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Abstract. Knapsack-based cryptosystems used to be popular in the beginning of pub-
lic key cryptography before all but the Chor–Rivest cryptosystem being broken. In
this paper we show how to break this one with its suggested parameters: GF(p24) and
GF(25625). We also give direction on possible extensions of our attack.
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Introduction

Recent interests about cryptosystems based on knapsacks or lattice reduction problems
unearthed the problem of their security. So far, the Chor–Rivest cryptosystem (presented
at CRYPTO ’84 [2]) was the only one based on the subset-sum problem and still unbroken.
In this paper we present a new attack on it which definitely breaks the system for all
the proposed parameters in Chor and Rivest’s final paper [3]. We also give directions
to break the general problem, and related cryptosystems such as Lenstra’s Powerline
cryptosystem [8].

1. The Chor–Rivest Cryptosystem

We letq = ph be a power-prime (for a practical example, letp = 197 andh = 24). We
consider the finite field GF(q) and we assume that its representation is public (i.e., there
is a publich-degreed polynomialP(x) irreducible on GF(p) and elements of GF(q)
are polynomials moduloP(x)). We also consider a public numberingα of the subfield
GF(p), i.e.,{α0, . . . , αp−1} = GF(p) ⊆ GF(q).

∗ Part of this work was done when the author was visiting AT&T Labs Research.
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88 S. Vaudenay

Secret keys consist of

– an elementt ∈ GF(q) with algebraic degreeh,
– a generatorg of GF(q)∗,
– an integerd ∈ Zq−1,
– a permutationπ of {0, . . . , p− 1}.

Public keys consist of all

ci = d + logg(t + απ(i )) modq − 1

for i = 0, . . . , p − 1. For this reason, the public parameters must be chosen such
that the discrete logarithm is easy to calculate in GF(q). In their final paper Chor and
Rivest suggested using a relatively small prime powerp and a smooth powerh, i.e., an
integer with only small factors so that we can apply the Pohlig–Hellman algorithm [11].1

Suggested parameters correspond to the fields GF(19724), GF(21124), GF(24324), and
GF(25625).

The Chor–Rivest cryptosystem works over a message space which consists of allp-
bit strings with Hamming weighth. This means that the message to be encrypted must
first be encoded as a bitstringm = [m0 · · ·mp−1] such thatm0 + · · · +mp−1 = h. The
ciphertext space isZq−1 and we have

E(m) = m0c0+ · · · +mp−1cp−1 modq − 1.

To decrypt the ciphertextE(m), we compute

p(t) = gE(m)−hd

as a polynomial in terms oft over GF(p) with degree at mosth − 1, which must be
equal to ∏

mi=1

(t + απ(i ))

in GF(q). Thus, if we considerµ(x)+ p(x), whereµ(x) is the minimal polynomial of
t , we must obtain the formal polynomial∏

mi=1

(x + απ(i )),

whose factorization leads tom.
Although the public key generation relies on intricate finite field computations, the

decryption problem is based on the traditional subset-sum problem (also more familiarly
called theknapsack problem): given a set of piecesc0, . . . , cp−1 and a targetE(m),
find a subset of pieces so that its sum isE(m). This problem is known to be hard, but
the cryptosystem hides a trapdoor which enables the legitimate user to decrypt. This
modifies the genericity of the problem and the security is thus open.

1 This algorithm with Shanks’s baby-step giant-step trick has a complexity ofO(h3
√

B log p) simple
GF(p)-operations for computing oneci whereB is the largest prime factor ofph − 1. (See [7].) Sincepr − 1
is a factor ofph − 1 whenr is a factor ofh, B is likely to be small whenh only has small prime factors.
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2. Previous Work

The Merkle–Hellman cryptosystem was the first subset-sum-based cryptosystem [10].
Although the underlying problem is NP-complete, it has surprisingly been broken by
Shamir [13]. Later, many other variants have been shown insecure for any practical
parameters by lattice reduction techniques (see [6], for instance). Actually, subset-sum
problems can be characterized by the density parameter which is (with our notation)
the ratiod = p/log2 q. When the density is far from 1 (which was the case of most
cryptosystems), the problem can be solved efficiently by lattice reduction algorithms like
the LLL algorithm [9]. The Chor–Rivest cryptosystem is an example of a cryptosystem
which achieves a density close to 1 (forp = 197 andh = 24, the density is 0.93). Its
underlying problem has however the restriction that the subsets must have cardinality
equal toh. Refinement of lattice reduction tools with this restriction have been studied
by Schnorr and H¨orner [12]. They showed that implementation of the Chor–Rivest
cryptosystem with parametersp = 151 andh = 16 could be broken within a few days
of computation on a single workstation (in 1995).

So far, the best known attack for secret key recovery is Brickell’s attack which works
within a complexity ofO(p2

√
hh2 log p). It has been published in the final paper by

Chor and Rivest [3]. This paper also includes several attempts of attacks when part of
the secret key is disclosed. In Section 5 we briefly review a few of them in order to show
what all quantities in the secret key are for.

The Chor–Rivest cryptosystem has the unnatural property that the choice of the finite
field GF(q)must be so that computing the discrete logarithm is easy. A variant has been
proposed by Lenstra [8] which overcomes this problem. In this setting, any parameter
can be chosen, but the encryption needs multiplications instead of additions. This variant
has been further extended by Camion and Chabanne [1].

3. Symmetries in the Secret Key

In the Chor–Rivest cryptosystem setting, one has first to choose a random secret key,
then to compute the corresponding public key. It relies on the difficulty of finding the
secret key from the public key. It should first be noticed that there are severalequivalent
secret keys, i.e., several keys which correspond to the same public key and thus which
define the same encryption and decryption functions.

We first notice that if we replacet and g by their pth power (i.e., if we apply the
Frobenius automorphism in GF(q)), the public key is unchanged because

loggp(t p + απ(i )) = 1

p
logg((t + απ(i ))p) = logg(t + απ(i )).

Second, we can replace(t, απ) by (t + u, απ − u) for anyu ∈ GF(p)∗. Finally, we can
replace(t,d, απ) by (ut,d − logg u,u · απ) for anyu ∈ GF(p). Thus we have at least
hp(p− 1) equivalent secret keys. The Chor–Rivest problem consists of finding one of
them.

Inspired by the symmetry use in the Coppersmith–Stern–Vaudenay attack against
birational permutations [4], these properties may suggest that the polynomial
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i=0 (x − t pi

), of whom all the equivalentt ’s are the roots, plays a crucial role. This is
actually the case as is shown by the attacks in the following sections.

4. Relation to the Permuted Kernel Problem

Throughout this paper, we use the following property of the Chor–Rivest cryptosystem.

Fact 1. For any factor r of h, there exists a generator gpr of the multiplicative group
of the subfieldGF(pr ) of GF(q) and a polynomial Q with degree h/r whose coefficients
are inGF(pr ) and such that−t is a root and that, for any i, we have Q(απ(i )) = gpr

ci .

Proof. We let

Q(x) = gpr
d

h/r−1∏
i=0

(
x + t pri

)
, (1)

wheregpr = ∏
gpri

(gpr can be considered as the norm ofg when considering the
extension GF(pr ) ⊆ GF(q)). We notice that we haveQ(x) ∈ GF(pr ) for any x ∈
GF(pr ). Since pr > h/r we obtain that all coefficients are in GF(pr ). The property
Q(απ(i )) = gci

pr is straightforward.

Sinceh/r is fairly small, it is unlikely that there exists some other(gpr , Q) solutions,
andgpr is thus essentially unique. Throughout this paper we use the notation

gq′ = g(q−1)/(q′−1).

If we consider the Vandermonde matrix

M = (αi
j ) 0≤i<p

0≤ j≤h/r

and the vectorV = (gci
pr )0≤i<p, we know there exists some vectorX such thatM · X =

Vπ−1 whereVπ−1 is permuted fromV through the permutationπ−1. By using the parity
check matrixH of the code spanned byM (which is actually a Reed–Solomon code),
this can be transformed into a permuted kernel problemH · Vπ−1 = 0. It can be proved
that all entries ofH are actually in GF(p), thus this problem is in fact equivalent tor
simultaneous permuted kernel problems in GF(p). Actually, we can takeH = (A|I )
whereI is the identity matrix andA is the(p− h/r − 1)× (h/r + 1)matrix defined by

Ai, j = −
∏

0≤k<h/r
k 6= j

αi+h/r − αk

αj − αk

(
1≤ i < p− h/r

0≤ j ≤ h/r

)
.

If we let Vi denotes the vector of thei th coordinates in vectorV , we have

∀i, H · Vi
π−1 = 0.

Unfortunately, there exists no known efficient algorithms for solving this problem. Since
the matrix has a very special form, the author of this paper believes it is still possible to
attack the problem in this direction, which may improve the present attack.
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5. Partial Key Disclosure Attacks

In this section we show that we can mount an attack when any part of the secret key
is disclosed. Several such attacks have already been published in [3]. Some have been
improved below and will be used in the following.

Known t Attack. If we guess thatπ(0) = i andπ(1) = j (because of the symmetry
in the secret key, we know that an arbitrary choice of(i, j ) will work), we can compute
log(t + αi ) and log(t + αj ) and then solve the equations

c0 = d + log(t + αi )

logg
,

c1 = d + log(t + αj )

logg

with unknownsd and logg.2

Known g Attack. If we guess thatπ(0) = i andπ(1) = j (because of the symmetry
in the secret key, we know that an arbitrary choice of(i, j ) will work), we can compute

gc0−c1 = t + αi

t + αj

and then solvet .3

Knownπ Attack. We find a linear combination with the form

p−1∑
i=1

xi (ci − c0) = 0

with relatively small integral coefficientxi ’s. This can be performed through the LLL
algorithm [9]. We can expect that|xi | ≤ B with B ≈ ph/(p−1). Exponentiating this we
get some equation ∏

i∈I

(t + απ(i ))xi =
∏
j∈J

(t + απ( j ))
−xj

with nonnegative small powers, which is a polynomial equation with low degree which
can be solved efficiently.4

Brickell’s attack with nothing known consists of finding a similar equation but with
a limited number̀ of απ(i ) and then exhaustively finding for thoseπ(i )’s. There is a
tradeoff on`: the LLL algorithm may productxi ’s smaller thanB = ph/`, the root
finding algorithm requiresO(B2h log p) GF(p)-operations and the exhaustive search
requiresO(p`) trials. (For more details and better analysis, see [3].)

2 Another attack attributed to Goldreich was published in [3].
3 Another attack was published in [5].
4 This attack attributed to Odlyzko was published in [3].
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Known gpr andπ Attack. Since we use this attack several times in the following, we
include it here. We can interpolate theQ(x) polynomial of Fact 1 withh/r + 1 pairs
(απ(i ), g

ci
pr ). We thus obtain anh/r -degree polynomial whose roots are conjugates of−t .

We can thus solve it in order to gett and perform a knownt attack.

6. Known gpr Attack

Here we assume we know thegpr value corresponding to a subfield GF(pr ) (see Fact 1).
Let i0, . . . , i h/r beh/r + 1 pairwise distinct indices from 0 top− 1. Because of Fact

1 we can interpolateQ(x) on allαπ(i j )’s, which leads to the relation

gci
pr =

h/r∑
j=0

g
ci j

pr

∏
0≤k≤h/r

k 6= j

απ(i ) − απ(i k)
απ(i j ) − απ(i k)

(2)

for i = 0, . . . , p− 1. Actually, we can even write this as

gci
pr − g

ci0
pr =

h/r∑
j=1

(
g

ci j

pr − g
ci0
pr

) ∏
0≤k≤h/r

k 6= j

απ(i ) − απ(i k)
απ(i j ) − απ(i k)

. (3)

Because of the symmetry ofπ in the secret key, we can arbitrarily chooseπ(i1) and
π(i2) (see Section 3).

A straightforward algorithm for findingπ consists of exhaustively looking for the
values ofπ(i j ) for j = 0,3, . . . , h/r until (2) gives a consistent permutationπ . It is
illustrated in Fig. 1. The complexity of this method is roughlyO(rph/r ) computations in
GF(p). (Step 3(a) requires on averageO(pr/h) iterations, each with complexityO(h),
and we needO(ph/r − 1) iterations of it.)

Whenr is large enough, there is a much better algorithm. Actually, ifh/r ≤ r (i.e.,
r ≥ √h), the coefficients in (2) are the only GF(p) coefficients which writegci

pr − g
ci0
pr in

the basisg
ci0
pr −g

ci0
pr , . . . , g

cih/r

pr −g
ci0
pr . Letai

j be the coefficient ofg
ci j

pr −g
ci0
pr for gpr

ci−gpr
ci0 .

Input: GF(q) descriptors,α numbering,c0, . . . , cp−1, r |h, gpr .
Output: A secret key whose corresponding public key isc0, . . . , cp−1.

1. Choose pairwise differenti0, . . . , i h/r in {0, . . . , p− 1}.
2. Choose differentπ(i1) andπ(i2) arbitrarily in {0, . . . , p− 1}.
3. For all the possible values ofπ(i0), π(i3), . . . , π(i h/r ) (i.e., all values such that
π(i0), . . . , π(i h/r ) are pairwise different and in the set{0, . . . , p − 1}), we setS =
{π(i0), . . . , π(i h/r )} and do the following:
(a) For all j which is not inS, compute the right-hand term of (2) with

αj instead ofαπ(i ). If it is equal togci
pr such thatπ(i ) has not been

defined, setπ(i ) = j , otherwise continue loop in step 3.
(b) Perform a knowngpr andπ attack.

Fig. 1. An O(rph/r ) knowngpr attack.
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Input: GF(q) descriptors,α numbering,c0, . . . , cp−1, r |h, gpr s.t.r ≥ √h.
Output: A secret key whose corresponding public key isc0, . . . , cp−1.

1. Choose pairwise differenti0, . . . , i h/r in {0, . . . , p−1} and precompute the basis trans-

formation matrix for the basis(g
ci0
pr − g

ci0
pr , . . . , g

cih/r
pr − g

ci0
pr ).

2. Choose differentπ(i1) andπ(i2) arbitrarily in {0, . . . , p− 1}.
3. For all possibleu in GF(p), do the following:

(a) For alli , write gci
pr − g

ci0
pr in the basis and getai

0 andai
1. From (4) getπ(i ). If it is

not consistent with otherπ(i ′)’s, continue loop in step 3.
(b) Perform a knowngpr andπ attack.

Fig. 2. A polynomial knowngpr attack forr ≥ √h.

We have

ai
2

ai
1

= u
απ(i ) − απ(i1)
απ(i ) − απ(i2)

(4)

where u is an element of GF(p) which does not depend oni . Hence, if we ran-
domly choosei j for j = 0, . . . , h/r , we can write allgci

pr − g
ci0
pr ’s in the basis(g

ci0
pr −

g
ci0
pr , . . . , g

cih/r

pr − g
ci0
pr ). Now if we guess the GF(p)-value ofu, we obtainπ(i ) from the

above equation. This is a polynomial algorithm inp, h, r for gettingπ (see Fig. 2).
In the rest of the paper, we show how to findgpr with a choice ofr so that these known

gpr attacks can be applied.

7. Test for gpr

Equation (3) means that allgci
pr ’s actually stand on the sameh/r -dimensional affine

subspace of GF(pr ) over GF(p). Thus, if we assume thath/r + 1 ≤ r (i.e., r ≥√
h+ 1

4 + 1
2), this leads to a simple test forgpr .

Fact 2. If there exists a factor r of h such that r≥
√

h+ 1
4 + 1

2 if we let gpr denote

g1+pr+p2r+p3r+···+ph−r
, then all gci

pr ’s stands on the same h/r -dimensional affine space
when consideringGF(pr ) as an r-dimensionalGF(p)-affine space.

The existence of such anr can be seen as a bad requirement for this attack, but since
the parameters of the Chor–Rivest cryptosystem must make the discrete logarithm easy,
we already know thath has many factors, so this hypothesis is likely to be satisfied in
practical examples. Actually,h with no such factors are prime and square-prime numbers.
The real issue is thatr shall not be too large.

Thus there is an algorithm which can check if a candidate forgpr is good: the algo-
rithm simply check that allgci

pr ’s are affine-dependent. The algorithm has an average
complexity ofO(h3/r ) operations in GF(p). Since there areϕ(pr − 1)/r candidates,
we can exhaustively search forgpr within a complexity ofO(h3 pr /r 2). Sincer has to
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Input: GF(q) Descriptors,α numbering,c0, . . . , cp−1, r |h s.t.r ≥
√

h+ 1
4 + 1

2 .
Output: Possible values forgpr .

1. Choose pairwise differenti0, . . . , i h/r in {0, . . . , p− 1}.
2. For any generatorgpr of GF(pr ), do the following:

(a) Get the equation of the affine space spanned by(g
ci0
pr , . . . , g

cih/r
pr ).

(b) For all otheri , check thatgci
pr in the space. If not, continue loop in step 2.

(c) Perform the knowngpr attack of Fig. 2.

Fig. 3. An O(pr ) attack forr ≥
√

h+ 1
4 + 1

2 .

be within the order of
√

h, this attack is better than Brickell’s attack provided that such
anr exists. The algorithm is depicted in Fig. 3.

With the parameterh = 24, we can taker = 6. With p = 197 we haveϕ(1976−1)/6≈
241 candidates forgpr so we can find it within 252 elementary operations, which is feasible
with modern computers.

Here we also believe we can still adapt this attack for smallerr values. The next section
however gives an alternate shortcut to this issue.

8. On the Use of All theci ’s

In his paper [8], Lenstra suspected that disclosing all theci ’s in the public key was a
weakness. Actually, this property enables us to improve the previous algorithm drastically
by using all the factors ofh.

We have the following fact.

Fact 3. Let Q(x) be a polynomial overGF(pr ) with degree d and let e be an integer
such that1≤ e< (p− 1)/d. We have∑

a∈GF(p)

Q(a)e = 0.

This comes from the fact thatQ(x)e has a degree less thanp− 1 and that
∑

ai = 0 for
any i < p− 1. This proves the following fact.

Fact 4. For any1≤ e< (p− 1)r/h we have

p−1∑
i=0

geci
pr = 0.

This provides a much simpler procedure to select allgpr candidates. Its main advantage
is that it works in any subfield. For instance, we can considerr = 1 and find the only
gp such that for all 1≤ e < (p − 1)r we have

∑
geci

pr = 0. The average complexity
of checking one candidate isO(p) GF(p)-computations: it is unlikely that a wrong
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Input: GF(q) descriptors,α numbering,c0, . . . , cp−1, ri |r |h andgpri ,
i = 1, . . . , k.
Output: Set of possiblegpr values.

1. Solve system (5) fori = 1, . . . , k and obtain thatgpr = β · γ `x for unknownx.
2. Forx = 0, . . . , (pr − 1)/`− 1 do the following:

(a) Compute
∑

βeci γ eci `x for e= 1, . . . , (p− 1)r/h− 1 and if one sum is nonzero
continue loop on step 2.

(b) Outputgpr = β · γ `x .

Fig. 4. Gettinggpr from thegpri .

candidate will not be thrown by thee= 1 test. Hence, we can recovergp within O(p2)

simple computations.
Unfortunately, thegpr cannot be used efficiently whenr is too small. We can still use

gpr in smaller subfields to compute it in large ones. Our goal is to computegpr with r
large enough. We consider the problem of computinggpr whenr1, . . . , rk are factors of

r with the knowledge ofgpri . Since we havegpri = g1+pri +p2ri +p3ri +···+pr−ri

pr , we obtain
that

loggpr = loggpri

1+ pri + p2ri + p3ri + · · · + pr−ri
(mod pri − 1), (5)

where the base of the logarithms is any fixed primitive elementγ of GF(pr ). The
knowledge of allgpri ’s thus gives the knowledge of loggpr modulo

` = lcm{pr1 − 1, pr2 − 1, . . . , prk − 1}.

Thus we need only(pr −1)/` trials to recovergpr . The algorithm is illustrated in Fig. 4.
It is easy to see that each loop controlled in step 2 requires on averageO(pr2) operations
in GF(p).

Thus we can define an algorithm for dedicatedh’s by a graph.

Definition 5. Let G be a rooted labeled direct acyclic graph (DAG) in which the root
is labeled by a finite field GF(pr ) and such that whenever there is au → v edge inG
then the labelL(u) of u is a subfield of the labelL(v) of v and an extension of GF(p).
We callG a “p-factoring DAG for GF(pr ).”

To G and an integerp we associate the quantity

C(G) =
∑
v

#L(v)− 1

lcm{#L(w)− 1; v← w} .

(By convention, lcm of an empty set is 1.) We can define an algorithm for computinggpr

with complexityO(pr2C(G)). Thus, we can break the Chor–Rivest cryptosystem with
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Input: GF(ph) descriptors,α numbering,c0, . . . , cp−1.
Output: A possible secret key.

1. For the smallest factorr of h such thatr ≥
√

h+ 1
4 + 1

2 , find thep-factoring DAG with

minimalC(G).
2. For anyu in G such that, for allu ← ui , ui has been visited, visitu by doing the

following:
(a) Perform the algorithm of Fig. 4 with GF(pr ) = L(u) and GF(pri ) = L(ui ) and

obtaingpr

(b) Perform the knowngpr attack of Fig. 2.

Fig. 5. An efficient attack dedicated forh.

parameterh which is neither prime nor a square prime within a complexity essentially

O

(
min

r |h
r≥√h

min
G is a p−factoring
DAG for GF(pr )

pr2C(G)

)
.

The corresponding algorithm is illustrated in Fig. 5.

Example 6. (h = 25). We can solve theh = 25 case with a trivialG p-factoring DAG
for GF(p5) which consists of two vertices labeled with GF(p) and GF(p5). Fromgp5

we can then apply the algorithm of Fig. 2. We have

C(G) = p5− 1

p− 1
+ p− 1≈ p4,

so the corresponding complexity isO(p5).

Example 7. (h = 24). Here is another dedicated attack forh = 24. We can choose
r = 6 for which we haveh/r + 1 ≤ r . Recoveringgp6 requires, firstly,O(p) trials to
getgp, secondly,O(p) trials to getgp2 with gp, thirdly, O(p2) trials to getgp3 with gp,
and, finally,O(p2) trials to getgp6 with gp2 andgp3. The maximum number of trials is
thus O(p2). Hence the complexity isO(p3) multiplications in GF(p6). Actually, this
attack corresponds to thep-factoring DAG for GF(p6) depicted in Fig. 6. For this DAG

Fig. 6. A factoring DAG for GF(p6).
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we have

C(G) = p6− 1

lcm(p2− 1, p3− 1)
+ p3− 1

p− 1
+ p2− 1

p− 1
+ p− 1,

thusC(G) = 78,014 for p = 197. We thus need about 229 operations in GF(197) to
break the Chor–Rivest cryptosystem in GF(19724).

9. Generalization

In this section we generalize our attack in order to cover the GF(25625) case, i.e., when
p is a power-prime: there is no reason to restrict our attacks to finite fields which are
extensions of GF(p) since we have many other subfields. For this we need to adapt
the algorithm of Fig. 5 with generalized factoring DAGs, i.e., when the labels are not
extensions of GF(p). We first state a generalized version of Fact 1.

Fact 8. LetGF(q′) be a subfield ofGF(q), i.e., q = q′s. We let

Q(x) = N(gd(x + t)) mod(xp − x),

where N(y) = y(q−1)/(q′−1). Q(x) is a polynomial such that Q(απ(i )) = N(g)ci . In
addition, if we havegcd(s, h) < p0 where p0 = q1/lcm(s,h), then the degree of Q(x) is
gcd(s, h)((p− 1)/(p0− 1)).

Proof. Q(απ(i )) = N(g)ci is obvious sinceαπ(i ) is a root ofxp− x. The useful part of
this fact is the distance between the degree ofQ(x) and p.

We have

Q(x) ≡ N(g) · N(x + t) ≡ N(g)
s−1∏
i=0

(
xq′ i + tq′ i

)
(mod (xp − x)).

We notice that

xi mod(xp − x) = x(i−1)mod(p−1)+1,

thus if we let

δ =
s−1∑
i=0

((
q′i − 1

)
mod(p− 1)+ 1

)
the degree ofQ(x) is δ provided thatδ < p. Let p0 = q1/lcm(s,h) and p = pθ0. We have

δ = s

θ

θ−1∑
i=0

((
pi

0− 1
)

mod(pθ0 − 1)+ 1
) = s

θ

θ−1∑
i=0

pi
0 =

s

θ

p− 1

p0− 1
.

We further notice thats/θ = gcd(s, h) and thatδ < p.
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Fig. 7. A generalized factoring DAG for GF(2565).

As a consequence we obtain a generalized form of Fact 4.

Fact 9. Let q = ph = q′s and p0 = q1/lcm(s,h) be such thatgcd(s, h) < p0 − 1. We
have

p−1∑
i=0

gq′
eci = 0

for any1≤ e< (p0− 1)/gcd(s, h).

We can thus generalize the attack of Fig. 5 whenever each GF(q1/s) label fulfills the
assumption gcd(s, h) < p0− 1 wherep0 = q1/lcm(s,h).

Example 10. (q = 25625). The GF(16) field does not fulfill the assumption. However,
the GF(256), GF(165), and GF(2565) fields do. We can thus start the attack with the
field GF(256) and then obtaing16 from g162 as illustrated by the (generalized) factoring
DAG of GF(2565) illustrated in Fig. 7. We have

C(G) = 2565− 1

lcm(255,165− 1)
+ 165− 1

15
+ 15

255
+ 255= 131,841+ 1

17
,

thus we need about 229 GF(16)-operations to break the Chor–Rivest cryptosystem in
GF(25625).

There is no need for formalizing further generalizations in the Chor–Rivest cryptosys-
tem context. We believe that the more subfield choices of GF(q) we have, the lower is
the complexity of the best attack.

10. Conclusion

We have described a general attack when the parameterh has a small factorr greater

than
√

h+ 1
4 + 1

2 which has a complexityO(h3 pr /r 2). We have also solved one of
Lenstra’s conjectures, that argues that keeping all theci coefficients in the public key is
a weakness, by exhibiting a shortcut algorithm in the previous attack.

The attack has been successfully implemented on an old laptop with the suggested
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parameters GF(p24) by using hand-made (inefficient) arithmetic libraries. Recovering
the secret key from the public key takes about 15 minutes. However, computing the
public key from the secret key takes much longer.

We also generalized our attack in order to break the GF(25625) proposal. In the
Appendix we even suggest an improvement of the presented attacks whenh does not

have a small factorr greater than
√

h+ 1
4 + 1

2.
In order to repair the Chor–Rivest cryptosystem, we believe that

– we must choose a finite field GF(ph) wherep andh are both prime;
– we must not put all theci ’s in the public key.

It is then not clear how to choose the parameters in order to make the discrete logarithm
problem easy, and to achieve a good knapsack density in order to thwart the Schnorr–
Hörner attack.

One solution is to use Lenstra’s Powerline cryptosystem, or even its recent general-
ization: the Fractional Powerline System (see [1]). We have, however, to fulfill the two
requirements above. The security in this setting is still open, but we suspect that the
simultaneous permuted kernel characterization of the underlying problem may lead to
a more general attack on this cryptosystem with any parameters. We highly encourage
further work in this direction.
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Appendix. Extension of the Algorithm of Fig. 2

Equation (4) is a simple way to solve the problem whenr ≥ √h. We still believe
we can adapt the above attack for any value ofr by more tricky algebraic computa-
tions.

Actually, we consider a valuer such thath/r ≥ r and` = h/r − r . Let ei denote
g

ci j

pr − g
ci0
pr for i = 1, . . . , h/r . There may exist some

∑
j uk, j ej = 0 equations, namely,

` of it. Hence, if we writegci
pr − g

ci0
pr = ∑

j ai
j ej , there may exist somexi

k coefficients
such that

ai
j −

∑
k

xi
kuk, j =

∏
0≤k≤h/r

k 6= j

απ(i ) − απ(i k)
απ(i j ) − απ(i k)

for j = 1, . . . , h/r . When considering a set ofn values ofi , we havenh/r algebraic
equations withn(`+ 1)− 1+ h/r unknownsxi

k, απ(i j ), απ(i ). Thus ifr > 1 we can take
n large enough as long asp(r − 1)+ 1≥ h/r . We thus believe further algebraic tricks
may lead to the solution for anyr > 1 as long asp+ 1≥ h/2.
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