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Abstract. The maximum correlation of a Boolean function to all Boolean functions
of a subset of its input variables is investigated. A relationship is derived between the
maximum correlation and the mutual information between the output of a balanced
Boolean function and a subset of its random input variables. For bent functions (which
are never balanced), both the mutual information and the maximum correlation are
bounded and shown to be small in a strong sense.
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1. Introduction

In stream ciphers a common form of keystream generator is the combination generator
which consists of several linear feedback shift registers (LFSRs) whose output sequences
are combined by a nonlinear Boolean function. A major goal of the keystream generator
is to produce random-looking sequences, that is, sequences that as closely as possible re-
semble coin-tossing sequences. If the keystream sequence is correlated with an LFSR se-
quence, Siegenthaler [13] has shown that the subkey residing in the LFSR can be analyzed
independently of subkeys residing in other LFSRs. Siegenthaler’s method that indepen-
dently solves for the subkey residing in each LFSR is referred to as a divide-and-conquer
correlation attack. Further extensions and refinements of Siegenthaler’s correlation at-
tack can be found in [6], [15], [4], and [8]. In subsequent work [12] Siegenthaler has also
noticed that correlation attacks in which more than one subkeys are analyzed can still be
made even if there is no correlation between the keystream sequence and any single LFSR
sequence. For this reason, Siegenthaler introduced the notion of correlation-immunity.

∗ This work was partially done while the author was on leave from the Department of Applied Mathematics,
Xidian University, Xian, Shaanxi 710071, People’s Republic of China.
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A Boolean functionf of n input variables is calledmth-order correlation-immune if
the output off is statistically independent of every subset ofm random input variables.
It has been shown in [14] and [1] thatf is mth-order correlation-immune if and only if
f is not correlated to linear functions of any subset ofm input variables. Consequently,
the keystream sequence is independent of linear combinations ofm LFSR sequences
when f is used as the combiner. However, Meier and Staffelbach [7] have proved that
the sum of the squares of the correlation coefficients off to all linear functions is always
one. Thus, zero correlation to some linear functions implies a stronger correlation to
other linear functions. The best one can do is to make the correlation to every linear
functions uniformly small. Meier and Staffelbach [7] have also shown that the previ-
ously known bent functions introduced by Rothaus [10] in combinatorial theory have
such a nice property. With bent functions, it is easy to design combination generators
whose keystream sequences have small correlation to linear functions of the LFSR se-
quences. However, bent functions only guarantee small correlation to linear functions.
If a bent function has a large correlation to nonlinear functions of a few of the input
variables, one can still perform correlation attacks when the bent function is used as
a nonlinear combiner. This motivates us to investigate the maximum correlation of a
Boolean function to all Boolean functions (linear and nonlinear) of a subset of its input
variables.

In this paper the mutual information is used to measure the correlation between the
output of a Boolean function and a subset of its random input variables. For balanced
Boolean functions a relationship between the mutual information and the maximum
correlation is derived. It is shown that the larger the mutual information, the stronger the
maximum correlation, and vice versa. For bent functions (which are never balanced),
both the mutual information and the maximum correlation are bounded and shown to be
small in a strong sense.

2. Maximum Correlation and Mutual Information

Let z = f (x1, x2, . . . , xn) be a Boolean function. We assume from hereon that then
input variablesx1, x2, . . . , xn are independent and uniformly distributed binary random
variables. Ifz is also uniformly distributed,f is called a balanced Boolean function.
For a subsetx′ = (xi1, xi2, . . . , xim) of m input variables, the correlation or statistical
dependency betweenz andx′ is measured by the mutual informationI (z; x′),

I (z; x′) =
∑

k∈GF(2)

−P(z= k) log2 P(z= k)

+
∑

k∈GF(2)
y∈GF(2)m

P(z= k, x′ = y) log2 P(z= k|x′=y).

Since xi1, xi2, . . . , xim are independent and uniformly distributed random variables,
P(x′ = y) = 2−m. Let h(x) denote the binary entropy function, that is,

h(x) = −x log2 x − (1− x) log2(1− x), 0≤ x ≤ 1. (1)
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Then the mutual informationI (z; x′) can be represented as follows:

I (z; x′) = h(P(z= 1))− 1

2m

∑
y∈GF(2)m

h(P(z= 1|x′=y)). (2)

Since 0≤ h(x) ≤ 1, it is clear that 0≤ I (z; x′) ≤ 1. If I (z; x′) = 1, z is completely
determined byx′, that is, there exists a Boolean functiong such thatz = g(x′). If, for
every subsetx′ of mvariables,I (z; x′) = 0, thenf ismth-order correlation-immune [12].

Definition 1. Let z = f (x1, x2, . . . , xn) andz′ = g(x1, x1, . . . , xn) be Boolean func-
tions. The correlation coefficient off andg, denoted byC( f, g), is defined as follows:

C( f, g) = P(z= z′)− P(z 6= z′).

SinceP(z= z′)+ P(z 6= z′) = 1, the probabilityP(z= z′) is related toC( f, g) by
the following equation:

P(z= z′) = 1

2
+ C( f, g)

2
. (3)

Definition 2. Let z = f (x1, x2, . . . , xn) be a Boolean function. For a subsetx′ of
m variablesxi1, xi2, . . . , xim, let G denote the set of all Boolean functions ofx′. The
maximum correlation off to G, denoted byCf (x′), is defined as follows:

Cf (x′) = max
g∈G

C( f, g). (4)

For simplicity,Cf (x′) is referred to as the maximum correlation off with respect tox′.
If g ∈ G andC( f, g) = Cf (x′), theng is called a maximum correlator off with respect
to x′.

Since there are 22
m

Boolean functions ofx′, it is difficult to computeCf (x′) through
exhaustive search. Iff is balanced, then the following theorem demonstrates that the
computation complexity can be greatly reduced.

Theorem 1. Let z= f (x1, x2, . . . , xn) be a balanced Boolean function, i.e., P(z =
1) = 0.5. For a subsetx′ = (xi1, xi2, . . . , xim) of m variables, let

ex′(y) = P(z= 1|x′=y)− P(z= 1). (5)

Then

Cf (x′) = 2

2m

∑
y∈GF(2)m

|ex′(y)|,

andĝ is a maximum correlator of f with respect tox′ if and only if, for anyy ∈ GF(2)m,
ĝ(y) = sgn(ex′(y)), where

sgn(x) =
1, x > 0,

0 or 1, x = 0,
0, x < 0.
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Proof. Let g be a Boolean function ofx′ andz′ = g(x′). By Definition 1,

C( f, g) = P(z= z′)− P(z 6= z′).

Sincex1, x2, . . . , xn are independent and uniformly distributed binary random variables,
the correlation coefficientC( f, g) can be represented as follows:

C( f, g) = 1

2n

∑
x∈GF(2)n

(−1) f (x)⊕g(x)

= 1

2n

∑
x∈GF(2)n

(1− 2 f (x))(1− 2g(x))

= 1− 2P(z= 1)− 2P(z′ = 1)+ 4

2n

∑
x∈GF(2)n

f (x)g(x).

Let x′′ = (xim+1, xim+2, . . . , xin) denote then−m variables ofx = (x1, x2, . . . , xn) that
are not inx′. Sincexim+1, xim+2, . . . , xin are not input variables ofg, it is clear that

4

2n

∑
x∈GF(2)n

f (x)g(x) = 4

2n

∑
x′∈GF(2)m

g(x′)
∑

x′′∈GF(2)n−m

f (x)

= 4

2m

∑
y∈GF(2)m

g(y)P(z= 1|x′=y).

Hence, it follows that

C( f, g) = 1− 2P(z= 1)− 2P(z′ = 1)+ 4

2m

∑
y∈GF(2)m

g(y)P(z= 1|x′=y). (6)

By (5),

P(z= 1|x′=y) = ex′(y)+ P(z= 1). (7)

Sincef is balanced,P(z= 1) = 0.5. Substituting (7) into (6),C( f, g)can be represented
as the following form:

C( f, g) = 4

2m

∑
y∈GF(2)m

g(y)ex′(y).

As g(y) ∈ {0,1} and ∑
y∈GF(2)m

ex′(y) = 0,

it can be concluded that∑
y∈GF(2)m

g(y)ex′(y) ≤ 1

2

∑
y∈GF(2)m

|ex′(y)|, (8)

with equality if and only if g(y) = sgn(ex′(y)), which completes the proof of the
theorem.
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Table 1. Maximum correlation off (x) = x1⊕ x2x3⊕
x2x5 ⊕ x4x5.

x′ Cf (x′) Maximum correlator

x1 0.25 x1

x1x2 0.25 x1 ⊕ x2

x1x3 0.25 x1 ⊕ x3

x1x4 0.25 x1 ⊕ x4

x1x5 0.25 x1 ⊕ x5

x1x2x3 0.5 x1 ⊕ x2x3

x1x2x4 0.25 x1 ⊕ x2x4

x1x2x5 0.25 x1 ⊕ x2x5

x1x3x4 0.5 x1 ⊕ x3x4

x1x3x5 0.25 x1 ⊕ x3x5

x1x4x5 0.5 x1 ⊕ x4x5

x1x2x3x4 0.5 x1 ⊕ x2x3x4

x1x2x3x5 0.5 x1 ⊕ x2x3 ⊕ x2x3x5

x1x2x4x5 0.5 x1 ⊕ x4x5 ⊕ x2x4x5

x1x3x4x5 0.5 x1 ⊕ x3x4x5

x1x2x3x4x5 1.0 x1 ⊕ x2x3 ⊕ x2x5 ⊕ x4x5

From Theorem 1, it is clear that the maximum correlator of a balanced Boolean
function may not be unique. Knowing the probability differences as described by (5),
one can determine all the maximum correlators off . The probability differences can
be calculated from the logical expression or directly from the truth table off , with
a computational complexity ofO(2n). As an example, the maximum correlation of
f (x1, x2, x3, x4, x5) = x1 ⊕ x2x3 ⊕ x2x5 ⊕ x4x5 with respect to every subsetx′ of its
variables has been computed based on Theorem 1. The results are outlined in Table 1.
For thosex′ not appearing in the table,Cf (x′) = 0.

Lemma 1. Let h(x) denote the binary entropy function as defined in(1). For −0.5 ≤
x ≤ 0.5,

h(0.5+ x) ≥ 1− 2|x|.
Moreover,

1− 4(log2 e)x2 ≤ h(0.5+ x) ≤ 1− 2(log2 e)x2.

Proof. Let ψ(x) = h(0.5+ x) − (1− 2|x|). Sinceh(0.5+ x) is a convex function,
ψ(x) is convex in both intervals(−0.5, 0) and(0, 0.5). Also, sinceψ(−0.5) = ψ(0) =
ψ(0.5) = 0, it can be concluded thatψ(x) ≥ 0, for−0.5≤ x ≤ 0.5, i.e.,h(0.5+ x) ≥
1− 2|x|.

Next, letϕ(x) = 1− 2(log2 e)x2− h(0.5+ x). Then

ϕ′(x) = −4x log2 e+ (ln(0.5+ x)− ln(0.5− x)) log2 e

and

ϕ′′(x) = −4 log2 e+ 4 log2 e

1− (2x)2
.
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Since 0≤ 1− (2x)2 ≤ 1, ϕ′′(x) ≥ 0. Hence,ϕ(x) is a convex function. Moreover,
ϕ′(0) = 0, which implies thatx = 0 is the stationary point ofϕ(x). Thus,ϕ(x) ≥
ϕ(0) = 0.

From the convexity of− log2(x), it is clear that

h(0.5+ x) = −(0.5+ x) log2(0.5+ x)− (0.5− x) log2(0.5− x)

≥ − log2((0.5+ x)2+ (0.5− x)2)

= 1− log2(1+ (2x)2).

Since log2(1+ (2x)2) ≤ (2x)2 log2 e, it follows thath(0.5+ x) ≥ 1− 4(log2 e)x2.

Theorem 2. Let z= f (x1, x2, . . . , xn) be a Boolean function. Then for any subsetx′

of m variables xi1, xi2, . . . , xim,

I (z; x′) ≤ Cf (x′) ≤
√
(2 ln 2)I (z; x′).

Proof. Since f is balanced,P(z= 1) = 0.5, and consequentlyh(P(z= 1)) = 1. By
(2), the mutual informationI (z; x′) is expressed by

I (z; x′) = 1− 1

2m

∑
y∈GF(2)m

h(0.5+ ex′(y)).

By Lemma 1,

1− 2|ex′(y)| ≤ h(0.5+ ex′(y)) ≤ 1− 1
2(2ex′(y))2 log2 e.

Hence,

1

2m

∑
y∈GF(2)m

log2 e

2
(2ex′(y))

2

≤ I (z; x′) ≤ 1

2m

∑
y∈GF(2)m

2|ex′(y)|.

By Theorem 1,Cf (x′) ≥ I (z; x′).
Next, by the Cauchy inequality,

∑
y∈GF(2)m

(2ex′(y))2 ≥ 1

2m

( ∑
y∈GF(2)m

2|ex′(y)|
)2

.

Thus,

I (z; x′) ≥ log2 e

2

(
2

2m

∑
y∈GF(2)m

|ex′(y)|
)2

.

Again, by Theorem 1,Cf (x′) ≤
√
(2 ln 2)I (z; x′).

Recall that the mutual informationI (z; x′) is a measure of the statistical dependency
betweenz andx′. For balanced Boolean functions, Theorem 2 establishes a relationship
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between the mutual information and the maximum correlation coefficients. To defend
against correlation attacks using linear or nonlinear combinations of a few LFSR se-
quences, the correlation between the keystream sequence and every small subset of LFSR
sequences should be as small as possible, which coincides with the idea of correlation-
immunity.

Let m be the maximum correlation-immunity order of a Boolean functionf (x1, x2,

. . . , xn). It has been shown in [14] thatf is correlated to at least one linear function of
m+ 1 variables. Furthermore, it has been shown in [16] that the maximum correlation
of f to all linear functions ofm+1 variables is greater than or equal to 1/2n−m−1. In [5]
it has been expected that nonlinear Boolean functions ofm+ 1 variables might further
increase the correlation. However, the following theorem demonstrates that Boolean
functions ofm + 1 variables that are maximally correlated to a balancedmth-order
correlation-immune function must be linear or affine.

In the analysis and design of Boolean functions, Walsh transform is a very useful tool.
The Walsh transform of a Boolean functionf (x1, x2, . . . , xn) is defined as follows:

F̂(ω) = 1

2n

∑
x∈GF(2)n

(−1) f (x)⊕ω·x,

whereω · x = ω1x1⊕ ω2x2⊕ · · · ⊕ ωnxn, ω ∈ GF(2)n. The function f̂ (x) = (−1) f (x)

can be recovered from the inverse Walsh transform

f̂ (x) =
∑

ω∈GF(2)n
F̂(ω)(−1)ω·x.

Theorem 3. Let z= f (x1, x2, . . . , xn) be a balanced mth-order correlation-immune
Boolean function. For a subsetx′ = (xi1, xi2, . . . , xim+1) of m+ 1 variables, assume that
I (z; x′) 6= 0. Then the maximum correlator of f with respect tox′ is either xi1 ⊕ xi2 ⊕
· · · ⊕ xim+1 or 1⊕ xi1 ⊕ xi2 ⊕ · · · ⊕ xim+1.

Proof. Let g be a Boolean function ofx′ andz′ = g(x′). By Definition 1,

C( f, g) = P(z= z′)− P(z 6= z′)

= 1

2n

∑
x∈GF(2)n

(−1) f (x)⊕g(x)

= 1

2n

∑
x∈GF(2)n

f̂ (x)ĝ(x).

By Parseval’s theorem [11],

1

2n

∑
x∈GF(2)n

f̂ (x)ĝ(x) =
∑

ω∈GF(2)n
F̂(ω)Ĝ(ω).

Hence,

C( f, g) =
∑

ω∈GF(2)n
F̂(ω)Ĝ(ω). (9)
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Let x′′ = (xim+2, xim+3, . . . , xin) denote the variables ofx = (x1, x2, . . . , xn) that
are not inx′. Correspondingly, for anyω = (ω1, ω2, . . . , ωn) ∈ GF(2)n, let ω′ =
(ωi1, ωi2, . . . , ωim+1) andω′′ = (ωim+2, ωim+3, . . . , ωin). Sinceg(x) = g(x′), Ĝ(ω) can be
described as follows:

Ĝ(ω) = 1

2n

∑
x∈GF(2)n

ĝ(x)(−1)ω·x

= 1

2n

∑
x′∈GF(2)m+1

ĝ(x′)(−1)ω
′ ·x′ ∑

x′′∈GF(2)n−m−1

(−1)ω
′′ ·x′′ .

According to the orthogonal property of Walsh function, for all nonzeroω′′,
(−1)ω

′′ ·x′′ = 0. Consequently, (9) can be rewritten as follows:

C( f, g) =
∑

ω′∈GF(2)m+1

ω′′=0

F̂(ω)Ĝ(ω).

Since f is a balancedmth-order correlation-immune Boolean function [14],F̂(ω) = 0
for all ω with W(ω) ≤ m, whereW(ω) denotes the Hamming weight ofω. Therefore,

C( f, g) = F̂(θ)Ĝ(θ), (10)

whereθ ∈ GF(2)n, andθi1 = θi2 = · · · = θim+1 = 1, θim+2 = θim+3 = · · · = θin = 0.
Since I (z; x′) 6= 0, by Theorem 2,Cf (x′) 6= 0. So, F̂(θ) 6= 0. By (10), g is the

maximum correlator if and only if̂G(θ) = sgn(F̂(θ)), which is the Walsh transform of
a⊕ xi1 ⊕ xi2 ⊕ · · · ⊕ xim+1,a ∈ GF(2). Thus, the maximum correlator off with respect
to x′ is eitherxi1 ⊕ xi2 ⊕ · · · ⊕ xim+1 or 1⊕ xi1 ⊕ xi2 ⊕ · · · ⊕ xim+1.

3. Correlation Analysis of Bent Functions

The notion of bent function was originally introduced in combinatorial theory [10]. In [7]
it has been shown that the absolute values of the correlation coefficients of a bent function
to every linear or affine function are equal, thus giving a solution to the linear correlation
problem when bent functions are used as nonlinear combiners. The construction of bent
functions has been studied in [7], [9], [11], [2], and [3].

Definition 3. A Boolean functionf (x1, x2 . . . , xn) is called a bent function if|F̂(ω)| =
2−n/2 for all ω ∈ GF(2)n.

Let z = f (x1, x2, . . . , xn) be a bent function. It is clear thatf is not correlation-
immune. Moreover,z is correlated to every subsetx′ = (xi1, xi2, . . . , xim) of m variables,
1 ≤ m ≤ n. An important problem relating to correlation attacks is how large the
correlation would be. Since bent functions are not balanced, we cannot use Theorem 1
to calculate the maximum correlationCf (x′), nor can we use Theorem 2 to obtain upper
and lower bounds forCf (x′). In what follows, we derive upper and lower bounds for
Cf (x′) and I (z; x′), respectively.
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Lemma 2. Let z = f (x1, x2, . . . , xn) be a bent function. For any subsetx′ of m
variables xi1, xi2, . . . , xim,∑

y∈GF(2)n
(ex′(y)− 1

2 F̂(0))2 = 22m−n−2.

Proof. Let V(i1, i2, . . . , im)= {ω: ω ∈ GF(2)n,ωim+1 =ωim+2 = · · · = ωin = 0}. Then
V(i1, i2, . . . , im) is anm-dimensional subspace ofGF(2)n. For anyω in the subspace,
let o(ω) = (ωi1, ωi2, . . . , ωim), then

F̂(ω) = 1

2n

∑
x∈GF(2)n

(−1) f (x)(−1)ω·x

= 1

2n

∑
x∈GF(2)n

(1− 2 f (x))(−1)o(ω)·x
′

= 1

2m

∑
y∈GF(2)m

(1− 2P(z= 1|x′=y))(−1)o(ω)·y.

By the inverse Walsh transform,

1− 2P(z= 1|x′=y) =
∑

ω∈V(i1,i2,...,im)

F̂(ω)(−1)o(ω)·y.

Thus,

P(z= 1|x′=y) = 1
2 − 1

2

∑
ω∈V(i1,i1,...,im)

F̂(ω)(−1)o(ω)·y.

From the expression for̂F(0),

F̂(0) = 1

2n

∑
x∈GF(2)n

(−1) f (x) = 1− 2P(z= 1),

it follows that

P(z= 1) = 1
2 − 1

2 F̂(0). (11)

Therefore,

ex′(y)− 1
2 F̂(0) = P(z= 1|x′=y)− P(z= 1)− 1

2 F̂(0)

= − 1
2

∑
ω∈V(i1,i2,...,im)

F̂(ω)(−1)o(ω)·y.

By Parseval’s theorem,∑
y∈GF(2)m

(ex′(y)− 1
2 F̂(0))2 = 2m

4

∑
ω∈V(i1,i2,...,im)

F̂2(ω) = 22m−n−2,

which completes the proof of the lemma.
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Theorem 4. Let z= f (x1, x2, . . . , xn) be a bent function. Then for any subsetx′ of m
variables xi1, xi2, . . . , xim, the mutual information I(z; x′) is bounded by

(2m−n−1− 2−n) log2 e≤ I (z; x′) ≤ (2m−n − 2−n−1) log2 e. (12)

Proof. By (2), (7), and (11), the mutual informationI (z; x′)can be described as follows:

I (z; x′) = h( 1
2 − 1

2 F̂(0))− 1

2m

∑
y∈GF(2)m

h( 1
2 + ex′(y)− 1

2 F̂(0)).

By Lemma 1,

1− (F̂(0))2 log2 e≤ h( 1
2 − 1

2 F̂(0)) ≤ 1− 1
2(F̂(0))

2 log2 e

and

1−4(ex′(y)− 1
2 F̂(0))2 log2 e≤ h( 1

2+ex′(y)− 1
2 F̂(0)) ≤ 1−2(ex′(y)− 1

2 F̂(0))2 log2 e.

From the two inequalities derived above, it follows that

I (z; x′) ≥ 1− (F̂(0))2 log2 e− 1

2m

∑
y∈GF(2)m

(1− 2(ex′(y)− 1
2 F̂(0))2 log2 e)

= 2 log2 e

2m

∑
y∈GF(2)m

(ex′(y)− 1
2 F̂(0))2− (F̂(0))2 log2 e

and

I (z; x′) ≤ 4 log2 e

2m

∑
y∈GF(2)m

(ex′(y)− 1
2 F̂(0))2− 1

2(F̂(0))
2 log2 e.

By Lemma 2,

(2m−n−1− 2−n) log2 e≤ I (z; x′) ≤ (2m−n − 2−n−1) log2 e,

which completes the proof of the theorem.

Theorem 4 shows that the mutual information betweenz and every subset ofm variables
is small if n is large andm is small. For example, ifn = 10 andm = 4, then 0.01 ≤
I (z; x′) ≤ 0.02. Based on Theorem 4, we can determine how many LFSRs should be
combined such that the resultant combination generator can defend against certain types
of correlation attacks.

Theorem 5. Let z= f (x1, x2, . . . , xn) be a bent function. Then for any subsetx′ of m
variables xi1, xi2, . . . , xim, the maximum correlation coefficient Cf (x′) is bounded by

2m−n − 2−n/2+2 ≤ Cf (x′) ≤ 2(m−n)/2+ 2−n/2+2.
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Proof. Let g be a Boolean function ofx′ andz′ = g(x′). By (11), (7), and (6), we have

C( f, g) = F̂(0)+ 4

2m

∑
y∈GF(2)m

g(y)(ex′(y)− 1
2 F̂(0)). (13)

Sinceg(y) ∈ GF(2),

C( f, g) ≤ |F̂(0)| + 2

2m

∑
y∈GF(2)m

|g(y)F̂(0)| + 4

2m

∣∣∣∣∣ ∑
y∈GF(2)m

g(y)ex′(y)

∣∣∣∣∣
≤ 3|F̂(0)| + 4

2m

∣∣∣∣∣ ∑
y∈GF(2)m

g(y)ex′(y)

∣∣∣∣∣ .
By (8), it follows that

C( f, g) ≤ 3|F̂(0)| + 2

2m

∑
y∈GF(2)m

|ex′(y)|

≤ 4|F̂(0)| + 2

2m

∑
y∈GF(2)m

|ex′(y)− 1
2 F̂(0)|.

On the other hand,

∑
y∈GF(2)m

|ex′(y)− 1
2 F̂(0)| ≤

(
2m

∑
y∈GF(2)m

(ex′(y)− 1
2 F̂(0))2

)1/2

.

Hence,

C( f, g) ≤ 4F̂(0)+ 2

2m

(
2m

∑
y∈GF(2)m

(ex′(y)− 1
2 F̂(0))2

)1/2

.

By Lemma 2,C( f, g) ≤ 2(m−n)/2 + 2−n/2+2, which implies thatCf (x′) ≤ 2(m−n)/2 +
2−n/2+2.

Next, letĝ(y) = sgn(ex′(y)). Then, by (8) and (13),

C( f, ĝ) = F̂(0)+ 2

2m

∑
y∈GF(2)m

|ex′(y)| − 2F̂(0)

2m

∑
y∈GF(2)m

ĝ(y)

≥ 2

2m

∑
y∈GF(2)m

|ex′(y)− 1
2 F̂(0)| − 4|F̂(0)|

≥ 4

2m

∑
y∈GF(2)m

|ex′(y)− 1
2 F̂(0)|2− 4F̂(0).

By Lemma 2,C( f, ĝ) ≥ 2m−n − 2−n/2+2. Hence,Cf (x′) ≥ 2m−n − 2−n/2+2.
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4. Conclusion

In this paper the maximum correlation of a Boolean function to all Boolean functions of
a subset of its variables was investigated. It was shown that the correlation of a balanced
Boolean function to Boolean functions of a subset of the input variables is large if
the output of the balanced Boolean function is highly correlated to the subset of input
variables. Hence, the correlation between the output and every small subset of input
variables should be small in order to defend against correlation attacks, which coincides
with the idea of Siegenthaler’s correlation-immunity. For a bent function ofn variables,
it has been shown that the mutual information between the output and every subset of
m random input variables is small ifn is large andm is small, and the same is also true
for the maximum correlation. Therefore, bent functions are a class of good nonlinear
combining functions with respect to correlations to both linear and nonlinear Boolean
functions.
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