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Abstract. Knapsack-based cryptosystems used to be popular in the beginning of pub-
lic key cryptography before all but the Chor—Rivest cryptosystem being broken. In
this paper we show how to break this one with its suggested parametgis?4Gand
GF(256%°). We also give direction on possible extensions of our attack.
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Introduction

Recent interests about cryptosystems based on knapsacks or lattice reduction problems
unearthed the problem of their security. So far, the Chor—Rivest cryptosystem (presented
atCRYPTO 84 [2]) was the only one based on the subset-sum problem and still unbroken.
In this paper we present a new attack on it which definitely breaks the system for all
the proposed parameters in Chor and Rivest’s final paper [3]. We also give directions
to break the general problem, and related cryptosystems such as Lenstra’s Powerline
cryptosystem [8].

1. The Chor-Rivest Cryptosystem
We letq = p" be a power-prime (for a practical example, etz 197 anch = 24). We
consider the finite field Gf§) and we assume that its representation is public (i.e., there
is a publich-degreed polynomiaP (x) irreducible on GEp) and elements of G(g)

are polynomials modul® (x)). We also consider a public numberiagf the subfield
GK(p), i.e. {ao, ..., ap-1} = GF(p) € GHQ).

* Part of this work was done when the author was visiting AT&T Labs Research.
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Secret keys consist of

an element € GF(q) with algebraic degreb,
a generatog of GF(q)*,

an integed € Zq_4,

a permutationr of {0, ..., p — 1}.

Public keys consist of all
G = d +10gy(t + ax()) modq — 1

fori = 0,..., p — 1. For this reason, the public parameters must be chosen such
that the discrete logarithm is easy to calculate iN@FIn their final paper Chor and
Rivest suggested using a relatively small prime powand a smooth powdr, i.e., an
integer with only small factors so that we can apply the Pohlig—Hellman algorithnd [11].
Suggested parameters correspond to the fieldd &F*), GF(211%%), GF(24%%), and
GF(256%).

The Chor—Rivest cryptosystem works over a message space which consistp-of all
bit strings with Hamming weight. This means that the message to be encrypted must
first be encoded as a bitstrimg = [mp - - - m,_4] such thatmg + - - - + my_; = h. The
ciphertext space i&4_1 and we have

E(m) = mgCo + - - - + Mp_1Cp—1 Modq — 1.

To decrypt the cipherteXt (m), we compute

p(t) = g=™ "
as a polynomial in terms df over GK p) with degree at mogt — 1, which must be
equal to

[ +e)

mi=1
in GF(q). Thus, if we consider(x) + p(x), whereu(x) is the minimal polynomial of
t, we must obtain the formal polynomial

[T+ exa.

mi=1

whose factorization leads tuo.

Although the public key generation relies on intricate finite field computations, the
decryption problem is based on the traditional subset-sum problem (also more familiarly
called theknapsack problejn given a set of piecesy, ..., Cp—1 and a targee(m),
find a subset of pieces so that its sunkign). This problem is known to be hard, but
the cryptosystem hides a trapdoor which enables the legitimate user to decrypt. This
modifies the genericity of the problem and the security is thus open.

1 This algorithm with Shanks's baby-step giant-step trick has a complexit® @f+/B log p) simple
GF(p)-operations for computing org whereB is the largest prime factor gi" — 1. (See [7].) Since™ — 1
is a factor ofp" — 1 whenr is a factor oth, B is likely to be small wheth only has small prime factors.
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2. Previous Work

The Merkle—Hellman cryptosystem was the first subset-sum-based cryptosystem [10].
Although the underlying problem is NP-complete, it has surprisingly been broken by
Shamir [13]. Later, many other variants have been shown insecure for any practical
parameters by lattice reduction techniques (see [6], for instance). Actually, subset-sum
problems can be characterized by the density parameter which is (with our notation)
the ratiod = p/log, q. When the density is far from 1 (which was the case of most
cryptosystems), the problem can be solved efficiently by lattice reduction algorithms like
the LLL algorithm [9]. The Chor—Rivest cryptosystem is an example of a cryptosystem
which achieves a density close to 1 (for= 197 andh = 24, the density is @3). Its
underlying problem has however the restriction that the subsets must have cardinality
equal toh. Refinement of lattice reduction tools with this restriction have been studied
by Schnorr and drher [12]. They showed that implementation of the Chor—Rivest
cryptosystem with parameteps= 151 andh = 16 could be broken within a few days

of computation on a single workstation (in 1995).

So far, the best known attack for secret key recovery is Brickell's attack which works
within a complexity ofO(pz*/ﬁh2 log p). It has been published in the final paper by
Chor and Rivest [3]. This paper also includes several attempts of attacks when part of
the secret key is disclosed. In Section 5 we briefly review a few of them in order to show
what all quantities in the secret key are for.

The Chor—Rivest cryptosystem has the unnatural property that the choice of the finite
field GHq) must be so that computing the discrete logarithm is easy. A variant has been
proposed by Lenstra [8] which overcomes this problem. In this setting, any parameter
can be chosen, but the encryption needs multiplications instead of additions. This variant
has been further extended by Camion and Chabanne [1].

3. Symmetries in the Secret Key

In the Chor—Rivest cryptosystem setting, one has first to choose a random secret key,
then to compute the corresponding public key. It relies on the difficulty of finding the
secret key from the public key. It should first be noticed that there are sepriaklent
secret keys, i.e., several keys which correspond to the same public key and thus which
define the same encryption and decryption functions.

We first notice that if we replaceand g by their pth power (i.e., if we apply the
Frobenius automorphism in @), the public key is unchanged because

1
logge (tP + arii) = 0 logy((t + () P) = l0gy(t + oz iy).

Second, we can replact o, ) by (t + u, o, — u) for anyu € GF(p)*. Finally, we can
replace(t, d, o;) by (ut,d — Iogg u, u- o) foranyu € GF(p). Thus we have at least
hp(p — 1) equivalent secret keys. The Chor—Rivest problem consists of finding one of
them.

Inspired by the symmetry use in the Coppersmith—Stern—Vaudenay attack against
birational permutations [4], these properties may suggest that the polynomial
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]'[i";ol(x —tP), of whom all the equivalertts are the roots, plays a crucial role. This is
actually the case as is shown by the attacks in the following sections.

4. Relation to the Permuted Kernel Problem
Throughout this paper, we use the following property of the Chor—Rivest cryptosystem.

Fact 1. For any factor r of hj there exists a generator,gof the multiplicative group
of the subfieldsF(p") of GF(q) and a polynomial Q with degree/hwhose coefficients
are inGR(p") and such that-t is a root and thatfor any i, we have Qo)) = gp .

Proof. We let

h/r-1 _

Qe =gy ] (x+t"). M

i=0
wheregy = 19" (gp can be considered as the normgfvhen considering the
extension GFp") € GF(q)). We notice that we hav€(x) € GF(p') for any x €
GF(p"). Sincep” > h/r we obtain that all coefficients are in G§). The property
Q(ax()) = gy is straightforward. O

Sinceh/r is fairly small, it is unlikely that there exists some otligg , Q) solutions,
andgy is thus essentially unique. Throughout this paper we use the notation

-1 '—1
Uy = g )/(@-1)
If we consider the Vandermonde matrix

M = (&) esicp
O<j<h/r

and the vectoV = (ggr)05i<p, we know there exists some vectdrsuch thatM - X =
V-1 whereV, 1 is permuted fronV through the permutation—2. By using the parity
check matrixH of the code spanned byl (which is actually a Reed—Solomon code),
this can be transformed into a permuted kernel proktenV,-: = 0. It can be proved
that all entries ofH are actually in GFp), thus this problem is in fact equivalent to
simultaneous permuted kernel problems in(@F Actually, we can takeH = (All)
wherel is the identity matrix and\ is the(p — h/r — 1) x (h/r + 1) matrix defined by

Ay =— [ S =% <1Si < p—h/r>.
oskehyr & T Qk O0<j<h/r
Kt |
If we let V' denotes the vector of thiéh coordinates in vectov, we have
vi, H-VI,=0.

Unfortunately, there exists no known efficient algorithms for solving this problem. Since
the matrix has a very special form, the author of this paper believes it is still possible to
attack the problem in this direction, which may improve the present attack.
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5. Partial Key Disclosure Attacks

In this section we show that we can mount an attack when any part of the secret key
is disclosed. Several such attacks have already been published in [3]. Some have been
improved below and will be used in the following.

Known t Attack If we guess thatr(0) = i andz (1) = | (because of the symmetry
in the secret key, we know that an arbitrary choicéiof) will work), we can compute
log(t + «i) and logt + «;j) and then solve the equations

log(t + o)
logg
log(t + «;)
logg

=d+

¢, =d+

with unknownsd and logg.?

Known g Attack If we guess thatr(0) =i andn (1) = j (because of the symmetry
in the secret key, we know that an arbitrary choicéipf ) will work), we can compute

gt — t 4 o
t+

and then solve.?

Knowns Attack We find a linear combination with the form
p-1
Z Xi (G —Cp) =0
i—1

with relatively small integral coefficient;’s. This can be performed through the LLL
algorithm [9]. We can expect thét; | < B with B ~ p"/(P~D, Exponentiating this we
get some equation

[Tt +eman® = Tct + )™

iel jed
with nonnegative small powers, which is a polynomial equation with low degree which
can be solved efficientty.

Brickell's attack with nothing known consists of finding a similar equation but with

a limited number of o, and then exhaustively finding for thosdi)'s. There is a
tradeoff on¢: the LLL algorithm may produck;’s smaller thanB = p"/¢, the root
finding algorithm requireO(B2hlog p) GF(p)-operations and the exhaustive search
requiresO(p?) trials. (For more details and better analysis, see [3].)

2 Another attack attributed to Goldreich was published in [3].
3 Another attack was published in [5].
4 This attack attributed to Odlyzko was published in [3].
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Known gy andx Attack Since we use this attack several times in the following, we
include it here. We can interpolate tli¥(x) polynomial of Fact 1 witth/r + 1 pairs
(@r()s ggr ). We thus obtain ah/r -degree polynomial whose roots are conjugatestof
We can thus solve it in order to getind perform a knowh attack.

6. Known gy Attack

Here we assume we know thyg value corresponding to a subfield GF) (see Fact 1).
Letig, ..., in/ beh/r 4+ 1 pairwise distinct indices from O tp — 1. Because of Fact
1 we can interpolat®(x) on alla;)'s, which leads to the relation

h/r
Ci Ci] aﬂa) B aﬂ“k)
Op = Oy (2
k|
fori =0,..., p— 1. Actually, we can even write this as
h/r G Ui i
Gi Gi i Ci (i) — Qn(iy)
0 — 95 = (gprJ - gpfo) [1-= = &)
=1 oskhyr O (i) — P (iv)

[y

Because of the symmetry af in the secret key, we can arbitrarily choosé 1) and
7 (i) (see Section 3).

A straightforward algorithm for findingr consists of exhaustively looking for the
values ofz (ij) for j = 0,3,..., h/r until (2) gives a consistent permutatian It is
illustrated in Fig. 1. The complexity of this method is rougfilyr p™/") computations in
GF(p). (Step 3(a) requires on avera@e&pr/ h) iterations, each with complexit® (h),
and we need(p"/" — 1) iterations of it.)

Whenr is large enough, there is a much better algorithm. Actuallg/if < r (i.e.,

r > /h), the coefficients in (2) are the only G coefficients which writeggr - gp‘P in

the basig;O —gEP, ey gcirh/r - ggP . Leta} be the coefficient ogf];" - g;‘r" for gy & — gy %o.

Input GF(q) descriptorsg numberinggo, .. ., Cp—1, TN, gpr.
Output A secret key whose corresponding public keggs. . ., Cp—1.

1. Choose pairwise differeng, . . ., ihyrin {0, ..., p—1}.
2. Choose different (i1) andxn (i2) arbitrarily in {0, .. ., p—1}.

3. For all the possible values of(ip), 7 (i3), ..., w(in/y) (i.e., all values such that
w(ig), ..., 7(in/r) are pairwise different and in the s, ..., p — 1}), we setS =
{r(io),..., 7 (in/r)} and do the following:

(a) For allj which is not inS, compute the right-hand term of (2) with
aj instead ofx ). If it is equal tog‘;r such thatr (i) has not been
defined, setr (i) = j, otherwise continue loop in step 3.

(b) Perform a knowrgyr andr attack.

Fig. 1. An O(rp"") knowngy attack.
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Input GF(q) descriptorse numberingco, . . ., Cp—1, 7|, gy S.t.r > V.
Output A secret key whose corresponding public keggs. . ., cp_1.

1. Choose pairwise differeny, .. ., ihrin{O, ..., p — 1} and precompute the basis trans-
. . .. Cig Cig Cinyr Cig
formation matrix for the baS|egpr — Oy Oy Yy ).

2. Choose different (i1) andx (i) arbitrarily in{0, ..., p—1}.
3. For all possibles in GF(p), do the following:
(a) For alli, write ggi, - g;i,o in the basis and get) andal . From (4) getr (i). If it is
not consistent with other (i’)’s, continue loop in step 3.
(b) Perform a knowmy andr attack.

Fig. 2. A polynomial knowngy attack forr > /h.

We have

@: — ¥ T Yy @)
4 (i) — Un(ip)
whereu is an element of Gfp) which does not depend on Hence, if we ran-
domly choosé; for j = 0,..., h/r, we can write allgf)‘r — gSP’s in the basis(g(;r" -
g;‘P, e g;“/’ — gﬁ?). Now if we guess the Gp)-value ofu, we obtainz (i) from the
above equation. This is a polynomial algorithmgnh, r for gettingr (see Fig. 2).
In the rest of the paper, we show how to figid with a choice of so that these known
0y attacks can be applied.

7. Test for gy

Equation (3) means that ayf,‘, 's actually stand on the sanig/'r -dimensional affine
subspace of Gfp") over GRp). Thus, if we assume thdt/r +1 < r (i.e.,r >

Jh+ %+ 3), this leads to a simple test fg .

Fact 2. If there exists a factor r of h such that* ,/h + ;11 + % if we let gy denote

ghHP +PT PP then all d; 's stands on the same/h-dimensional affine space
when considerin@F(p") as an r-dimensionaGF(p)-affine space

The existence of such ancan be seen as a bad requirement for this attack, but since
the parameters of the Chor—Rivest cryptosystem must make the discrete logarithm easy,
we already know thah has many factors, so this hypothesis is likely to be satisfied in
practical examples. Actuallig,with no such factors are prime and square-prime numbers.
The real issue is thatshall not be too large.

Thus there is an algorithm which can check if a candidatgyfois good: the algo-
rithm simply check that alf;'s are affine-dependent. The algorithm has an average
complexity of O(h®/r) operations in GFp). Since there are(p" — 1)/r candidates,
we can exhaustively search fgg within a complexity ofO(h®p’/r?). Sincer has to
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Input GF(q) Descriptorse numberingcy, . . ., Cp-v.rlhstr > /h+ 3+ 3.
Output Possible values fogy .
1. Choose pairwise differeng, . . ., ihyr in {0, ..., p—1}.
2. For any generatagy of GR(p"), do the following:
(a) Get the equation of the affine space spanned_;ﬁg/ ..... g::,h/' ).
(b) For all otheri, check thaggr in the space. If not, continue loop in step 2.
(c) Perform the knowmgyy attack of Fig. 2.

Fig. 3. An O(p') attack forr > \/h+ 3 + 3.

be within the order of/h, this attack is better than Brickell's attack provided that such
anr exists. The algorithm is depicted in Fig. 3.

With the parametdr = 24, we cantake = 6. Withp = 197 we have (197 —1)/6 ~
2*! candidates fog, sowe can find it within 2 elementary operations, which is feasible
with modern computers.

Here we also believe we can still adapt this attack for smaitatues. The next section
however gives an alternate shortcut to this issue.

8. On the Use of All theg;'s

In his paper [8], Lenstra suspected that disclosing allctfein the public key was a
weakness. Actually, this property enables us to improve the previous algorithm drastically
by using all the factors df.

We have the following fact.

Fact 3. Let Q(x) be a polynomial oveGF(p") with degree d and let e be an integer
suchthatl <e < (p—1)/d. We have

Y. Q@°=o.

aeGH(p)

This comes from the fact th&(x)® has a degree less than- 1 and tha®_a' = 0 for
anyi < p — 1. This proves the following fact.

Fact4. Foranyl <e< (p—1r/h we have
p—1
eq __
> 9 =
i=0

This provides amuch simpler procedure to seleggltandidates. Its main advantage
is that it works in any subfield. For instance, we can consider1 and find the only
gp such that for all 1< e < (p — Dr we have) ggr“ = 0. The average complexity
of checking one candidate ®(p) GF(p)-computations: it is unlikely that a wrong
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Input GF(q) descriptorse numberinggo, .. ., Cp-1, fi[r[h andgyi,
i=1..., k.
Output Set of possibleyy values.

1. Solve system (5) far=1, ..., k and obtain thagy = 8 - y for unknownx.
2. Forx=0,..., (p" —1)/¢ — 1 do the following:
@) Computez BeGyeitXfore=1,..., (p—1)r/h — 1 and if one sum is nonzero

continue loop on step 2.
(b) Outputgy = B - y*.

Fig. 4. Gettinggy from thegyi .

candidate will not be thrown by thee= 1 test. Hence, we can recovgy within O(p?)
simple computations.

Unfortunately, thegy cannot be used efficiently wheris too small. We can still use
gy in smaller subfields to compute it in large ones. Our goal is to comguteith r

large enough. We consider the problem of compugipgvhenry, .. ., ry are factors of
r with the knowledge o . Since we haveyy: = g;fpr'”z"*p&' P e obtain
that
lo Vi
loggy = 99 (mod p" — 1), (5)

1+ pri + p2|’i + p3ri 4+ 4 prfri

where the base of the logarithms is any fixed primitive elememtf GF(p"). The
knowledge of allgy:i 's thus gives the knowledge of lag: modulo

L=lem{p* -1, p2—-1,..., p*—1}.

Thus we need onlyp" — 1) /¢ trials to recovegy . The algorithm is illustrated in Fig. 4.
Itis easy to see that each loop controlled in step 2 requires on av@(gyé) operations
in GF(p).

Thus we can define an algorithm for dedicatesiby a graph.

Definition 5. Let G be a rooted labeled direct acyclic graph (DAG) in which the root
is labeled by a finite field Gip") and such that whenever there isia> v edge inG
then the label (u) of u is a subfield of the labdl (v) of v and an extension of Gp).

We call G a “p-factoring DAG for GKp").”

To G and an integep we associate the quantity

B #Lv) -1
c© = Z lem{#L (w) — 1; v < w}’

(By convention, lcm of an empty set is 1.) We can define an algorithm for compyging
with complexity O(pr2C(G)). Thus, we can break the Chor—Rivest cryptosystem with
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Input GF( ph) descriptorse numberinggo, . . ., Cp-1-
Output A possible secret key.

1. For the smallest factorof h such that > /h + ‘—11 + % find the p-factoring DAG with

minimal C(G).
2. For anyu in G such that, for allu < u;j, u; has been visited, visit by doing the
following:
(a) Perform the algorithm of Fig. 4 with GB") = L(u) and GRp") = L(u;) and
obtaingpy

(b) Perform the knowyy attack of Fig. 2.

Fig. 5. An efficient attack dedicated fdr.

parameteh which is neither prime nor a square prime within a complexity essentially

rlh G is a p—factoring
r>vh DAG for GR(p")

O(min min prZC(G)>.

The corresponding algorithm is illustrated in Fig. 5.

Example 6. (h = 25). We can solve thie = 25 case with a trivialc p-factoring DAG
for GF(p®) which consists of two vertices labeled with G and GK p®). Fromggs
we can then apply the algorithm of Fig. 2. We have

p°—1

_ 34
p_1+p 1~ p"

CG) =

so the corresponding complexity @(p°).

Example 7. (h = 24). Here is another dedicated attack fio= 24. We can choose
r = 6 for which we haven/r + 1 < r. Recoveringgys requires, firstlyO(p) trials to
getgp, secondly,O(p) trials to getg,. with gy, thirdly, O(p?) trials to getgps with gp,
and, finally,O(p?) trials to getgys with gge andgp:. The maximum number of trials is
thus O(p?). Hence the complexity i©(p®) multiplications in GKEp®). Actually, this
attack corresponds to thefactoring DAG for GK p®) depicted in Fig. 6. For this DAG

GF(p®) GF(p*)

GF(p)

Fig. 6. A factoring DAG for GK p®).
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we have

_ p°-1 pP-1 p’-1
CO= i@t p-ztpor TP L

thusC(G) = 78,014 for p = 197. We thus need about®operations in GF(197) to
break the Chor—Rivest cryptosystem in G&7%).

9. Generalization

In this section we generalize our attack in order to cover th€26#°) case, i.e., when

p is a power-prime: there is no reason to restrict our attacks to finite fields which are
extensions of Gfp) since we have many other subfields. For this we need to adapt
the algorithm of Fig. 5 with generalized factoring DAGs, i.e., when the labels are not
extensions of Gfp). We first state a generalized version of Fact 1.

Fact8. LetGF(q) be a subfield o6F(q), i.e,q = q'°. We let
Q(x) = N(g¥(x +t)) mod(xP — x),

where Ny) = y@b/@=Y_Q(x) is a polynomial such that @, = N(g)%. In
addition, if we havegcd(s, h) < po where p = q¥'°™SM then the degree of Q) is
gedss, h)((p— 1)/(po — 1)).

Proof. Q(ari)) = N(Q)% is obvious sincer,, is a root ofxP — x. The useful part of
this fact is the distance between the degre®¢f) andp.
We have

s—1

Q) =N(@ - Nx+t) =N@[] (xQ” + tQ") (mod (xP — x)).

i=0
We notice that
Xi mod(xp —X) = X(ifl)mod(pfl)+1

thus if we let

[y

S—

8= ((q/i - 1) mod(p — 1) + 1)

I
o

the degree of(x) is § provided that < p. Let pp = /™M andp = p§. We have

0—

|_\

0—

S . sp-1
dipg— 1) +1) =- o= — .
|=o ) mod(pg — 1) + 1) = Q;DO S o1

QDIU)

We further notice thas/0 = gcd(s, h) and thats < p. O
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GF(256%)
GF(16%) GF(256)

GF(16)

Fig. 7. A generalized factoring DAG for GR56°).

As a consequence we obtain a generalized form of Fact 4.

Fact9. Letq= p" = q®and p = q¥™s" pe such thagcd(s, h) < pp — 1. We
have

foranyl < e < (po — 1)/gcds, h).

We can thus generalize the attack of Fig. 5 whenever eadly’GF label fulfills the
assumption go@, h) < po — 1 wherepg = g¥/'smsh,

Example 10. (q = 256°). The GR16) field does not fulfill the assumption. However,

the GR256), GF(16°), and GF256) fields do. We can thus start the attack with the
field GH256) and then obtaimgy;s from g, as illustrated by the (generalized) factoring
DAG of GF(256) illustrated in Fig. 7. We have

256 — 1 16 -1 15 1
C(G) = = 1 255=131 841+ —,
©) lcm@55 16 —1) | 15 ' 255 1841+ 37

thus we need about?2 GF(16)-operations to break the Chor—Rivest cryptosystem in
GF(256%).

There is no need for formalizing further generalizations in the Chor—Rivest cryptosys-
tem context. We believe that the more subfield choices aigGwe have, the lower is
the complexity of the best attack.

10. Conclusion

We have described a general attack when the pararhétas a small factor greater

than,/h + % + % which has a complexityd(h®p’ /r2). We have also solved one of
Lenstra’s conjectures, that argues that keeping alttloeefficients in the public key is
a weakness, by exhibiting a shortcut algorithm in the previous attack.

The attack has been successfully implemented on an old laptop with the suggested
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parameters Gfp?*) by using hand-made (inefficient) arithmetic libraries. Recovering
the secret key from the public key takes about 15 minutes. However, computing the
public key from the secret key takes much longer.

We also generalized our attack in order to break the&25&°) proposal. In the
Appendix we even suggest an improvement of the presented attacksrmdeas not

have a small factar greater than/h + ;11 + %
In order to repair the Chor—Rivest cryptosystem, we believe that

— we must choose a finite field Gp") wherep andh are both prime;
— we must not put all the;’s in the public key.

Itis then not clear how to choose the parameters in order to make the discrete logarithm
problem easy, and to achieve a good knapsack density in order to thwart the Schnorr—
Horner attack.

One solution is to use Lenstra’s Powerline cryptosystem, or even its recent general-
ization: the Fractional Powerline System (see [1]). We have, however, to fulfill the two
requirements above. The security in this setting is still open, but we suspect that the
simultaneous permuted kernel characterization of the underlying problem may lead to
a more general attack on this cryptosystem with any parameters. We highly encourage
further work in this direction.
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Appendix. Extension of the Algorithm of Fig. 2

Equation (4) is a simple way to solve the problem wher /h. We still believe
we can adapt the above attack for any value &y more tricky algebraic computa-
tions.
Actually, we consider a value such thath/r > r and¢ = h/r —r. Letg denote
Gi i . . .
Oy — gEP fori =1,...,h/r. There may exist somEj uy,j§ = 0 equations, namely,
¢ of it. Hence, if we writegy — gSP =2 a}ej, there may exist somg, coefficients
such that

i [ Yr(i) — An(ip)
K ock<hyr Xm(iy) — %r(iv)
k#]
for j = 1,...,h/r. When considering a set ofvalues ofi, we havenh/r algebraic

equations witm(¢+1) —1+h/r unknown9<L, (i), %r(iy- Thusifr > 1 we can take
n large enough as long axr — 1) + 1 > h/r. We thus believe further algebraic tricks
may lead to the solution for any> 1 aslongap + 1 > h/2.
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