,F,A,E}
S12 = {0,1,2,3,4,6,8,B,5,C,D,7,A,F,9,E}
S13 = {0,1,2,3,4,6,8,B,5,C,D,7,F,9,E,A}
S14 = {0,1,2,3,4,6,8,C,5,9,B,D,E,7,A,F}
S15 = {0,1,2,3,4,6,8,C,5,9,B,D,E,A,7,F}
S16 = {0,1,2,3,4,6,8,C,5,9,D,F,A,7,B,E}
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