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Abstract. We presentthe firstundeniable signatures scheme based on RSA. Since their
introduction in 1989 a significant amount of work has been devoted to the investigation
of undeniable signatures. So far, this work has been based on discrete log systems. In
contrast, our scheme uses regular RSA signatures to generate undeniable signatures. In
this new setting, both the signature and verification exponents of RSA are kept secret
by the signer, while the public key consists of a composite modulus and a sample RSA
signature on a single public message.

Our scheme possesses several attractive properties. First, provable security, as forg-
ing the undeniable signatures is as hard as forging regular RSA signatures. Second,
both the confirmation and denial protocols are zero-knowledge. In addition, these pro-
tocols are efficient (particularly, the confirmation protocol involves only two rounds of
communication and a small number of exponentiations). Furthermore, the RSA-based
structure of our scheme provides with simple and elegant solutions to add several of
the more advanced properties of undeniable signatures found in the literature, including
convertibility of the undeniable signatures (into publicly verifiable ones), the possibility
to delegate the ability to confirm and deny signatures to a third party without giving up
the power to sign, and the existence of distributed (threshold) versions of the signing
and confirmation operations.

Due to the above properties and the fact that our undeniable signatures are identical
in form to standardRSA signatures, the scheme we present becomes a very attractive
candidate for practical implementations.
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* A preliminary version of this paper appeared in the proceedings of CRYPTO '97.
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1. Introduction

The central role of digital signatures in the commercial and legal aspects of the evolv-
ing electronic commerce world is well recognized. Digital signatures bind signers to
the contents of the documents they sign. The ability for any third party to verify the
validity of a signature is usually seen as the basis for the “nonrepudiation” aspect of
digital signatures, and their main source of attractiveness. However, this universal ver-
ifiability (or self-authenticating) property of digital signatures is not always a desirable
property. Such is the case of a signature binding parties to a confidential agreement,
or of a signature on documents carrying private or personal information. In these cases
limiting the ability of third parties to verify the validity of a signature is an import-
ant goal. However, if we limit the verification to such an extent that it cannot be veri-
fied by, say, a judge in case of a dispute, then the whole value of such signatures
is seriously questioned. Thus, the question is how to generate signatures which
limit the verification capabilities yet without giving up on the central property of
nonrepudiation.

An answer to this problem was provided by Chaum and van Antwerpen [CA] who
introducedundeniable signaturesSuch signatures are characterized by the property
that verification can only be achieved by interacting with the legitimate signer (through
a confirmation protocgl On the other hand, the signer can prove that a forgery is
such by engaging in denial protocol It is required that the following property be
satisfied: if on a specific message and signature the confirmation protocol outputs that
the pair is a valid signature, then on the same input the denial protocol would not
output that it is a forgery. The combination of these two protocols, confirmation and
denial, protects both the recipient of the signature and the signer, and preserves the
nonrepudiation property found in traditional digital signatures. The recipient is protected
since the ability of a signer to confirm a signature means that at no later point will the
signer be able to deny the signature. For example, in the case of an eventual dispute, the
recipient of the signature can resort to a designated authority (e.g., a judge) in order to
demonstrate the signature’s validity. In this case the signer will be required to confirm
or deny the signature. If the signer does not succeed in denying (in particular, if it
refuses to cooperate), then the signer remains legally bound to the signature (such will
be the case if the alleged signature was a correct one). On the other hand, the signer
is protected by the fact that his signatures cannot be verified by unauthorized third
parties without his own cooperation and the denial protocol protects him from false
claims.

The protection of signatures from universal verifiability is not only justified by con-
fidentiality and privacy concerns but it also opens a wide range of applications where
verifying a signature is a valuable operation by itself. A typical example presented in
the undeniable signatures literature is the case of a software company (or for this matter
any other form of electronic publisher) that uses signature confirmation as a means to
provide a proof of authenticity of their software to authorized (e.g., paying) customers
only. This example illustrates the core observation on which the notion of undeniable
signatures standserification of signaturesand not only their generatigis a valuable
resource to be protected
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1.1. Components and Security of Undeniable Signatures Schemes

There are three main components to undeniable signature schemes. The signature gen-
eration algorithm (including the details of private and public information), the confir-
mation protocol, and the denial protocol. Signature generation is much like a regular
signature generation, namely, an operation performed by the signer on the message
which results in a string that is provided to the requester of the signature. The con-
firmation protocol is usually modeled after an interactive proof where the signer acts
as the prover and the holder of the signature as the verifier. The input to the protocol
is a message and its alleged signature (as well as the public key information asso-
ciated with the signer). In the case that the input pair is formed by a message and
its legitimate signature, then the prover can convince the verifier that this is the case,
while if the signature does not correspond to the message, then the probability of the
prover to convince the verifier is negligible. Similarly, the denial protocol is an interac-
tive proof designed to prove that a given input pair doescorrespond to a message

and its signature. However, if the alleged input signature does correspond to the input
message, then the probability of the prover to convince the verifier of the contrary is
negligible. Note that engaging in the confirmation protocol and having it fail is not an
indication that the signature is invalid, this can only be established through the denial
protocol. That is, the confirmation protocol only establishes validity, and the denial—
invalidity.

In addition to the above properties required from the confirmation and denial pro-
tocol, there are two basic security requirements on undeniable signatures. The first is
unforgeability, namely, without access to the private key of the signer no one should
be able to produce legitimate signatures by himself. This is similar to the unforgeabil-
ity requirement in the case of regular digital signatures, but here the modeling of the
attacker is somewhat more complex. In addition to having access to chosen messages
signed by the legitimate signer, the attacker may also get to interact with the signer on
different instances of the above confirmation and denial protocols, possibly on input
pairs of his own choice. The second requirement is nontransferability of the signa-
ture, namely, no attacker (under the above model) should be able to convince any other
party, without the cooperation of the legitimate signer, of the validity or invalidity of a
given message and signature. Both of these requirements induce necessary properties
on the components of an undeniable signature scheme. In particular, the confirmation
and denial protocols should not leak any information that can be used by an attacker
to forge or transfer a signature. As a consequence it is desirable that these protocols
be zero-knowledgé As for the strings representing signatures, they should provide no
information that could help a party to get convinced of the validity (or invalidity) of the
signature. Somewhat more formally, it is required that the legitimate signature(s) corre-
sponding to a given message simulatable namely, they should be indistinguishable
from strings that can be efficiently generated without knowledge of the secret signing
key.

1 At the minimum, if not zero-knowledge, these protocols should be proven to provide no “useful” infor-
mation for the attacker to break the security of the scheme.
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1.2. Advanced Properties of Undeniable Signatures

Much of the work on undeniable signatures has been motivated by the search for schemes
that provide all of the above properties but that, in addition, enjoy some additional
attractive properties. These inclutenvertibility(the possibility to transform undeniable
signatures intoregular, i.e., self-authenticating, signatures by just publishing a short piece
of information [BCDP]),delegation(enabling selected third parties to confjtaeny
signatures but not to signjjstribution of powel(threshold version of the signature and
confirmation protocols [Pe]gesignated confirmeschemes (in which the recipient of

the signature is assured that a specific third party will be able to confirm the signature at
a later time [Ch2]), andesignated verifieschemes (in which the prover can make sure
that only a specified verifier benefits from interacting with the prover on the confirmation
of a signature [JSI]). More details on these extensions are provided in Section 5.

1.3. Previous Work on Undeniable Signatures

Since their introduction in 1989, undeniable signatures have received a significant at-
tention in the cryptographic research community [CA], [Ch1], [BCDP], [DY], [FOOQ],
[Pe], [CHP], [Ch2], [Ja], [OK], [MPP], [DP], [JSI], [JY]. These works have provided a
variety of different schemes for undeniable signatures with variable degrees of security,
provability, and additional features. Interestingly, all these works are discrete logarithm
based. In [BCDP] the problem of constructing schemes based on different assumptions,
in particular RSA, was suggested as a possible research direction.

Most influential are the works of Chaum and van Antwerpen [CA] and Chaum [Ch1].
The first work introduces the notion of undeniable signatures and provides protocols
which are the basis for many of the subsequent works. The second improves significantly
on the initial solution by providing zero-knowledge versions of these protocols. The
formalization of the basic notions behind undeniable signatures was mainly carried out
in the works by Boyar et al. [BCDP] and by Daarg’'and Pedersen [DP]. In [BCDP] the
notion ofconvertibleschemes was introduced. In such schemes the signer can publish a
short string that converts the scheme into aregular signature scheme. However the scheme
presented in [BCDP] was recently broken in [MPP]. The repaired solution presented
therein however does not come with a proof of security. The first convertible schemes
with proven security (based on cryptographic assumptions) are presented in [DP].

1.4. Our Contribution

Our work is the first to present undeniable schemes based on?R&#A.undeniable
signature scheme produces signatures thatlargical in formto RSA signatures. The
essential difference from traditional RSA signatures is that in our case both the signature
and verification exponents of RSA are kept secret by the signer, while the public key
consists of a composite modulus and a sample RSA signature on a single public message.
Not only does our solution expand the list of available number-theoretic assumptions
that suffice to build undeniable signatures, but it achieves and improves, as we show

2 Chaum in [Ch2] uses RSA signaturea top of regular undeniable signatures to provide “designated
confirmer signatures”; however, the underlying undeniable signatures are still discrete log-based.
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below, in a simple and elegant way several of the desirable properties of undeniable
signatures.

Unforgeability. Our construction allows us to prove in a simple way that security of
these signatures against forging is equivalent to the unforgeability of RSA signatures.
Provable unforgeability of undeniable signatures was presented for the first time in the
recent paper by Danagd and Pedersen [DP] where forgery of the proposed scheme is
proven equivalent to forgery of the EIGamal scheme.

Simulatability. Nontransferability of an RSA signature is a nonstandard requirement
in the context of traditional RSA. We prove this property under the assumption that
deciding on the equality of discrete logarithms under different bases is intractable. A
similar assumption is required in previous works as fvalthough, by itself, it is not
always sufficient to prove simulatability of the undeniable signatures. For example in
[DP] the simulatability property is only conjectured to follow from such assumptions.

Zero-Knowledge. Our confirmation and denial protocols have the interactive proof
properties as explained above and are also zero-knowledge. Therefore they do not leak
any information that could otherwise be used for forging signatures. The soundness of
our protocols (i.e., the guarantee that the prgsigmer cannot cheat) relies on the use of
composite numbers of a special form (specifically, with “safe prime” factors), which are
secure moduli for RSA. A signer who chooses a modulus of a different form may have
some way to cheat in our protocols. To force the signer to choose a “proper” modulus
we require that he prove the correct choice of primes at the time he registers his public
key with a certification authority. A discussion of this issue is presented in Section 4. An
interesting question is whether our solution, or a different one, can work with a different
kind of RSA moduli.

Efficiency. Our protocols are efficient (comparable with the most efficient alterna-
tives found in the undeniable signatures literature). The confirmation protocol takes
two rounds of communication (which is minimal for zero-knowledge protocols [GK])
and involves a small number of exponentiations. The denial protocol is somewhat more
expensive as it consists of a basic two-round protocol with small, but not negligible,
probability of error (e.g., 11000) which needs to be repeated sequentially in order to
reduce the error probability further. Its performance is still significantly better (by a fac-
tor of 10) than alternative protocols that only achieve probabili®/ih each execution.

We also note that in typical uses of undeniable signature schemes one expects to apply

3 As with regular RSA, the use of a strong one-way hash function is assumed to provide unforgeability
against chosen message attacks.

4 In our case the discrete logarithms are computed modulo a composite number while in previous works they
are modulo a prime. In both cases, the problem is related to the problem of computing a discrete logarithms
which is considered to be hard (in the case of a composite modulus that difficulty is implied by the hardness
of factoring and also directly by the assumed security of RSA). However, while the feasibility of computing a
discrete logarithm implies the feasibility of the above decision problem, the reverse direction is not known to
hold.
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more frequently confirmation than denial. The latter is mainly needed to settle legal
disputes.

Advanced Properties. In addition to the above security and efficiency properties, our
solution naturally achieves several of the advanced features of undeniable signatures
mentioned above. Once again it is the structure of RSA, in particular the presence of
a secret verification exponent, that allows us to achieve such properties very elegantly.
Convertibility is achieved by publishing the verification exponent, thus converting the
signatures into regular RSA signatures; delegation is achieved by providing the verifi-
cation exponent to the delegated party which can then run the confirmation and denial
protocols but cannot sign messages or forge signatures; distribution of the signature
operation builds on the existing threshold solutions for RSA signatures; distribution of
confirmation can also be achieved by an adaptation of the regular threshold RSA solu-
tions. We can also adapt existing techniques for the constructidesignated confirmer
anddesignated verifieundeniable signatures, thus obtaining these variants also for our
scheme. More details are provided in Section 5.

Standard RSA Compatibility. An important practical advantage of our RSA-based
undeniable scheme is that the signatures themselves are identical in form to standard
RSA signatures. In particular, this means that they fit directly into existing standardized
communication protocols that use (regular) RSA signatures.

Technically, our work builds on previous ideas and protocols which we adapt to the
RSA case. These previous solutions are designed to exploit the algebraic properties
of cyclic groups likeZy (and its subgroups). This is probably the main reason that
subsequent work concentrated on these structures as well. Here we show that many
of these ideas can be used in the context of RSA, thus answering in the affirmative a
question suggested in [BCDP]. In doing so we use ideas from the work of Gennaro et
al. [GIKR].

The paper is organized as follows: in Section 2 we give notation and some number
theoretical lemmas. In Sections 3 and 4 we describe the new undeniable signature scheme
and prove its properties and security. Section 5 includes extension of the scheme to
variations of undeniable signatures suggested in the literature.

2. Preliminaries

Notation. Throughout the paper we use the following notation: For a positive integer

k we denotek] def {1, ..., k}. Z} denotes the multiplicative group of integers modujlo
andg(n) = (p—1)(q — 1) the order of this group. For an elemente Z; we denote by
ord(w) the order ofw in Z*. The subgroup generated by an elemerd Z is denoted

by (w).

The following technical lemmas are needed in our proofs in Section 3.
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Lemmal. Letn= pg,where p<q,p=2p +1,9g=29 +1,andpq, p/,q are
all prime numbersThen

1. The order of elements in/4s one of the seftl, 2, p’, ', 2p’, 29', p'q’, 2p'q’}.
2. Givenan elemenb € Z3\{—1, 1}, such that ordw) < p'q’, then either gc¢w —
1, n) or gcd(w + 1, n) is a prime factor of n

Proof. 1. To find the order of elements ifi} it is enough to note that the maximal
order of such an element ip2)’ and that all the other orders must divide this one.

2. From the above property we get that if4 ord(w) < p'd’, thenord(w) €
{2,p,9,2p,29'}. If ord(w) = 2, w # —1, thenn|(w — 1)(w + 1) and thergcd(w —
1, n) must be a nontrivial factor of. In case thadrd(w) = p’, w” = 1 modn = w? =
1 modg. If w = 1 modq, thenw — 1 is a multiple ofj which is smaller than, otherwise
P'le(q) = 29, a contradiction. A similar argument holds fad(w) = q'. Finally in the
case thabrd(w) = 2p/, w?® = 1 modn = (w?? = 1 modq. If w? = 1 modq, then
eitherw — 1 orw + 1 is a multiple ofg which is smaller than, otherwisep’|¢(q) = 2¢,
a contradiction. Again a similar argument holds éod(w) = 2q'. O

As a consequence of the above lemma we can assume in our protocols that any value
found by a party that does not know (and cannot compute) the factorizatiomofst
be of order at least’'q’ in Z;; (except for 1 —1).

Lemma 2. Letn be asin Lemma. Given an elemen® such that ordw) € {p'q’,
2p'q'}, then for every me Z: it holds that nt € (w).

Proof. We give the proof for the caserd(w) = 2p’q’ and show that? e (w). If
m € (w), then clearly the claim holds. Otherwisg; = (w) U m(w). If m? € (w),
then we are done, otherwise it must hold th&te m(w). This in return requires that
m € (w), contradiction. The case ofd(w) = p'q’ is proved similarly. O

3. The New Undeniable Signature Scheme

In this section we present the details of our scheme. We start by defining the following
set:

N ={nin=pg, p<q, p=2p+1 q=20'+1,
andp,q, p’,q are all prime numbets

The system is set up by the signer in the following manner: choose a random element
n € \; select elements d € [¢(n)] such thaked = 1 modg(n); choose a paifw, S,)
with w € Zf, w # 1, S, = w? modn; set the public key parameters to the tuple
(n, w, S,); set the private key t¢e, d).

We denote byPK the set of all tuplegn, w, S,) generated as above. We refer the
reader to Section 4.3 for a discussion on the form of the public key and how to verify its
correctness. In particular, it is shown there that the value cdin always be set to a fixed
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number, e.g.w = 2. This simplifies the public key system and adds to the efficiency of
computing exponentiations with bage

3.1. Generating a Signature

To generate a signature on a messagthe signer carries out a regular RSA signing
operation, i.e., he compute&, = md modn, outputting the paikm, S;). More pre-

cisely, the messagm is first processed through a suitable encoding (e.g., via one-way
hashing) before applying the exponentiation such that the resultant signature scheme can
be assumed to be unforgeable even against chosen message attacks (plain RSA does not
have this property). Given a messageve denote byn the output of such an encoding

of m (we do not specify any encoding in particul&fjhus, the resultant signature rof

will be Sy, %" md modn. In the case of the paiw, S,) we slightly abuse the notation
and writeS,, to denotew® modn (i.e., we directly exponentiate rather than).

3.2. Confirmation Protocol

In Fig. 1 we present a protocol for confirming a signature. Itis carried out by two players,
a prover and a verifier. The public input to the protocol are the public key parameters,
namely,(n, w, S,) € P, and a paitm, §,). For the case tha, is a valid signature

of m, then P will be able to convincé/ of this fact, while if the signature is invalid,
then no prover (even a computationally unbounded one) will be able to corvince

the contrary except for a negligible probability.

This protocol is basically the same as the protocol of Gennaro et al. [GJKR] (based on
[Ch1]) where itis used in a different application, namely, threshold RSA. Our variation
on this protocol uses the verification keyather than the signature kelyas originally
used in [GJKR] (in their case, the signer knows odlgut note). Still, the basic proof
given in that paper applies to our case due to the symmetry that exists betaede
when both exponents are kept secret. This modification allows us to provide solutions

Signature Confirmation Protocol

Input Prover: Secret keyd, €) € [¢(n)]?
Common: Public keyn, w, S,) € PK,
m e Z;, and allegecsy,

1. V chooses, j eg [n] and compute® & &S, modn
V— P:Q
2. P computesA gef Q€ modn
P— V: A
3. V verifies thatA = m? wl modn.
If equality holds, therV acceptsS, as the signature om, otherwise “undetermined.”

Fig. 1. Proving that§, € STG(m) (ZK steps omitted).

5 For simplicity we assume a deterministic encoding; however, randomized encodings, e.g., [BR2], can be
used as well but then, in our case, the random bits used for the encoding need to be attached to the signature.
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where the ability to confirm signatures can be delegated to third parties while keeping the
ability to sign new messages only for the original signer (it also allows for a distributed
prover solution). See Section 5 for the details.

The idea of the protocol is for the verifier to test the alleged signaturen diy
producing a related element which looks random to the signer and for which the verifier
knows the signature (given that the signaturamis correct). This “blinded” element
is created via the exponentiation of the messagwith a random exponentand its
multiplication with a random exponeiitof the valuew (for which the correct signature
S, is publicly known). Intuitively, a cheating prover needs to find the valuésofl in
order to cheat. However, there are many pairs of exponents that give the same result and
we show that the prover (even if computationally unbounded) cannot distinguish among
them.

An interesting aspect of this protocol is that a prover could succeed in convincing
the verifier to accept a signature aneven when this signature is ngt! modn but
am? modn wherea is an element of order 2 (id;). Gennaro et al. [GIKR] solve this
problem through the assumption (valid in their case) that the prover cannot factor
and thus cannot find such an elementn our case, this assumption does not hold. We
deal with this problem by accepting as valid signatures also these particular multiples
of md. On the other hand, when designing the denial protocol we make sure that the
signer cannot deny a signature of this extended form. That is, we define the set of valid
signatures for a messageasSZG(m) dzef{Sm: Sn=amd, ord(e) < 2}.

For ease of exposition the protocol in Fig. 1 appears in a non-zero-knowledge for-
mat. However, there are well-known techniques [GMW], [BCC], [Go] to add the zero-
knowledge property to the above protocol using the notion @dramitment functian
Instead ofP sendingA in Step 2, he sends a commitmexammit A), after whichV

reveals toP the values of and j. After checking thatQ def S%{ S.! modn, P sends
Ato V. The verifier checks thah corresponds to the value committed Byand then
performs the test of Step 3 above.

The zero-knowledge condition is achieved through the properties of the commitment
function, namely, (i)commit{x) reveals no information ox, and (ii) P cannot find
X' such thattommitx) = commitx’). Commitment functions can be implemented in
many ways. For example, in the above protocommifA) can be implemented as a
probabilistic (semantically secure) RSA encryptionfofising a public key for which
the private key is not known t¥ (and, possibly, not even known ). To open the
commitment,P reveals bothA and the string used for the probabilistic encryption.
This implementation of a commitment function is very efficient as it does not involve
long exponentiations (and is secure since we assume our adversary, the verifier in this
case, is unable to break RSA).

Theorem 1(Confirmation Theorem). Let(n, w, S,) € PK.

Completeness. Given §, € SZG(m), if P and V follow the Signature Confirmation
Protocol then V always accepts,&s a valid signature

Soundness. A cheating prover P, even computationally unboundezhnnot con-
vince V to accep§, ¢ SZG(m) with probability greater than @1)/p'.
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Zero-knowledge. The protocol is zero-knowledgeamely on input a message and
its valid signature any (possibly cheatingverifier V* interacting with prover P
does not learn any information aside from the validity of the signature

Proof. Completeness Immediate from inspection of the protocol. Note that raising
§, to an even power eliminates any extra factor of order 2, if such exists, from the
signature (such factors are allowed by definitiorS@iG (m)).

Soundness We adapt the proof from [GJKR] to our case. The prover’s probability
to cheat, i.e., to convinc¥ to accept§, ¢ SZG(m), is maximized by choosing that
passed/’s test (in Step 3) with maximal probability (relative to the valugg chosen
by V). As the prover chooseA after having seen the “challeng&' from V (and based
on its knowledge of§,, m, w, d, e, andn), the proof of soundness needs to capture
that some information on j (at least from the information-theoretic point of view) is
available to the prover when selectifg

In the actual protocoly chooses, j randomly from the setr]; for simplicity of
analysis we assume that these values are chosen §rami [ and will account for the
event that either or j falls outside of this range in the prover’s probability to cheat.
The probability of such event (i.e., thator j ¢ [¢(n)]), denoted byr,, is at most
2(n — ¢(n))/n. Thus, in what follows, we assunigj €r [¢(N)].

We definel (Q) = {i € [¢(M)]: 3], Q = § S, modn}. SinceS, ¢ SZG(m) we can
write §, = amd, fora € Z}, ord(«) > 2. In Step 3 the verifier will check whether

A= mzi wj — a—Zei S%ei $j — a—Zei Qe. 1)

As the valuex has been set in advance, then for @&he number of’'s which satisfy (1)
is the same as the numberidf such thaw? = A~9Q which is at mostp(n)/ord(e).
GivenQ, V’s choice ofi is uniformly distributed ovet (Q), as for each € | (Q) there
is the same number of valug¢svhich satisfy the equatio® = S?r{ S, modn. Thus, the
probability of P to succeed is at mogtn)/(ord(«)- |1 (Q)]). We denote the later quantity
by o> and proceed to bound it by boundihig Q)|. Clearly, if V follows the protocol,
thenl (Q) is not empty. Now we show th&tQ properly formed|! (Q)| > ord(w).

If 1(Q) is nonempty, then for a valuee | (Q) andA such thalé,%A € (S,), it holds
thati + A e 1(Q) (because there exigt j’ such thatQ = &S, and&§* = &,
from which it follows thatQ = §i+2g,1"). Therefore, we get that + A: § €
(S)) and A < ¢(n)} C 1(Q). Thus, the size of (Q) is at least the size of the set
D ={A < ¢(): éﬁﬁ € (S,)}. We proceed to bound the size bf Using standard
arguments it is easy to show thatsifis the minimal nonzero element @, then the
elements oD are exactly the multiples df (smaller thanp(n)). Thus,|D| = ¢(n)/s.
We now show that < ¢(n)/ord(w). Leti; < i, < 8. The coset&§?yS,) and 2%(S,)
are disjoint (a common element would imply ttéﬁiriﬂ € (S,) in contradiction to
the minimality of 8). Thus, $(S.), $(Su). ..., XS,) ares disjoint cosets inZ:
each of sizd(S,)|. The latter size is exactlgrd(w) since(S,) = (w), asS, = w?
andd is relatively prime top(n). We thus haveé < |Z*|/ord(w) = ¢(n)/ord(w). In
conclusion,|1 (Q)| > |D| = ¢(n)/8 > ord(w). Combining all the above we get that
7 < @(n)/(ord(a)ord(w)), and the total failure probability is at mast + 7.
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(We stress that the above holds also for a computationally unbounded cheating prover,
and that the bound is tight for such a prover, up to the terra 2(n — ¢(n))/n.)

The above bound on the probability of success of a cheating prover is given in terms of
the order of elements in the grodi§. Recall that we are usings of a special form, i.e.
n = pqwherep = 2p’' 4+ 1 andg = 29’ + 1, with p, g, p’, " all large primes. Assume
without loss of generality thgt’ < q'. Using Lemma 1 we can claim thaitd(w) > p'q’
andord(x) > p/, thusm, < 4/p’. Also, the expression(® — ¢(n))/n is at most Zp’
in this case. This proves the soundness statement in the theorem.

Zero-knowledge Immediate (see remarks after the description of the protocal).

3.3. Denial Protocol

Figure 2 exhibits the Denial Protocol. The publicinputto the protocol are the public key
parameters, namelgn, w, S,) € PK,and apaifm, én). Inthe case tha, g STG(m),
then P will be able to convince/ of this fact, while if &, € SZG(m), then no prover
(even a computationally unbounded one) will be able to convihdbat the signature
is invalid except with negligible probability.

Our solution is based on a protocol due to Chaum [Ch1], designed to prove in zero-
knowledge the inequality of the discrete logarithms of two elements over a prime field
Z,, relative to two different bases. The protocol and proof presented in the above paper
do not work overZ;: for a composite as required here, in particular, since they strongly
rely on the existence of a generator for the multiplicative gr@gpHowever, a careful
adaptation of that protocol and a more involved proof can be shown to solve our problem
overZ:.

The protocol (see Fig. 2) works in the following manner: the verifier gives the prover
in Step 1 two values from which the prover can extract, using the verification exponent
e, the quotien(rﬁ/%)‘, for some value chosen by . The verifier accepts the run of
the protocol only if the prover can find the valuieNe will see that ifS;, is nota valid
signature of the message thenP exhaustively searches the range for the desired value
of i. However, in case tha, is a valid signature ofn, the above quotient equals 1

Denial Protocol

Input Prover:  Secret keyd, e) € [¢(n)]?
Common: Public keyn, w, S,) € PK,
m e Z}, and alleged nonsignatuﬁa,

1. V chooses = 4b, b er [K], and €R [n].
SetsQ1 = M'w! modnandQ = §,S,! modn
V — P: (Q1,Q2) o
2. P computesQl/Qg = (M/S)' and computes = 4b by testing all possible values of

b e [K].
If such a value was found, théh setsA = i, otherwise abort.
P—V:A
3. V verifies thatA = i. If equality holds, therV rejectsSy as a signature ah, otherwise,

undetermined.

Fig. 2. Proving that§, ¢ SZG(m) (ZK steps omitted).
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regardless of the value of Then the prover cannot learn any information akioaihd
can only try to guess that value (see the proof below for a formal argument).

In order to allow for an exhaustive search dfy P, one needs to choose the range of
i to be relatively small. If the upper bound oiis set to some valuk, then the prover
needs to perforrk multiplications (of the valuem/%) to findi. The protocol has thus
probability of error Z k. Notice that by choosing = O(logn) the cost of the exhaustive
search is then roughly equivalent to a single long exponentiation. On the other hand, the
probability of cheating in this case ig &. If we take, for examplek = 1024 we can
repeat the protocol ten times in order to achieve a security 4 As stated in the
Introduction this allows for a tenfold increase in efficency relative to alternative protocols
that need to repeat a subprotocol that bounds the cheating probability by/@nly 1

The protocol as presented in Fig. 2 omits the steps that make it zero-knowledge. This
is similar to the case of the confirmation protocol. Yet, in this protocol special care
needs to be taken in Step 2. If the (honest) prover does not find aiviae satisfies
the equation, which means thdtis cheating,P aborts the execution of the protocol.
Though aborting the protocol does not reveal much information it does reveal some,
and in the zero-knowledge version we do not want even this much information to leak.
Thus, P should continue the execution of the protocol by committing to the value 0, in
a “dummy commitment.” This will conceal the information of whether a valweas
found or not. Note that in the case whereinwas found, the verifier will be exposed
later as a cheater and the commitment of O will never be revealed.

Theorem 2(Denial Protocol). Let(n, w, S,) € PK.

Completeness. Assuming thaf, ¢ SZG(m), and if P and V follow the protocol
then V always accepts th&, is not a valid signature of m

Soundness. Assuming tha&, € SZG(m), then a cheating prover B even com-
putationally unboundedatannot convince V to reject the signature with probability
greater thanl/k + O(1)/p’.

Zero-knowledge. The protocol is zero-knowledggamelyon input a message and a
nonvalid signatureany (possibly cheatingverifier V* interacting with prover P
does not learn any information aside from the fact tRatis in fact not a valid
signature for the message. m

Proof. Completeness Inthe following we omit the mod from the notation. We can
assume tha‘ﬁn = am® whereord(«) > p/, this holds aﬁn, m? are in Z} and hencer
exists, furthermore$,, ¢ SZG(m) indicating thatord(e) > p'. The prover will not be
able to find the valuionly if ord(m/&:) < 4k. The ordenrd(m/&:) = ord(m/a®m) =
ord(a®). As (e, ¢(n)) = 1 we have thabrd(«®) > p'. As we takek < p’ we prove our
claim.

Soundness We stress that the following proof holds also for a computationally
unbounded prover. In order fét to convinceV that S, is not a valid signature he must
sendV a valueA such thatA = i. As §, € SZG(m) it holds that§, = «m® where
ord(e) < 2. Thus,Q; = §,8), = o' MY wdl = (M wl)d. Asm?* e (w) (Lemma 2), it
holds thatdl such thatw' = m*. Thus,Q; = Mw! = w'®* andQ, = (Mwh)d =
w(P+Dd A computationally unbounded prover can compute the vakiech thatQ; =
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w" = w'®*i, Then to compute the prover still needs to finb, that is, he needs to solve
the equatiom = Ib+ j modord(w). Assuming thaj er [¢(n)] then for every possible
value ofb there would bep(n)/ord(w) possible values of indicating that the bes®
could do is to guess at random giving a probability gk1Allowing for the fact that
i €r[n] (instead ofj er [¢(n)] as assumed above) we ggtkl+ O(1)/p'.
Zero-knowledge The protocol as presented in Fig. 2nist zero-knowledge. How-
ever, as explained above, using the same techniques described in the confirmation proto-
col (and a “dummy commitment” in case of early abortion) we achieve zero-knowledge
for this protocol as well. O

4. Security Analysis

We do not present here a formal treatment of the security requirements of undeniable
signatures. For such a formal and complete treatment we refer the reader to the paper
by Damgird and Pedersen [DP]; an outline of these notions can be found above in our
Introduction (in particular, in Section 1.1). Here we argue the security properties of
our solution based on this outline, and the zero-knowledge results from the previous
section.

4.1. Unforgeability of Signatures

In this section we prove the following theorem.

Theorem 3. Assuming that the underlying RSA signatures are unforge@ugjainst
known andor chosen message attagkhien our undeniable signatures are unforgeable
(against the same attacks

As noted before, RSA is not directly immune against chosen message attacks but we
assume this to be countered by additional means, e.g., by the appropriate encoding of
the message prior to the exponentiation—see Section 3.1.

Assume that there exists a forg€rwhich can forge an undeniable signature in our
scheme after receiving the undeniable public key pair and interacting with the signer
in confirmation and denial protocols. That is, the forger outputs a(paiS,) where
Sn=am?, ord(a) < 2. We construct an attackgrwho will use this forger and forge
regular RSA signatures. Given the RSA public keye) of a signeis for which.4 would
like to forge a signature he proceeds as follows. He chooses a random galdsets the
public key of the undeniable signature scheme to the tfiplev = r® modn, S, =r)
and gives these values 6. When F requests an undeniable signature on a message
m the attacker4 asksS to sign this message and hanBighe pair(m, S,). When.A
is requested by to participate in a confirmatigidenial protocol on a paifm, S), A
checks ifm is a previously signed message &gl = S, if yes, then he interacts with
the forger in a confirmation protocol, otherwise he interacts in a denial protocol. The
attacker can run these protocols as the prover since all that is required is knowledge of the
exponenk. We assume that the pdimn, S) still has not helped the attacker to factor the
modulus. After this procedure the forg€routputs a forgery of our undeniable scheme,
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i.e., a pairm, m%) or (m, «m%) whereord(«) = 2. A forgery for the RSA scheme is
achieved as follows. If the pair ign, m?), then.4 outputs this value directly, as it is a
standard RSA signature. In the second catholds the value and thus by computing
(am®)®/m A extractsy (note thatis odd) and in return factorswhich enables forgeries

to be generated. Note that has asked the signer only for signatures which the forger
has asked, thus the forger’s output must be of a signature on a message which was not
previously signed by the signer of the standard RSA scheme.

4.2. Indistinguishability of Signatures

Abasic goal of undeniable signatures is that no one should be able to verify the validity (or
invalidity) of a message and its (alleged) signature without interacting with the legitimate
signer in a confirmation (or denial) protocol. Following [DP] we need to show that given
the public key information and any messaggbut not the signature exponeaht one

can efficiently generatesamulated signature(sn) of m, in the sense that the distribution

of simulated signatures cannot be distinguished (efficiently) from the distribution of true
signatures om. We achieve this property in the following way. Given any message

we apply to it the encodingn as determined by the underlying RSA scheme and then
raise the resulin to a random exponent moduidi.e.,s(m) = m" modn, forr eg [n]).
Notice that distinguishing(m) from the signaturen® modn on m is equivalent to
deciding whether

log,, (s(m)) < log, (S,). )

where the discrete logarithm operation is takefjnThis problem has no known efficient
solution, though its equivalence to RSA, factoring, or the discrete logarithm problems
has not been establish&dVe thus require the following intractability assumption in
order to claim the hardness of distinguishing between valid and simulated signatures.

Assumption EDL. For values, w, S,, m, ands(w) as defined above it is infeasible
to decide the validity of (2) over.

The EDL assumption holds if the exponent= d—! modg(n) is kept secret. This is
the case in our scheme sineés not part of the public key and no information about
it is revealed by the confirmation and denial protocols (which are guaranteed to be
zero-knowledge).

Note that the encoding afi is part of the assumption. We stress that the analogous
assumption modulo a prime number is necessary for claiming the security of previous
undeniable signature schemes as well (see [DP]). However, while we can prove that the
EDL assumption implies the simulatability of our signatures, in [DP] this implication is
not proven but just conjectured to hold.

6 The problem is at least as hard as the decisional Diffie—Hellman problem (i.e., given agtipt¢, r)
decide whether = g*¥). For the case of a composite modulus (our case), the related search problem (given
g%, g¥ find g*¥) is known to be at least as hard as factoring [Sh], [Mc]. A similar result for the decisional
problem is not known; such a result would imply that all the security aspects of our construction could be
based solely on the security of RSA.
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Theorem 4. Under the above EDL assumptioour signatures are simulatable
and hence cannot be verified without the signeits its delegated confirmers
cooperation

Remark The above theorem does not concern itself with a general problem of unde-
niable signatures pointed out first by Desmedt and Yung [DY]. It is possible that the
signer is fooled into proving a signature to several (mutually distrustful) verifiers while
he is convinced of proving the signature to only one of them. We address this problem
in Section 5.

4.3. Choosing the Signer’s Keys

In Section 3 we defined what the public and private parameters for the signer should
be. Our analysis of the (soundness of the) confirmation and denial protocols depends on
these parameters being selected correctly. Typically, the verification of this public key
will be done whenever the signer registers it with a trusted party (e.g., a certification
authority). Here we outline protocols to check the right composition of the modulus
n, the sample element, and the fact tha§, is chosen as a power aof (the latter
serves as the “commitment” of the signer to the signature expaheNobtice that these
protocols are executeonly onceat registration time and not during the subsequent
signing/verification operations. We denote hythe entity that acts as the verifier of
these parameters, and Bythe signer that proves its correct choices.

VERIFICATION THAT w IS OF HIGH ORDER Specifically, we use in our analysis the
assumption thab is an element of order at leagtq’. By virtue of Lemma 1 all thaV

needs to verify is thab ¢ {—1, 1} and thatgcd(w — 1, n) is not a factor ofh. Actually,

the valuew can be chosen as a constant, eug= 2, for all the undeniable signatures
public keys. Such a value must always pass the verification (or otherwise factoring is
trivial).

VERIFICATION THAT S, € (w). The following protocol is essentially the protocol for
proving possession of discrete logarithms as presented in [CEG], once again modified
in order to work with composite moduli. The signerchooses a value er [¢(n)] and

sends toV the valuew’ = w". The verifierV answers with a random hiit. If b = 0,

P returns the value, otherwise it returns the valwk+ r mod¢(n). In the first case,

V checks whethen' = w’, and in the second, whether"*® = w’'S,. If w ¢ (w)

then the probability thaP passes this test is/2. By repeating this proceduketimes,

the probability that the dealer can cheat reduces fo Phe protocol is statistical zero-
knowledge as the simulator does not knpim), but can use the uniform distribution on
[1..n] to approximate the one on [d(Nn)] statistically. As a practical matter, we observe
that this protocol can be performed noninteractively if one assumes the existence of an
ideal hash function (a la Fiat—Shamir [FS]).

VERIFICATION OF THE PRIME FACTORS We need to check that the signer chooses the
modulus oftherightform,i.e.n = pqwith p=2p’+1andq = 2q'+1andp, q, p’, q’
are all prime numbers. Recently, Gennaro et al. [GMR] have presented a zero-knowledge
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proof to verify that a composite is of a slightly different form, whexey are of the form
p=2py+1landg = qu + 1. Applying their techniques in our setting even though the
test is for a prime power the result is that it equates the signer’s probability of cheating
with the probability of factoring his composite. See [GMR] for details.

5. Extensions

Our protocols lend themselves to many of the existing extensions in the literature for
undeniable signatures.

5.1. Convertible Undeniable Signatures

This variation appeared firstin [BCDP], and secure schemes based on ElIGamal signatures
have been recently presented in [DP]. Convertible undeniable signatures enable the signer
to publish a value which transforms the undeniable signature into a regular (i.e., self-
authenticating) digital signature. In our scheme conversion can be easily achieved by
simply publishing the value = d~! mod ¢(n). Doing so the signer will transform the
undeniable signatures into regular RSA signatures with public(keg). Notice that

this will automatically imply the security (i.e., unforgeability) of the converted scheme,
based on the security of regular RSA signatures.

SELECTIVE CONVERSION  In some applications it may be desirable to convert only a
subset of the past signatureslective conversiofBCDP]). For this scenario we can
make use of a noninteractive zero-knowledge confirmation proof for those messages.

Let (mg, &), ..., (M, §) be the message—signature pairs that the signer wants to
convert. If the signer were allowed to interact with an honest verifier he could use the
public-coin, statistical zero-knowledge, confirmation protocol in Fig. 3. The protocol is
based on a similar one in [CP] which works for prime moduli.

In order to use this protocol for selective conversion we need to make it noninteractive
using standard techniques (e.g., computing the challenge via a hash-function applied to
the first message). Security is retained in the random oracle model [BR1].

5.2. Delegation

The idea is for the signer to delegate the ability to confirm and deny to a third party
without providing that party with the capabilities to generate signatures. In the literature
this notion is usually treated in the context of convertibility of signatures. However,

the two notions are conceptually different. Clearly, the information used in order to
delegate confirmatigtdenial authority to a third party if made public would basically

7 Notice that this holds if the signer issued for the messages intendedsignatureS,, = m® modn. If,
instead, the signer generated a signature of the Bra- «m?, wherew is an element of order 2, then when
eis made public it is easy to recover(and then the factorization o) from a triple(m, Sy, = am?, ) since
eis odd. We stress that although we consider as valid also signatures of that form (see Section 3.2), itis in the
interest of the prover not to generate them in that way.

8 We stress that we did not use this protocol as our main confirmation protocol since it is zero-knowledge
only against an honest verifier.
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Honest Verifier Signature Confirmation Protocol

Input Prover: secredl, e € [¢p(n)]
Common: RSA composite € A/, sample message € Z},
signatureS,,, messages, ..., mg, claimedS, ..., S

1. P choosesr er [¢(n)] and computesy; o M modn fori = 1,..., ¢ and

def
B = w" modn

2. V chooseg €R [n]
V— P:cC
3. P computesn =r + cd mod¢(n)
P—V:a
4. V checks if:
o =m*modnfori =1,..., ¢andBS;, = w? modn
If all equalities hold, thetV accepts th&'’s as the signatures on tihg's, otherwise
it rejects.

Fig. 3. Proving that§ € SZG(m;) to an honest verifier.

convert undeniable signatures into universally verifiable ones. However, the converse is
not necessarily true. It may be that the information used to convert signatures, if given
secretly to a third party, would still not allow that party to prawva nontransferable way

the validity/invalidity of a signaturé.In our setting the signer can simply give the third
party the keye which is the only needed information in order to carry out successfully
the denial and confirmation protocols. Clearly, the recipiemadnnot sign by itself as

this is the basic assumption behind regular RSA signatures.

5.3. Distributed Provergand Signery

Distributed provers for undeniable signatures were introduced by Pedersen [Pe]. With
distributed provers the signer can delegate the capability to coftfeny signatures,
without needing to trust a single party. This is obtained by sharing the key, used to verify
signatures, using a (verifiable) secret sharing scheme among the provers. This way only
if t out of then provers cooperate is it possible to verify or deny a signature. The existing
solutions for threshold RSA signatures [DDFY], [GJKR] can then be used to obtain
an efficient distributed scheme as the only operation needed during confirmation or
denial protocols is RSA exponentiations. The fault-tolerance of the protocol in [GIKR]
guarantees the security of the scheme even in the presemndewfof n) maliciously
behaving provers.

As Pedersen pointed outin [Pe], undeniable signatures with distributed provers present
some difficulties. Indeed when the provers are presented with a message and its alleged
signature, they have to decide which protocol (either the denial or the confirmation)
to use. They can do this by first distributively checking for themselves if the claimed
signature is correct or not. However, this in turn means that a dishonest prover can use
the other provers as an oracle to the verification key at his will. The problem applies to

9 An example is the above scheme for the selective conversion of signatures.
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our schemes as well. Several ways of dealing with the problem have been suggested in
the literature [Pe], [JY] some of which easily extend to our scenario.

Also solutions for threshold RSA allow one to share the power to sign (in addition
to the power to verifydeny signatures) among several servers. Once again in case of
possibly maliciously behaving signers a fault-tolerant scheme such as [GJKR] must be
used.

5.4. Designated Verifier

The following problem of undeniable signatures has been pointed out (see [DY] and [Ja]):
in general a mutually suspicious group of verifiers can get simultaneously convinced of
the validity of a signature by interacting with the signer in a single execution of the
confirmation protocol (in other words, the signer may believe that it is providing the
signature confirmation to a single verifier while in actuality several of them are getting
convinced atonce). Thisis possible by having the “official” verifier act as the intermediary
(or man in the middle) between the prover and the larger set of verifiers. While this is not
always a problem, in some cases this may defeat the purpose of undeniable signatures
(e.g., if the signer wants to receive payment from each verifier that gets a signature
confirmation).

Jakobsson et al. [JSI] present a solution to this problem through the notawsigf
nated verifiers proofthat is readily applicable to our scheme. All that is required is for
the verifier to have a public key. Then when the prover commits to his answer during
the zero-knowledge steps of our protocols he will use a trapdoor commitment scheme
(as in [BCC]) which the verifier can open in any way. This will prevent the verifier from
“transferring” the proof (see [JSI] for the details).

5.5. Designated Confirmer

Designated confirmer undeniable signatures were introduced by Chaum in [Ch2] and
further studied by Okamoto in [Ok]. This variant of undeniable signature is used to
provide the recipient of a signature with a guarantee that a specified third party (called a
“designated confirmer”) will later be able to confirm that signature. Notice the difference
between this variant and the delegation property described above. Indeed, in the present
case the signature is specifically bound at time of generation to a particular confirmer.
The techniques of [Ch2] and [Ok] easily extend to our scheme.

An Open Question

It would be interesting to see whether efficient undeniable signatures could be designed
using a more general form of composite.
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