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Abstract. We present the first undeniable signatures scheme based on RSA. Since their
introduction in 1989 a significant amount of work has been devoted to the investigation
of undeniable signatures. So far, this work has been based on discrete log systems. In
contrast, our scheme uses regular RSA signatures to generate undeniable signatures. In
this new setting, both the signature and verification exponents of RSA are kept secret
by the signer, while the public key consists of a composite modulus and a sample RSA
signature on a single public message.

Our scheme possesses several attractive properties. First, provable security, as forg-
ing the undeniable signatures is as hard as forging regular RSA signatures. Second,
both the confirmation and denial protocols are zero-knowledge. In addition, these pro-
tocols are efficient (particularly, the confirmation protocol involves only two rounds of
communication and a small number of exponentiations). Furthermore, the RSA-based
structure of our scheme provides with simple and elegant solutions to add several of
the more advanced properties of undeniable signatures found in the literature, including
convertibility of the undeniable signatures (into publicly verifiable ones), the possibility
to delegate the ability to confirm and deny signatures to a third party without giving up
the power to sign, and the existence of distributed (threshold) versions of the signing
and confirmation operations.

Due to the above properties and the fact that our undeniable signatures are identical
in form to standardRSA signatures, the scheme we present becomes a very attractive
candidate for practical implementations.
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1. Introduction

The central role of digital signatures in the commercial and legal aspects of the evolv-
ing electronic commerce world is well recognized. Digital signatures bind signers to
the contents of the documents they sign. The ability for any third party to verify the
validity of a signature is usually seen as the basis for the “nonrepudiation” aspect of
digital signatures, and their main source of attractiveness. However, this universal ver-
ifiability (or self-authenticating) property of digital signatures is not always a desirable
property. Such is the case of a signature binding parties to a confidential agreement,
or of a signature on documents carrying private or personal information. In these cases
limiting the ability of third parties to verify the validity of a signature is an import-
ant goal. However, if we limit the verification to such an extent that it cannot be veri-
fied by, say, a judge in case of a dispute, then the whole value of such signatures
is seriously questioned. Thus, the question is how to generate signatures which
limit the verification capabilities yet without giving up on the central property of
nonrepudiation.

An answer to this problem was provided by Chaum and van Antwerpen [CA] who
introducedundeniable signatures. Such signatures are characterized by the property
that verification can only be achieved by interacting with the legitimate signer (through
a confirmation protocol). On the other hand, the signer can prove that a forgery is
such by engaging in adenial protocol. It is required that the following property be
satisfied: if on a specific message and signature the confirmation protocol outputs that
the pair is a valid signature, then on the same input the denial protocol would not
output that it is a forgery. The combination of these two protocols, confirmation and
denial, protects both the recipient of the signature and the signer, and preserves the
nonrepudiation property found in traditional digital signatures. The recipient is protected
since the ability of a signer to confirm a signature means that at no later point will the
signer be able to deny the signature. For example, in the case of an eventual dispute, the
recipient of the signature can resort to a designated authority (e.g., a judge) in order to
demonstrate the signature’s validity. In this case the signer will be required to confirm
or deny the signature. If the signer does not succeed in denying (in particular, if it
refuses to cooperate), then the signer remains legally bound to the signature (such will
be the case if the alleged signature was a correct one). On the other hand, the signer
is protected by the fact that his signatures cannot be verified by unauthorized third
parties without his own cooperation and the denial protocol protects him from false
claims.

The protection of signatures from universal verifiability is not only justified by con-
fidentiality and privacy concerns but it also opens a wide range of applications where
verifying a signature is a valuable operation by itself. A typical example presented in
the undeniable signatures literature is the case of a software company (or for this matter
any other form of electronic publisher) that uses signature confirmation as a means to
provide a proof of authenticity of their software to authorized (e.g., paying) customers
only. This example illustrates the core observation on which the notion of undeniable
signatures stands:verification of signatures, and not only their generation, is a valuable
resource to be protected.
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1.1. Components and Security of Undeniable Signatures Schemes

There are three main components to undeniable signature schemes. The signature gen-
eration algorithm (including the details of private and public information), the confir-
mation protocol, and the denial protocol. Signature generation is much like a regular
signature generation, namely, an operation performed by the signer on the message
which results in a string that is provided to the requester of the signature. The con-
firmation protocol is usually modeled after an interactive proof where the signer acts
as the prover and the holder of the signature as the verifier. The input to the protocol
is a message and its alleged signature (as well as the public key information asso-
ciated with the signer). In the case that the input pair is formed by a message and
its legitimate signature, then the prover can convince the verifier that this is the case,
while if the signature does not correspond to the message, then the probability of the
prover to convince the verifier is negligible. Similarly, the denial protocol is an interac-
tive proof designed to prove that a given input pair doesnot correspond to a message
and its signature. However, if the alleged input signature does correspond to the input
message, then the probability of the prover to convince the verifier of the contrary is
negligible. Note that engaging in the confirmation protocol and having it fail is not an
indication that the signature is invalid, this can only be established through the denial
protocol. That is, the confirmation protocol only establishes validity, and the denial—
invalidity.

In addition to the above properties required from the confirmation and denial pro-
tocol, there are two basic security requirements on undeniable signatures. The first is
unforgeability, namely, without access to the private key of the signer no one should
be able to produce legitimate signatures by himself. This is similar to the unforgeabil-
ity requirement in the case of regular digital signatures, but here the modeling of the
attacker is somewhat more complex. In addition to having access to chosen messages
signed by the legitimate signer, the attacker may also get to interact with the signer on
different instances of the above confirmation and denial protocols, possibly on input
pairs of his own choice. The second requirement is nontransferability of the signa-
ture, namely, no attacker (under the above model) should be able to convince any other
party, without the cooperation of the legitimate signer, of the validity or invalidity of a
given message and signature. Both of these requirements induce necessary properties
on the components of an undeniable signature scheme. In particular, the confirmation
and denial protocols should not leak any information that can be used by an attacker
to forge or transfer a signature. As a consequence it is desirable that these protocols
be zero-knowledge.1 As for the strings representing signatures, they should provide no
information that could help a party to get convinced of the validity (or invalidity) of the
signature. Somewhat more formally, it is required that the legitimate signature(s) corre-
sponding to a given message besimulatable, namely, they should be indistinguishable
from strings that can be efficiently generated without knowledge of the secret signing
key.

1 At the minimum, if not zero-knowledge, these protocols should be proven to provide no “useful” infor-
mation for the attacker to break the security of the scheme.
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1.2. Advanced Properties of Undeniable Signatures

Much of the work on undeniable signatures has been motivated by the search for schemes
that provide all of the above properties but that, in addition, enjoy some additional
attractive properties. These includeconvertibility(the possibility to transform undeniable
signatures into regular, i.e., self-authenticating, signatures by just publishing a short piece
of information [BCDP]),delegation(enabling selected third parties to confirm/deny
signatures but not to sign),distribution of power(threshold version of the signature and
confirmation protocols [Pe]),designated confirmerschemes (in which the recipient of
the signature is assured that a specific third party will be able to confirm the signature at
a later time [Ch2]), anddesignated verifierschemes (in which the prover can make sure
that only a specified verifier benefits from interacting with the prover on the confirmation
of a signature [JSI]). More details on these extensions are provided in Section 5.

1.3. Previous Work on Undeniable Signatures

Since their introduction in 1989, undeniable signatures have received a significant at-
tention in the cryptographic research community [CA], [Ch1], [BCDP], [DY], [FOO],
[Pe], [CHP], [Ch2], [Ja], [Ok], [MPP], [DP], [JSI], [JY]. These works have provided a
variety of different schemes for undeniable signatures with variable degrees of security,
provability, and additional features. Interestingly, all these works are discrete logarithm
based. In [BCDP] the problem of constructing schemes based on different assumptions,
in particular RSA, was suggested as a possible research direction.

Most influential are the works of Chaum and van Antwerpen [CA] and Chaum [Ch1].
The first work introduces the notion of undeniable signatures and provides protocols
which are the basis for many of the subsequent works. The second improves significantly
on the initial solution by providing zero-knowledge versions of these protocols. The
formalization of the basic notions behind undeniable signatures was mainly carried out
in the works by Boyar et al. [BCDP] and by Damg˚ard and Pedersen [DP]. In [BCDP] the
notion ofconvertibleschemes was introduced. In such schemes the signer can publish a
short string that converts the scheme into a regular signature scheme. However the scheme
presented in [BCDP] was recently broken in [MPP]. The repaired solution presented
therein however does not come with a proof of security. The first convertible schemes
with proven security (based on cryptographic assumptions) are presented in [DP].

1.4. Our Contribution

Our work is the first to present undeniable schemes based on RSA.2 Our undeniable
signature scheme produces signatures that areidentical in formto RSA signatures. The
essential difference from traditional RSA signatures is that in our case both the signature
and verification exponents of RSA are kept secret by the signer, while the public key
consists of a composite modulus and a sample RSA signature on a single public message.

Not only does our solution expand the list of available number-theoretic assumptions
that suffice to build undeniable signatures, but it achieves and improves, as we show

2 Chaum in [Ch2] uses RSA signatureson top of regular undeniable signatures to provide “designated
confirmer signatures”; however, the underlying undeniable signatures are still discrete log-based.
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below, in a simple and elegant way several of the desirable properties of undeniable
signatures.

Unforgeability. Our construction allows us to prove in a simple way that security of
these signatures against forging is equivalent to the unforgeability of RSA signatures.3

Provable unforgeability of undeniable signatures was presented for the first time in the
recent paper by Damg˚ard and Pedersen [DP] where forgery of the proposed scheme is
proven equivalent to forgery of the ElGamal scheme.

Simulatability. Nontransferability of an RSA signature is a nonstandard requirement
in the context of traditional RSA. We prove this property under the assumption that
deciding on the equality of discrete logarithms under different bases is intractable. A
similar assumption is required in previous works as well4 although, by itself, it is not
always sufficient to prove simulatability of the undeniable signatures. For example in
[DP] the simulatability property is only conjectured to follow from such assumptions.

Zero-Knowledge. Our confirmation and denial protocols have the interactive proof
properties as explained above and are also zero-knowledge. Therefore they do not leak
any information that could otherwise be used for forging signatures. The soundness of
our protocols (i.e., the guarantee that the prover/signer cannot cheat) relies on the use of
composite numbers of a special form (specifically, with “safe prime” factors), which are
secure moduli for RSA. A signer who chooses a modulus of a different form may have
some way to cheat in our protocols. To force the signer to choose a “proper” modulus
we require that he prove the correct choice of primes at the time he registers his public
key with a certification authority. A discussion of this issue is presented in Section 4. An
interesting question is whether our solution, or a different one, can work with a different
kind of RSA moduli.

Efficiency. Our protocols are efficient (comparable with the most efficient alterna-
tives found in the undeniable signatures literature). The confirmation protocol takes
two rounds of communication (which is minimal for zero-knowledge protocols [GK])
and involves a small number of exponentiations. The denial protocol is somewhat more
expensive as it consists of a basic two-round protocol with small, but not negligible,
probability of error (e.g., 1/1000) which needs to be repeated sequentially in order to
reduce the error probability further. Its performance is still significantly better (by a fac-
tor of 10) than alternative protocols that only achieve probability 1/2 in each execution.
We also note that in typical uses of undeniable signature schemes one expects to apply

3 As with regular RSA, the use of a strong one-way hash function is assumed to provide unforgeability
against chosen message attacks.

4 In our case the discrete logarithms are computed modulo a composite number while in previous works they
are modulo a prime. In both cases, the problem is related to the problem of computing a discrete logarithms
which is considered to be hard (in the case of a composite modulus that difficulty is implied by the hardness
of factoring and also directly by the assumed security of RSA). However, while the feasibility of computing a
discrete logarithm implies the feasibility of the above decision problem, the reverse direction is not known to
hold.
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more frequently confirmation than denial. The latter is mainly needed to settle legal
disputes.

Advanced Properties. In addition to the above security and efficiency properties, our
solution naturally achieves several of the advanced features of undeniable signatures
mentioned above. Once again it is the structure of RSA, in particular the presence of
a secret verification exponent, that allows us to achieve such properties very elegantly.
Convertibility is achieved by publishing the verification exponent, thus converting the
signatures into regular RSA signatures; delegation is achieved by providing the verifi-
cation exponent to the delegated party which can then run the confirmation and denial
protocols but cannot sign messages or forge signatures; distribution of the signature
operation builds on the existing threshold solutions for RSA signatures; distribution of
confirmation can also be achieved by an adaptation of the regular threshold RSA solu-
tions. We can also adapt existing techniques for the construction ofdesignated confirmer
anddesignated verifierundeniable signatures, thus obtaining these variants also for our
scheme. More details are provided in Section 5.

Standard RSA Compatibility. An important practical advantage of our RSA-based
undeniable scheme is that the signatures themselves are identical in form to standard
RSA signatures. In particular, this means that they fit directly into existing standardized
communication protocols that use (regular) RSA signatures.

Technically, our work builds on previous ideas and protocols which we adapt to the
RSA case. These previous solutions are designed to exploit the algebraic properties
of cyclic groups likeZ∗p (and its subgroups). This is probably the main reason that
subsequent work concentrated on these structures as well. Here we show that many
of these ideas can be used in the context of RSA, thus answering in the affirmative a
question suggested in [BCDP]. In doing so we use ideas from the work of Gennaro et
al. [GJKR].

The paper is organized as follows: in Section 2 we give notation and some number
theoretical lemmas. In Sections 3 and 4 we describe the new undeniable signature scheme
and prove its properties and security. Section 5 includes extension of the scheme to
variations of undeniable signatures suggested in the literature.

2. Preliminaries

Notation. Throughout the paper we use the following notation: For a positive integer

k we denote [k]
def= {1, . . . , k}. Z∗n denotes the multiplicative group of integers modulon,

andϕ(n) = (p−1)(q−1) the order of this group. For an elementw ∈ Z∗n we denote by
ord(w) the order ofw in Z∗n. The subgroup generated by an elementw ∈ Z∗n is denoted
by 〈w〉.

The following technical lemmas are needed in our proofs in Section 3.
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Lemma 1. Let n= pq, where p< q, p = 2p′ + 1, q = 2q′ + 1, and p,q, p′,q′ are
all prime numbers. Then:

1. The order of elements in Z∗n is one of the set{1,2, p′,q′,2p′,2q′, p′q′,2p′q′}.
2. Given an elementw ∈ Z∗n\{−1,1}, such that ord(w) < p′q′, then either gcd(w−

1,n) or gcd(w + 1,n) is a prime factor of n.

Proof. 1. To find the order of elements inZ∗n it is enough to note that the maximal
order of such an element is 2p′q′ and that all the other orders must divide this one.

2. From the above property we get that if 1< ord(w) < p′q′, then ord(w) ∈
{2, p′,q′,2p′,2q′}. If ord(w) = 2,w 6= −1, thenn|(w − 1)(w + 1) and thengcd(w −
1,n)must be a nontrivial factor ofn. In case thatord(w) = p′,wp′ ≡ 1 modn⇒ wp′ ≡
1 modq. If w ≡ 1 modq, thenw−1 is a multiple ofq which is smaller thann, otherwise
p′|ϕ(q) = 2q′, a contradiction. A similar argument holds forord(w) = q′. Finally in the
case thatord(w) = 2p′,w2p′ ≡ 1 modn⇒ (w2)p′ ≡ 1 modq. If w2 = 1 modq, then
eitherw−1 orw+1 is a multiple ofq which is smaller thann, otherwisep′|ϕ(q) = 2q′,
a contradiction. Again a similar argument holds forord(w) = 2q′.

As a consequence of the above lemma we can assume in our protocols that any value
found by a party that does not know (and cannot compute) the factorization ofn must
be of order at leastp′q′ in Z∗n (except for 1,−1).

Lemma 2. Let n be as in Lemma1. Given an elementw such that ord(w) ∈ {p′q′,
2p′q′}, then for every m∈ Z∗n it holds that m4 ∈ 〈w〉.

Proof. We give the proof for the caseord(w) = 2p′q′ and show thatm2 ∈ 〈w〉. If
m ∈ 〈w〉, then clearly the claim holds. Otherwise,Z∗n = 〈w〉 ∪ m〈w〉. If m2 ∈ 〈w〉,
then we are done, otherwise it must hold thatm2 ∈ m〈w〉. This in return requires that
m ∈ 〈w〉, contradiction. The case oford(w) = p′q′ is proved similarly.

3. The New Undeniable Signature Scheme

In this section we present the details of our scheme. We start by defining the following
set:

N = {n | n = pq, p < q, p = 2p′ + 1, q = 2q′ + 1,

and p,q, p′,q′ are all prime numbers}.

The system is set up by the signer in the following manner: choose a random element
n ∈ N ; select elementse,d ∈ [ϕ(n)] such thated≡ 1 modϕ(n); choose a pair(w, Sw)
with w ∈ Z∗n, w 6= 1, Sw = wd modn; set the public key parameters to the tuple
(n, w, Sw); set the private key to(e,d).

We denote byPK the set of all tuples(n, w, Sw) generated as above. We refer the
reader to Section 4.3 for a discussion on the form of the public key and how to verify its
correctness. In particular, it is shown there that the value ofw can always be set to a fixed
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number, e.g.,w = 2. This simplifies the public key system and adds to the efficiency of
computing exponentiations with basew.

3.1. Generating a Signature

To generate a signature on a messagem the signer carries out a regular RSA signing
operation, i.e., he computesSm = md modn, outputting the pair(m, Sm). More pre-
cisely, the messagem is first processed through a suitable encoding (e.g., via one-way
hashing) before applying the exponentiation such that the resultant signature scheme can
be assumed to be unforgeable even against chosen message attacks (plain RSA does not
have this property). Given a messagem we denote bym̄ the output of such an encoding
of m (we do not specify any encoding in particular).5 Thus, the resultant signature ofm

will be Sm
def= m̄d modn. In the case of the pair(w, Sw) we slightly abuse the notation

and writeSw to denotewd modn (i.e., we directly exponentiatew rather thanw̄).

3.2. Confirmation Protocol

In Fig. 1 we present a protocol for confirming a signature. It is carried out by two players,
a prover and a verifier. The public input to the protocol are the public key parameters,
namely,(n, w, Sw) ∈ PK, and a pair(m, Ŝm). For the case that̂Sm is a valid signature
of m, then P will be able to convinceV of this fact, while if the signature is invalid,
then no prover (even a computationally unbounded one) will be able to convinceV to
the contrary except for a negligible probability.

This protocol is basically the same as the protocol of Gennaro et al. [GJKR] (based on
[Ch1]) where it is used in a different application, namely, threshold RSA. Our variation
on this protocol uses the verification keye rather than the signature keyd as originally
used in [GJKR] (in their case, the signer knows onlyd but note). Still, the basic proof
given in that paper applies to our case due to the symmetry that exists betweend ande
when both exponents are kept secret. This modification allows us to provide solutions

Signature Confirmation Protocol

Input: Prover: Secret key(d,e) ∈ [ϕ(n)]2

Common: Public key(n, w, Sw) ∈ PK,
m ∈ Z∗n, and alleged̂Sm

1. V choosesi, j ∈R [n] and computesQ
def= Ŝ2i

m Sw j modn
V −→ P: Q

2. P computesA
def= Qe modn

P −→ V : A
3. V verifies thatA = m̄2iw j modn.

If equality holds, thenV acceptsŜm as the signature onm, otherwise “undetermined.”

Fig. 1. Proving thatŜm ∈ SIG(m) (ZK steps omitted).

5 For simplicity we assume a deterministic encoding; however, randomized encodings, e.g., [BR2], can be
used as well but then, in our case, the random bits used for the encoding need to be attached to the signature.
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where the ability to confirm signatures can be delegated to third parties while keeping the
ability to sign new messages only for the original signer (it also allows for a distributed
prover solution). See Section 5 for the details.

The idea of the protocol is for the verifier to test the alleged signature onm by
producing a related element which looks random to the signer and for which the verifier
knows the signature (given that the signature onm is correct). This “blinded” element
is created via the exponentiation of the messagem with a random exponenti and its
multiplication with a random exponentj of the valuew (for which the correct signature
Sw is publicly known). Intuitively, a cheating prover needs to find the values ofi and j in
order to cheat. However, there are many pairs of exponents that give the same result and
we show that the prover (even if computationally unbounded) cannot distinguish among
them.

An interesting aspect of this protocol is that a prover could succeed in convincing
the verifier to accept a signature onm even when this signature is notm̄d modn but
αm̄d modn whereα is an element of order 2 (inZ∗n). Gennaro et al. [GJKR] solve this
problem through the assumption (valid in their case) that the prover cannot factorn
and thus cannot find such an elementα. In our case, this assumption does not hold. We
deal with this problem by accepting as valid signatures also these particular multiples
of m̄d. On the other hand, when designing the denial protocol we make sure that the
signer cannot deny a signature of this extended form. That is, we define the set of valid

signatures for a messagem asSIG(m) def= {Sm: Sm = αm̄d, ord(α) ≤ 2}.
For ease of exposition the protocol in Fig. 1 appears in a non-zero-knowledge for-

mat. However, there are well-known techniques [GMW], [BCC], [Go] to add the zero-
knowledge property to the above protocol using the notion of acommitment function:
Instead ofP sendingA in Step 2, he sends a commitmentcommit(A), after whichV

reveals toP the values ofi and j . After checking thatQ
def= Ŝ2i

m Sw j modn, P sends
A to V . The verifier checks thatA corresponds to the value committed byP and then
performs the test of Step 3 above.

The zero-knowledge condition is achieved through the properties of the commitment
function, namely, (i)commit(x) reveals no information onx, and (ii) P cannot find
x′ such thatcommit(x) = commit(x′). Commitment functions can be implemented in
many ways. For example, in the above protocolcommit(A) can be implemented as a
probabilistic (semantically secure) RSA encryption ofA using a public key for which
the private key is not known toV (and, possibly, not even known toP). To open the
commitment,P reveals bothA and the stringr used for the probabilistic encryption.
This implementation of a commitment function is very efficient as it does not involve
long exponentiations (and is secure since we assume our adversary, the verifier in this
case, is unable to break RSA).

Theorem 1(Confirmation Theorem). Let (n, w, Sw) ∈ PK.

Completeness. Given Sm ∈ SIG(m), if P and V follow the Signature Confirmation
Protocol, then V always accepts Sm as a valid signature.

Soundness. A cheating prover P∗, even computationally unbounded, cannot con-
vince V to accept̂Sm 6∈ SIG(m) with probability greater than O(1)/p′.
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Zero-knowledge. The protocol is zero-knowledge, namely, on input a message and
its valid signature, any (possibly cheating) verifier V∗ interacting with prover P
does not learn any information aside from the validity of the signature.

Proof. Completeness. Immediate from inspection of the protocol. Note that raising
Ŝm to an even power eliminates any extra factor of order 2, if such exists, from the
signature (such factors are allowed by definition ofSIG(m)).

Soundness. We adapt the proof from [GJKR] to our case. The prover’s probability
to cheat, i.e., to convinceV to acceptŜm 6∈ SIG(m), is maximized by choosingA that
passesV ’s test (in Step 3) with maximal probability (relative to the valuesi, j chosen
by V). As the prover choosesA after having seen the “challenge”Q from V (and based
on its knowledge ofŜm, m, w, d, e, andn), the proof of soundness needs to capture
that some information oni, j (at least from the information-theoretic point of view) is
available to the prover when selectingA.

In the actual protocol,V choosesi, j randomly from the set [n]; for simplicity of
analysis we assume that these values are chosen from [ϕ(n)], and will account for the
event that eitheri or j falls outside of this range in the prover’s probability to cheat.
The probability of such event (i.e., thati or j /∈ [ϕ(n)]), denoted byπ1, is at most
2(n− ϕ(n))/n. Thus, in what follows, we assumei, j ∈R [ϕ(n)].

We defineI (Q) = {i ∈ [ϕ(n)]: ∃ j, Q = Ŝ2i
m Sj

w modn}. SinceŜm 6∈ SIG(m)we can
write Ŝm = αm̄d, for α ∈ Z∗n, ord(α) > 2. In Step 3 the verifier will check whether

A = m̄2iw j = α−2ei Ŝ2ei
m Sej

w = α−2ei Qe. (1)

As the valueα has been set in advance, then for anyA the number ofi ’s which satisfy (1)
is the same as the number ofi ’s such thatα2i = A−d Q which is at mostϕ(n)/ord(α).
GivenQ, V ’s choice ofi is uniformly distributed overI (Q), as for eachi ∈ I (Q) there
is the same number of valuesj which satisfy the equationQ = Ŝ2i

m Sj
w modn. Thus, the

probability ofP to succeed is at mostϕ(n)/(ord(α)·|I (Q)|). We denote the later quantity
by π2 and proceed to bound it by bounding|I (Q)|. Clearly, if V follows the protocol,
then I (Q) is not empty. Now we show that∀Q properly formed,|I (Q)| ≥ ord(w).

If I (Q) is nonempty, then for a valuei ∈ I (Q) and1 such thatŜ21
m ∈ 〈Sw〉, it holds

that i + 1 ∈ I (Q) (because there existj, j ′ such thatQ = Ŝ2i
m Sj

w and Ŝ21
m = Sj ′

w

from which it follows thatQ = Ŝ2(i+1)
m Sj− j ′

w ). Therefore, we get that{i + 1: Ŝ21
m ∈

〈Sw〉 and1 < ϕ(n)} ⊆ I (Q). Thus, the size ofI (Q) is at least the size of the set
D = {1 < ϕ(n): Ŝ21

m ∈ 〈Sw〉}. We proceed to bound the size ofD. Using standard
arguments it is easy to show that ifδ is the minimal nonzero element ofD, then the
elements ofD are exactly the multiples ofδ (smaller thanϕ(n)). Thus,|D| = ϕ(n)/δ.
We now show thatδ ≤ ϕ(n)/ord(w). Let i1 < i2 ≤ δ. The cosetŝS2i1

m 〈Sw〉 andŜ2i2
m 〈Sw〉

are disjoint (a common element would imply thatŜ2(i2−i1)
m ∈ 〈Sw〉 in contradiction to

the minimality of δ). Thus, Ŝ2
m〈Sw〉, Ŝ4

m〈Sw〉, . . . , Ŝ2δ
m〈Sw〉 are δ disjoint cosets inZ∗n

each of size|〈Sw〉|. The latter size is exactlyord(w) since〈Sw〉 = 〈w〉, asSw = wd

andd is relatively prime toϕ(n). We thus haveδ ≤ |Z∗n|/ord(w) = ϕ(n)/ord(w). In
conclusion,|I (Q)| ≥ |D| = ϕ(n)/δ ≥ ord(w). Combining all the above we get that
π2 < ϕ(n)/(ord(α)ord(w)), and the total failure probability is at mostπ1+ π2.
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(We stress that the above holds also for a computationally unbounded cheating prover,
and that the bound is tight for such a prover, up to the termπ1 = 2(n− ϕ(n))/n.)

The above bound on the probability of success of a cheating prover is given in terms of
the order of elements in the groupZ∗n. Recall that we are usingn’s of a special form, i.e.
n = pq wherep = 2p′ + 1 andq = 2q′ + 1, with p,q, p′,q′ all large primes. Assume
without loss of generality thatp′ < q′. Using Lemma 1 we can claim thatord(w) ≥ p′q′

andord(α) ≥ p′, thusπ2 < 4/p′. Also, the expression 2(n− ϕ(n))/n is at most 2/p′

in this case. This proves the soundness statement in the theorem.
Zero-knowledge. Immediate (see remarks after the description of the protocol).

3.3. Denial Protocol

Figure 2 exhibits the Denial Protocol. The public input to the protocol are the public key
parameters, namely,(n, w, Sw) ∈ PK, and a pair(m, Ŝm). In the case that̂Sm 6∈ SIG(m),
then P will be able to convinceV of this fact, while if Ŝm ∈ SIG(m), then no prover
(even a computationally unbounded one) will be able to convinceV that the signature
is invalid except with negligible probability.

Our solution is based on a protocol due to Chaum [Ch1], designed to prove in zero-
knowledge the inequality of the discrete logarithms of two elements over a prime field
Zp relative to two different bases. The protocol and proof presented in the above paper
do not work overZ∗n for a compositen as required here, in particular, since they strongly
rely on the existence of a generator for the multiplicative groupZ∗p. However, a careful
adaptation of that protocol and a more involved proof can be shown to solve our problem
over Z∗n.

The protocol (see Fig. 2) works in the following manner: the verifier gives the prover
in Step 1 two values from which the prover can extract, using the verification exponent
e, the quotient(m̄/Ŝe

m)
i , for some valuei chosen byV . The verifier accepts the run of

the protocol only if the prover can find the valuei . We will see that ifŜm is not a valid
signature of the messagem, thenP exhaustively searches the range for the desired value
of i . However, in case that̂Sm is a valid signature ofm, the above quotient equals 1

Denial Protocol

Input: Prover: Secret key(d,e) ∈ [ϕ(n)]2

Common: Public key(n, w, Sw) ∈ PK,
m ∈ Z∗n, and alleged nonsignaturêSm

1. V choosesi = 4b, b ∈R [k], and j ∈R [n].
SetsQ1 = m̄iw j modn andQ2 = Ŝi

mSw j modn
V −→ P: (Q1, Q2)

2. P computesQ1/Qe
2 = (m̄/Ŝe

m)
i and computesi = 4b by testing all possible values of

b ∈ [k].
If such a value was found, thenP setsA = i , otherwise abort.
P −→ V : A

3. V verifies thatA = i . If equality holds, thenV rejectsŜm as a signature ofm, otherwise,
undetermined.

Fig. 2. Proving thatŜm 6∈ SIG(m) (ZK steps omitted).
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regardless of the value ofi . Then the prover cannot learn any information abouti and
can only try to guess that value (see the proof below for a formal argument).

In order to allow for an exhaustive search ofi by P, one needs to choose the range of
i to be relatively small. If the upper bound oni is set to some valuek, then the prover
needs to performk multiplications (of the valuēm/Ŝe

m) to find i . The protocol has thus
probability of error 1/k. Notice that by choosingk = O(logn) the cost of the exhaustive
search is then roughly equivalent to a single long exponentiation. On the other hand, the
probability of cheating in this case is 1/k. If we take, for example,k = 1024 we can
repeat the protocol ten times in order to achieve a security of 1/2100. As stated in the
Introduction this allows for a tenfold increase in efficency relative to alternative protocols
that need to repeat a subprotocol that bounds the cheating probability by only 1/2.

The protocol as presented in Fig. 2 omits the steps that make it zero-knowledge. This
is similar to the case of the confirmation protocol. Yet, in this protocol special care
needs to be taken in Step 2. If the (honest) prover does not find a valuei that satisfies
the equation, which means thatV is cheating,P aborts the execution of the protocol.
Though aborting the protocol does not reveal much information it does reveal some,
and in the zero-knowledge version we do not want even this much information to leak.
Thus,P should continue the execution of the protocol by committing to the value 0, in
a “dummy commitment.” This will conceal the information of whether a valuei was
found or not. Note that in the case where noi was found, the verifier will be exposed
later as a cheater and the commitment of 0 will never be revealed.

Theorem 2(Denial Protocol). Let (n, w, Sw) ∈ PK.

Completeness. Assuming that̂Sm 6∈ SIG(m), and if P and V follow the protocol,
then V always accepts thatŜm is not a valid signature of m.

Soundness. Assuming that̂Sm ∈ SIG(m), then a cheating prover P∗, even com-
putationally unbounded, cannot convince V to reject the signature with probability
greater than1/k+ O(1)/p′.

Zero-knowledge. The protocol is zero-knowledge, namely, on input a message and a
nonvalid signature, any (possibly cheating) verifier V∗ interacting with prover P
does not learn any information aside from the fact thatŜm is in fact not a valid
signature for the message m.

Proof. Completeness. In the following we omit the modn from the notation. We can
assume that̂Sm = αm̄d whereord(α) ≥ p′, this holds aŝSm, m̄d are inZ∗n and henceα
exists, furthermore,̂Sm 6∈ SIG(m) indicating thatord(α) ≥ p′. The prover will not be
able to find the valuei only if ord(m̄/Ŝe

m) < 4k. The orderord(m̄/Ŝe
m) = ord(m̄/αem̄) =

ord(αe). As (e, ϕ(n)) = 1 we have thatord(αe) ≥ p′. As we takek¿ p′ we prove our
claim.

Soundness. We stress that the following proof holds also for a computationally
unbounded prover. In order forP to convinceV that Ŝm is not a valid signature he must
sendV a valueA such thatA = i . As Ŝm ∈ SIG(m) it holds thatŜm = αm̄d where
ord(α) ≤ 2. Thus,Q2 = Ŝi

mSj
w = αi m̄diwd j = (m̄iw j )d. As m̄4 ∈ 〈w〉 (Lemma 2), it

holds that∃l such thatwl = m̄4. Thus,Q1 = m̄iw j = wlb+ j and Q2 = (m̄iw j )d =
w(lb+ j )d. A computationally unbounded prover can compute the valuer such thatQ1 =
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wr = wlb+ j . Then to computei the prover still needs to findb, that is, he needs to solve
the equationr = lb+ j modord(w). Assuming thatj ∈R [ϕ(n)] then for every possible
value ofb there would beϕ(n)/ord(w) possible values ofj indicating that the bestP
could do is to guess at random giving a probability of 1/k. Allowing for the fact that
j ∈R [n] (instead of j ∈R [ϕ(n)] as assumed above) we get 1/k+ O(1)/p′.

Zero-knowledge. The protocol as presented in Fig. 2 isnot zero-knowledge. How-
ever, as explained above, using the same techniques described in the confirmation proto-
col (and a “dummy commitment” in case of early abortion) we achieve zero-knowledge
for this protocol as well.

4. Security Analysis

We do not present here a formal treatment of the security requirements of undeniable
signatures. For such a formal and complete treatment we refer the reader to the paper
by Damgård and Pedersen [DP]; an outline of these notions can be found above in our
Introduction (in particular, in Section 1.1). Here we argue the security properties of
our solution based on this outline, and the zero-knowledge results from the previous
section.

4.1. Unforgeability of Signatures

In this section we prove the following theorem.

Theorem 3. Assuming that the underlying RSA signatures are unforgeable(against
known and/or chosen message attacks), then our undeniable signatures are unforgeable
(against the same attacks).

As noted before, RSA is not directly immune against chosen message attacks but we
assume this to be countered by additional means, e.g., by the appropriate encoding of
the message prior to the exponentiation—see Section 3.1.

Assume that there exists a forgerF which can forge an undeniable signature in our
scheme after receiving the undeniable public key pair and interacting with the signer
in confirmation and denial protocols. That is, the forger outputs a pair(m, Sm) where
Sm = αm̄d, ord(α) ≤ 2. We construct an attackerA who will use this forger and forge
regular RSA signatures. Given the RSA public key(n,e) of a signerS for whichAwould
like to forge a signature he proceeds as follows. He chooses a random valuer and sets the
public key of the undeniable signature scheme to the triple(n, w = r e modn, Sw = r )
and gives these values toF . WhenF requests an undeniable signature on a message
m the attackerA asksS to sign this message and handsF the pair(m, Sm). WhenA
is requested byF to participate in a confirmation/denial protocol on a pair(m, S), A
checks ifm is a previously signed message andSm = S, if yes, then he interacts with
the forger in a confirmation protocol, otherwise he interacts in a denial protocol. The
attacker can run these protocols as the prover since all that is required is knowledge of the
exponente. We assume that the pair(m, S) still has not helped the attacker to factor the
modulus. After this procedure the forgerF outputs a forgery of our undeniable scheme,
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i.e., a pair(m, m̄d) or (m, αm̄d) whereord(α) = 2. A forgery for the RSA scheme is
achieved as follows. If the pair is(m, m̄d), thenA outputs this value directly, as it is a
standard RSA signature. In the second case,A holds the valuee and thus by computing
(αm̄d)e/m̄A extractsα (note thate is odd) and in return factorsn which enables forgeries
to be generated. Note thatA has asked the signer only for signatures which the forger
has asked, thus the forger’s output must be of a signature on a message which was not
previously signed by the signer of the standard RSA scheme.

4.2. Indistinguishability of Signatures

A basic goal of undeniable signatures is that no one should be able to verify the validity (or
invalidity) of a message and its (alleged) signature without interacting with the legitimate
signer in a confirmation (or denial) protocol. Following [DP] we need to show that given
the public key information and any messagem (but not the signature exponentd) one
can efficiently generate asimulated signature s(m) of m, in the sense that the distribution
of simulated signatures cannot be distinguished (efficiently) from the distribution of true
signatures onm. We achieve this property in the following way. Given any messagem,
we apply to it the encodinḡm as determined by the underlying RSA scheme and then
raise the result̄m to a random exponent modulon (i.e.,s(m) = m̄r modn, for r ∈R [n]).
Notice that distinguishings(m) from the signaturem̄d modn on m is equivalent to
deciding whether

logm(s(m))
?= logw(Sw), (2)

where the discrete logarithm operation is taken inZ∗n. This problem has no known efficient
solution, though its equivalence to RSA, factoring, or the discrete logarithm problems
has not been established.6 We thus require the following intractability assumption in
order to claim the hardness of distinguishing between valid and simulated signatures.

Assumption EDL. For valuesn, w, Sw, m̄, ands(w) as defined above it is infeasible
to decide the validity of (2) overZ∗n.

The EDL assumption holds if the exponente= d−1 modϕ(n) is kept secret. This is
the case in our scheme sincee is not part of the public key and no information about
it is revealed by the confirmation and denial protocols (which are guaranteed to be
zero-knowledge).

Note that the encoding ofm is part of the assumption. We stress that the analogous
assumption modulo a prime number is necessary for claiming the security of previous
undeniable signature schemes as well (see [DP]). However, while we can prove that the
EDL assumption implies the simulatability of our signatures, in [DP] this implication is
not proven but just conjectured to hold.

6 The problem is at least as hard as the decisional Diffie–Hellman problem (i.e., given a triple(gx, gy, r )
decide whetherr = gxy). For the case of a composite modulus (our case), the related search problem (given
gx, gy find gxy) is known to be at least as hard as factoring [Sh], [Mc]. A similar result for the decisional
problem is not known; such a result would imply that all the security aspects of our construction could be
based solely on the security of RSA.
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Theorem 4. Under the above EDL assumption, our signatures are simulatable
and hence cannot be verified without the signer’s(or its delegated confirmers)
cooperation.

Remark. The above theorem does not concern itself with a general problem of unde-
niable signatures pointed out first by Desmedt and Yung [DY]. It is possible that the
signer is fooled into proving a signature to several (mutually distrustful) verifiers while
he is convinced of proving the signature to only one of them. We address this problem
in Section 5.

4.3. Choosing the Signer’s Keys

In Section 3 we defined what the public and private parameters for the signer should
be. Our analysis of the (soundness of the) confirmation and denial protocols depends on
these parameters being selected correctly. Typically, the verification of this public key
will be done whenever the signer registers it with a trusted party (e.g., a certification
authority). Here we outline protocols to check the right composition of the modulus
n, the sample elementw, and the fact thatSw is chosen as a power ofw (the latter
serves as the “commitment” of the signer to the signature exponentd). Notice that these
protocols are executedonly onceat registration time and not during the subsequent
signing/verification operations. We denote byV the entity that acts as the verifier of
these parameters, and byP the signer that proves its correct choices.

VERIFICATION THAT w IS OF HIGH ORDER. Specifically, we use in our analysis the
assumption thatw is an element of order at leastp′q′. By virtue of Lemma 1 all thatV
needs to verify is thatw /∈ {−1,1} and thatgcd(w− 1,n) is not a factor ofn. Actually,
the valuew can be chosen as a constant, e.g.,w = 2, for all the undeniable signatures
public keys. Such a value must always pass the verification (or otherwise factoring is
trivial).

VERIFICATION THAT Sw ∈ 〈w〉. The following protocol is essentially the protocol for
proving possession of discrete logarithms as presented in [CEG], once again modified
in order to work with composite moduli. The signerP chooses a valuer ∈R [ϕ(n)] and
sends toV the valuew′ = wr . The verifierV answers with a random bitb. If b = 0,
P returns the valuer , otherwise it returns the valued + r modϕ(n). In the first case,
V checks whetherwr = w′, and in the second, whetherw(r+d) = w′Sw. If w /∈ 〈w〉
then the probability thatP passes this test is 1/2. By repeating this procedurek times,
the probability that the dealer can cheat reduces to 2−k. The protocol is statistical zero-
knowledge as the simulator does not knowϕ(n), but can use the uniform distribution on
[1..n] to approximate the one on [1..ϕ(n)] statistically. As a practical matter, we observe
that this protocol can be performed noninteractively if one assumes the existence of an
ideal hash function (a la Fiat–Shamir [FS]).

VERIFICATION OF THE PRIME FACTORS. We need to check that the signer chooses the
modulusnof the right form, i.e.,n = pqwith p = 2p′+1 andq = 2q′+1 andp,q, p′,q′

are all prime numbers. Recently, Gennaro et al. [GMR] have presented a zero-knowledge
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proof to verify that a composite is of a slightly different form, wherep,q are of the form
p = 2pα1 +1 andq = 2qβ1 +1. Applying their techniques in our setting even though the
test is for a prime power the result is that it equates the signer’s probability of cheating
with the probability of factoring his composite. See [GMR] for details.

5. Extensions

Our protocols lend themselves to many of the existing extensions in the literature for
undeniable signatures.

5.1. Convertible Undeniable Signatures

This variation appeared first in [BCDP], and secure schemes based on ElGamal signatures
have been recently presented in [DP]. Convertible undeniable signatures enable the signer
to publish a value which transforms the undeniable signature into a regular (i.e., self-
authenticating) digital signature. In our scheme conversion can be easily achieved by
simply publishing the valuee= d−1 modϕ(n). Doing so the signer will transform the
undeniable signatures into regular RSA signatures with public key(n,e). Notice that
this will automatically imply the security (i.e., unforgeability) of the converted scheme,
based on the security of regular RSA signatures.7

SELECTIVE CONVERSION. In some applications it may be desirable to convert only a
subset of the past signatures (selective conversion[BCDP]). For this scenario we can
make use of a noninteractive zero-knowledge confirmation proof for those messages.

Let (m1, S1), . . . , (m`, S̀ ) be the message–signature pairs that the signer wants to
convert. If the signer were allowed to interact with an honest verifier he could use the
public-coin, statistical zero-knowledge, confirmation protocol in Fig. 3. The protocol is
based on a similar one in [CP] which works for prime moduli.8

In order to use this protocol for selective conversion we need to make it noninteractive
using standard techniques (e.g., computing the challenge via a hash-function applied to
the first message). Security is retained in the random oracle model [BR1].

5.2. Delegation

The idea is for the signer to delegate the ability to confirm and deny to a third party
without providing that party with the capabilities to generate signatures. In the literature
this notion is usually treated in the context of convertibility of signatures. However,
the two notions are conceptually different. Clearly, the information used in order to
delegate confirmation/denial authority to a third party if made public would basically

7 Notice that this holds if the signer issued for the messagem its intendedsignatureSm = m̄d modn. If,
instead, the signer generated a signature of the formSm = αm̄d, whereα is an element of order 2, then when
e is made public it is easy to recoverα (and then the factorization ofn) from a triple(m, Sm = αm̄d,e) since
e is odd. We stress that although we consider as valid also signatures of that form (see Section 3.2), it is in the
interest of the prover not to generate them in that way.

8 We stress that we did not use this protocol as our main confirmation protocol since it is zero-knowledge
only against an honest verifier.
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Honest Verifier Signature Confirmation Protocol

Input: Prover: secretd,e∈ [ϕ(n)]
Common: RSA compositen ∈ N , sample messagew ∈ Z∗n,

signatureSw , messagesm1, . . . ,m`, claimedS1, . . . , S̀

1. P choosesr ∈R [ϕ(n)] and computesαi
def= m̄r

i modn for i = 1, . . . , ` and

β
def= wr modn

P −→ V : α1, . . . , α`, β

2. V choosesc ∈R [n]
V −→ P: c

3. P computesa = r + cd modϕ(n)
P −→ V : a

4. V checks if:
αi Sc

i = m̄a
i modn for i = 1, . . . , ` andβSc

w = wa modn
If all equalities hold, thenV accepts theSi ’s as the signatures on themi ’s, otherwise
it rejects.

Fig. 3. Proving thatSi ∈ SIG(mi ) to an honest verifier.

convert undeniable signatures into universally verifiable ones. However, the converse is
not necessarily true. It may be that the information used to convert signatures, if given
secretly to a third party, would still not allow that party to provein a nontransferable way
the validity/invalidity of a signature.9 In our setting the signer can simply give the third
party the keye which is the only needed information in order to carry out successfully
the denial and confirmation protocols. Clearly, the recipient ofe cannot sign by itself as
this is the basic assumption behind regular RSA signatures.

5.3. Distributed Provers(and Signers)

Distributed provers for undeniable signatures were introduced by Pedersen [Pe]. With
distributed provers the signer can delegate the capability to confirm/deny signatures,
without needing to trust a single party. This is obtained by sharing the key, used to verify
signatures, using a (verifiable) secret sharing scheme among the provers. This way only
if t out of then provers cooperate is it possible to verify or deny a signature. The existing
solutions for threshold RSA signatures [DDFY], [GJKR] can then be used to obtain
an efficient distributed scheme as the only operation needed during confirmation or
denial protocols is RSA exponentiations. The fault-tolerance of the protocol in [GJKR]
guarantees the security of the scheme even in the presence oft (out of n) maliciously
behaving provers.

As Pedersen pointed out in [Pe], undeniable signatures with distributed provers present
some difficulties. Indeed when the provers are presented with a message and its alleged
signature, they have to decide which protocol (either the denial or the confirmation)
to use. They can do this by first distributively checking for themselves if the claimed
signature is correct or not. However, this in turn means that a dishonest prover can use
the other provers as an oracle to the verification key at his will. The problem applies to

9 An example is the above scheme for the selective conversion of signatures.
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our schemes as well. Several ways of dealing with the problem have been suggested in
the literature [Pe], [JY] some of which easily extend to our scenario.

Also solutions for threshold RSA allow one to share the power to sign (in addition
to the power to verify/deny signatures) among several servers. Once again in case of
possibly maliciously behaving signers a fault-tolerant scheme such as [GJKR] must be
used.

5.4. Designated Verifier

The following problem of undeniable signatures has been pointed out (see [DY] and [Ja]):
in general a mutually suspicious group of verifiers can get simultaneously convinced of
the validity of a signature by interacting with the signer in a single execution of the
confirmation protocol (in other words, the signer may believe that it is providing the
signature confirmation to a single verifier while in actuality several of them are getting
convinced at once). This is possible by having the “official” verifier act as the intermediary
(or man in the middle) between the prover and the larger set of verifiers. While this is not
always a problem, in some cases this may defeat the purpose of undeniable signatures
(e.g., if the signer wants to receive payment from each verifier that gets a signature
confirmation).

Jakobsson et al. [JSI] present a solution to this problem through the notion ofdesig-
nated verifiers proofsthat is readily applicable to our scheme. All that is required is for
the verifier to have a public key. Then when the prover commits to his answer during
the zero-knowledge steps of our protocols he will use a trapdoor commitment scheme
(as in [BCC]) which the verifier can open in any way. This will prevent the verifier from
“transferring” the proof (see [JSI] for the details).

5.5. Designated Confirmer

Designated confirmer undeniable signatures were introduced by Chaum in [Ch2] and
further studied by Okamoto in [Ok]. This variant of undeniable signature is used to
provide the recipient of a signature with a guarantee that a specified third party (called a
“designated confirmer”) will later be able to confirm that signature. Notice the difference
between this variant and the delegation property described above. Indeed, in the present
case the signature is specifically bound at time of generation to a particular confirmer.
The techniques of [Ch2] and [Ok] easily extend to our scheme.

An Open Question

It would be interesting to see whether efficient undeniable signatures could be designed
using a more general form of composite.
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