J. Cryptology (2001) 14: 1-15 Journal of

DOI: 10.10075001450010014 CRYPTOLOGY

© 2001 International Association for
Cryptologic Research

On the Existence of Secure Keystream Generators

Andrew Klappet

Department of Computer Science,
779A Anderson Hall, University of Kentucky,
Lexington, KY 40506-0046, U.S.A.
klapper@cs.uky.edu

Received July 1996 and revised April 2000
Online publication 27 November 2000

Abstract. Designers of stream ciphers have generally used ad hoc methods to build
systems that are secure against known attacks. There is often a sense that this is the best
that can be done, that any system will eventually fall to a practical attack. In this paper
we show that there are families of keystream generators that resist all possible attacks
of a very general type in which a small number of known bits of a keystream are used to
synthesize a generator of the keystream (called a synthesizing algorithm). Such attacks
are exemplified by the Berlekamp—Massey attack. We first formalize the notions of a
family of finite keystream generators and of a synthesizing algorithm. We then show
that for any functiorh(n) that is in®(2"/9) for everyd > 0, there is a family3 of
periodic sequences such that any efficient synthesizing algorithm outputs a generator
of sizeh(log(pernB))) given the required number of bits of a sequeBce B of large
enough period. This resultis tight in the sense that it fails for any faster growing function
h(n). We also consider several variations on this scenario.

Keywords. Binary sequences, Keystream generators, Security, Cryptography, Stream
ciphers.

1. Introduction

A stream cipher is often used when it is necessary to encrypt large amounts of data very
quickly. It is considered secure if knowledge of a small number of bits of the keystream
cannot be used to recover the entire keystream (a “known plaintext” attack).

Historically, the design of stream ciphers has been largely a matter of finding ad hoc
methods of foiling existing cryptanalytic attacks. Designers often feel that seeking a
truly secure and efficient stream cipher is hopeless, that the best they can do is design a
system that resists known attacks. The purpose of this paper is to explore the possibility

* This research was funded in part by NSF Grant #NCR-9400762. Part of this work was carried out while
the author was visiting the Isaac Newton Institute, Cambridge University, Cambridge, England. Parts of this
paper have appeared in the proceedings of Eurocrypt '96, Zaragoza, Spain.

2 A. Klapper

that there exist families of stream ciphers that resist cryptanalysis by very large classes
of attacks. We use asymptotic complexity rather than Shannon theory as the basis for
notions of security. A family of stream ciphers is secure against all efficient attacks of
a certain general type if all such attacks require asymptotically large numbers of bits of
the keystream.

The attacks we are concerned with use a small number of known bits of a keystream
to synthesize a fast generator for the keystream. For example, if the keystream can be
generated by a linear feedback shift register (or LFSR) of lengtthen 2 bits of
the sequence suffice for the Berlekamp—Massey algorithm to determine the LFSR that
generates the keystream [15]. The ingredients that make this attack of concern are as
follows:

1. A class of fast devices (LFSRs) that generate all possible eventually periodic se-
guences.

2. A polynomial time algorithmA and a polynomiap(n) such that if a sequence can
be generated by a device of sizgthen p(n) bits of the sequence suffice férto
determine the device.

A great deal of energy has gone into the design of (nonlinear) feedback registers that
resist the Berlekamp—-Massey attack, often by ad hoc methods (see for example [3], [10],
[11], [18], and [19]). Also, several similar attacks exist based on other types of keystream
generators [12], [14].

In this paper we show that there is a family of efficiently generated sequences that
resist all such attacks. However, the techniques used to show their existence, while
recursive, give no practical method for finding such a family. The essential idea here is
that whatever sequence is predicted by a cryptanalytic algorithm given a short prefix,
there is an efficiently generated sequence with the same prefix that is distinct from the
predicted sequence. We also consider the case where the cryptanalytic algorithm is only
expected to approximate the keystream. We use previously known results on the covering
radii of Reed—Muller codes to show that there is an efficiently generated sequence whose
Hamming distance from the predicted sequence is large.

We want to be clear that we are only describing sequences that are secure against a
large class of attacks. We do not claim that these sequences are usable in secure stream
ciphers, even if we had a practical construction for generators of the sequences. In fact,
the sequences described have m-sequences as large prefixes and hence would leave large
prefixes of messages insecure if they were used in stream ciphers.

The existence of provably secure sequence generators was studied previously by Yao
[21] and by Blum and Micali [2]. Their models and results were different, however.
First, their sequence generators were arbitrary polynomial time computable generators
(in the size of the seed). We use a much more restrictive model: sequences are generated
by finite state machines whose state change functions can be computed by fast circuits.
Second, the attacks considered by Yao and by Blum and Micali required the availability
of all previously generated bits to predict the next bit (by a so-called next bit test). The
attacks considered here require that only a small number (polynomially many in the
size of the resulting generator) of bits be available to generate all remaining bits. Third,
the attacks consider by Yao and by Blum and Micali were probabilistic while those
considered here are deterministic. Fourth, the existence results they gave were based

On the Existence of Secure Keystream Generators 3

on unproved complexity theoretic assumptions, such as the intractability of the discrete
logarithm problem. Our results hold independent of any such assumptions. Finally, the
generators we consider are far more efficient than those considered by Yao and by Blum
and Micali.

Maurer also considered the design of private key cryptosystems that resist all attacks
[16]. His point of view differed from ours in that the system he designed required
a globally accessible source of public randomness. Also, the notion of security was
probabilistic—the probability that an enemy could obtain information was shown to be
exceedingly small.

In Section 2 we abstract the notions of fast keystream generators and of efficient
algorithms for synthesizing such generators given a small number of initial bits. In
Section 3 we first show that there is a family of keystream generators that admits no such
synthesizing algorithm. We then show that an efficient, secure fahdy sequences
exists. This family is secure in the sense that, for every family of keystream genefators
that admits a synthesizing algorithm, the size of the smallest generafathiat outputs
a given sequence8 in B grows at a superpolynomial rate in the size of the smallest
efficient generator foB. In Section 4 we show that the bounds in Section 3 are optimal.

In Sections 5 and 6 we consider two variants: the case where the cryptanalyst is only
required to generate a fraction of the keystream; and the case where the number of bits
the cryptanalyst has access to is linear in the size of the smallest generator.

2. Definitions

In this section we describe keystream generators, the basic objects of study of this
paper, and notions of security for families of keystream generators. These are finite state
machines with output, whose states are given by bit vectors.

Definition 2.1. A (keystreahgeneratoris a 4-tuple(S, F, g,) such that

1. Sis afinite set (thestatey;

2. F: S— Sis afunction (thestate changéunction);
3. g: S— {0, 1} is a function (theoutput functiol); and
4. 5 is an element of (theinitial state).

A keystream generator outputs an infinite eventually periodic binary sequence by
iterating the state change function and applying the output function to the sequence of
statesg(so), 9(F(s0)), 9(F(F(0))),

In what follows, because we are concerned with the size and speed of a generator, we
assume tha$ is a set ofn bit vectorsx = (Xo, ..., Xn—1) for somen. In this case we
say that the generator hngth n We further generally use generators whose output
functions are of the formy(X) = Xo. In this case the generator is completely determined
by F andsy, and we often abuse the notation by identifying the generator with the pair
(F, sp) or simplyF if the state is irrelevant. Note that a generator of lemgi¥ith a more
general output function can always be replaced by one of lemgtt with this special
form of output function with no increase in the complexity (by any reasonable measure
of complexity).

4 A. Klapper

In algorithms dealing with descriptions of such state change functions, we assume that
the functions are described by circuits using bounded fan-in, unbounded fan-out gates.
We usually use binary (fan-in two) AND gates (denotg¢binary XOR gates (denoted
@), and NOT gates (denoted). Such circuits can be encoded as binary strings [1]. The
sizeof a generatoi is the minimum number of gates in a circuit that computes the
function F. Thedepthof a generatoF is the depth of the minimum depth circuit that
computes-.

One might wonder whether there is a single efficient generator whose output resists
all cryptanalytic attacks based on knowledge of the first few bits of the sequence. To
see that this cannot be, suppd3és such a sequence, generatedrayThe algorithm
that outputd= whenever the known plaintext bits coincide with a prefixBois always
successful again® (although it does badly against other sequences). Thus we turn to
asymptotic security and families of sequences.

A family of (keystreapgeneratorsF, is aninfinite collection of keystream generators.

We let 7, denote the set of keystream generatorgiof lengthn. If B is an infinite
eventually periodic binary sequence, then #hiwspan ofB, denoted. (B), is the least
integern such thaB can be output by a generator/fy (or oo if there is no such). We

denote the period dB by perB).

We are concerned with generators whose state change functions can be computed
quickly. Lets(n) be the maximum over ak in F, of the depth ofF. We sayF is

1. fastif §(n) € O(log(n));
2. shortif wheneverF € F generates sequenée theni ~(B) is O(log(pen B))).

Note that for a fast family the sizes (numbers of gates) of the generatgfsare
polynomial in the lengths of the generators, since a démtincuit with fan-in at most
two has at most®2gates. In fact, in all but one case in this paper, the sizes of fast families
of generators described are linear in the lengths of the generators. For a fast short family,
the depth of the smallest generator of a sequé&hisa?) (log(log(pen B)))), and the size
is a polynomial in the log of the period.

Our basic concern is whether, given a small number of bits of a sequgznge can
efficiently synthesize the smallest generatafFithat outputsB.

Definition 2.2.

1. AlgorithmT is anF-synthesizing algorithnf, when given the inpuby, . . ., bk_1,
T outputs the encoding of a generatét, s) € F such that the firsk output bits
of F with initial states areby, . .., bx_1.

2. T is effectiveif:

(a) Itrunsin polynomial time irk.
(b) Thereisapolynomigh(n) suchthatift ~(B) = n < oo, oninputh, ..., bx_1
with k > p(n), T outputs anF, s) € F of lengthn that generateasll of B.

3. Afamily F of generators isynthetidaf there is an effectiveF-synthesizing algo-

rithm.

Fact 2.3. The family of Linear Feedback Shift Registers and the family of Feedback
with Carry Shift Registerfl4] are synthetic families

On the Existence of Secure Keystream Generators 5

We say that a family of sequences is secure with respect to a family of generators if
there is either no way to synthesize the best generator in the family for a given sequence,
or the length of the best generator grows quickly with the period of the sequence.

Definition 2.4. Let B = B?, B, ... be a sequence of binary sequences of increasing
periods. Let

Ax () =rxr(B").
ThenB is F-securef either

1. Fis not synthetic; or
2. for everyk > 0, we have

Ar 5(n) € Q(og(perB")¥).

In either case, for large enougtthe shortest generator jf generatingB" cannot be
found effectively.

Observe that we have required a synthesis algorithm to find the smallest generator
in the family F that outputsB. One might more generally consider algorithms that
output generators whose length is only close to minimal. However, any family that is
secure against all attacks of the restricted type must also be secure against all attacks
of this more general type. SuppoBés such an algorithm, synthesizing generators in a
family 7. Assume that with enough (polynomially many) bits of a sequehaajtputs
a generator that generates the correct sequence and that the length of this generator
is at most polynomial in the length of the minimal such generator.Eebe the set
of generators that is actually output By on various inputs. Thef is also anF’-
synthesizing algorithm. Th&-span andr’-span of a sequence are polynomially related,
so theF'-security of a family of sequences implies it is secure agdinst the more
general sense.

In describing the growth rates of functions, we say a funcfigm) is subexponential
if for everyd > 0,

f(n) e O2"9).

It is superpolynomiaif for everyk > 0,
f(n) e Q).

A family is secure againsk if the F-span of its sequences is superpolynomial in the
logs of their periods. In fact, we show that for any subexponential funttioh, there
are families whose--spans are greater thadlog(period). It is well known that there
are subexponential superpolynomial functions.

3. Existence of Secure Keystream Generators

In this section we prove the existence of families of keystream generators that resist all
synthesis attacks. We prove this in the strong sense that for every attack, all but finitely
many sequences in the constructed family resist the attack.

6 A. Klapper

Theorem 3.1. Let h(n) be any subexponential functiomhere exists a sequence of
binary periodic sequencds = B!, B2, ... such that

(a) B can be generated by a famify of fast short generators such that the length of
the generator of B is at most twice the log of the period of"'B
(b) For every synthetic family’, if m is sufficiently largethen

Ar (M) > h(log(perB™))).

In particular, if we let h be superpolynomighenB is F’-secure for every famil§’ of
keystream generatars

Proof. Foreach synthesis algorithin let 71 be the family of generators that is output
by T.LetF!, 72, ... be an enumeration of the synthetic famili€s of generators such
that eachFt occurs infinitely often. Such an enumeration is possible because the set of
all algorithms is enumerable. (We must be careful here. The set of all synthetic families
of generators is not enumerable. Many families have generators that are simply never
output by the synthesis algorithm, so many families correspond to the same algorithm.
If, however, we restrict attention to those families all of whose generators are actually
output by the synthesis algorithm, then there is at most one family per algorithm.) Let
the corresponding synthesis algorithmsTde T2,

We construct3 in stages by a diagonalization argument. Atitthestage we construct
B' to have appropriate properties with respecfio ..., F'. Let

p(n) = n¢

be so that for 1< j < i, T! synthesizes a generator i that outputs any sequen&e
given

Pz (S)

bits of S. _
Lett = [log(i + 1)]. We construcB' so that it has period

per(B') = 2t 4t — 1,
and can be generated by a generator of lekgtht + 3 and depth
max([log(k + 1)1, flog(t)1) + 3

for somek.
Letr be

1. larger than the period of any previoBs;
2. larger thart; and
3. large enough that, for eveky> r, we have

244 < h(log(2* +1)).

On the Existence of Secure Keystream Generators 7
Choosen andk so that
nd> 2 and X <nd <2k

We construci + 1 generators whose outputs are identical to one period of an m-
sequence for'2! — 1 bits. Thejth generator then outputs the binary expansion of the
integerj. This can be done by adding circuitry to the generator of the m-sequence that
checks for an all zero state, and, when found, switches to a separate pure cycling register
of length [log(i + 1)] that has been loaded with the binary expansion.ofhe total
length of this generator is

2k 4+ 2
2 log(penB))
O(log(penB))),

logi +1) +k+3

IAIA

whereB is the output sequence. (Note that two extra bits are needed for the output and
for a flag to tell which part of the generator is currently active.) The depth of the circuit
is

O(log(k) + loglog(i)) = O(log(k)).

Hence this is a fast short generator. _
There must be at least one of these sequences, which we d&ndibat satisfies

AFi(B) > n

2k/d

h(log(2* + t))
h(log(per(B')))

VoIV

for 1 < j <1i. This concludes stage O

For sequenceB generated by a short familf, 1 =(B) is O(log(pen B))).

Corollary 3.2. Let h(n) be any subexponential functiofhere exists a sequence of
binary periodic sequences = B, B2, ... such that for every synthetic famify,

)L]:/,B(m) e Q (h(A}‘B(m)))

Corollary 3.3. There exist(uncountably manynonsynthetic families of fast short
generators

The constructions in Theorem 3.1 can be made recursive. That is, there is an effective
procedure which, given, outputs a list of the generators # in the first case oB'
(or a generator oB') in the second case. Such a procedure, however, is likely to be
impractically slow.

8 A. Klapper
4. Exponential Bounds Are Impossible

In this section we show that Theorem 3.1 is sharp in the sense that the fumctomot
be replaced by an exponential function. We first need a lemma.

Lemma4.1l. Thereisapolynomialtime algorithm whigfiven2p or more consecutive
bits of a periodic sequengeutputs the period of the sequen(léthe algorithm is given
fewer than2p bits it may output anything

Proof. Suppose we are giverkits of a sequence. In tim@(k?), we can find the
leastp such that

b =byp forall 0<i<2k—p.
We claim that ifq is the true period ank > g, thenp = g.
We havep < g sinceq satisfies the above condition. Lgtbe any index and let
j=xq+ywith0O<y<gd.Theny < 2k — pso
= byp
= Dj1p.

Thusq dividesp and sag = p. O

Theorem 4.2. Let h(n) = 2"/9 be an exponential functiormnd letB = B, B?, ...
be any sequence of periodic binary sequendégre exists a fast synthetic family of
generatorsF such that for every,i

r7(B') < h(log(perB'))).

Proof. We construct the familyF by describing a generator synthesis algorifhni#
is then the set of generators outputby

A k bit generator generated Ayhas the following form. The last — 1 bits operate
independently of the first bit. The first bit is computed as a function of theklast
1 bits. Thus the generators are, in effect, nonlinear feedback registers with nonlinear
feedforward functions.

Algorithm T will produce a generator of length

[p]

when acting on a sequence of peripdThus
»7(B') = [perBHY]
< hdog(per8")).

Since the number of bits the algorithm can have access to is polynomigt(iB'),
we can assume& knows two complete periods &' . Using the algorithm promised by
Lemma 4.1, we first compute the peripd

A

On the Existence of Secure Keystream Generators 9

The next step is to construct a fast keystream generator whose state sequence has
period p. This can be done, for example, by constructing a maximal period LFSR of
lengthk, with

21 < p< 2k
Thus the period of this LFSR is2- 1. Such an LFSR can be found by an exhaustive
search for a primitive polynomial of degrkeThere are 2 < 2p polynomials of degree
k, and each can be checked for primitivity in time quasi-linegr.imthus such an LFSR
can be found in polynomial time. It can then be modified to switch back to its initial
state aftemp states by using -bit AND to check for thepth state. We call the resulting
generatolG.

The construction is completed by finding a binary functiorkdsits that has the bits
of the sequence as values on fhstates of5. This can be written as an XOR pfterms,
each an AND ok bits. Such an expression can be implemented as a circuit of depth

flog(p)1 + [log(k)1.
Finally, the resulting generator is extended to length

L]
by padding it with
L] =k
dummy bits on the left. O

5. Partial Attacks

For many purposes the attacks considered in the preceding sections are too weak. A
system is also vulnerable if an adversary can find a substantial number of bits of the

keystream. This is especially true if there is enough context in the message to recover
the remaining bits. IfF is a family of generatorsB is a sequence of (eventual) period

m, and O< r < m, theniz,(B) is the size of the smallest generatorin F whose

output agrees witlB on at least bits of each periotiof B.

Definition 5.1. LetT be anF-synthesizing algorithm and @ r (m) < m. We say that
T isr (m)-effective forF if:

1. Itrunsin polynomial time.

2. There is a polynomiap(n) such that ifB is a sequence with (eventual) period
mandn = Az m(B), then on inputby, ..., bx_; with k > p(n), T outputs an
F € F of lengthn. If the sequence generated Byis B, then for anyk,

i,k <i<k+m-1:b =b} >r@m).
F isr (m)-synthetidf there is arr (m)-effective algorithm forF.
1 Some care must be taken here. The sequéhead the output sequend¥ of F may have different

periods, and in fact may not be strictly periodic, only eventually periodic. A reasonable interpretation is that
r/ per(B) is less than or equal to the limit aggoes taoco of |{i, 1 <i < n:b =b}|/n.

10 A. Klapper
Theorem 5.2. Let h(n) be subexponential and let
m
um=5+0mmy

There exists a famil§ of fast short generators such that for evetym-synthetic family
F’, there are infinitely many generators F i with output sequence B of eventual
period m satisfying

Az rm(B) = h(log(per(B))).

Proof. The goal is to find efficiently generated sequences with a large Hamming dis-
tance from whatever sequence is produced by the algorithm we are trying to diagonalize
against. We do so by using Reed—Muller codes and well-known results from coding
theory concerning the covering radii of these codes.

Let f(X) be a polynomial of degree at ma$in n variables. Then the Reed—Muller
codeword associated with is the length 2 Boolean vector whose components are the
2" values off. The Reed—Muller code of lengthand degreel, RM(n, d), consists of
all these codewords.

The output from the generators we construct consist of an m-sequence of period
2% — 1 followed by anR M(n, d) codewordc for somek, n, andd. The parameted is
independent of the stage of the diagonalization (but depend@mi. The first step is to
see that itis possible to construct a fast short generator that outputs such a sequence. The
generator consists of two parts: an LFSR that generates the m-sequence, and a generator
that outputsc. The overall generator can be made to output the m-sequence and then
switch to the generator af This is accomplished by detecting the last state of the LFSR
with an AND ofk bits. This takes depth Igg). Whenc has been output, the generator
then switches back to the LFSR similarly.

The generator that outputan be constructed by starting with a generator of length
n and period 2—modify an LFSR of period 2— 1 so it outputs an extra zero when it
reaches the all zero state. This requires at most depth)l@nd one extra bit of state.

Now ¢ can be generated by computing the value of the funcfiamn the state. Since
the degree off is bounded byd, it is a sum of at most a polynomial im number of
monomials, each of degree at mdstand so can be computed by a circuit of depth

O(log(polynomialn))) = O(log(n)).

Thus we have a sequence of peridd422¢ — 1 generated by a generator of length
n + k + 3 (two extra bits are used for output and for switching between the two modes
of operation) and depth

O(log(n) + log(k)) = O(log(n + k + 3)).
Furthermore,

n+k+3 < 3maxn, k)

3log(2" + 2% — 1),

IAIA

so this is a fast short generator.

On the Existence of Secure Keystream Generators 11

Recall that thecovering radiusof a codeC is the smallest integes such that every
vector in the ambient space is withinof at least one codeword i@. In the past 15
years or so, a large body of literature has been built up concerning the covering radii of
codes (see the excellent surveys [4] and [6]). It is known that the covering radius of the
Reed—Muller coddR M(n, d) for fixed k is at most

2" —t27/2
2 b
wheret depends only od [5]. The constant can be made arbitrarily large by the choice
of d. In our case, if
m
r(m) < > +t'mY/?,

then we choosd so thatt > 4t" 4 1.
Of course we really want sequences that are far from given sequences, but in the

Hamming metric, it is close td, then the complemext of cis far fromb: dist(c’, b) =
2" — dist(c, b) if the length of the code is™2 The Reed—Muller code is close under
complementation (add 1 tb), so we see that there is a Reed—Muller codeword whose
distance from any given sequence of lengths?at least

2n +t2n/2

—

As previously, for each(m)-synthesis algorithri, let 77 be the family of generators
that is output byT. Let F%, 72, ... be an enumeration of the synthetic families of
generators such that eadfy occurs infinitely often. Let the corresponding synthesis
algorithms beT 1, T2, ... and assum@&' is successful when given

Pi ()\]-'i,r(m)(B))

bits of any sequencB. At theith stage of the diagonalization we want to includefin
a fast generatoF, as described above, with outgBitso thath =i) (B) is large.
Let pi (x) < x¢. Letk’ = 3k be large enough that

1.
h(k) < 2K/40 (k _)L/t

and

m=24+2¢_1
is larger than the period of any sequence generated by a generator already incuded
in F.
Let n = k. Thus the generator constructed above generates an m-sequence of period
-1 > h(3k)*
pi (h(3k))
pi (hlog(2* + 2 — 1))
pi (h(log(m))).

\

\%

\

12 A. Klapper

Recall that if

m
r(m) < > +t'mY?,
andt > 4t’ 4+ 1, we can picld so that the covering radius &M(n, d) is at most

2"+ t2"/2
—

We then choose a Reed—Muller codeword RM(n, d) so that whatever sequenté
outputs given the'2— 1 bits of the initial m-sequence, the lastidts disagree with the
codeword on at least

2022 k1

t — 12«1
5 > 5 =+ ()

m
> S+ (t — 121

m
> 5 /(2" 4 2€ — 1)Y2

m
— t/m1/2
> +
bits. As we have seen, such a codeword always exist® betthe sequence one of whose
periods is the m-sequence followed by the codeword. We include the above generator of

Bin F. Then
2421
irem® = n(log (ZFE21)

> h(log(per(B))). O

This result will be improved if easily generated codes with small covering radii can
be constructed. Coding theorists have studied covering radii for some years, but good
asymptotic bounds are difficult to obtain and they seem not to have considered the
guestion of generation of the codewords by short fast registers (although there has been
work on finding good codewords in polynomial time and space [17]). It would also
be desirable to find a sequence of sequerRleso thatB' resists the first r (m)-
synthetic attacks. Using our techniques, such a construction would depend on finding
easily generated codes with snmalliiticovering radij i.e., the smallest such that every
set ofi sequence is within distandeof at least one codeword [13]. Improved results
along these lines will be the subject of a future paper.

6. Linear Synthesis Attacks

In this section we discuss the effect on our results of restricting the power of the synthesis
algorithms.

As defined, synthesis algorithms depend on polynomial bounds. A synthesis algorithm
for a family 7 of generators must work correctly if the number of bits available is at least
a fixed polynomial in theF-span, and the running time must be polynomially bounded

On the Existence of Secure Keystream Generators 13

in the number of bits available. If the degree of the polynomial is large, however, it is
guestionable whether such an attack should be considered strong enough to be of practical
concern. By contrast, the Berlekamp—Massey and the 2-adic rational approximation
algorithms work correctly if at least a linear number of bits are available. The former
algorithm has quadratic running time, while the latter has quasi-quadratic running time.
An algorithm is said to be Bnear synthesis algorithrfor a family F if it requires only

a linear number of bits in = (B) to synthesize a generator fiithat outputsB. ThenF

is said to bdinearly syntheticTheorem 3.1 can be improved if we restrict our attention

to linear synthesis.

Theorem 6.1. Leth(n) € o(2"). There exists a sequence of binary periodic sequences
B = B, B?, ... such that

(@) B can be generated by a fast famify of generators such that the length of the
generator of B is at most twice the log of the period of.B
(b) LetF” be a linearly synthetic familyor every sufficiently large i we have

A7(B") > h(log(perB"))).

Proof. The proof is similar to that of Theorem 3.1. The difference is that now the
polynomial boundb(n) onthe number of bits needed for itik linear synthesis algorithm
to be successful is a linear bound,

p(n) = an

for somea. We then choose to be large enough that for eveky> r,

2k
— > hk + 3).
72 (k+3)

This is possible due to the asymptotic boundhoiThe remainder of the construction is
unchanged. O

This result can then be shown to be tight.

Theorem 6.2. Let h(n) = Q(2"). Let B = B!, B?,... be a sequence of periodic
binary sequenceJ here exists a fast linearly synthetic family of generatbrsuch that
for every |,

»7(B") < h(log(perB")).
Proof. The proof is similar to that of Theorem 4.2. Let
h(n) > c2"

for nsufficiently large. The synthesis algorithm produces a generator of lemtivhen
acting on a sequence of peripd Thus

Ar(BY

|c- perB") |
h(log(perB'))).

IA

14 A. Klapper

By the definition of linear synthesis, it can have access to two entire periods of the se-
guence. The remainder of the construction is identical to that in the proof of Theorem 4.2,
except that we must pad the generator to length . O

7. Conclusions and Open Questions

We have described a general model for attacks on stream ciphers of a very general type.
Using this model, we have proved the existence of families of keystream generators that
resist all such attacks. The proof, however, does not give a practical construction. We
hope to inspire researchers to search for such highly secure keystream generators with
more natural descriptions. The basic open question we leave is whether practical con-
structions can be found for generator and sequence families that satisfy the conclusions
of Theorem 3.1.

One interpretation of the results here is that the common approach to stream cipher
design and analysis—describe a class of efficiently generated sequences with large lin-
ear span, or even resistance to several cryptanalytic attacks—is largely useless. Some
researchers have improved this approach with refined security measures such as the lin-
ear complexity profile [18] and sphere complexity [8]. In a sense, security with respect
to these measures means security for all “pieces” of a sequence, but only against the
Berlekamp—Massey attack. What is really needed is a combination of these approaches
and the approach in the current paper. To wit, a family of practically generated sequences
for which all pieces (in some sense) are asymptotically secure against all possible attacks.

We have also considered only one class of attack on stream ciphers. Other attacks are
possible, for example probabilistic attacks such as correlation attacks [20], differential
cryptanalysis [7], and linear cryptanalysis [9]. It is desirable to formalize such proba-
bilistic attacks and (hopefully) prove the existence of classes of keystream generators
that universally resist them.

We have concentrated on the depth of circuits as a measure of feasibility. This corre-
sponds to time of evaluation. Size (number of gates) is also a concern as it impacts area
and hence cost. In all our theorems except Theorem 4.2 the sizes of the resulting fast
generators are linear in the lengths of the generators. In Theorem 4.2, the sizes of the
fast generators are polynomial in their lengths. We leave open the question as to whether
one can achieve smaller sizes than these.

References

[1] J. Balgizar, J. ez, and J. Gabaor Structural Complexity,ISpringer-Verlag, Berlin, 1988.

[2] M.Blumand S. Micali, How to generate cryptographically strong sequences of pseudorand @tAits,
Journal on Computingvol. 13 (1984), pp. 850—-864.

[3] A.H.Chan and R.A. Games, On the linear span of binary sequences from finite geometdds[EEE
Transactions on Information Theqryol. IT-36 (1990), pp. 548-552.

[4] G.D. Cohen, M.G. Karpovsky, H.F. Mattson, Jr., and J.R. Schatz, Covering radius—survey and recent
results |EEE Transactions on Information Theompol. IT-31 (1985), pp. 328—-343.

[5] G. Cohen and S. Litsyn, On the covering radius of Reed—Muller cdissrete Mathematics/ol. 106—
107 (1992), pp. 147-155.

[6] G.D. Cohen, I. Honkala, S. Litsyn, and A. Lobste@pvering CodesNorth-Holland, Amsterdam, 1997.

[7] C. Ding, The differential cryptanalysis and design of natural stream cipRas$ Software Encryptiaon

On the Existence of Secure Keystream Generators 15

Proceedings 0fLl993 Cambridge Security WorkshpR. Anderson, ed., Lecture Notes in Computer
Science, vol. 809, Springer-Verlag, Berlin, 1994, pp. 101-120.

[8] C. Ding, G. Xiao, and W. SharThe Stability Theory of Stream Ciphetsecture Notes in Computer
Science, vol. 561, Springer-Verlag, Berlin, 1991.

[9] J. Goli¢, Linear cryptanalyis of stream cipheFgst Software EncryptiorProceedings 01994 Leuven
Security WorkshgpB. Preneel, ed., Lecture Notes in Computer Science, vol. 1008, Springer-Verlag,
Berlin, 1995, pp. 154-169.

[10] E.J. Groth, Generation of binary sequences with controllable compl¢é&EE Transactions on Infor-
mation Theoryvol. IT-17 (1971), pp. 288-296.

[11] E.L. Key, An Analysis of the structure and complexity of nonlinear binary sequence genelafeks,
Transactions on Information Thegqmyol. IT-22 (1976), pp. 732—736.

[12] A. Klapper, The vulnerability of geometric sequences based on fields of odd charactdoistital of
Cryptology vol. 7 (1994), pp. 33-51.

[13] A. Klapper, The multicovering radii of codetEEE Transactions on Information Thegryol. IT-43
(1997), pp. 1372-1377.

[14] A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and combiners with mioaomg)
of Cryptology vol. 10 (1997), pp. 111-147.

[15] J.L. Massey, Shift register sequences and BCH decodliief: Transactions on Information Theory
vol. IT-15 (1969), pp. 122-127.

[16] U. M. Maurer, A provably-secure strongly-randomized cipielyances in Cryptology — CRYPTA0,
S.Vanstone, ed., Lecture Notes in Computer Science, vol. 473, Springer-Verlag, Berlin, 1991, pp. 361-73.

[17] J. Pach and J. Spencer, Explicit codes with low covering radifiSE Transactions on Information
Theory vol. IT-34 (1988), pp. 1281-1285.

[18] R. RueppelAnalysis and Design of Stream Ciphe8pringer-Verlag, New York, 1986.

[19] R.A. Rueppel and O.J. Staffelbach, Products of linear recurring sequences with maximum complexity,
IEEE Transactions on Information Theompol. IT-33 (1987), pp. 124-129.

[20] T. Siegenthaler, Decrypting a class of stream ciphers using cipertextiBEl, Transactions on Com-
puters vol. 34 (1985), pp. 81-85.

[21] A.Yao, Theory and applications of trapdoor functioRgceedings23rd IEEE Symposium on Founda-
tions of Computer Scienc&982, pp. 80-91.

