
J. Cryptology (1997) 10:51~9 Journol of

CRYPTOLOGY
�9 1997 International Association for
Cryptologic Research

RIPEMD with Two-Round Compress Function
Is Not Collision-Free

Hans Dobbert in

German Information Security Agency, P.O. Box 20 03 63,
D-53133 Bonn, Germany
dobbertin @ skom.rhein.de

Communicated by Ivan B. Damg~rd

Received 27 March 1995 and revised 14 October 1995

Abstract. In 1990 Rivest introduced the cryptographic hash function MD4. The com-
press function of MD4 has three rounds. After partial attacks against MD4 were found,
the stronger mode RIPEMD was designed as a European proposal in 1992 (RACE
project). Its compress function consists of two parallel lines of modified versions of
MD4-compress. RIPEMD is currently being considered to become an international
standard (ISO/IEC Draft 10118-3). However, in this paper an attack against RIPEMD
is described, which leads to comparable results with the previously known attacks
against MD4: The reduced versions of RIPEMD, where the first or the last round of
the compress function is omitted, are not collision-free. Moreover, it turns out that the
methods developed in this note can be applied to find collisions for the full MD4.

Key words. Dedicated hash functions, RIPEMD, MD4, RACE project, ISO/IEC
10118-3.

1. Introduction and Summary

In 1990 Rivest [4] introduced the hash function MD4. The M D 4 algori thm is defined as

an iterative application o f a three-round compress function.

In view of an attack against the last two rounds o f the compress function o f MD4,

which was found by den Boer and Bosselaers [21, the stronger mode R I P E M D [1] was

des igned as a European proposal in 1992 (R A C E project). The compress funct ion ot"

R I P E M D consists o f two parallel lines of a modif ied version of the M D 4 compress

function.

In what fol lows we show that if the first or the last round of the R I P E M D compress

function is omit ted, then col l is ions can be found by an attack starting with a basically

very s imple idea.

Thus we descr ibe an attack against R I P E M D leading to results which are comparab le

51

52 H. Dobbertin

with those previously known for MD4 (see [2] and [6]), although our attack requires
more computational effort.

Any attack against RIPEMD has to overcome the problem that the two parallel lines of
the compress algorithm have to be handled simultaneously. However, as we shall see this
can be managed if we cancel the first or the last round. This weakness is caused mainly
by the fact that in both lines the message blocks are applied in exactly the same ordering;
while our attack in principle does not depend on the particular choices of Boolean
functions, shifts, and constants (see the Appendix for the definition of RIPEMD).

Therefore, although RIPEMD is certainly stronger than MD4, in our opinion the
intention of the design has not been reached. The effect of combining two parallel chains
of a modified MD4-compress, as is realized in the present version of RIPEMD, is not as
strong as should be expected when the computational effort is doubled.

It has turned out that the methods developed in this note can be applied to find collisions
for the full MD4 (see Section 6). This attack is explained in [3].

It remains a challenging task trying to attack MD5, a strengthened version of MD4
due to Rivest [5], with the techniques presented here (see "Note Added in Proof", p. 68).

Terminology and Basic Notation. Using the term "collision of a compress function"
we assume that the corresponding initial values coincide for both inputs. For "pseudo-
collisions" this is not required. However, the latter are of much less practical importance
and are not considered here.

Throughout, all occurring variables and constants are 32-bit quantities, and accord-
ingly the value of an expression is its remainder modulo 232. The symbols A, v, and
are u~ed for bitwise AND, OR, and XOR, respectively. For a 32-bit word X, let X <<'~
denofe the 32-bit value obtained by circularly shifting (rotation) X left by s bit positions
for 0 < s < 32. To complete this definition set X <<~-s) = X <<(32-~). If X is an expression
then, of course, evaluate it before shifting.

2. Main Result and Plan of the Attack

By RIPEMD [12l (resp. RIPEMD [23]) we denote the hash functions, which are obtained as
reductions of RIPEMD by canceling the last (resp. first) round of the compress function.
(See the Appendix for details.) We can state our main result as follows:

RIPEMD [121 and RIPEMD t231 are not collision-free.

Empirical observations have shown that the attack described below, which leads to
collisions, requires an average of about the same computational effort as 231 computations
of a (two-round) compress function. Concretely this means that it takes on average about
1 day on a 486-PC (66 MHz) to compute collisions.

Our attack is separated into three parts:

Part I: Inner Collisions. The basic idea is to find collisions for compress 1121 or
c o m p r e s s [23] by taking two collections Xg,)(i (i < 16) of words such that, for some i0,
we have Xio ~ Xgo, but Xi = ,~i for i :~ i0. When the compress values of the inputs X

RIPEMD with Two-Round Compress Function Is Not Collision-Free 53

and)~ are computed, then in the first round everything coincides until we come to step
i0. At this point the computations for X and ~" become different. However, in the second
round, Xi0 (resp. Xio) has to be applied again at a certain step. After that, in the remaining
steps, all inputs coincide again. Thus it is natural to try to control the computation in
such a way that after the second application of Xi,, and Xi0 the contents in the registers
coincide.

Therefore we first concentrate on the steps between the first and second application
of Xio (resp.)~i0)- In this part of the attack we try to find suitable values for the contents
of the registers after step i0 - 1 and suitable values for Xio, -~io, and for the X~ = Xi
occurring in the considered segment of the compress function.

Note that the ordering, in which the variables X~ are applied, is exactly the same for
compress112] and c o m p r e s s [231. In both cases we take i0 = 13, since for this choice
we get the shortest corresponding segment of the compress function. We have enough
variables to find a simultaneous collision for the considered segment of the left and right
line ("inner collision"), and, on the other hand, enough variables remain free for the
second part of the attack.

Part Ih Backward Collisions. Suppose we have found an inner collision. Then, in
order to find a collision of the two-round compress function, we have to determine
values for the remaining free variables such that computing backward and starting with
the values of the registers after step i0 - I (these values are given according to Part I)
leads to the same initial value for the left and right line ("backward collision").

Experience has shown that we can even find collisions with 2 I~176 of the 2128 possible
initial values (see Section 4).

Part III : Right Initial Value ("Meet-in-the-Middle"). Finally, the problem remains
that the initial value IVo specified by the definition of RIPEMD [121 and RIPEMD t231 (see
the Appendix) will usually not be among the admissible initial values found in Part II.
Therefore we randomly choose 16 input words for the compress function starting with
11/0, until the output is admissible. This approach works, since we have a very fast test
whether the output is admissible or not (checking a small set of equations). Thus nothing
has to be stored and compared in lists. The computational effort necessary for this part
is usually much smaller than for Part II.

Since two messages found by this attack both have length 2 • 16• (length of words),
they give a collision no matter whether the padding rule is applied or not.

The next sections contain a detailed description of Parts I-III of our attack.

3. Inner Collisions

In this section we show how to find inner collisions for c o m p r e s s I231. For c o m p r e s s [~21
this is much more difficult and requires many technical tricks. (The difficulties seem
to be caused by the asymmetry of the Boolean functionF, which is involved here.) We
restrict ourselves to the easy case, and we only give an inner collision for c o m p r e s s t~21
at the end of this section without proof.

54 H. Dobbertin

By L - c o m p r e s s 1231 and R - c o m p r e s s t231 we denote the left and right line of com-
p ress 1231, respectively. We now consider the sequence of those steps of L - c o m p r e s s 1231
and R - c o m p r e s s [23] between which X~3 occurs the first and the second time, i.e., steps
13-18. In these steps, X~3, X~4, X~5 together with the Boolean vector function

G(X, Y, Z) = (X A Y) v (X A Z) v (Y A Z),

and then XT, X4, and again X~3 together with the Boolean vector function

H(X, Y, Z) = X (9 Y (9 Z

are applied. The constants used in c o m p r e s s [231 are

Ki = 0xSa827999 ,

K2 = 0 x 6 e d 9 e b a l ,

K3 = 0 x 5 c 4 d d 1 2 4 .

We obtain a simultaneous collision for steps 13-18 o[L - c o m p r e s s [231 Lemma A.
and R-compress [231 for

X13 :

X14 :

X15 :

X7 :

X4 ----

0 x a 5 7 d 8 6 6 6 = - - K i - 1,

0 x a 5 7 d 8 6 6 6 : - - K i - l,

0 x a 5 7 d 8 6 6 6 : - - K i - 1,

0 x 9 1 2 6 1 4 5 f = - K 2 ,

a~i tra~,

)713 : Xl3+ 1 : Oxa57d8667,

f(j = Xj (j = 14, 15,7,4) ,

if we use the following "initial values" for step 13 of the left and right line, respectively:

(AL, BE, CL, DL) = (I, 0, 0, 0),

(AR, BR, CR, DR) = (Q , Q + l , K I - Q, K I - Q - 1),

where O is even and satisfies the equation

(2 Q - K I) <<l+(2Q-KI) < < j 2 - Q + K 2 - K 3 + I =0.

In fact, this equation has precisely the even solutions

Q -- 2. OxllOd8f04,

Q -- 2. OxSdda5bdl.

Proof, First we consider the left line. Table 1 shows the contents A i, Bi, Ci, Di of
the registers of the left line after the application of steps i = 1 3 1 8 for the inputs
Xi3, Xj4, X15, XT, X4 as specified above, and for

(Ai2, BI2, Ci2, Di2) = (AL, BE, CL, DE) = (1,0, 0, 0).

RIPEMD with Two-Round Compress Function Is Not Collision-Free

Table l

55

Boolean
Stepi Ai Bi Ci Di Zj X j constant function Shift

12 I 0 0 0 * * * * *

13 1 0 0 ~ - 1 - K i - 1 Ki G I1

14 I 0 [~] - I -1 - K i - I KI G 13

15 I 1"-0-'] 0 - I - 1 - K i - 1 Ki G 12

16 ~ 0 0 - I 0 - K 2 K2 H 11

17 0 0 0 [~ X4 + K2 X4 K2 H 13

18 0 0 [~ DL7 K 2 - K[- 1 - K i - I K2 H 14

Here we set

zj = xj + cons tan t (j = 13, 14, 15, 7, 4, 13)

for the "actual input," where cons tan t denotes the constant of the particular step to be
used according to the definition of the algorithm (see the Appendix). The boxed entries
are those which have been modified in the respective steps.

We have

Di8 = DI7 = (X4 -1- K2 - !) <<13,

Cj8 -- (Dl8 + K2 - Ki - 1) <<14.

In order to verify Table 1 compute

DI3 ---- (0 + G (I , 0 , 0) - 1) <<]l = (- 1) <<tl : (0 x f f f f f f f f) <<11 ---- - 1 ,

Ci4 ---- (0 + G (- I , I , 0) - 1) <<j3=0 <<j3=0,

and so on.
W e h a v e to c o m p a r e th is w i t h Tab le 2 fo r the i npu t s -~13, -~14, X l s , X7, X4, w h e r e

Xt3 ---- XI3 + 1 and .,Yj = Xj (j ---- 14, 15, 7, 4).

Table 2

Boolean
Step i Ai Bi Ci Di Zj ~'j constant function Shift

12 1 0 0 0 * * * * *

13 1 0 0 [3~] 0 - K i K] G I1

14 I 0 [' ~ 0 - 1 - K] - I KI G 13

15 I [] - I 0 - I - K I - 1 Ki G 12

t6 [] 0 - 1 0 0 -K2 K2 H 11

17 0 0 - 1 [- ~ /] X4 + K2 X4 K2 H 13

18 0 0 ~ /)17 K2 - Kt -Ka K2 H 14

56 H. Dobbertin

Table 3

Boolean
Stepi Ai Bi Ci Di Zj x j const, function Shift

12 Q Q + I K I - Q K t - Q - I �9 �9 �9 �9 �9

13 Q Q + I K B - Q [~ - K t - I - K i - 1 0 G 11

14 Q Q + I 1 ~ -1 - K i - I - K t - I 0 G 13

15 Q [~ 0 -1 -KI - I -KI - I 0 G 12

16 1 - ~ BI5 0 - 1 K3 - K2 -K2 K3 H] 1

17 AI6 BI5 0 [- ~ X4 + K3 X4 K3 H 13

18 AI6 BI5 [~ DI7 K3 - Ki - I - K i - 1 K3 H 14

We have

/~)18 = /~17 : (X4 @ K2 - 1) <<13,

Ct8 = (/~18 + K2 - Ks - 1) <<14.

Thus we see that (Als, B18, CEs, Dis) = (,418,/~18, Ci8,/)18) as desired.
For the right line, Tables 3 and 4 show the contents of the registers for steps 12-18.
For verification of Tables 3 and 4 we need the assumption that Q is even and we use

the fact that K~ is odd, for instance:

O13 = (Ki - Q - 1 + G (Q , Q + 1, K l - Q) - K i - 1) <<jl

= (- Q - 2 + ((Q A (Q + 1)) v (Q A (K~ - Q)) v ((Q + 1) A (Kl - Q))))<<ll

= (- Q - 2 + (Q + I)) <<ll = (- 1) <<11 = - 1 .

Further, we have

BIB = BI5 = (2 Q - KI) <<12,

Ai8 = A I 6 = (Q - B I s - i + K 3 - K 2) <<11,

DIS : DI7 = (X a W K 3 - I q - (A I s ~ B I s)) <<13,

C18 ---- (K 3 - K I - l - - [- (A I s ~ B I s ~ D I s)) <<14,

Table 4

Boolean
Step/ Ai [ti 6"i Di Zj)() const, function Shift

12 Q Q + I K I - Q K I - Q - I * * * * *

13 Q Q + I KI - Q [-'0--] - K i - K i 0 G I1

14 Q Q + I [' ~ 0 -K~ - 1 - K i - 1 0 G 13

15 Q ~ - I 0 - K t - 1 - K i - I 0 G 12

16 ~ BI5 -- 1 0 K3 - K2 -K2 K3 H I 1

17 /i, 16 /~15 -1 ~ X4 + K3 X4 K3 H 13

18 ~t16 BI5 [- ~ /)17 K3 - KI -KI K3 H 14

RIPEMD with Two-Round Compress Function Is Not Collision-Free 57

/Yl8 = /~t5 = (2 Q - K I) <<12,

�9 rill8 = ,416 ~- (Q - /~18 - 1 + K3 - K2) <<11,

/)18 = l)17 = (X 4 + K 3 - 1 - (,4186) /~18)) <<13,

CI8 = (K3 - KI - 1 + (-4t8 6)/~18 6) /) 1 8)) <<14.

Thus we conclude that (Al8, Bls, Cis, Dis) = (,4t8,/~ts, C'18,/)18) if and only if

Ais 6) Bi8 = --(Al8 6) Bi8),

i.e., Ai8 -- Bt8 or Ai8 = B18 6) 231 . The first case leads to the equation

(Q - (2Q - Ki) <<12 - 1 + K3 - K2) <<~l = (2Q - Ki) <d2,

or equivalently

(2Q - Ki) <<l + (2Q - Ki) <<12 - Q + K2 - K3 + 1 = 0.

Simply testing all even Q < 232 shows that this equation has precisely the two solutions
given in the lemma. It takes about 30 minutes on a 486-PC. (The corresponding equation
for Ai8 ---- Bi8 6) 231 has no solution.) This completes the proof. []

L e m m a B. We obtain a simultaneous collision for steps 13-18 of L - c o m p r e s s 1121 and
R - c o m p r e s s [,21 for

X13 = 0xb6c474bc,

XI4 = 0xle575831,

Xl5 = 0x767f3bbb,

X7 ---- 0x3a456372,

X 4 = arbitral.,

z~'13 --'-- X13 -F A with A ---- 0xa954a955,

ffj = Xj (j = 14, 15 ,7 ,4) ,

if we use the following "initial values" for step 13 of the left and right line, respectively:

(AL, BL, CL, DL) = (0 • 0 x 0 0 0 0 0 0 0 0 , 0 x 0 0 0 0 0 0 0 0) ,

(AR, BR, CR, DR) ---- (0x1021040a, 0xfb5eaffd, 0x3830a91b, 0x21485a45).

As already mentioned we do not describe the approach leading to the inner collision
given in Lemma B, since it is too complicated to be presented here. The computational
effort for finding these inner collisions is, also in this case, much smaller than the effort
for finding backward collisions.

58 H. Dobbertin

Remark on almost collisions. For the inner collision of c o m p r e s s I231 given in Lem-
ma A, we have A = ,~13 - Xj3 = 1. This A has Hamming weight 1. Hence the corre-
sponding input pairs, which yield collisions of compre s s 1231, give "almost collisions"
for c o m p r e s s [23~] (first round of c o m p r e s s put at the end, see end of the Appendix),
in the sense that their outputs differ only at few bit positions. The reason is that the
difference A between two inputs affects only the very end of the last round, namely
steps 45, 46, and 47. About a portion of 1/70 (empirical observation) of the collisions
for compre s s 1231 found by our attack even have outputs under c o m p r e s s 12311 different
only at two bits. (See the end of Example A; unfortunately, a two-bit difference is the
best result we can achieve in this way.)

Thus it is an interesting question whether Lemma B can also be shown for some A
with Hamming weight 1. In that case, corresponding collisions of c o m p r e s s t121 would
form almost collisions for the full compress function of RIPEMD. However, the best
result that could be achieved in this way is a seven-bit difference in the hash values. The
reason for this restriction is that the XOR operation H, which is applied in the last round,
inherits differences.

4. Backward Collisions

The way to find backward collisions is the same for compress [~21 and compress 1231.
Just to fix the notation, we consider com pre s s 1231 in what follows.

Xj3 does not occur in steps 0-12 and 19-31. Thus, in order to derive collisions of
c o m p r e s s I231 from Lemma A we have to find "backward collisions" for the first 13
steps of the left and right line. That is, we have to compute Xo, Xj X6, X8 Xt2
and common initial values A, B, C, D such that the computation of L-compress [231
and R-compress I231 arrive after step 12 at (AL, BL, CL, DL) and (AR, BR, CR, DR) as
specified in Lemma A, respectively, where X7 = -K2 .

Lemma 1. There is an algorithm which allows the computation of backward collisions
in the above sense. When the algorithm is successful, about 236 classes consisting of
backward collisions, for which the initial values A and D can be chosen freely, are
obtained. The algorithm requires on average about the same computational effort as 23i
computations of a (two-round) compress function.

Proof. First we suppose that we have chosen X8 X~2. (Recall that X 7 is already
fixed.) Then the contents of the registers after the application of step 6 for the left and
the right line, respectively, say

(A t, B L, C~, D~) and (A~, B~, C R, D~),

are fixed and can be found easily by computing backward. It remains to determine
X0 X6 and A, B, C, D in order to find a backward collision. Table 5 shows the
computation of steps 0-6.

Let si denote the number of bit positions to be shifted in step i. Moreover we use the
notations

A U = U R - - U L ,

RIPEMD with Two-Round Compress Function Is Not Collision-Free

Table 5

59

Initial values A B C D Initial values A B C D

Step 0 Ut. B C D Step 0 U R B C D
Step 1 Ut. B C VL Step I l JR B C VR
Step 2 Ui. B Wl. Vt. Step 2 U R B WR VR
Step 3 UL B L Wl. Vl. Step 3 UR B~ WR VR
Step 4 A~. Bl* W L VI. Step 4 A~ B~ WR VR
Step 5 al* B~ WL D~. Step 5 a~ BI~ WR D~
Step 6 a~. BI* C~_ D~. Step 6 A~ B R CI~ D~

A V = VR--VL,

A W = W R - WL.

The following equations arc casily dcrivcd:

0 = / / < < (- s o)
~R

G(UR, B, C) - G(UL, B, C)

G(VR. UR, B) -- G(VL, UL, B)

G(WR, VR, UR) -- G(WL, VL, UL)

G(B~. WR, VR) -- G(B~, WL, VL)

G(A~, B~(, WR) -- G(A L, B~, WL)

G(D~, A~, B~) - G(D~, A~, B~)

U <<t-so) L -1- KI, (1)
= V[~ <t-'II} - V (< (- - S I) -~ - KI, (2)

= W <<(-r - WL<<'-"~) + e , , (3)

= BR <<(.....) -- BL <<(-'') + K,, (4)

a*<<(- '~) - A [<<(. . . .) - A U + K l , (5)

= D R <<{-.`.') - - D~_ <<(-~) - A V + K l , (6)

= CR<<(. . . .) -- ~L~*<<(-'%) I ~ W + g I. (7)

In fact, these equations follow by elimination of Xi from the two equations defining step
i. As an example, step 1 is defined by the equations

VL = (D + G(UL, B, C) + Xi + KI) <<sl ,

VR = (D + G (U R . B , C) + XI) <<s',

which imply (2).
Equations (1)-(7) must hold when we have found a backward collision. Conversely,

if B, C, UL, VL, WL, UR, VR, WR satisfy (1)-(7), then we obtain 264 backward collisions
by setting, for arbitrary A and D:

l l~(--sl l) Xo = - A - G (B , C , D) + ~ R ,

Xi = - D - G(UR, B, C) + VR <<<-r

X2 = - C - G (V R, UR, B) + W <<t-s2).
/:~* <<(-sO

X3 = - B - G(WR, V R, UR) "t- --R " '

, A*<<(-s4) X4 = --UR -- G(B R, WR, VR) "~ "'R
�9 , * r l ,<<(-ss I X5 = - V R - G (A R,B R , W R) + ` . R " ,

X6 = --WR -- G(D~, A~, B~) + C~ <<~--'~'.

(8)

(9)

10)

11)

12)

13)

14)

60 H. Dobbertin

Hence we try to find solutions B, C, UL, VL, WL, UR, VR, WR of (1)-(7). To this end we
make use of the following obvious fact:

There is a very fast algorithm which allows the computation of all solutions of an
equation of the form

G(a0, b0, x + A x) - G (a l , b l , X) = C with givenAx, a0, b0, a l ,b j , andc. (15)

In fact, simply solve this equation recursively and bitwise starting from the lowest bit.
Empirical observations have shown that there exist solutions of (15) with a probability
of about 2-~1, and in this case we obtain an average of 211 solutions.

The basic idea is to derive a sequence of equations from (1)-(7), such that whenever
the preceding equations are solved, the next equation is of the form (15). To manage this
we make two additional settings, which in many cases will reduce the set of solutions,
but on the other hand allow us to determine all remaining solutions very quickly:

AU = - K <<s~ (or (--Ki)<<'~~ (16)

AV = - K ~ <~' (or (--Kl)<<'*'). (17)

The reason for (16) is (1), which suggests these guesses for the value of AU without
knowing UL and UR. Similarly (17) hopefully implies

< < (- ' ' ' - v (+ K, = O,

such that (2) would have at least the trivial solution B = C. Further observe that A W is
fixed by (7):

A W ---- G(D~, A~, B~) - G(D~, A[, S~.) - CR <<(-s") + CL <<(-'~s) + K,.

Equations (6), (5) (2), in this ordering, are now used to compute WE, VL, UL, B,
and finally C:

G(A~, n~, W L "1- A W) - - G(A~, B~, WL) = DR <<(-''~) -- DE <<(-'~) -- AV + Ki, (I)

G(B~, WR, VL + AV) -- G(B~, WL, VL) = AR <<<-') -- AL <<(....) -- AU + Kt, (II)
it/*<<(-sO R*<<(-s~) G(WR, Vp., UL Jr AU) -- G(WL, VL, UL) ~--- ~R -- ~L Jr KI, (III)

G(VR, UR, B) - G(VL, UL, B) = W~ <~-'2) - Wl< <(-s2) + KI, (IV)
l /<<(-sl) V<<(-s0 G(UR, B , C) - G (U L , B,C) = "R -- + K i . (V)

After these preparations we can describe how the algorithm for the search of backward
collisions works in its simplest form:

1. Choose X8 Xi2 randomly and compute the associated values for A[, B~, C~,
D~ and A~, B~, C~, D~. Determine the solutions WE of (I). If they exist, insert
each of them into (II) in order to determine all associated VL. In case of success,
the next step is to consider (III) in order to compute UL, and so on. Refuse each
possibly obtained UL if it does not satisfy (l).

2. If X8 Xt2 have been found such that there are solutions up to (II), then take
these as "basic values." Change randomly one bit of each of the basic values for
Xs Xt2. (The idea is that if a set of values of Xs X I 2 gives solutions to

RIPEMD with Two-Round Compress Function ls Not Collision-Free 61

steps (I) and (II), then values close to them again give solutions to steps (I) and (II)

with a relatively high probability.) Only if you again come to solutions up to (II)

take the changed value as new basic values and continue until you reach (III), and

so on.

Practice has shown that this leads to solutions up to (IV), and then, in most cases,
automatically to solutions of (V).

Observe that the set of solutions has the structure of a tree. We have a set of solutions

WL of (I), such that to each WE there corresponds a set of solutions VL of (II), and so on.

This "avalanche" effect has the consequence that in case we can reach (V), we even find
2 36 or more solutions. []

The combination of Lemmas A and B with Lemma ! implies directly:

L e m m a 2. There is an algorithm which allows the computation o/collisions o f corn-
pres s {121 and c o m p r e s s 1231 with about 2 I~176 different initial values. It requires on average
about the same computational effort as 2 31 computations o f a (two-round) compress
.[unction.

In next example one class of 2 64 collisions for c o m p r e s s 123] is given. It has been

found by the previously described attack (Lemmas A and 1).

Example A (Class of Collisions for compress[231). For arbitrary A and D set

(B,C) : (0x828a0950,0x98080110),

X 0 =

XI =

X2 =

X 3 =

X4 =

X5 =

X 6 =

X 7 =

X8 =

X9 =

XIO =

XII ~---

XI2 =

XI3 =

X14 =

XI5 =

0 x 1 2 4 8 1 0 5 9 + G(B, C, O) - G(B , C, D) - A,

0xa9368b18 -- D,

0xdf3dae71,

0x88bacd2a,

0x618ec5d2

0x53b59054

0xlbb396fc

0x9126145f

0x972a229d

0xe9098eee

0xf0fl721d

0xf8dbb766

0x753ed5cb

0xa57d8666

0xa57d8666

0xa57d8666

62 H. Dobbertin

Xi = Xi fo r / < 16, i - 9 1 3 ,

-~13 = XI3 Ac 1 : 0 x a 5 7 d 8 6 6 7 .

Then we have

compress[231(A, B, C, D; X0 X15) = compress[231(A, B, C, D; J(0)(15).

Explicitly, if for instance we set A = 0 x 0 3 d 0 6 d a 3 and D = 0 x 6 a 6 4 5 c 7 4 , then the
common output under c o m p r e s s [231 is

0 x 7 f 7 3 3 e 3 b 0 x 3 b a c 8 4 2 a 0 x 0 6 1 c 7 c a c 0 x 0 c a 4 1 0 8 9 .

Moreover, we have

compress12311(A, B, C, D; X)

= 0 x 9 b 8 8 8 2 7 2 0 x 6 6 4 8 3 2 1 1 0 x 0 6 9 2 b 4 6 4 0 x 7 5 8 f 5 4 8 b ,

compress123~l(A, B, C, D; X)

---- 0 x 9 b 8 8 8 2 f 2 0 x 6 6 4 8 3 2 9 1 0 x 0 6 9 2 b 4 6 4 0 x 7 5 8 f 5 4 8 b .

That is, the outputs under c o m p r e s s [2311 differ only at two bits.

5. Right Initial Value

By Lemma 2 we find large classes of collisions for the compress functions of RIPEMD llel
and RIPEMD E23], but not yet for these hash functions, because the required fixed initial
value IVo will usually not be among the admissible initial values for collisions found.
However, as we shall see below, this problem is easily avoided by a straightforward
meet-in-the-middle attack.

Example B (Collision for RIPEMD[121).
following words:

M0
MI
M2
M3
M4
M5
M6
M7
M8
M9

Mio
Mjl
Ml2
Mi3
MI4
MI5

: Ox179ee2b9,

: Ox6e14b784,

: Ox2fa520b7,

: OxO9e5c84a,

= Ox6a81e3b5

= Ox5Oc8fbfe

= Ox6d390c47

= Ox7f5292b4,

= Ox50f05934,

= Ox2acd6dd7,

: Ox4afbae78,

= Ox28eda5c3,

= Ox3217765e,

= Oxl6f6ela4,

= Ox54b57bbO,

= Ox46cbe2b6,

The first message M is the sequence of the

MI6 : Ox61dfbl82,

m17 : Ox1808647d,

m18 : Oxfd84f2el,

m19 = Oxb8647a90,

M20 = Oxc3dd8441,

M21 = Oxalfeflel,

M22 = Ox7d15c061,

M23 : Ox3a456372,

M24 : OxO20828dd,

M25 = Ox2beOl4ea,

M26 = Ox321373f7,

M27 = OxOb2266e7,

M28 = Ox87e9ddd2,

M29 = Oxb6c474bc,

M3o = Oxle575831,

M31 = Ox767f3bbb.

RIPEMD with Two-Round Compress Function Is Not Collision-Free

The second message/~/is defined by setting AT/i = Mi (i < 32, i # 29) and

/~29 ---: 0x60191ell.

RIPEMD [121 associates to M and ,~/the same hash value, namely

63

0x7b4d3b7f 0x792ae282 0xfee3cfeO 0xb8cee276,

where the padding rule is also considered. It requires that the 16 words

0x80, 0, 0 0, 0x400, 0

have to be added to M a n d / ~ (see [1]).

This example has been found as follows. First, based on Lemma B, the algorithm
described in the proof of Lemma 1 is applied (i.e., X13 = M29, Xl4 = M30, X15 = M31,
X7 = M23 are given according to Lemma B). In this way we find X8 = M 2 4 X12 =

M28 such that we have a complete tree of solutions for WE, WR, VL, VR, UL, UR, B, and
C satisfying (I)-(V). (Note that here we have to modify the equations in Section 4 by
replacing Kl by - K 0 , because we are now dealing with the first two instead of the last
two rounds.)

From this tree we take a collection of fixed values for WE, WR, VL, VR, UL, and UR,
i.e., (I)-(III) are satisfied. In view of (12), (13), (14) the words X4 = M20, X5 = M21,
X 6 = M22 are now fixed.

Finally choose values for M0 Ml5 randomly, compute

compressU2](IVo; Mo Mls) = (A, B, C, D)

with

IVo = 0x67452301 0xefcdab89 0x98badcfe 0xi0325476

(see the Appendix) and test, for B and C, the following equations:

F(VR, UR, B) -- F(VL, UL, B) -: W <<(-s2) - W <<(-s2) - Ko, (IV)

F(UR, B, C) - F(UL, B, C) = V (<(-s') - VL <<(-'') -- Ko. (V)

If the test is passed, then (A, B, C, D) is an admissible initial value for the second
application of c o m p r e s s [~2], and we define Xo : M~6, Xl = M17, X2 : M~8, and
X3 : M19 using (8)-(11).

Concretely in our above example, we have chosen

WL : 0xcef895d6,

WR : 0x140279c4,

VL : 0x0d5e7745,

VR : 0xb0580b6d,

QL : 0x83901a28,

QR : 0x97ef4cad

64 H, Dobbertin

from a complete tree of solutions of (I)-(V) which have been found. There are 232 pairs
(B, C) satisfying (IV) and (V) in this case.

We can improve this attack by selecting not only one, but several collections of values
for WL, WR, VL, VR, UL, UR from the tree of solutions of (I)-(III). Another trick reducing
the effort is taking Mo M I 4 fixed and changing only M15. Then only one round of
the compress function has to be computed.

6. MD4 Is Not Collision-Free

We have found that the methods developed in this note can be applied to MD4 very
effectively [3]. In fact, collisions can be found for the full MD4 in less than 1 minute on
a PC.

Example C (Collision for MD4). The first message M is the sequence of the follow-

Mo = Ox13985e12, M8 = Oxabel7beO.

Ml = Ox748a810b, M9 = Oxedled4b3.

M2 = Ox4dldfl5a, MIO = Ox412Oabf5.

M3 = OxlSld1516, MII = 0x20771029.

M4 = Ox2d6eO9ac, MI2 = 0x20771027.

M 5 = Ox4b6dbdb9, MI3 = Oxfdfffbff.

M6 = Ox6464bOcS, MI4 = Oxffffbffb.

M7 = Oxfbalc097, MI5 = Ox6774bed2.

ing 32-bit words:

The second message M is defined by setting/14i = Mi (i < 16, i -r 12) and

/~12 = MI2 -[- 1.

MD4 associates to M and)~ the same hash value

Ox711ad51b Oxbbab5e22 Ox618blc76 0x17c15892.

Acknowledgment

The author would like to thank Antoon Bosselaers for checking the attack presented and
giving several useful hints improving the exposition.

Appendix

The hash function RIPEMD is defined as the iteration of a certain compress function,
which we specify below. The computation starts with the initial value

IVo= 0x67452301 Oxefcdab89 Ox98badcfe 0xi0325476.

Each application of the compress function uses four words as initial values and 16 words
of the message as input, and it gives four words output, which are then used as initial

RIPEMD with Two-Round Compress Function Is Not Collision-Free 65

values for the next application. The final output is the hash value. This works, since there
is a padding rule (addition of bits to the message such that its length is a multiple of
512 = 16 x (length of words)). A complete description of RIPEMD can be found in [1].

A. 1. Compress Function of RIPEMD

Define the constants

Ko = 0x50a28be6,

KI = 0x5a827999,

K2 = 0x6ed9ebal,

K 3 = 0x5c4dd124

and the Boolean vector functions

F(X, Y, Z) =

G(X, Y, Z) =

H(X, Y, Z) =

(X A Y) v (-,X A Z),

(X A Y) v (X A Z) v (Y/x Z),

X @ Y ~ Z .

Further, let F F(a, b, c, d, Z, s), GG(a, b, c, d, Z, s), and H H (a, b, c, d, Z, s) denote
the operations

a := (a + F(b, c, d) + Z) <<s,

a := (a + G(b, c,d) + Z) <<s,

a := (a + H(b,c,d) + Z) <<',

respectively. In order to define compress for RIPEMD suppose now that initial val-
ues A, B, C, D and inputs X0 XI5 are given. Copy A, B, C, D into the registers
aa, bb, cc, dd of the left line and the registers aaa, bbb, ccc, ddd of the right line. Then
apply the following steps:

First round

step 0 FF(aa, bb, cc, dd, X0, 11) FF(aaa, bbb, ccc, ddd, Xo + K0, 11)
step 1 FF(dd, aa, bb, cc, Xl, 14) FF(ddd, aaa, bbb, ccc, Xj + Ko, 14)
step 2 FF(cc, dd, aa, bb, X2, 15) FF(ccc, ddd, aaa, bbb, X2 + Ko, 15)
step 3 FF(bb, cc, dd, aa, X3, 12) FF(bbb, ccc, ddd, aaa, X3 + Ko, 12)
step 4 FF(aa, bb, cc, dd, X4, 5) FF(aaa, bbb, ccc, ddd, X4 + Ko, 5)
step 5 FF(dd, aa, bb, cc, Xs, 8) FF(ddd, aaa, bbb, ccc, X5 + Ko, 8)
step 6 FF(cc, dd, aa, bb, X6, 7) FF(ccc, ddd, aaa, bbb, X6 + Ko, 7)
step 7 FF(bb, cc, dd, aa, X7, 9) FF(bbb, ccc, ddd, aaa, X7 + Ko, 9)
step8 FF(aa, bb, cc, dd, X8,11) FF(aaa, bbb, ccc, ddd, X8 + Ko, ll)

66 H. Dobbertin

step 9
step 10
step 11
step 12
step 13
step 14
step 15

step 16
step 17
step 18
step 19
step 20
step 21
step 22
step 23
step 24
step 25
step 26
step 27
step 28
step 29
step 30
step 31

step 32
step 33
step 34
step 35
step 36
step 37
step 38
step 39
step 40
step 41
step 42
step 43
step 44
step 45
step 46
step 47

F F (dd, aa, bb, cc, X9, 13)
FF(cc, dd, aa, bb, Xlo, 14)
F F(bb, cc, dd, aa, Xll, 15)
F F(aa, bb, cc, dd, Xl2, 6)
FF(dd, aa, bb, cc, X13, 7)
F F(cc, dd, aa, bb, Xl4, 9)
F F (bb, cc, dd, aa, X ls, 8)

FF(ddd, aaa, bbb, ccc, X9 + Ko, 13)
FF(ccc, ddd, aaa, bbb, Xlo 4- Ko, 14)
FF(bbb, ccc, ddd, aaa, Xll + Ko, 15)
F F(aaa, bbb, ccc, ddd, X12 + Ko, 6)
FF(ddd, aaa, bbb, ccc, X13 4- Ko, 7)
FF(ccc, ddd, aaa, bbb, Xi4 4- Ko, 9)
F F(bbb, ccc, ddd, aaa, XI5 + Ko, 8)

Second round

GG(aa, bb, cc, dd,
GG(dd, aa, bb, cc,
GG(cc, dd, aa, bb,
GG(bb, cc, dd, aa,
GG(aa, bb, cc, dd,
GG(dd, aa, bb, cc,
GG(cc, dd, aa, bb,
GG(bb, cc, dd, aa,
GG(aa, bb, cc, dd,
GG(dd, aa, bb, cc,
GG(cc, dd, aa, bb,

X7 + K1,7)
X4 4- Kl, 6)
S13 4- K1,8)
X1 + KI, 13)
Xj0 + Kl, 11)
X6 4- Kl, 9)
X15 + K~, 7)
X3 4- KI, 15)
XI2 + Kj, 7)
Xo + KI, 12)
X9 4- KI, 15)

GG(bb, cc, dd, aa, X5 + K1, 9)
GG(aa, bb, cc, dd, XI4 4- K1,7)
GG(dd, aa, bb, cc, X2 + Kl, 11)
GG(cc, dd, aa, bb, XII + KI, 13)
GG(bb, cc, dd, aa, X8 4- K1, 12)

GG(aaa, bbb, ccc, ddd, X7, 7)
GG(ddd, aaa, bbb, ccc, X4, 6)
GG(ccc, ddd, aaa, bbb, X13, 8)
GG(bbb, ccc, ddd, aaa, X1, 13)
GG(aaa, bbb, ccc, ddd, Xlo, 11)
GG(ddd, aaa, bbb, ccc, X6, 9)
GG(ccc, ddd, aaa, bbb, Xls, 7)
GG(bbb, ccc, ddd, aaa, X3, 15)
GG(aaa, bbb, ccc, ddd, X12, 7)
GG(ddd, aaa, bbb, ccc, Xo, 12)
GG(ccc, ddd, aaa, bbb, X9, 15)
GG(bbb, ccc, ddd, aaa, Xs, 9)
GG(aaa, bbb, ccc, ddd, XI4, 7)
GG(ddd, aaa, bbb, ccc, X2, 11)
GG(ccc, ddd, aaa, bbb, Xij, 13)
GG(bbb, ccc, ddd, aaa, Xs, 12)

Third round

H H (aa, bb, cc, dd,
H H (dd, aa, bb, cc,
HH(cc, dd, aa, bb,
HH(bb, cc, dd, aa,
HH(aa, bb, cc, dd,
HH(dd, aa, bb, cc,
HH(cc, dd, aa, bb,
HH(bb, cc, dd, aa,
HH(aa, bb, cc, dd,
HH(dd, aa, bb, cc,
HH(cc, dd, aa, bb,

X3 + K2, 11)
Xlo 4- K2, 13)
X2 4- K2, 14)
X4 + K2, 7)
X9 4- K2, 14)
XI5 4- K2, 9)
X8 + K2, 13)
X~ 4- K2, 15)
XI4 4- K2, 6)
X7 4- K2, 8)
Xo 4- K2, 13)

HH(bb, cc, dd, aa, X6 + K2, 6)
HH(aa, bb, cc, dd, Xll + K2, 12)
HH(dd, aa, bb, cc, Xl3 + K2, 5)
HH(cc, dd, aa, bb, X5 + K2, 7)
HH(bb, cc, dd, aa, Xl2 + K2, 5)

HH(aaa, bbb, ccc, ddd,
HH(ddd, aaa, bbb, ccc,
l-I H (ccc, ddd, aaa, bbb,
H H (bbb, ccc, ddd, aaa,
H H (aaa, bbb, ccc, ddd,
HH(ddd, aaa, bbb, ccc,
H H (ccc, ddd, aaa, bbb,
H H (bbb, ccc, ddd, aaa,
HH(aaa, bbb, ccc, ddd,
HH(ddd, aaa, bbb, ccc,
HH(ccc, ddd, aaa, bbb,
H H (bbb, ccc, ddd, aaa,
H H (aaa, bbb, ccc, ddd,
H H (ddd, aaa, bbb, ccc,
HH(ccc, ddd, aaa, bbb,
H H (bbb, ccc, ddd, aaa,

X3 + K3, 11)
Xlo 4- K3, 13)
X2 + K3, 14)
X4 + K3, 7)
X9 + K3, 14)
X15 + K3, 9)
X8 + K3, 13)
X1 4- K3, 15)
X14 4- K3, 6)
X7 + K3, 8)
Xo + K3, 13)
X6 4- K3, 6)
XII -t- K3, 12)
XI3 4- K3, 5)
X5 + K3, 7)
XI2 -t- K3, 5)

RIPEMD with Two-Round Compress Function Is Not Collision-Free 67

Finally compute the output AA, BB, CC, DD as follows:

AA = B 4- cc 4- ddd,

B B = C 4- dd 4- aaa,

CC = D 4- aa 4- bbb,

D D = A 4- bb 4- ccc.

That is one sets

compress(A, B, C, D; X0, Xi X15) = (AA, BB, CC, DD).

A.2. Compress Functions of RIPEMD [121 and RIPEMD E231

By compress [~21 we denote the reduced version of compress, where the last round
(steps 32~J~7) is omitted. Similarly, compress [231 denotes the reduced version of com-
press, where the first round (steps 0-15) is omitted and--for the sake of convenience--
the application of the Xi is permuted such that they occur in their natural ordering in the
first round of compress [23] (i.e., the second round of compress). Explicitly the steps
of compress [231 are therefore:

First round of compress [23]

step 0 GG(aa, bb, cc, dd, Xo 4- Kj, 7)
step 1 GG(dd, aa, bb, cc, Xl 4- Kl, 6)
step 2 GG(cc, dd, aa, bb, X2 + K1, 8)
step 3 GG(bb, cc, dd, aa, X3 + K~, 13)
step 4 GG(aa, bb, cc, dd, X4 4- K I , 1 1)

step 5 GG(dd, aa, bb, cc, X5 4- KI, 9)
step 6 GG(cc, dd, aa, bb, X6 4- Kl, 7)
step 7 GG(bb, cc, dd, aa, X7 4- Kj, 15)
step 8 GG(aa, bb, cc, dd, Xs 4- Kl, 7)
step9 GG(dd, aa,bb, cc, X94- Ki, 12)
step 10 GG(cc, dd, aa, bb, Xlo 4- Kl, 15)
s tepl l GG(bb, cc, dd, aa, Xll 4- Ki ,9)
step 12 GG(aa, bb, cc, dd, X12 4- Kl, 7)
step 13 GG(dd, aa, bb, cc, X13 + Ki, 11)
step 14 GG(cc, dd, aa, bb, Xj4 + Kl ,13)
step 15 GG(bb, cc, dd, aa, Xj5 + KI, 12)

GG(aaa, bbb, ccc, ddd, Xo, 7)
GG(ddd, aaa, bbb, ccc, Xl, 6)
GG(ccc, ddd, aaa, bbb, X2, 8)
GG(bbb, ccc, ddd, aaa, X3, 13)
GG(aaa, bbb, ccc, ddd, X4, 11)
GG(ddd, aaa, bbb, ccc, Xs, 9)
GG(ccc, ddd, aaa, bbb, X6, 7)
GG(bbb, ccc, ddd, aaa, X7, 15)
GG(aaa, bbb, ccc, ddd, X8, 7)
GG(ddd, aaa, bbb, ccc, X9, 12)
GG(ccc, ddd, aaa, bbb, Xio, 15)
GG(bbb, ccc, ddd, aaa, Xl l , 9)
GG(aaa, bbb, ccc, ddd, X12, 7)
GG(ddd, aaa, bbb, ccc, X13, 1 1)
GG(ccc, ddd, aaa, bbb, Xj4, 13)
GG(bbb, ccc, ddd, aaa, Xls, 12)

Second round of

step 16 HH(aa , bb, cc, dd, X7 4- K2, 1 1)
step 17 H H (d d , aa, bb, cc, X4 4- K2, 13)
step 18 HH(cc , dd, aa, bb, Xl3 4- K2, 14)

compress [23]

H H (aaa, bbb, ccc, ddd, X 7 4- K3, I 1)
H H (d d d , aaa, bbb, ccc, X4 4- K3, 13)
HH(ccc , ddd, aaa, bbb, X13 + K3, 14)

68 H. Dobbertin

step 19 HH(bb, cc, dd, aa, XI + K2, 7)
step 20 HH(aa, bb, cc, dd, XI0 -1- K2, 14)
step 21 HH(dd, aa, bb, cc, X6 + K2, 9)
step 22 HH(cc, dd, aa, bb, Xj5 + K2, 13)
step 23 HH(bb, cc, dd, aa, X3 + Ke, 15)
step 24 HH(aa, bb, cc, dd, Xl2 + K2, 6)
step 25 H H (dd, aa, bb, cc, Xo + K2, 8)
step 26 HH(cc, dd, aa, bb, X9 + K2, 13)
step 27 HH(bb, cc, dd, aa, X5 + K2, 6)
step 28 HH(aa, bb, cc, dd, Xl4 + K2, 12)
step 29 HH(dd, aa, bb, cc, X2 + K2, 5)
step 30 HH(cc, dd, aa, bb, Xll + K2, 7)
step 31 HH(bb, cc, dd, aa, X8 + K2, 5)

H H (bbb, ccc, ddd, aaa, X j + K3, 7)
HH(aaa, bbb, ccc, ddd, Xlo + K3, 14)
HH(ddd, aaa, bbb, ccc, X6 + K3, 9)
HH(ccc, ddd, aaa, bbb, Xl5 + K3, 13)
HH(bbb, ccc, ddd, aaa, X3 + K3, 15)
HH(aaa, bbb, ccc, ddd, Xl2 + K3, 6)
H H (ddd, aaa, bbb, ccc, Xo + K3, 8)
HH(ccc, ddd, aaa, bbb, X9 + K3, 13)
H H (bbb, ccc, ddd, aaa, X5 + K3, 6)
HH(aaa, bbb, ccc, ddd, X14 § K3, 12)
H H (ddd, aaa, bbb, ccc, X2 + K3, 5)
HH(ccc, ddd, aaa, bbb, X11 + K3, 7)
H H (bbb, ccc, ddd, aaa, X8 + K3, 5)

The reduced version of RIPEMD, where compress is replaced by compress [~2]
(resp. compress[23]), is denoted by RIPEMD [12] (resp. RIPEMD[231).

Because we refer to it in a remark concerning almost collisions (see the end of Sec-
tion 3), we finally define the three-round compress function compress t2311 as a modifi-
cation of the original RIPEMD compress, where the first round is put at the end. The
first two rounds of compress [23~] coincide with compress 123]. The ordering in which
the blocks Xi are applied in the single steps of c o m p r e s s [2311 is the same as for com-
press, since this ordering is a fundamental design principle of RIPEMD. The last round
of compress 123JJ is therefore defined as follows:

step 32 FF(aa, bb, cc, dd, X3, 1 l)
step 33 FF(dd, aa, bb, cc, Xlo, 14)
step 34 FF(cc, dd, aa, bb, X2, 15)
step 35 FF(bb, cc, dd, aa, X4, 12)
step 36 FF(aa, bb, cc, dd, Xg, 5)
step 37 FF(dd, aa, bb, cc, Xl5, 8)
step 38 FF(cc, dd, aa, bb, X8, 7)
step 39 FF(bb, cc, dd, aa, Xl, 9)
step 40 FF(aa, bb, cc, dd, XI4, 11)
step 41 FF(dd, aa, bb, cc, X7, 13)
step 42 FF(cc, dd, aa, bb, Xo, 14)
step 43 FF(bb, cc, dd, aa, X6, 15)
step 44 FF(aa, bb, cc, dd, XII, 6)
step 45 FF(dd, aa, bb, cc, X13, 7)
step 46 FF(cc, dd, aa, bb, Xs, 9)
step 47 FF(bb, cc, dd, aa, Xl2, 8)

FF(aaa, bbb, ccc, ddd, X3 + Ko, I l)
FF(ddd, aaa, bbb, ccc, Xlo + Ko, 14)
FF(ccc, ddd, aaa, bbb, X2 + Ko, 15)
FF(bbb, ccc, ddd, aaa, X4 + Ko, 12)
F F(aaa, bbb, cec, ddd, X9 + Ko, 5)
F F(ddd, aaa, bbb, ccc, XI5 -~- K0, 8)
FF(ccc, ddd, aaa, bbb, X8 + Ko, 7)
FF(bbb, ccc, ddd, aaa, XI + Ko, 9)
FF(aaa, bbb, ccc, ddd, XI4 + Ko, 11)
FF(ddd, aaa, bbb, ccc, X7 + Ko, 13)
FF(ccc, ddd, aaa, bbb, Xo + Ko, 14)
F F(bbb, ccc, ddd, aaa, X6 + Ko, 15)
FF(aaa, bbb, ccc, ddd, X~l + Ko, 6)
FF(ddd, aaa, bbb, ccc, Xl3 + Ko, 7)
FF(ccc, ddd, aaa, bbb, X5 + Ko, 9)
FF(bbb, ccc, ddd, aaa, Xl2 + Ko, 8)

Note Added in Proof(July 1996). As a reaction to the presented attack, RIPEMD has
meanwhile been replaced in the ISO/IEC Draft 10118-3 by its strengthened succes-
sors RIPEMD-160 and RIPEMD-128 (H. Dobbertin, A. Bosselaers, and B. Preneel,
RIPEMD- 160: A strengthened version of RIPEMD, Fast Software Encryption (Proceed-

RIPEMD with Two-Round Compress Function Is Not Collision-Free 69

ings of the 1996 Cambridge Workshop on Cryptographic Algorithms), Lecture Notes in
Computer Science, vol. 1039, Springer-Verlag, Berlin, 1996, pp. 71-82).

Very recently it has been demonstrated that collisions of the compress function of
MD5 can be found (H. Dobbertin, The status of MD5 after a recent attack, CryptoBytes,
The technical newsletter of RSA Laboratories, vol. 2, Summer issue, 1996).

References

[1] A. Bosselaers and B. Preneel (eds.), Integrity Primitives for Secure Information Systems, Final Report
of RACE Integrity Primitives Evaluation (RIPE-RACE 1040), Chapter 3: RIPEMD, Lecture Notes in
Computer Science, vol. 1007, Springer-Verlag, Berlin, 1995, pp. 69-111.

[2] B. den Boer and A. Bosselaers, An attack on the last two rounds of MD4,Advances in Cryptology, CRYPTO
'91, Lecture Notes in Computer Science, vol. 576, Springer-Verlag, Berlin, 1992, pp. 194-203.

[3] H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption (Proceedings of the 1996 Cambridge
Workshop on CryptographicAlgorithms), Lecture Notes in Computer Science, vol. 1039, Springer-Verlag,
Berlin, 1996, pp. 53-69. (An extended version will appear in this journal.)

[4] R. Rivest, The MD4 message-digest algorithm, Request for Comments (RFC) 1320, Internet Activities
Board, Internet Privacy Task Force, April 1992.

[5] R. Rivest, the MD5 message-digest algorithm, Request for Comments (RFC) 1321, Internet Activities
Board, Internet Privacy Task Force, April 1992.

[6] S. Vaudenay, On the need of multipermutations: Cryptanalysis of MD4 and SAFER, Fast Software En-
cryption (Proceedings of the 1994 Leuven Workshop on Cryptographic Algorithms), Lecture Notes in
Computer Science, vol. 1008, Springer-Verlag, Berlin, 1995, pp. 286-297.

