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Abstract. Since the appearance of public-key cryptography in the seminal Diffie—
Hellman paper, many new schemes have been proposed and many have been broken.
Thus, the simple fact that a cryptographic algorithm withstands cryptanalytic attacks
for several years is often considered as a kind of validation procedure. A much more
convincing line of research has tried to provide “provable” security for cryptographic
protocols. Unfortunately, in many cases, provable security is at the cost of a considerable
loss in terms of efficiency. Another way to achieve some kind of provable security is
to identify concrete cryptographic objects, such as hash functions, with ideal random
objects and to use arguments from relativized complexity theory. The model underlying
this approach is often called the “random oracle model.” We use the word “arguments”
for security results proved in this model. As usual, these arguments are relative to well-
established hard algorithmic problems such as factorization or the discrete logarithm.

In this paper we offer security arguments for a large class of known signature schemes.
Moreover, we give for the first time an argument for a very slight variation of the well-
known ElI Gamal signature scheme. In spite of the existential forgery of the original
scheme, we prove that our variant resists existential forgeries even against an adaptively
chosen-message attack. This is provided that the discrete logarithm problem is hard to
solve.

Next, we study the security of blind signatures which are the most important ingre-
dient for anonymity in off-line electronic cash systems. We first define an appropriate
notion of security related to the setting of electronic cash. We then propose new schemes
for which one can provide security arguments.

Key words. Cryptography, Digital signatures, Blind signatures, Security arguments,
Existential forgery, One-more forgery, Forking lemma.

* This paper is the full version of “Security Proofs for Signature Schemes” [43] presented at Eurocrypt '96
and “Provably Secure Blind Signature Schemes” [42] presented at Asiacrypt '96.
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Introduction

Since the beginning of public-key cryptography with the Diffie—Hellman paper [16],
many new schemes have been proposed and many have been broken. Thus, the simple
fact that a cryptographic algorithm withstands cryptanalytic attacks for several years is
often considered as a kind of validation procedure. In this approach, cryptanalysis is
viewed as a heuristic measure of the strength of a new proposal.

A completely different paradigm is provided by the concept of “provable” security. A
significant line of research has tried to provide proofs in the asymptotic framework
of complexity theory. Stated in a more accurate way, this approach proposes com-
putational reductions to well-established problems, such as factorization, RSA [49],
the discrete logarithm problem, or anyP-complete problem [24]. Of course, these
are not absolute proofs since cryptography ultimately relies on the existence of one-
way functions and thé® versus AP question. Moreover, in many cases, provable
security is at the cost of an important loss in terms of efficiency [29], [27], [28],
[1].

Recently, the scope of these methods has been considerably widened by using a
model where concrete cryptographic objects, such as hash functions, are identified with
ideal random objects, the so-called “random oracle model” formalized by Bellare and
Rogaway [2]. In this model, DES [34] is viewed as a random permutation and SHA [36]
as a random function with the appropriate range.

Using this model, we offer security arguments for a large class of digital signatures.
Moreover, we give, for the first time, an argument for a very slight variation of the
well-known EI Gamal signature scheme [17]. In spite of the existential forgery of the
original scheme, we prove that our variant resists existential forgeries even against an
adaptively chosen-message attack. This is provided that the discrete logarithm problem
is hard to solve. Furthermore, we study the security of blind signatures, especially for
their application in electronic cash systems: we first define adequate security notions for
blind signatures, then we propose the first schemes for which security arguments can be
given.

We now briefly describe the organization of our paper. We first define the so-called
“random oracle model” and explain why such a theoretical model can help in proving
the validity of the design of a cryptographic scheme. We then recall the definition of a
signature scheme together with the various attacks and forgeries that we consider. Also,
we present the notion of blind signatures and its use for anonymity (and even revokable
anonymity) in electronic cash schemes. Next, we consider the attacks that are relevant
in the context of digital payments.

In Section 2 we propose schemes for which one can provide security arguments. In
order to simplify the proofs, we first explain our generic technique, the “oracle replay
attack” and we present a simple probabilistic lemma, the “splitting lemma.” In Sec-
tion 3 we prove two fundamental “forking lemmas” for digital signatures and blind
signatures. They are our main ingredient for providing security arguments for many
schemes.



Security Arguments for Digital Signatures and Blind Signatures 363
1. Definitions

1.1. The Random Oracle Model

Many cryptographic schemes use a hash funcfigauch as the Message Digest family
MD4 [47], MD5 [48], and derived functions SHA-1 [36], HAVAL [40], RIPEMD [46],
or RIPEMD-160 [5]). This use of hash functions was originally motivated by the wish
to sign long messages with a single short signature. In order to actoevepudiation
a minimal requirement on the hash function is to ask that it is impossible for the signer
to find two different messages providing the same hash value, this property is called
collision freeness

It was later realized that hash functions were an essential ingredient for the security
of signature schemes. In order actually to obtain security arguments, while keeping the
efficiency of the designs that use hash functions, several authors (e.g., [21], [2], [3], [43],
[42], and [44]) have suggested using the hypothesisftlisictually a random function.
We follow this suggestion by using the corresponding model, called the “random oracle
model.” In this model the hash function can be seen as an oracle which produces a truly
random value for each new query. Of course, if the same query is asked twice, identical
answers are obtained. This is precisely the context of relativized complexity theory with
“oracles,” hence the name. It is argued that proofs in this model ensure security of the
overall design of a signature scheme provided that the hash function has no weakness.

In the following we replace any hash function by a random oracle which outguits
long elements, wherk is a security parameter of the cryptographic scheme. In other
words, k denotes both the security parameter of the cryptographic (signature) scheme

and the length of the output of the random oracle. Roughly speaking, the security level
is 2.

1.2. Digital Signature Schemes

We now turn to digital signature schemes, the electronic version of handwritten signatures
for digital documents: a user’s signature on a messagga string which depends on

m, on public and secret data specific to the user and—possibly—on randomly chosen
data, in such a way that anyone can check the validity of the signature by using public
data only. The user’s public data are called plblic key whereas his secret data are
called thesecret keyObviously we would like to prevent the forgery of a user’s signature
without knowledge of his secret key. In this section we give a more precise definition of
signature schemes and of the possible attacks against them. These definitions are based
on [28].

Definition 1. A signature scheme is defined by the following (see Fig. 1):

— Thekey generation algorithng. On input X, wherek is the security parameter,
the algorithmG produces a paifK,, Ks) of matching public and secret keys. We
denote byn the length of the public key. Algorithigi is probabilistic (with random
tapew).

— Thesigning algorithmX. Given a message and a pair of matching public and
secret keygKp, Ks), = produces a signature. The signing algorithm might be
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Fig. 1. Signature schemes.

probabilistic (with random tape), and in some schemes it might receive other
inputs as well.

— Theverification algorithm V Given a signature, a messagm, and a public key
Kp, V tests whethes is a valid signature ofn with respect taK,,. In general, the
verification algorithm need not be probabilistic.

1.2.1. Examples

As shown in the Diffie—Hellman paper [16], the trapdoor permutation paradigm allows us
to create signatures in the public key setting. Two years later, Rivest et al. [49] proposed
the first signature scheme based on the RSA trapdoor function:

The RSA Signature. In the RSA context the generation algorithm produces a large
composite numbeN = pq, a public keye, and a secret key such thate - d =
1 modyp(N). The signature of a messages theeth root ofm, ¢ = m'/¢ = m? modN.

The RSA scheme is not secure by itself since it is subject to existential forgery. In
other words, it is easy to create a valid message—signature pair, without any help of the
signer, using the public verification relatiom= o®modN. In many cases, this is not
really dangerous because the resulting message is not intelligible or does not have the
proper redundancy. Still such an RSA signature does not prove by itself the identity of
the sender.

In 1986 a new paradigm for signature schemes was introduced. It is derived from
fair zero-knowledge identification protocols involving a prover and a verifier [26], and
uses hash functions in order to create a kind of virtual verifier. In [21] Fiat and Shamir
proposed a zero-knowledge identification protocol based on the hardness of extracting
square roots. They also described the corresponding signature scheme and outlined its
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security. Similar security results for other signature schemes like Schnorr's [50], [51] are
considered folklore results but have never appeared in print. We refer the reader to the
literature for the precise description of those schemes, and we only recall the Schnorr
signature:

The Schnorr Signature. The generation algorithm produces two large prirpeand
g, such thatg > 2, wherek is the security parameter, amg| p — 1, as well as
an elementy of (Z/pZ)* of orderq. It also creates a pair of keyg, € (Z/qZ)*
andy = g~*modp. The signer publisheg and keeps< secret. The signature of a
messagen is a triple(r, e, s), wherer = gk modp, with a randonK € (Z/qZ)*, the
“challenge”e = H(m, r) modg ands = K + exmodgq. It satisfiesr = g°y*modp
withe = H(m, r), or simplye = H(m, g°y® modp), which is checked by the verifying
algorithm.

1.2.2. Generic Digital Signature Schemes

In this paper we consider signature schemes which, given the input messaigeluce
triples (o1, h, 02) whereo; randomly takes its values in a large deis the hash value
of (m, 1), ando, only depends on;, the message, andh. In particular, we can remark
that each signature is independent of the previous ones. More precisely, in the proof of
resistance against the strongest attacks, we assume that@oappear with probability
greater than 2%, wherek is the security parameter. This assumption is satisfied in the
Schnorr signature schema: = g% modp for a randomly choseK in (Z/qZ)*; sinceg
is of orderq, andk < logq, the probability foro; to get a specific value is less than
1/(q — 1) < 2/2. In the same way, the Fiat—Shamir [21] scheme and many others also
satisfy this assumption.

In some cases, in order to optimize the size of signatates;h can be omitted, since
they can be correctly recovered during the verification process. For notational purposes
we ignore these possible optimizations and kegm as parts of the signature.

1.2.3. Attacks

We focus on two specific kinds of attacks against signature schemesotmessage
attackand theknown-message attack the first scenario the attacker only knows the
public key of the signer. In the second one the attacker has access to a list of message—
signature pairs. According to the way this list was created, we distinguish four subclasses
of known-message attacks:

— Theplain known-message attat¢ke attacker has accessto alist of signed messages,
but he has not chosen them.

— Thegeneric chosen-message attaitie attacker can choose the list of messages to
be signed. However, this choice must be made before accessing the public key of
the signer. We call this attack “generic” because the choice is independent of the
signer.

— The oriented chosen-message attaels above, the attacker chooses the list of
messages to be signed, but the choice is made once the public key of the signer has
been obtained. This attack is oriented against a specific signer.
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Fig. 2. Attacks.

— Theadaptively chosen-message attdeving knowledge of the public key of the
signer, the attacker can ask the signer to sign any message that he wants. He can
then adapt his queries according to previous message—signature pairs.

In the following we only consider the two extreme scenarios, the no-message attack
and the adaptively chosen-message attack (see Fig. 2).

1.2.4. Forgeries

We now classify the expected results of an attack:

— Disclosing the secret key of the signer. It is the most serious attack. This attack is
termedtotal break

— Constructing an efficient algorithm which is able to sign any message. This is called
universal forgery

— Providing a new message—signature pair. This is cakéstential forgeryln many
cases this attack is not dangerous, because the output message is likely to be mean-
ingless. Nevertheless, a signature scheme which is not existentially unforgeable
does not guarantee by itself the identity of the signer. For example, it cannot be
used to certify randomly looking elements, such as keys.

Definition 2 (Secure Signature Scheme). A signature schersedareif an existen-
tial forgery is computationally impossible, even under an adaptively chosen-message
attack.

The first secure signature scheme was proposed by Goldwasser et al. [27] in 1984. It
uses the notion of claw-free permutations pairs: informally, these are permutégions
and f; over a common domain for which it is computationally infeasible to find a triple
(X, Y, 2) such thatfy(x) = f1(y) = z. Furthermore, Goldwasser et al. proved that such
“claw-free” permutations pairs exist if factoring is hard (see [27] and [28] for details).
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1.3. Blind Signatures

After this brief outline of signature schemes, we review another cryptographic primitive:
blind signatures. We first motivate their use and give some well-known examples. We then
define specific security properties of blind signatures related to the setting of electronic
cash.

1.3.1. Motivation Electronic Cash

As early as 1982, Chaum’s [13] pioneering work aimed at creating an electronic version
of money. To achieve this goal, he introduced the notions of “coins” and “randomized
blind signatures” (or simply “blind signatures”). He claimed that this was the only way
to ensure the requireaihonymity in real life, a coin cannot be easily traced from the
bank to the shop, furthermore, two spendings of a same user cannot be linked together.
These are two main properties of real coins that Chaum wanted to mimraceability
andunlinkability.

He proposed to define adectronic coinas a number with a certificate (a signature)
produced by the bank; it is withdrawn from the bank, spent by the user, and deposited
by the shop (see Fig. 3).

On-line electronic cash In his first scheme, Chaum used blind signatures for the pro-
duction of coins. The user makes the bank blindly sign a coin. Then the user is in
possession of a valid coin that the bank itself cannot recognize nor link with the user.
When the user spends the coin, the shop immediately returns it to the bank. If the coin
has already been spent, the bank detects the fact and informs the shop so that it refuses
payment. It is an “on-line” context: there is a continuous communication between the
shop and the bank in order to verify the validity of coins. In order to define the scheme,
Chaum introduced the first blind signature scheme, based on the RSA hypothesis. Itis a
by now classical transformation of the original RSA signature scheme [49]:

The Blind RSA Signature. The bank has a large composite numlet pq, a public
key e, and a related secret kel It also uses a public hash functidh. In order to get
the signature of a random numherthe user “blinds” it with a random valué modN,

and sendsn = H(p)r®modN to the signer. The latter returns a signataf@f m such
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thato’® = m = r®H(p) modN. Then the user can “unblind” this signature computing
o =o’r~*modN. A coin is any pair(p, o) which satisfiesr® = H (o) modN.

In this scheme all coins have the same value, but in a real system different denomina-
tions might be encoded by different exponeats

Off-line electronic cash and the “cut-and-choose” methodologiy an “off-line” con-

textwe cannot prevent a user from spending a coin twice or even more, since the detection
is made too late to refuse payment. This fraud is called “double-spending.” We only can
hope that the double-spender will be discovered later and punished. Chaum et al. [14]
were able to build such schemes by introducing the identity of the user in the coin in
such away that it remains concealed, unless double-spending happens. Once more, blind
signatures were a critical point for anonymity, and, as before, the authors used the blind
RSA signature, together with the “cut-and-choose” technique: in their proposition, a coin

is a kind of list ofk blind signatures, each having an embedded copy of the identity of
the user. To be sure that double-spending will reveal the real identity of the user, the bank
would like to verify that the signatures actually have the requested format, which would
revoke anonymity. Then the bank helps the user to gstghatures, randomly choodes

of them, and verifies the inner structure of the selected signatures. Since these signatures
are no longer anonymous, the user throws them away and constructs the coin With the
other ones. The probability for a cheater to be finally in possession of a fraudulous coin
is about 2%,

The main drawback of the “cut-and-choose” technique is that the coins are very large,
as well as the amount of computations. In 1993 Ferguson [20] and Brands [7] proposed
new schemes without “cut-and-choose.” The first one uses once again the blind RSA
signature, whereas Brands’ scheme uses a new blind signature derived from the Schnorr
signature scheme [50], [51]:

The Blind Schnorr Signature. The generation algorithm produces two large prime
integersp andq such thaty | p — 1 as well as an elemengtof (Z/pZ)* of orderq.

It also creates a pair of keygx, y), wherex € (Z/qZ)* is the secret one, angl =
g~*modp is the public one. The signer publishgsin order to get the signature of a
secret messag®e, the user asks the signer to initiate a communication. He chooses a
randomK e (Z/qZ)*, computes, and sends the “commitment gk modp. The user
then blinds this value with two random elememt$ € Z/qZ, intor’ = rg=*y—# modp,
computes the valug = H(m, r’) modq, and sends the “challenge™= € + 8 modq to

the signer who returns the valsesuch thag®y® = r mod p. Finally, the user computes
s’ = s — amodg. This way, the pail€, s') is a valid Schnorr signature of since it
satisfies’ = H(m, g° y* modp).

In both schemes Ferguson and Brands managed to hide the identity of the user in a
much more efficient way than the “cut-and-choose” methodology. Again, the identity is
revealed after double-spending. Those blind signatures which hide a specific structure,
such as the identity, are called “restrictive blind signatures” [11], [9], [8], [45]. Many
extensions [19], [6], [10] have been proposed, followed by some attacks [8], [11] and
repairs [9], [52]. All of them use blind signatures, and the security of the proposed
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schemes is totally dependent on the security of the blind signatures they use. Surprisingly,
no security proofs have been proposed so far for blind signatures.

Revokable anonymity A few years ago [57], an undesirable feature of total anonymity

in transactions was considered: perfect crimes (anonymous crimes without leaving any
traces and consequently without any risk of being suspected later). Accordingly, a new
line of research in electronic cash has investigated “revokable anonymity” [12], [22],
[31] which proposes anonymity unless a Trusted Third Party (TTP) partially revokes it
for some established reasons or in view of an obvious fraud (e.g., in case of double-
spending). Again, those new schemes rely on the security of blind signature schemes.

1.3.2. Security

As far as we know, no formal notion of security has ever been studied, or proved, in the
context of blind signatures. However, itis a critical point in electronic cash systems. In the
context of blind signatures, the previous definitions of security are no longer significant.
In fact, existential forgery is somehow the basis for blind signatures. Nevertheless, a
fundamental property for electronic cash systems is the guarantee that a user cannot
forge more coins than the bank gives him. In other words, Wwithnd signatures of the

bank, the user must not be able to create more thewins. This form of security was

more or less informally assumed in connection with several schemes, for example in
[10], or under the “unexpandability” property of [23].

Definition 3 (The (¢, ¢ + 1)-Forgery). For any integet, an(¢, £ + 1)-forgery comes
from an attacker that producést- 1 signatures aftef interactions with the signex.

Definition 4 (The “One-More” Forgery). For some integérpolynomial in the secu-
rity parametek, an attacker can obtafA-1 valid signatures after fewer thaimteractions
with the signer. In other words,“ane-more forgery”is an(¢, ¢ + 1)-forgery for some
polynomially bounded integet.

Definition 5 (The Strong “One-More” Forgery). A, ¢ + 1)-forgery for a poly-
logarithmically bounded integet (i.e., for some constant, £ < (logk)®, wherek
is the security parameter) is calledtaong “one-more” forgery

As usual, several scenarios can be envisioned. We focus on two kinds of attacks which
naturally come from the use of blind signatures in electronic cash:

— Thesequential attacksee Fig. 4): the attacker interacts sequentially with the signer.
This attack can be performed by a user who withdraws coins, one after the other.
It is clear that, in practical situations, many users might be allowed to withdraw
money at the same time. The following attack must then be considered.

— Theparallel attack(see Fig. 5): the attacker intera¢tsimes in parallel with the
signer. This attack is stronger. Indeed, the attacker can initiate new interactions
with the signer before previous ones have ended. This attack can be performed by
a group of users who withdraw many coins at the same time.
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Fig. 4. The sequential attack.
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Fig. 5. The parallel attack.

2. Preliminaries

2.1. Complexity Theory and “Oracle Replay Attack”

In this paper we offer several security arguments for digital signatures and blind signa-
tures. All our results are given in the context of complexity theory. Hence, any participant
is modeled by a probabilistic polynomial time Turing machine. Our paradigm is to use a
supposedly efficient attacker in order to solve a difficult algorithmic problem. This goes
through a generic reduction technique (see Fig. 6) which we cadirtiede replay attack

Attack Reduction

Public

o

|
forgery

A B

Fig. 6. Reduction of a difficult problem.
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Fig. 7. The oracle replay attack.

(see Fig. 7): by a polynomial replay of the attack with different random oraclegXtke

are the queries and thg's are the answers), we make the attacker successfully forge
signatures which are suitably related. More precisely, we want to obtain two signatures
(01, h, 02) and (o7, ', 05) of an identical messaga such thato; = o7, buth # R'.

We then extract the solution of a difficult problem from the ability to forge such pairs.
In the reductions, an important problem is to simulate properly the interactions that the
attacker should have with other entities (with the random or&aed particularly with

the signerz). Those simulations should be indistinguishable from real interactions from
the point of view of the attacker despite the obvious fact that no secret key is available.

2.2. Distinguishability of Distributions of Probability

As explained above, in our reductions we have to provide indistinguishable simulations:
the communication tapes between the attacker and the simulator and between the at-
tacker and the signer (for example) will have to follow indistinguishable distributions of
probability. In this subsection we define two notions of indistinguishability.

Recall that a functiorf (K) is negligiblein k if, for every polynomialp, f (k) is smaller
than /| p(k)|, for k large enough; otherwise, it ionnegligible

Definition 6. Let 8° ands? be two distributions of probability. AlistinguisherD is a
probabilistic polynomial time Turing machine, with random tagevhich, on inputp,
answers O or 1.

Theadvantageof D with respect to two distributions® ands? is defined as

AdUD. 8% 8%) = 3 x | E [D(@. p)] = E [D(@. p)]|.
pes0 pest

It is easy to derive the following equality:

Pr [D(w,p)=c] =3 +AduD, s 6h.

w
ce{0,1}
pese

So, if this advantage is negligible, the answer of the distinguisher looks like the result of
flipping a coin.

Two distributionss® ands* arepolynomially indistinguishabli there does not exist
any distinguisheD with a nonnegligible advantage.
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Two distributionss® ands* arestatistically indistinguishablé
> ‘ Pr[x =y] — Pr[x =y]| is negligible.
m xes0 xest

Remark Itis clear that if two distributions argtatistically indistinguishablehey are
polynomially indistinguishable

2.3. The Splitting Lemma

Throughout this paper we repeatedly use the “Splitting Lemma” below. It translates the
fact that when a subseéh is “large” in a product spacX x Y, it has many “large”
sections.

Lemma 7 (The Splitting Lemma). Let AC X x Y such thaPr[(x, y) € A] > ¢. For
anya < ¢, define

B:{(x,y)eXxY’yPrY[(x,y’)eA]ze—a} and B = (X xY)\B,

then the following statements hold

(i) Pr[B] = «.
(i) Y(X,y) € B,Pryey[(X, YY) € Al > & — .
(i) Pr[B| A] > a/e.

Proof. Inorderto prove statement (i), we argue by contradiction. Assume tha} Rt[
a. Then

e <Pr[B]-Pr[A| B]+Pr[B] -Pr{A | Bl <a-1+1-(¢ —«) =¢.

This implies a contradiction, hence the result.
Statement (i) is a straightforward consequence of the definition.
We finally turn to the last assertion, using Bayes’ law:

PriB| Al = 1—Pr[B| A]
= 1—Pr[A| B]-Pr[B]/Pr[A] > 1— (¢ —a)/e = a/e. O

3. Security Arguments for Digital Signatures

This section is devoted to digital signatures and extends our previous results on their
security [43]. Recall that an identification scheme [21] is an interactive protocol which
involves a prover and a verifier. The prover tries to convince the verifier of his knowl-
edge of a secret related to his identity. More specifically, a three-pass honest-verifier
zero-knowledge identification protocol is an identification scheme with three interac-
tions between the prover and the verifier, which leaks no information about the secret
provided the verifier plays honestly, namely, randomly choosing his queries. The three
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interactions correspond to three messages: the “commitrassght by the prover, the
“challenge”e randomly chosen by the verifier, and the “answesf the prover. The
verifier finally accepts the proof if and only if this triple satisfies a ¥&, e, r) = 1.

As described by Fiat and Shamir [21], any three-pass honest-verifier zero-knowledge
identification protocol can be turned into a generic digital signature schenta; &t )

be a round of the identification protocol, we get a digital signature scheme by replacing
the query of the verifier, which is a random vakydy the hash value of the message

to be signed together with the commitmentvhich is bound not to change, namely,

e = f(m, a), wheref is the hash function. If the identification protocol needs several
sequential iterations in order to reach an adequate level of security, then, in the signa-
ture setting, one parallelizes the protocol. Accordingly, a signature of a message

triple (o1, h, 02), whereo; represents all successive “commitments” of the parallelized
protocol,h = f(m, o1) ando, represents all successive “answers” of the parallelized
protocol. It satisfies a test (o1, h, 02) = 1 as described above in the generic digital sig-
nature schemes section (see Section 1.2.2). For example, the Schnorr signature scheme
is precisely the result of the above transformation applied to the Schnorr identification
protocol.

In what follows, we assume thdtoutputsk-bit long elements, whelleis the security
parameter of the signature scheme, as described above.

We first prove the security of a generic digital signature scheme against no-message at-
tacks. As an application, we directly obtain the security of the Schnorr signhature scheme.
Next, we extend our result to the adaptively chosen-message context. We close the sec-
tion with a study of the El Gamal signature scheme [17]: in spite of the existential forgery
of the original scheme, we present a slight variation which is existentially unforgeable
under an adaptively chosen-message attack. This is provided that the discrete logarithm
problem is hard to solve.

3.1. No-Message Attacks

In this part we consider the no-message scenario. We propose a generic result and we
apply our technique to the Schnorr signature scheme.

3.1.1. Generic Results

Lemma 8. Let(G, =, V) be a generic digital signature scheme with security parame-
ter k. Let.A be a probabilistic polynomial time Turing machine whose input only consists
of public data and which can ask Q queries to the random oradid Q > 0. We as-
sume thatwithin the time bound T.A produceswith probability s > 7Q/2%, a valid
signature(m, o1, h, 02). Then within time T < 16QT /¢, and with probabilitys” > =,

a replay of this machine outputs two valid signatu¢es o1, h, o2) and(m, o1, ', o)

such that h£ h'.

Proof. We start with a no-message attaciemvhich is a probabilistic polynomial time
Turing machine with random tape During the attack, this machine asks a polynomial
number of questions to the random oraleWe may assume that these questions are
distinct: for instanceA can store questions and answers in a tableQsget .., Qg be
the Q distinct questions and let= (p1, . .., pg) be the list of theQ answers off . It is
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clear that a random choice éfexactly corresponds to a random choiceofhen, for a
random choice ofw, f), with probabilitye, A outputs a valid signaturen, o1, h, 02).
Since f is a random oracle, it is easy to see that the probabilityhfts be equal to
f(m, oy) is less than 12%, unless it has been asked during the attack. So, it is likely that
the questiorim, o7) is actually asked during a successful attack. Accordingly, we define
Ind(w, f) to be the index of this questiotm, o;) = de(w’f) (we letind(w, f) = o0

if the question is never asked). We then define the sets

S

and
S

{(w, ) | A (w) succeeds &nd(w, f) # oo},

{(w, f) | AT (w) succeeds &nd(w, f) =i} for ie{l,...,Q}

We call S the set of the successful paif®, f), and we note that the séf; | i €

{1, ..., Q}} is a partition ofS. With those definitions, we find a lower bound for the
probability of success; = Pr[S] > ¢ — 1/2¢ > 6¢/7. Let| be the set consisting of
the most likely indices, | = {i | Pr[S; | §] > 1/2Q}. The following lemma claims
that, in case of success, the index lies with probability at Ieasl%.

Lemma9. Prlind(w, f) el |S]= 3.
Proof. By definition of the setsS;, Pr{ind(w, f) € | | S] = Y, Pr[Si | S]. This
probability is equal to - Zig, Pr[S; | S]. Since the complement df contains fewer

thanQ elements, this probability is at least1Q x 1/2Q > % O
We now run the attacker/2 times with randonw and randont . Sincev = Pr[S] >
6e/7, with probability greater than 4 (1 — 6¢/7)%¢, we get at least one paiiw, f)
in S. Itis easily seen that this probability is lower bounded by &1%7 > £.
We now apply the Splitting Lemma (Lemma 7) for each intdgerl : we denote by
fi the restriction off to queries of index strictly less thanSince Pr§;i] > v/2Q, there
exists a subse®; of executions such that,

forany (o, f) € @i, Pri(w, eS| =]

v

v/4Q,
Pri<2i | Si

v

1
5
Since all the subset§ are disjoint,

Pr{@ e (@ ) eans|s]

= Pr|:U(S2i NS | S:| =D _PrRiNS | 8]

iel iel
= PrQi | S]-Pr[Si | S] = (Z Pr(Si | 3]) /2= 3.
iel iel

We let 8 denote the indeind(w, f) corresponding to the successful pair. With prob-
ability at leastl, g € | and(w, f) € Sp N Q. Consequently, with probability greater
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than%, the 2/¢ attacks have provided a successful gair f), with 8 = Ind(w, f) € |
and(w, f) € Sg. Furthermore, if we replay the attack, with fixedut randomly chosen
oraclef’ such thatf/; = fg, we know that Pr[(w, ') € Sp | f; = fg] = v/4Q. Then

I?,I[(a), f/) (S Sﬁ andpf; ;ﬁ pf,; | ff/} = fﬂ]

> Pl(w. ') € Sp | f; = f5] = Pilpj = p] = v/4Q — 1/2¢ > ¢/14Q,

wherepg = f(Qp) andpy = f'(Qp). We replay the attack Xa/e times with a new
random oraclef” such thatf; = fz. With probability greater tharg, we get another
success.

FinaIIy, after less than/2 4+ 14Q/¢ repetitions of the attack, with probability greater
than X g > 1 , we have obtained two valid signatu@s, o1, h, o) and(m’, o1, h’, o))

with Qﬁ (m o1) = (M, ;) and distinct challengds = f(Qg) # f'(Qg) =h. O

The careful reader has noticed that the mechanics of our reduction depend on some
parameters related to the attackenamely, its probability of succesand the numbe®
of queries to the random oracle. This induces a lack of uniformity. In order to overcome
this problem, we can use the reduction technique presented in our previous Eurocrypt
'96 paper [43]. Unfortunately, the probability of success of the resulting reduction is
much smaller: the expected time of success is of the ord@*¢t? instead ofQ/s.
Accordingly, we end up extremely far from any form of the “exact security” concept [3].

It is better to see the resulting maching as an expected polynomial time Turing
machine:

1. Minitializesj = 0;

2. M runs A until it outputs a successful pajtw, f) € S and denotes by; the
number of calls to4 to obtain this success, and Bythe indexind(w, f);

3. M replays, at most 149’ times, A with fixed @ and randomf’ such that
f; = g, wherea = &;

4. M incrementsj and returns to 2, until it gets a successful forking.

For any execution oM, we denote byl the last value of and byN the total number
of calls to.A. We want to compute the expectationf Sincev = Pr[S], andN; > 1,
then PrN; > 1/5v] > %. We define¢ = [log, Q1, so that 14%0{j > 28Q/¢ for
any j > ¢, wheneverN; > 1/5v. Therefore, for anyj > ¢, when we have a first
success i, with probability greaterthaﬁ the indexg = Ind(w, f)isinthe set and
(w, T) € SpgNQg. Furthermore, with probability greater thénNJ > 1/5v. Therefore,
with the same conditions as before, thatis> 7Q/2X, the probability of getting a
successful fork after at most €8¢ iterations at step 3 is greater thén

For anyt > ¢, the probability forJ to be greater or equal tois less than(1l — ;11 X
2 x &)=t which is less tha'~*, with y = &. Furthermore,

j=t j=t t+1
141 141
E[N|J=t] < > (E[Nj]+140E[NjJo) < — x Z“J = :{— T

j=0
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So, the expectation dfl is E[N] = >, E[N | J =t] - Pr[J = t] and then is

141 t+l
< < ) x Pr[J > t]
o —
1

165 t O(t+l C(t+1 t—l
£ |:[=0 (a—1>+§<a—l)xy

II'-v

=

165 «ftt 1 ¢
< — . . -
~ e a-1 |:a_1+Z(ay)
=<

165 oft? 1 n 1
e a—1 \a—-1 1—ay/’

Using the definition of and the values af andy, we obtain

E[N]_1§5 64Q 7, 4o _ 84480

Hence the following theorem.

Theorem 10(The Forking Lemma). Let(G, X, V) be ageneric digital signature scheme
with security parameter.k_et A be a probabilistic polynomial time Turing machine
whose input only consists of public dat&e denote by Q the number of queries tHat
can ask to the random oraclassume thaivithin time bound T.4 produceswith prob-
ability e > 7Q/2%, avalid signaturgm, o1, h, 0»). Then there is another machine which
has control ovetr4 and produces two valid signaturés), o1, h, o) and(m, o1, h’, o))
such that h# h', in expected time T< 84480T Q/«¢.

3.1.2. The Schnorr Digital Signature Scheme

We now apply the previous result in the simple setting of the Schnorr signature scheme
(see Fig. 8).

Firstly, we briefly describe the protocol. For any security parametan authority
chooses two large prime integgrsandq, such that 21 < q < 2¢ holds andj divides
p — 1 as well as an elemegtfrom (Z/ pZ)* of orderq. The triple(p, g, 9) is published

- Signature
- Initialization (security parameter k) - Ke¢ (Z/qZ)*
P, ¢, two large primes such that - r=g¢" modp
ql(p-1) - e= f(m,r)
P < g <2 - s=K+zemodgq

g, element of (Z/pZ)" of order ¢
f, hash function

secret key z € (Z/q7)"

public key y=g¢~* mod p

- g=randoy=3s
— Verification

- ez flm,m)

- rt g°y® mod p

Fig. 8. The Schnorr signature scheme.
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together with a public hash functioh whose output domain is identified t@,/qZ)*.
The security parametds is then equal tdlogq], whereas the size of the public key,
denoted byn, is equal to[log p]. Furthermore, we assume thHats> logn. Any user
randomly chooses his secret keyn (Z/qZ)*, and publishey = g~ modp.

In order to sign a messagdm, the user chooses a random elemEkntn (Z/qZ)*
and computes the commitmant= gX modp. He gets the challenge= f(m,r) and
computes = K + xemodq. The signature is the triplg, e, s), which satisfies the tests
r = g°y*modp ande = f(m,r).

Theorem 11. Assume thatwithin a time bound T an attackerA performs an exis-
tential forgery under a no-message attack against the Schnorr signatitheprobabil-

ity ¢ > 7Q/q. We denote by Q the number of queries tHatan ask to the random
oracle Thenthe discrete logarithm in subgroups of prime order can be solved in expected
time less thai84480QT/=.

Proof. As we have previously seen, this scheme satisfies all the required properties of
a generic signature scheme. From the Forking Lemma (Theorem 10), after a polynomial
replay of the attacked, we obtain two valid signaturém, r, e, s) and(m, r, €, ') with
e # €. Then we have the following equalities= g*y®modp andr = g°y® modp,
from which we obtain the discrete logarithm bog: (s—9)/(¢ —e) modg. O

3.2. Adaptively Chosen-Message Attacks

We now focus on the adaptively chosen-message scenario. As in the previous section, we
first give a generic result and we apply the technique to the Schnorr signature scheme.

3.2.1. Generic Results

As was previously observed, in a no-message scenario, only the least powerful kind of
adversaries is assumed to attack the signature scheme. For many applications, resistance
to this type attack is not considered sufficient. If we want to assess the “security” of

a signature scheme, we should prove its resistance against adaptively chosen-message
attacks. In such a scenario, the attacker uses the signer as an oracle, and asks any signature
he wants. If it is possible to simulate the sigieby a simulatoS who does not know

the secret key (see Fig. 9), then we can make the attacker and the simulator collude in
order to break the signature scheme, and, the same way as before, we can obtain two
distinct signatures with a suitable relation.

Lemma 12. Let.4 be aprobabilistic polynomial time Turing machine whose input only
consists of public dataVe denote respectively by Q and R the number of queries that
A can ask to the random oracle and the number of querieshedn ask to the signer
Assume thatithin a time bound T.4 produceswith probabilitye > 10(R + 1)(R +
Q)/2%, avalid signaturgm, o1, h, o). If the triples(o1, h, o») can be simulated without
knowing the secret kewith an indistinguishable distribution probabilitthen a replay

of the attacket4, where interactions with the signer are simulatedtputs two valid
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attacker II + signer (¥) attacker IT 4 simulator (S)

ot h, ot

m
.
o1 h, oy

K, @

and we suppose f(m;, 0@) = hp? v

Fig. 9. Adaptively chosen message scenario.

signaturegm, o1, h, o2) and(m, o1, ', o5) such that h h’, withintime T < 23QT/¢
and with probabilitys’ > .

Proof. As in the previous proof, we l&@y, ..., Qg denote theQ distinct queries to
the random oraclepy, ..., pg the respective answers, amd, ..., mg the R queries
(possibly all the same) to the signing oracle. Using the simulator, we can simulate the
answers of the signer without knowledge of the secret key. For a messathe simu-
lator answers a triples,’, h®, o). Then the attacker assumes ttiam;, o) = h®
and stores it. The previous proof can be exactly mimicked, except for the problem
added by the simulations: there is some risk of “collisions” of queries, or supposed
queries, to the random oracle. Recall that in the definition of generic digital signa-
ture schemes, we made the assumption that the probability for a “commitmrééht”
to be output by the signing oracle is less tha@<2 Then two kinds of collisions can
appear:

— Apair(m;, o.”) that the simulator outputs also appears in the list of questions asked

to the random oracle by the attacker (some quesflpn The probability of such

an event is less tha@ R x 2/2¢ < ¢/5.
— Apair(m;, 01(')) thatthe simulator outputs is exactly similar to another pair produced

by this simulator (some questiaqm;, al(j))). The probability of such an event is
less tharR?/2 x 2/2% < ¢/10.

Altogether, the probability of collisions is less thasy30. Therefore,
P¥[A succeeds and no-collisions]
> Pr{Asucceeds} Pricollisions] > &(1 - 2) > 7¢/10.
This is clearly greater than@/2¢. We can then apply the previous Forking Lemma

(Lemma 8). Such a replay succeeds with probabifity %, withintime T’ < 16QT x
10/7e < 23QT/e. O
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Theorem 13(The Forking Lemma). Let.A be a probabilistic polynomial time Turing
machine whose input only consists of public dat& denote respectively by Q and R
the number of queries that can ask to the random oracle and the number of queries
that A can ask to the signeAssume thatwithin a time bound T .4 produces with
probability e > 10(R + 1)(R + Q)/2%, a valid signature(m, o1, h, o»). If the triples

(o1, h, 02) can be simulated without knowing the secret, kéth an indistinguishable
distribution probabilitythen there is another machine which has control over the machine
obtained fromA replacing interaction with the signer by simulation and produces two
valid signatures(m, o1, h, 02) and (m, o1, I, 65) such that h# h’" in expected time

T < 120688QT/e¢.

Proof. The collusion of the attacket and the simulataf defines a machinB which
performs a no-message attack. An executiof8a$ successful if it outputs a forgery,

and if there is no collisions of queries to the random oracle during the process. Then,
within a time boundT, B has a probability of success greater thaf1D > 7Q/2.

Using Theorem 10, within an expected number of steps bounded by 4486/10),

one can provide two valid signatures. O

3.2.2. Application to the Schnorr Digital Signature Scheme

Theorem 14. Let. A be an attacker which performaithin a time bound Tan existen-

tial forgery under an adaptively chosen-message attack against the Schnorr signature
with probability e. We denote respectively by Q and R the number of queries4hat
can ask to the random oracle and the number of queries.the&n ask to the signing
oracle Assume that > 10(R+ 1)(R+ Q)/q, then the discrete logarithm in subgroups

of prime order can be solved within expected time less 120686 T /¢.

Proof. We only have to prove that the triplés e, s) produced by the signer and the
random oracle can be simulated without the knowledge of the signer’s secret. Once
this is done, the result directly follows from Theorem 13, using the same proof as for
Theorem 11.

Lemma 15. The following distributions are the same

K er Z/9Z
K er (Z/q2)" e
§=1(,es) eeRKZ/qZ and 8 =1{(,e5s) s=K
r=g"modp r = g°y®modp
s = K 4+ xemodq r 1 modp

Proof. Firstwe choose atriple, 8, y) fromthe set of the signatures: ket (Z/ pZ)*,
y € Z/qZ, andB € Z/qZ such thatg”y? = ¢ # 1 modp. We then compute the
probability of appearance of this triple following each distribution of probabilities:

gK:(C/‘;EZﬂ _ 1
Kt+xe=y |~ q@-D’

Pi(r.es) =(epy)] = K;E(g,e
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B 3 s = gKye
IZr[(r,e, s)=(s,B,7)] = Pr[e:ﬂ;sz K =

r+# 1modp]

From the above, the following simulator S produces trigtes, s) with an identical
distribution from those produced by the signer. In order to sign the messa§ean-
domly chooses € Z/qZ andK eg Z/qZ, and sets = gKy®modp ands = K. Inthe
(unlikely) situation where = 1 modp, we discard the results and restart the simulation.
Then it returns the triplér, e, s). O

3.2.3. Further Results

It is clear that identical results can be obtained for any signature scheme which is the
transformation of a honest-verifier zero-knowledge identification protocol, and a fortiori
of the parallelization of a zero-knowledge identification protocol (Fiat—Shamir [21],
Guillou—Quisquater [30], the Permuted Kernel Problem [53], the Syndrome Decoding
problem [54], the Constrained Linear Equations [55], the Permuted Perceptrons Prob-
lem [41], etc.). In fact, the zero-knowledge property is exactly what we need for our
notion of simulation. For each of these schemes, existential forgery under an adaptively
chosen-message attack in the random oracle model is equivalent to the mathematical
problem on which the identification scheme relies. Furthermore, our results may also
provide security arguments for other schemes. In the following section we study a sig-
nature scheme of the El Gamal type.

3.3. Application to the El Gamal Signature Scheme

The original El Gamal signature scheme [17] was proposed in 1985 but its security was
never proved equivalent to the discrete logarithm problem nor to the Diffie—Hellman
problem. As will be seen, the Forking Lemma provides a security argument for a very
slight variant of this scheme.

3.3.1. The Original Scheme

Description of the original scheme We begin with a description of the original scheme
[17], wherek denotes, as usual, the security parameter:

— The key generation algorithm: it chooses a random large ppmef lengthn
polynomial ink, and a generatay of (Z/pZ)*, both public. Then, for a random
secret ke € Z/(p — 1)Z, it computes the public key = g* modp.

— The signature algorithm: in order to sign a messagene generates a pdir, S)
such thatg™ = y'r*modp. To achieve this aim, one has to choose a random
K e (Z/(p — 1)7Z)*, to compute the exponentiation= gX modp and finally
to solve the linear equatiom = xr + Ksmod(p — 1). The algorithm finally
outputs(r, s).

— The verification algorithm checks both<dr < p andg™ = y'rsmodp.
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Security As already seen in the original paper, one cannot show that the scheme is
fully secure because it is subject to existential forgery.

Theorem 16. The original EI Gamal signature scheme is existentially forgeable

Proof. This is a well-known result, but we describe two levels of forgeries:

1. The one-parameter forgery: leteg Z/(p — 1)Z, if we letr = gy modp and
s=—rmodp — 1, itis easy to see that, s) is a valid signature for the message
m = esmodp — 1.

2. The two-parameter forgery: letegr Z/(p — 1)Z andv €r (Z/(p — 1) Z)*, if we
letr = gy’ modp ands = —rv-*modp — 1, then(r, s) is a valid signature for
the messagm = esmodp — 1. O

We now slightly modify the original scheme by using a hash function.

3.3.2. The Modified El Gamal Signature Scheme—MEG

In this variant we replacm by the hash value of the entire part of the computation bound
not to change, once the commitment has been computed, naihielyr ), wheref is a
public hash function which outpuksbit long elements.

Definition 17. Let o be a fixed real. Arw-hard prime number p is such that the
factorization ofp — 1 yieldsp — 1 = q Rwith g prime andR < |p|¢, where| p| denotes
the length of the integep.

Remark Those prime moduli are precisely those used for cryptographic applications
of the discrete logarithm problem.
We describe the Modified El Gamal Signature Scheme:

— The key generation algorithm: it chooses a random lartyard primep, greater
than X, of lengthn polynomial ink. It also randomly chooses a generatpr
of (Z/ pZ)*. They are both published. Then, forarandom secrexkey./(p—1)Z,
it computes the public key = g* modp.

— The signature algorithm: in order to sigh a messagene generates a pdir, S)
such thatg" ™" = y'rSmodp. To achieve this aim, one generatésandr the
same way as before and solves the linear equation

f(m,r) =xr + Ksmod(p — 1).

The algorithm outputgr, f (m,r), s).
— The verification algorithm checks the signature equation with the obvious changes
due to the hash function.

3.3.3. Security Results

In this section we see that the above modification allows us to offer security arguments
for the resulting scheme even against an adaptively chosen-message attack, at least for
a large variety of moduli.
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Security against a no-message attaclirstly, we study the resistance of the MEG
signature scheme against no-message attacks.

Theorem 18. Consider a no-message attack in the random oracle model against the
MEG signature scheme usinghard prime moduli Probabilities are taken over the
common generator,gandom tapegandom oracles and the public keylfan existential
forgery has nonnegligible probability of succetisen the discrete logarithm problem
with ¢-hard prime moduli can be solved in polynomial time for any gairy).

Proof. Usingthe Forking Lemma (Theorem 10), we gettwo valid signatumes, h, s)
and (m, r, b, s) such thatg" = rSy" modp andg" = r¥y" modp. Hence, we get
ghs—1's = y"6= modp andg" " = rs—S modp. Sinceg is a generator ofZ/ pZ)*,
there exist andx such thag' = r modp andg* = y modp. Therefore,

hs —h's = xr(s'—s)ymodp — 1, )
h—h = t(s—s)modp — 1. 2

Sinceh andh’ come from “oracle replay,” we may further assume that h'’ is prime
toq, so that gcés — s/, ) = 1. Nevertheless, we cannot make any further assumption
for r, and, accordingly, two cases appear:

Casel:r is prime to g In this case, (1) provides thg modular part ofx, x =
(hs —h's)(r (s — )"t modg. With an exhaustive search over tRenodular part ok,
we can find arx which satisfiesy = g* modp.

Case2: otherwiser = bqg with b small In this case, (2) provides tleemodular part
oft,t = (h — h)(s — )" modg. With an exhaustive search over tRemodular part
of t, we can find & which satisfiesbq = g' modp. We note that is prime toq.

At this point, we have a probabilistic polynomial time Turing machittewhich,
on input (g, y), outputs, with nonnegligible probabilitx € Z/(p — 1)Z such that
y = g*modp (case 1) ob € Z/RZ andt € Z/(p — 1)Z such thatoq = g' modp
(case 2). Probabilities are taken ogey, and the random tapes.8fl. Using the Splitting
Lemma (Lemma 7), lef be a nonnegligible set @’s such that whenevey € G, the
set ofy’s which provides the above witnesses is nonnegligible. To make things precise,
we consider both probabilities to be greater tharwheree is the inverse of some
polynomial. LetGgyooq be the set 0f € G which lead to the first case with probability
greater than or equal tg/2. LetGpaq be the set 0§ € G which lead to the second case
with probability greater than/2. We know that; is the unionGgeeq U Gpad

If Ggood has probability greater thasy2, then we have a probabilistic polynomial
time Turing machine which can compute, for a nonnegligible pafto¥), the discrete
logarithm ofy relative tog.

Otherwise, bady’'s are in proportion greater than2. Since the set of possibltes is
polynomial, we get a fixed and a nonnegligible subsB,4(b) of badg’s such that, with
nonnegligible probabilityM (g, y) outputs integers andt such thatbg = g' modp.
Let g € Gpag(b) andy be any number. Running1(g, z), for randomz, we get, with
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nonnegligible probability, somesuch thatg® = bgmodp. Running M (ygt, z), for
random¢ andz’, we get, with nonnegligible probabilityg® € Gpaq(b) and somé’ such
that(yg")! = bg = g' modp. Hencext’' =t — £t'mod(p — 1). Sincet’ is prime toq,
we getx modg. After polynomially many trials over th& modular part ofx, we find
the logarithm ofy. Then we have another probabilistic polynomial time Turing machine
M’ which can compute, for a nonnegligible part(of y), the discrete logarithm of
relative tog.

Now, we fix g andy. Running the machine ofg", yg’) with randomu andv, we
obtain, with nonnegligible probability, ax such thatyg” = g"*modp, hence we get
y = g"*"¥ mod p. This finally contradicts the intractability assumption. O

Security against an adaptively chosen-message attadle now prove a more surprising
theorem about the security against adaptively chosen-message attacks. As we have seen
before, the only thing we have to show is how the signer can be simulated.

Lemma 19. For «-hard prime numberghe signer can be simulated with an indistin-
guishable distribution

Proof. A key ingredient of the proof is as follows: values returned by the random
oracle can be freely computed and have no correlation with messages whose signature
is requested.

In this proof we identify the output sét of random oracles with the s, . .., 2K—1}
and we assume that the generation algorithm, on the security pardnatéputsp and
qsuchthagR > 2¢ > q.

First, one can remark that we can easily computeodR, sinceR is polynomially
bounded. Then, using the two-parameter forgery fogthedular part, and themodR
value for the other part, we can obtain an indistinguishable simulation: we first randomly
choosee € Z/9Z andv € (Z/97Z)*. We then randomly choosee (Z/RZ)*. We let
r = (gRey®) x g% modp.

Therefore, one may remark thats a generator ofZ/ pZ)* if and only if gcde R+
xvR+qg¢, p—1) = 1. Sincet € (Z/RZ)*, this greatest common divisor is equal to
gcde + xv, Q) - gcd(¢, R) and so equals 1 with overwhelming probability. We start the
simulation again in the (unlikely) situation wharés not a generator afZ/ pZ)*. Our
approach corresponds to dealing separately with the forgery in the two subgroups respec-
tively generated bygR andg9. Mimicking the two-parameter forgery in the subgroup
generated bgR, we wanth ands to satisfyh = xr + R(e + xv)smodg. Then we can
sets = —r (Rv)"* modg andh = —erv~' modq. For theR modular part, we randomly
chooseh modR until h € H (in a first steph is uniformly distributed inZ/q RZ, then
h is uniformly distributed inH) and we compute = (h — rx)(g¢) "t modR. Then the
triple (r, h, s) satisfiegg" = y'r$modp, therefore it is a valid signature of a message
assoonah = f(m,r).

Let (r,h,s) € (Z/pZ)* x H x Z/(p — 1Z such thatg" = rSy’ modp andr is
a generator ofZ/pZ)*. Then there exists a unique exponé&iprime toq such that
r = g modp. So, exactly one execution of the signature algorithm can produce this
triple. Trying to output this signature through our simulation yields the following system
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of equations where ande are the unknowns:

hv+re = 0modq,
xv+e = KR tmodg.

If h # xr modq, the determinant is nonzero modudoso that there is exactly one
solution and therefore one way fér to generate such a signature. In the other case,
rs = g™ modp, so thats = 0 modq. Furthermore, the first equation can be written
r(xv+e) = rK = 0modg, so thatr = 0 modg. Sinceh = xr modg, h = 0 modq.
ConsequentlyS can generate such a signature only = h = s = O0modg. In this
case the system admis— 1 solutions.

Since our simulation only outputswhich are generators, the latter case contributes
to the overall distance by some term boundedRy2¢ which is less tham®*1/2" a
negligible value, whera = |p| O

Theorem 13 is then applicable, therefore we can state:

Theorem 20. Consider an adaptively chosen-message attack in the random oracle
model against MEG using-hard prime moduliProbabilities are taken over the common
generator grandom tapegandom oraclesand the public key yif an existential forgery

of this scheme has nonnegligible probability of succ#ssn the discrete logarithm
problem withe-hard prime moduli can be solved in polynomial time for any ggiry).

3.3.4. Remarks

We conclude the section by the following two remarks.

Exact security Because of the intricate reduction, we do not try to compute the com-
plexity nor the expected time of the resulting discrete logarithm algorithm exactly. In
any case, this reduction is rather inefficient and we cannot infer from it any form of
“exact security” [3]. Accordingly, it cannot be used practically to infer the security of
the MEG signature scheme. Nevertheless, it is the first security argument for a variant
of the well-known EI Gamal signature scheme and, as such, validates the design of this
scheme.

The Bleichenbacher attack At Eurocrypt '96, Bleichenbacher presented an attack [4]
against the original EI Gamal signature scheme which is also applicable to our variant.
However, as explained in [56], the apparent contradiction between our security arguments
and this attack vanishes since our arguments are correct for almost all choices of the
parameters whereas Bleichenbacher uses very specific values. More precisely, the MEG
is secure provided not only the keys but also the geneatufr (Z/ pZ)* are chosen

at random. Otherwise, there is some danger that a trapdoor has been added. Thus, a
reasonable requirement would be that the authority issues some sort of progf that
has been fairly generated, as was suggested for the mopuwfithe Digital Signature
Standard [35].
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4. Security Arguments for Blind Signatures

This last section investigates the possibility of designing provably secure blind signature
schemes. As in the previous section, we present a generic lemma providing security
arguments for blind signature schemes. This extends our previous results of [42].

We first describe a general format of the schemes to which those proofs apply. We
then propose several schemes for which one can provide security arguments relative to
the discrete logarithm problem or to RSA.

4.1. Witness Indistinguishability

Previous methods of proofs used to establish security arguments for signature schemes no
longer work since, during the collusion between the signer, the attacker and the random
oracle, we lose control over the value that the signer receives: it no longer comes from
the random oracle, but from the attacker. As a consequence, the signer cannot be simu-
lated without the secret key, otherwise the signature scheme would be universally
forgeable.

In order to overcome this problem, we use the concept of the “witness indistinguish-
able” proofs. This notion was defined by Feige and Shamir in [18] for the purpose of
identification. In such a proof system:

— Many secret keys are associated to a same public key.

— The views of two proofs using two distinct secret keys (witnesses) associated to a
same public key are indistinguishable, even from the point of view of the verifier.

— The knowledge of two distinct secret keys associated to a same public one provides
the solution of a difficult problem.

For example, in the Fiat—Shamir protocol [21], the verifier cannot distinguish which
square root the prover uses, and with probabi%it)two distinct square roots provide
the factorization of the modulus. Okamoto, in [37], proposed a witness indistinguish-
able adaptation of both the Schnorr [50] and the Guillou—Quisquater [30] identification
schemes.

As was already remarked, the technical difficulty to be overcome comes from the fact
that, in the colluding step, we can no longer simulate the signer without the secret key.
We use a scheme which admits more than one secret key for a given public key. This
makes the collusion possible and we constrain the attacker to output a different secret
key.

Our candidate scheme is one of the schemes designed by Okamoto in [37]. For the
reader’s convenience, Okamoto’s adaptation of the Schnorr scheme appears in Fig. 10.

4.2. The Okamoto—Schnorr Blind Signature Scheme

The scheme uses two large primgsandq such thatg | (p — 1), and two elements
g, h € (Z/ pZ)* of orderq. The authority chooses a secret Keys) € ((Z/qZ)*)? and
publishes the public keyy = g~"h~*modp. We assume that the functioh outputs
elements ir%/qZ and thatllogq] = k, wherek is, as usual, the security parameter. The
protocol (Fig. 11) by which the user obtains a blind signature of the messageas
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Verifier

Prover i 1

p and ¢ are prime integers such that g|(p — 1)
g and h are elements of (Z/pZ)* of order g

secret : r, s € Z/qZ
public: y = ¢7"h™% mod p

t,u € Z/qZ
a = g'h* mod p _
c
é“m___
R=1t+cr modgq RS
S=wu+csmodg B

ce Z/2ty

?

a = g%yt mod p

Fig. 10. The Okamoto adaptation of the Schnorr identification scheme.

User

Authority |

secret : 1,5 € Z/q7
public: y =g "h7® mod p

t,u€Z/qZ
a = g'h* mod p —_—t
[
éhm
R=t+ermodg R.S
S =u+esmodg —

Then o = ¢g?h%y® mod p

p and ¢ are prime integers such that g|(p — 1)
g and h are elements of (Z/pZz)" of order g

B,v,0 € L/qL
a = ag®h’y® mod p
e= f{m,a)
e=c¢—9dmodgq

a = g®h%y® mod p
p= R+ g modgq
o=254+vmodgqg

Fig. 11. The Okamoto—Schnorr blind signature scheme.
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follows:

— The authority choose$, u) € ((Z/tZ)*)?, computes and sends the commitment
a = g'hYmodp.

— The user chooses, y,§ € Z/qZ and blindsa into @« = ag’h”y’ modp. He
computes the challenge= f (m, «) and sendg = ¢ — § modq to the authority.

— The authority computeR = t + er modq and S = u 4+ esmodq, and sends the
pair (R, S) which satisfies = gRhSy® modp.

— The user computgs = R+ g modq ando = S+ y modq.

Straightforward computations show that= g”h®y® mod p, withe = f (m, ). Security
arguments follow from the theorem below.

Lemma 21. Consider the Okamoto—Schnorr blind signature scheme in the random
oracle modelLet .4 be a probabilistic polynomial time Turing machine whose input
only consists of public dat&Ve denote respectively by Q afdhe number of queries
that A can ask to the random oracle and the number of queries thatn ask to

the authority with Q, £ > 1. Assume thatwithin the time bound T.A produceswith
probabilitys > 4Q“*1/q, an (¢, £ + 1)-forgery. Then within time T < 97Q¢?T /¢, and

with probabilitye’ > 1/96¢, a polynomial replay of this machine provides the discrete
logarithm of h relative to g

Proof. We first give an outline of the proof. Then we describe the reduction we use.
Finally, we evaluate the probability of success and the cost of the reduction.

Outline We startwith ari¢, ¢+ 1)-attackerd, which is a probabilistic polynomial time
Turing machine with random tape During the attack, this machine asks a polynomial
numberQ of queries which we assume to be disting, ..., Qq. Furthermore,4
performst interactions with the authority, denoted g/, ¢, R, §) fori € {1, ..., ¢}.
Finally, with probabilitye, A returnse¢ + 1 valid signaturesim;, «;, i, pi, o) fori =
1,...,¢+ 1. These signatures satisfy the required equationsayith f (m;, o).

The public data consist of two large primpsandq such thatg | (p — 1) and two
elementsg andh, of (Z/pZ)* of orderq. The authority possesses a secret keg)
associated to public key= g~"h~S>modp, and a random tape.

Through a collusion (presented in Fig. 12) of the authority and the attacker, we want
to compute the discrete logarithmlofelative tog. We use the oracle replay technique

Authority: (r,s),Q
al e | ae el[ JRl,Sl el[ lR[,S( mi, a1, 01,01
A w Q; = (mi, )
Oracle f QA R Q2 Qq Rq
TML4+1 Q415 PL+15 Te41
e | | B Se my,al1,p1,01
Qi = (my, 04)
Oracle f! Q Ry e
LOFRRL IRy /RN /)

Fig. 12. Forking Lemma.
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that was previously formalized. We hope that, after polynomially many replajswé
obtain two distinct representations of somerelative tog andh. Froma; = g2h? =
g°h? mod p with a # ¢ we get log h = (a — ¢)(d — b)~*modq.

Cleaning up notations In the collusion, the paifr, s) is the secret key used by the
authority and the random taj§e of the authority determines the paits, u;) such that
a = g'h“ modpfori = 1,...,¢. Note that the distribution ofr, s, y) wherer and

s are random and = g-"h~>modp is equal to the distribution ofr, s, y) wherer,

y are random ang is the unique element iZ/qZ)* such thaty = g-"h~>modp.
Accordingly, we replacér, s) by (r, y) and, similarly, eacht;, u;) by (t, &).

In the following, we groupw, Y, as, ..., &) under variabley, andt represents the
£-tuple (ty, . . ., ty).

As observed in the previous section, if a query has not been asked during the attack,
then the probability for one; to be equal tof (m;, ) is less than 1q. Thus, with
probability p > ¢ — (£ + 1)/q > 3Q**1/q, the machine4 performs a forgery with all
the outputgm;, «;) asked to the random oracle during the attack, and, accordingly, we
definelnd; to be the index such thatQ; = (m;, «;).

Finally, we denote byS the set of all successful data, i.e., quadruples, 7, f)
such that the attack succeeds and every inlahelk is well-defined. Then we have
Phoretl(v.r. 7, f) € 8] = p = 3Q/q.

Reduction The reduction is as follows:

1. We first run the attack with randomr, =, and f until we obtain a success, or at
most J/¢ times.
In case of success, we denote respectivel\dbgnd ¢ the number of queries
that A has asked to the random oracle and the number of interactiong thas
had with the authority, theml outputs? + 1 valid signatures. Note th& < Q

and? < ¢. i
2. Fori=1,...,¢+1:
we letj = Indi(v,r, 7, f) and run the attack, with identical r, r, but a

different oraclef’ such that thg — 1 first answers are unchanged, i.§.= fj,
until we obtain again a success wittd; (v, r, , f') = j, oratmost48¢/¢ times.

We expect that, with nonnegligible probability, both successes output a common
coming from thej th oracle query having two distinct representations relatiggendh.

Success of the reduction After 1/¢ repetitions of the attack, with probability greater
than%,we have had atleast one sucacess, =, f) € S. Therefore, forall € {1, ..., ¢+

1}, @i = g°h%ys = gP~"4h?%~% modp. We randomly choose € {1,...,¢ + 1}.
Then we replay with identical, r, t, but a different oracle’ such that thg — 1 first
answers are unchanged, whére- Ind; (v, r, 7, f). We will prove that we obtain a new
representation af;:

o =g "h " modp  with p —rel # pj —re modq.

The main question we have to study is whether or not the random vagiabley; — r
is sensitive to queries asked at st¢ps+ 1, etc. We expect that the answer is yes. A way
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to grasp the question is to consider the most likely value taken by this random variable
when(v, r, ) and thej — 1 first answers of are fixed. We are thus led to consider two
functionsg; j (v, r, 7, f) andC; (v, r, 7, f) which we now define. Set

Aijjw,r,t, fo)= I?/r[((v’r’ = 1) 68) & (Indi(v,r, v 1= J) ‘ fj/: fji|,

& (xiv,r,t, f)=c¢)

where f; denotes, as above, the restrictionfofo queries of index strictly less thgn
Letc j(v,r, 7, f) be any valuee such thatx; j(v,r, 7, f, ¢) is maximal. Furthermore,
let Ci(v,r, 7, f) = Giingor.zt(v,r, 7, ). Accordingly, we define a partition af:
the “good” subset; whose elements satisfy, for all x; (v,r,z, f) = Ci(v,r, 1, f),
and the “bad”B: its complement irS. The aim of the following is to prove that, with
nonnegligible probability, the success obtained at the first step of the reductionfies in

In order to prove this fact, we define the following transformation.

Definition 22.  We denote byb the transformation which maps any quadruple, , f)
to(wv,r+1,7—¢ f),wheretr —e=(t1 —€,...,t, — &).

This transformation has useful properties (see Fig. 13).

Lemma 23. Both executions correspondinga r, z, f) and® (v, r, 7, f) are totally
identical with respect to the view of the attackespecially outputs are the same

Proof. Let (v,r, 7, f) be an input for the collusion. Replay with = r + 1 and

7’ = 1 — e, the same and the same oracle. The answers of the oracle are unchanged
and the interactions with the authority become

R t,e)=t+r'a=@t—-a)+r+De =t+re =Rt e).

Thus, everything remains the same. O
Corollary 24. @ is a one-to-one mapping froontoS.

The following lemma shows that sends the sef into 3, except for a negligible part.

r+

A

r 1

Fig. 13. Properties ofb.
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Lemma 25. For fixed(v,r, 1),

Pl(v.r.7. ) € §) & (@(v.1.7. F) € §)] = Q" /a.

Proof. Inorderto prove this statement, we argue by contradiction. Assume that there ex-
ists a triplet(v, r, t) for which the above probability is strictly greater th@fi**/q. Then

there exist arf 4+ 1-tuple(uy, ..., Ugy1) € {1, ..., Q)L and ant-tuple (&, ..., &) €
(Z/9Z)* such that

[ (v.r.7, ) eG) & (@, 1,7, f) €G) ] - 1/q4,

Pr

| & (Vi) Indi(v,r,t, f)=uj) & (Vi)g =§6)

Thus, there exist an indéxand two oracled and f’ which provide distinct answers for
theu;th query, i.e.,f(Q,) # f'(Qy), and are such that answers to queries not of the
form Qing, are similar. We denote biythe smallest suchindex, and= Ind; (v, r, 7, f) =

Ind; (v, r, 7, f') = u;. Thenf; = fj’ ande; # ¢. Furthermore, we have,r, 7, f) €

G, ®(,r, 1, f) € G. Similarly, (v,r,z, f') € G, ®(v,r, 7, f') € G. Because of the
property of® (see Lemma 23), and by definition of the suliget

Gjw,r,t, )y = pp(v,r,t, f) —rei = pi (P, 1,7, ) —rg
=G iwvr+lr—e )+ (r+1—-r)- g,

piv,r, T, f) —rel = pi (v, 1,7, f)) —rgf

=cjwr+lLr—€e, fH+((r+D—r) g.

cijwrz, )

The equalityf; = fj/ impliesci j(v,r, 7, f) = ¢ j(v, 1, 7, f'). Since we have assumed
(el""veé): (e{v"'»d[): (él,...,é[),then

Gijwr+lrt—e f)y=c;wr+1t-¢€,f).
Thuse; = ¢/, which contradicts the hypothesis. O
We can partition the sé} into two subsets: the subsgf whose elements have their
image by® in G, and its complemeng;, whose elements have their image ®yin

B. From the previous theorem, and sindeis a bijection fromS into S, Pr[G] =
Pr[Gg] + Pr[Gy] < Q“*/q + Pr[B]. Thens is a nonnegligible set since

Pr[B] = Pr[S] — Pr[B] — Q:rl 1 ( QHl)

wherep has been defined as Bil]

With this lower bound on the size &, we complete the evaluation of the probability
of success of the reduction.

First, for anyi andj, we define

Bi ={(U,r,‘[,f)EB& Ci #Xi} and Bi’j ={(\),I’,'L’, f)EBi& Indi =]}

Then we can remark thaf, =™ Pr[5] = PriU/ =" Bi] = Pr{B] > p/3. Therefore,
there existd € {1,...,¢ + 1} such that Pi§i] > p/3(¢ + 1). In the following, we
assume thathas been chosen so that this inequality holds.
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We now define the se, = {j | Pr[3; | Bi] = 1/2Q}. As in a previous situation
(Lemma 9), we observe that

Pr[U Bi’j | B,] =Prlind € J | Bi] > %
jed

Foranyj € J, Pr[Bi ;] = p/6(£ + 1)Q, so the Splitting Lemma (Lemma 7) ensures
that there exists a subs@t j such that

—forany(v,r, 7, f) € Qi j,

PAv. 1,7, ) € By | /= fi] = p/12( + DQ,

—Pr[Qi,j | Biﬁj] > %
Since all the subsets ; are disjoint, for any fixedl,
Pr[3jed: (vrr f)eQ;nB;|s]= Y PrRiNBj | S]
VI, T n
o jed
= PrQi | Bij]-PrBi | B]-Pr[5i | 5]
jed
> (Z PriBi.; | Bi]> /6(€ +1) > 1/12(¢ + 1).
jed

Globally, the first step provides atupbe r, z, f)in S such thatforsome (v, r, 7, f)
€ Qi jNB; j, where we notg = Ind;, with probability greater than/12(¢+1) > 1/24¢.
Assume that we know this indéxWe denote byl the valuey; (v, r, t, f) and byc the
valueC; (v, r, 7, f). Then two cases appear relatively to the valug(v, r, 7, f, d):

L IfAi v, r, T, f,d) > p/24Q(¢ 4 1), then, by definition oC;, we know that
IfD,r[(v,r, 1, f)eS&xiw.r. 7, f)#d& Indi(v,r, 7, f) = j | f/ = fj]
> Aijv,r, 7, f,0) > p/24Q(L + 1).
2. Otherwise,
Ff{r[(u,r, 1, 1) eS& x(w.r.t, f)#d& Indi(v,r, 7, f) = j | f = f]
= ﬁjr[(u,r,z, fyeS&Indi(,rz, f)y=j|f = fi]—Aijv,r 7, f,d)
> I?,r[(v, r.o, fY e Bij | fj' = fj] — A, jv, 1,7, f,d)
> p/24Q(¢ + 1).
Both cases lead to

(w,r,z, fHeS
Pr

’

& xi(w,r,z, f')£d
& Indi(v,r,z, f) =j

r_ g P
= f’} " 20QU T 1)
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Thus, after at most 48¢/¢ replays with the same keys and random tapes but another
random oraclef " such thatf/ = f;, we obtain, with probability at Ieaél; a new success
with Ind; (v, r, 7, ') = j andx (v, r, 7, ') # d. Then both executions provide two
different representations of relative tog andh.

Cost of the reduction After at most(1 + 48Q¢ - (£ + 1)) /e < 97Q¢?/¢ iterations of
A, the probability of success is greater t@ﬂ 1/24¢ x % and so is upper bounded by
1/96¢, wheres is the probability of success of af, ¢ + 1)-forgery andQ is the number
of queries asked to the random oracle. O

As for the security of signatures (Theorem 10), we can present an expected polynomial
time Turing machineM:

1. M initializesr = 0;

2. M runsA until it outputs a successful tuple, r, z, f) € S and denotes biX; the
number of calls ta4 to obtain this success, and Bythe number of interactions
with the signer during this success;

3. fori =1,...,4 + 1, M replays, at most 120 «" times, the machinel with
fixed (v, r, T) and randomf’ such thatfj’ = f;, wherej = Ind;(v,r, 7, f) and
a =1+ 1/54;

4. M increments and returns to 2, until it gets a successful forking.

For any execution of\, we denote byJ the last value of and by N the total
number of calls ta4. We want to compute the expectation Nf Sincep = Pr[S],
andN; > 1, then PrN; > 1/5p] > %. We defineL = [log, Q(¢ + 1)1, so that
120N, " > 24Q(¢ + 1)/p for anyr > L, wheneverN, > 1/5p. Therefore, for any
r > L, when we get a success, r, 7, ) at the first step, with probability greater than
1/12(¢ + 1), there exists € {1,..., ¢ + 1} such thatd = Ind;(v,r, 7, f) € J and
(w,r, 7, f) € Qi g NS g. Furthermore, with probability greater thér,l N > 1/5p.
Therefore, with the same conditions as before, thatis4Q‘/q, the probability of
getting a successful fork after at mostQ# + 1)/p iterations at step 3 is greater than
g. Then, for anyt greater thark, the probability forJ to be greater or equal tais less
than(1— 1/12(¢ + 1) x 3 x $)'=. Therefore, this probability is less tha~", with
y =1—1/27(¢ + 1). Furthermore,

E[N | J =t]

IA

r=t
> (EIN:] + 120E[N:] - (& + Der")
r=0

r=t t+1
5121(E+1)Xza15121(£+1)xa .
P r=0 p a-1

Sincee > 4Q‘1/q, we get? + 1 < k, and thereforery < 1 — 1/54k. Finally, the
expectation oN is

57KQ(L+1) - 108k.

L+1
E[N]§162(£+1)-a ( 1 1 )<162(i+1)

& a—1 a—1+1—ay -
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Hence the following theorem:

Theorem 26(Forking Lemma). Considerthe Okamoto—Schnorr blind signature scheme
in the random oracle modelet A be a probabilistic polynomial time Turing machine
whose input only consists of public dat&e denote respectively by Q aadhe num-

ber of queries thatd can ask to the random oracle and the number of queries.that
can ask to the authorityAssume thatwith a time bound T.A performs with proba-

bility e > 4Q**1/q, an (¢, ¢ + 1)-forgery. Then there is another machine which has
control over.A and solves the discrete logarithm of h relative to g in expected time
T < 10°(¢ + 1)%k?>QT /.

These proofs can be easily modified to cover other schemes that come from witness
indistinguishable protocols. Especially, the Okamoto version of the Guillou—Quisquater
identification scheme provides a provably secure blind signature scheme (see Fig. 14)
relative to the security of RSA. Furthermore, the authors have presented [44] blind
signature schemes derived from the Fiat—Shamir identification scheme [21] and from
the Ong—Schnorr identification scheme [38], which are clearly witness indistinguishable.
The resulting schemes admit security arguments relative to factorization. O

Authority } l User

N = pg and X prime and prime with ¢(N)
a € (Z/NZ)* of order greater than \
et re{0... A-1}
se(Z/Nz)*
public v=a""s"*N]
te{0,...,A—1}
ve (Z/NZ)*

7= a'u’[N) " are{0... A—1}
pe(Z/NzY*
2’ = ra® 3N [N]
d = f(m,z")
€{0,....Ax~1}
c !
y=t+cr mod A e c=c —vymod A
w=t+cr+A
z == a“’us(f[]v] ”,_4‘1/;)

¥y =y -+ amod A
w =y+a+ A
w'=¢d —c+ X
o =au e
Then &' = a¥ 2/ v¢ (V]

Fig. 14. The Okamoto—Guillou—Quisquater blind signature scheme.
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4.3. Remarks

Our result appears to be the first security result which paves the way toward provably
secure electronic cash systems by providing candidates for secure blind signatures. How-
ever, it leaves an open problem: the complexity of our reduction is polynomial in the
size of the key but not id. Our theorem only provides security arguments against strong
“one-more” forgeries. In fact, the reduction requites 4Q‘*1/q, which implies a poly-
logarithmically bounded number of interactions with the authority. We were unable to
achieve polynomial time both ihand the size of the keys.

Juels et al. [32] gave a positive answer to the question using the provably secure
signature scheme of Naor and Yung [33] and the Two-Party Completeness Theorem [25].
Nevertheless, their construction is theoretical and the problem of having a practical
scheme is still open.

5. Conclusion

As explained in the Introduction, there were several proposals for provably secure sig-
nature schemes. However, in all cases, the security was at the cost of a considerable
loss in terms of efficiency. Concerning blind signatures, Damig15], Pfitzmann and
Waidner [39], and, more recently at Crypto '97, Juels et al. [32] have presented some
blind signature schemes with a complexity-based proof of security. Again, the security
is at the cost of inefficiency.

In the weaker setting offered by the random oracle model, we have provided security
arguments for practical and even efficient digital signature schemes and blind signature
schemes. On the ground of our reductions, one can justify realistic parameters, even if
they are not optimal. Further improvements are expected particularly in the case of blind
signatures where it should be possible to obtain a reduction polynomial in the size of the
keys and in the number of interactions with the signer.

In any case, the arguments in this paper, based on the random oracle model, are a quite
strong indication that the overall design of the corresponding schemes is presumably
correct.
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