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1. Introduct ion 

RSA (Rivest, Shamir, and Adleman) [81 is today's most popular public key encryption 
scheme. Batch-RSA [4] is a method to compute many (n/log2(n), where n is the security 
parameter, throughout logarithms are to the base 2) RSA decryption operations at a 
computational cost approaching that of one normal decryption. It requires that all the 
operations use the same modulus, but distinct, relatively prime in pairs, short, public 
exponents. A star-like key agreement scheme could use such a system to slash complexity 
at the center. We show a real life example of such a system--secure portable telephony. 
Unfortunately, in this system Batch-RSA cannot be employed effectively, due to a delay 
component which arises from the nature of RSA key exchange. We then show that 
mathematical ideas similar to Fiat's can lead to a Batch Diffie-Hellman key agreement 
scheme, that does not suffer such delay and is comparable in efficiency to Batch-RSA. 
We prove that this system is as hard to break on the average as RSA with short public 
exponent, where the average is over all messages in the maximal cyclic subgroup of Z~v, 
N being the modulus. 

The current system may also have application in Discrete-log based e-cash systems, 
where a bank can process many e-coins in parallel, and in DL based key escrow systems. 
The gain factor ofn/logZ(n) is becoming more significant as we move from n = 512 to 
n = 1024 and beyond. 

* Work done at Bellcore, Morristown, N J, U.S.A. 
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Section 2 describes Fiat's original Batch-RSA method, in Section 3 we show how 
the same ideas could be used with a Diffie-Hellman-like system, and we motivate this 
transition. Section 4 presents security analysis for the newly proposed system. 

2. Batch-RSA 

Let N = p �9 q, p - 1 = 2p' ,  q - 1 = 2q', p,  q, p ' ,  q '  are primes. Suppose we have to 
1 ~el computem i m o d N ,  f o r t =  0, 1, 2 . . . . .  b -  l,  where  b is the batch size, and thee i  sare 

relatively small (and the inverses 1~el mod~.(N) are large, Z(N) = (p - 1). (q - 1)/2). 
b-I rap~el The main idea of Batch-RSA is to compute first c - l-L=0 mod N, where p = 

b - I  
I'Ii=0 el, using a special efficient binary tree structure, to be described later. The second 
phase is to compute m - c 1/p mod N, which is a full size modular exponentiation (but the 

b-I I/ei cost is spread over b computations). The last phase is to break m --- l--[i=0 mi mod N 

into its b separate components m~/~' mod N, i --- 0, 1, 2 . . . . .  b - 1, which is the desired 
output of  our computation. This is done using the binary tree developed in the first step 
in a very efficient way. 

The Binary  Tree. To simplify explanations we assume that b = 2 k, for some k. Create 
a complete binary tree where the leaves are labeled m0, rnl, m2 . . . . . .  m b - l .  A path is 
identified with the corresponding binary sequence ~ E*, E = {0, 1}. We use the symbol 
e to denote the string of length zero. Right sons are associated with 1, and left sons with 
0. We refer to any arc in the tree using the unique path leading to it, i.e., 17 ~ Z k', k' < k 
is the arc in depth k' from the root, which is approached when traversing the tree from 
the root according to r/. If  rl is of  length k, then it leads to a leaf labeled mi such that 
rl is the binary representation of i. Let x ~ E.  Ox denotes a sequence composed of  x 
concatenated to the right of rl, -~ denotes the complement o fx .  Each arc 0 has label l(rl). 
Arcs in the tree are labeled bottom-up according to the following rule. 

�9 Let Ox be a path leading to a leaf associated with message mi, then l(rl~) = el. 
�9 For rl ~ E k', k' < k - 1, l ( o x )  = l(rls �9 I(0s 

The above labeling procedure is independent of  the actual messages {mi }. It depends on 
the exponents only, hence if those are fixed, this procedure may be done off line, once 
and for all. Nodes in the tree contain data, which depend on both the messages and the 
exponents. We refer to each node by the path leading to it. The data stored in node ~7 is 
denoted d(r/). Initially, the content of  each leaf i is the corresponding message m,. The 
content of  each node in the tree is computed bottom-up, after its sons were computed 
using d(r/) - d(rl0) t~~ �9 d(rll) l~"l) mod N. It follows that the content of  the root is the 
desired d(e)  - l-lib=-~ m~/e' mod N. This concludes the first phase. 

After computing M =- d(e )  l/p - [-[ib=-~ ml/e'  mod N (second phase), we use the tree 
(top-down) to break M into its components (third phase). This is done recursively as 

follows. 
Let 0, 1 . . . . .  r - 1 be the leaves associated with the left son of  the root (and r, r + 

b - I  
1 . . . . .  b - 1 with the right son). Note that 1(0) = I-Iq__-0 l el, l(1) = Hi=q el, and p = 
l(0) �9 I(1). Using the Chinese Remaindering Algorithm [1] compute X, such that X --- 
0 mod el, i = 0 . . . . .  r - 1, and X --- 1 mod el, i = r . . . . .  b - 1. Here we use the fact 
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that the ei's are relatively prime in pairs. From the construction of X it follows that X 
0 mod 1 (0) and X = 1 mod l(l) ,  hence there exist X I and X0 such that X = l ( l ) .  X1 + 1 

r - I  I /e ,  l/e, 
and X : / (0) -X0.  DenoteM0 = I-li=0mi modU,  and M, = l-I~-)mi modN.  
For convenience we use the shorthand/o,/l, do, dl instead of l (0) , / ( l )  . . . . .  etc. Since 
Mo =- a o't"/pmoa'N, and MI - dtl ' / pmodN,  we have dl --= Ml~ ~  and do 

M~' rood N. The reader can easily verify that Mo =-- MX/ (d~  ' .  d~ ~ mod N, and this is 
the computation carried in the third phase when going down from the root to its left son. 
The right son is simply MI -~ M/Mo rood N. The d's  were computed in phase I, and 
are stored in the nodes. The X's do not depend on the messages and may be computed 
off-line. The process repeats recursively, until at the leaves the desired output is reached. 

As is shown in [4] the total complexity of a batch computation approaches that of 
one full size exponentiation, so the gain factor is O(n/log2n), which is true for Batch 
Diffie-Hellman as well. 

3. Batch Diffie-Hellman and Its Motivation 

We consider a star-like graph representing, for example, a personal communications 
system. In this graph, the center, through the leaves (called "ports") agrees upon a 
session key with each of the nomadic units (called "portables"). The ports are part of 
the network, and are trusted. Each port holds a secret key that is used to authenticate 
the network in a transaction. As is shown at the end of the section on security, a port 
has sufficient data to factor the modulus. This implies that for RSA-based schemes, each 
port must be trusted at the highest level. In the case of DL based systems, we can still 
have large enough factors p and q such that DL modulo each of them is difficult (i.e., 
even after factorization). In practice, ports sometimes have poor physical protection, in 
which case it makes sense to do crypto-calculations on behalf of ports in some better 
protected central office. The port in this case is reduced to just an antenna + transmitter. 

A naive system might assign a fixed public exponent ei to port i. However, the center, 
when batch processing takes place, cannot know ahead of time which ports will be 
active (assuming, for example, that a portable communicates via the nearest port, and 
only when it requires some service from the center). Thus the use of this fixed assignment 
will require an untenable pre-processing phase (since precomputed binary trees will be 
required for all possible combinations of ports). Instead, we can precompute a tree for a 
group of exponents associated with the center (not the ports) and assign these exponents 
to individual key-agreement transactions dynamically, upon service request by a portable. 

A representative RSA-based key agreement protocol is one where each of the parties 
picks a random number, encrypts it with the counterpart's public key, and sends it to the 
counterpart. The parties decrypt the received cryptograms, and use some combination 
of the two random numbers as a session key. Given the constraint of dynamic exponent 
assignment (described in the previous paragraph), it is not possible for a portable to 
obtain the center's public key (which for RSA includes modulus and exponent) until 
after the portable has requested service, because this is when the "batch" would be 
defined and exponents assigned. Thus, a batch implementation of this protocol would 
allow batch processing to begin only after the last encrypted message is received at the 
center. This would mean that batch processing would incur a delay which is dependent 
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upon the response time of the slowest portable in the batch. (For example, a noisy radio 
link to a single portable could degrade the key-agreement response times of the network 
to other portables.) This property is most likely unacceptable in any real-time system 
(e.g., the users are waiting to make calls). While this delay is asymptotically immaterial 
(a constant), in practice it is significant. 

A Diffie-Hellman key agreement scheme with comparable security does not suffer 
from such a delay. When a portable signals its request for key agreement, it can accom- 
pany the request with sufficient data for the center to begin batch processing. 

We summarize the difference between RSA- and DH-based batch processing in this 
context as follows: In RSA the process involves: Portable contacts a port, and and requests 
service, port is assigned a public key, and sends it to the portable, and finally maybe after 
delays the port sends a message encrypted with that public key to the port, who sends 
it to the center for batch processing. With a DH-based scheme the portable sends the 
request together with the crypto-message (we cannot call it cryptogram) to the port, and 
then the port is assigned a public key. Batch processing starts as soon as enough requests 
have arrived (and no later than some small upper bound). The above delay incurred in 
the RSA scheme is absent in the DH scheme. 

The current system may also have application in Discrete-log based e-cash systems, 
where a bank can process many e-coins in parallel, and in DL-based key escrow systems. 
The gain factor of n/log 2 (n) is becoming now more significant as we move from n = 512 
to n ----- 1024 and beyond. 

The following is a basic DH scheme, as was first published in [3]. Let (Si, Pi) be the 
secret and public keys, respectively, of portable i, i = 1 . . . . .  n, and let (Sj, Pj) be the 
secret and public keys dynamically assigned to port j .  The central facility is trusted by 
all ports. For simplicity we describe here Batch DH for the simplest DH system. 

In the basic Diffie-Hellman scheme there is some prime modulus, N, common 
to the whole system, and some primitive element of GF(N), denoted a, such that 

(Vi)[Pi ==- ct s~ rood N], similarly, (Vj)[Pj =_ ot~ mod N], and a session key between 

i and j is SKij =-- ot s~~ mod N, efficiently computable exclusively by i and j (or the 
center on behalf of j). Many other variations exist. For example, sometimes it may be 
desirable to choose a composite modulus (in which we refer to the system as CDH) [9], 
[7], and most of the time we need key agreement systems that authenticate the users, and 
are dynamic [ 10]. 

In order for the central authority to be able to use Batch-DH we have to introduce 
additional constraints. 

�9 First, the modulus should be a composite, with secret prime factorization (two large 
primes) known only to the central facility, and such that factorization of N is hard. 
The base element is created as described in Lemma 1 (see section on security). 

�9 Second, the secret key of each port j (or the j th member of a group of secret 
keys available for dynamic assignment at the center), S), is not chosen at random. 
Rather a relatively small ej, is chosen, and its multiplicative inverse modulo ~.(N), 

is computed. This is Sj. As before, Pj ~ ~ mod N. For modulus of size n bits we 
need ej < log2(n). 

�9 Third, the ej's must be relatively prime in pairs. 
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4. Security 

The fol lowing lemma is well known. As before, let p - 1 = 2p', and q - 1 ---- 2q ' ,  where 

p '  and q '  are large primes. 

L e m m a  1. Let e~ and fl be generators o f  the multiplicative groups Z*p and Z q, respec- 
tively,, and let y ~ Z~N , y ~ c~ mod p, y = fl mod q (i.e., y is obtained from cl and fl 
using Chinese Remaindering). Then y generates a maximal cyclic subgroup of  Z* u, it 
is of  size )~(N) = (p - 1)(q - 1)/2 (]'or our choice o f  p and q). We denote this cyclic 
subgroup M. 

C o m m e n t .  In fact, for the above choice of p and q, if we choose y at random with 

uniform distribution over Z~v, we get a generator  for M with probabil i ty ~ 1/8: If 

we pick y with uniform distr ibution in Z~v, then with probabil i ty 1/2 it is in M, with 

probabili ty ~ 1/2, each of  ordp(y)  = p - 1, and ordq(y)  = q - 1 (there are ~0(q - 1) 

different generators of Zq, see, e.g., Proposit ion II. 1.2 of I5], so for q - 1 = 2q '  we have 

~0(q - 1) = q '  - 1, which means about half  the elements  are generators).  

We now give evidence to the security of our scheme, namely,  if we assume that 

RSA with short public key is hard to break on the average, over the subset  M, then so 

is restricted CDH. This follows from Lemma 2, and the corollary which immediate ly  
follows it. RSA is usually used with short public exponents.  If such RSA was easily 
breakable over M, then it would not be considered secure, since M covers about half  the 
instances. 

Lemma 2 says that the Composi te  Dif f ie -Hel lman key agreement  scheme is at least 
as hard to break on the average as RSA for messages in M, to within a small constant.  

The basic problems are: 

The RSA cracking problem: 

Input. (N, e, c) such that e is invertible mod )~(N) and c is invertible mod N. 
Output. m between 1 and N - 1 such that c =-- m ~ mod N. 
The solution is uniquely defined by m --- c ' mod N with x = e -I mod L(N) .  

The D - H  cracking problem is: 

hzput. N, a, b, c such that b and c are powers of a mod N. 

Output. a xv rood N such that b = a -~ mod N and c = a y mod N. x and y are uniquely 
defined mod orderu (a), and so is xv.  Thus,  the solution is uniquely defined. 

When  N is a composi te  the DH system is called Composite DH (CDH). A CDH 

system is restricted if a (and hence b, c) are restricted to the multiplicative subgroup 

M, as defined above. Similarly, RSA is restricted if the message, m, and hence the 
cryptogram, c, are in M. 

L e m m a  2. Suppose there exists apt algorithm that breaks the restricted Composite 
Diffie-Hellman key agreement scheme, with modulus N = pq, p -  1 : 2 p', q -  1 = 2q', 
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where p' and q' are primes, in time t ( n ), with probability q (n ), where n = Iog2(N) is a 
securit3.' parameter: Then there exists an algorithm to break restricted RSA in time t (n ) 

with probability q (n)/8.  

Proof.  Assume there exists an oracle AL,  such that for all N, A, B, C. where each 
of  A, B, C is in M. A L ( N ,  A, B, C) =- A ' . ` 'modN,  where B = A-' m o d N ,  and C = 
A '  rood N. and let e ~ x T mod2,(N).  

Given a restricted RSA cracking problem, we use oracle AL to solve it, as follows: 

1. Pick a random k' 6 Z~v (with probability 1/8 it is a generator of M, see Comment  

after Lemma 1 ). 

2. Compute/4 --- 2/" mod N. 
3. Call oracle A L ( N , / 4 ,  y,  c), where c is the cryptogram given in the RSA problem. 

Suppose V which was picked in the first step is a generator of M. Then the oracle 's  

answer in the last step is m, because m 6 M and hence (3y)[m =- 7~], hence g --- 
/4', c =- r m =-/5 '-Y, where all these congruences are modulo N. 

Once ~, is fixed, the above mapping is one-to-one, therefore, the reduction is measure 
preserving [2 ], and therefore preserves average case complexity. Success probability of  
this reduction is q (n ) /8  from Step 1. [] 

Corol la ry .  The reduction o f  Lemma 2 does not depend on the length o f  e. The case in 
which we are interested is CDH with short inverse. RSA with short public key reduces to 

CDH with exactly one short inverse by the same construction. 

L e m m a  3. A Composite Di~e-Hel lman  key agreement scheme, in which exactly one 

o f  the exponents has a short inverse (<  O( log(N)) )  is at most as hard to break on the 

average (over all messages) as RSA with short public key. 

Proof.  Let AL2  be an oracle that solves the RSA problem, where the public exponent 
e is short (e < O( log(N)) ) ,  i.e., A L 2 ( N .  e, c) = m, such that m e -- c rood N. Given a 

CDH problem defined by 

blput. N, a, a t ,  a.". 

Output. a"-" mod N, where x -i _ e mod )~(N) is short, we use oracle AL2  to solve it as 

follows: 

I. Find e ,  such that (a")" -= a rood N (since e is short, exhaustive search is feasible). 

2. Call oracle A L 2 ( N ,  e, a-"). 

The answer of oracle AL2  is a ~.', as required. 
In this reduction the mapping is one-to-one. Therefore, it is measure-preserving [2], 

and therefore preserves average case complexity. [] 

The following lemma shows that a port has sufficient data to factor the modulus. As 
mentioned betbre, this is devastating for RSA-based systems, but for DL-based systems, 
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if we choose, say, p and q of size 500 bits each, then DL is still hard per today's best 
published algorithms. 

Lemma 4. Suppose N = pq, p and q are large primes, such that p - 1 = 2p' ,  and 
q - 1 = 2q', where p' andq '  areprimes, n = Iogz(N), a n d x v  = 1 mod )~(N), such that 
x is o f  size log(n) bits. Then there exists a polynomial time algorithm (in n) that given 

y fiwtors N. 

Proof. Try all candidates x of size < log(n) bits. For each compute xv - 1. This is a 
small multiple of ,k(N) for the right x, so one can find all small factors of  xy  - 1, the 
rest is p'q', which yields N ' s  factorization. [] 

The next lemma states that if we use a CDH where both parties have secret exponents 
with short inverses, then a complete outsider can effectively calculate the session key. 

Lemma 5. Composite Di[fie-Hellman key agreement scheme, in which both exponents 
have short inverses is easily breakable for  6/7r 2 o f  the instances. 

Proof. If both secret exponents (x, y) have short inverses (el,  e j )  then, as before, the 
adversary can find them by exhaustive search (raising the public keys to the power of e 
until he gets a). If, in addition, the two short inverses are relatively prime (happens with 
probability 6/:r  2, see a theorem by Dirichlet in Knuth II, p. 324) the adversary can break 
the system. First he finds a and b such that aei + bej = 1, using the extended Euclid 
gcd algorithm [1 ]. Multiplying this equation by xy  we get ay + bx = xy  mod ~.(N). It 
follows that the adversary can compute the session key a '~  = (a,) t , .  (a~)a mod N. [] 

Of course, the reduction of Lemma 2 does not hold when both exponents have short 
inverses (we remind the reader that portables use secret exponents with long inverses). 

Recently Don Coppersmith found that if two similar messages are RSA encrypted 
with the same small public exponent, then the messages could be efficiently found (e.g., 
if they are 90% similar, then exponent 3 is too small). This is irrelevant to our scheme, 
or to the evidence of  security given above (the reductions are from RSA encryption with 
one message). 

Conclusions 

Batch-RSA can significantly slash computation load in centralized servers that must do 
many large exponentiations simultaneously, but if the purpose is establishing distinct key 
agreements with each of many clients (such as in cellular communication) it incurs delays, 
where the slowest client delays the whole batch. We show thai similar mathematical ideas 
apply to DH-based schemes, that are free of those delays. We prove that the new scheme 
is as secure as RSA encryption with short public exponent, given one cryptogram. 



96 Y. Yacobi and M. J. Belier 

Acknowledgments 

We wish to thank Raft Heiman and Arjen K. Lenstra for reviewing earlier versions of this 
paper, and for their many helpful comments. Special thanks go to the anonymous referee 
of Journal of Cry. ptology for most educating discussions, which greatly improved this 
paper. 

References 

[ 1 ] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison- 
Wesley, Reading, MA, 1974. 

[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the Theory of Average Case Complexity, Proc. 
STOC, 1989, pp. 204-216. 

[3] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, vol. 22, 
pp. 664-654, Nov. 1976. 

[4] A. Fiat, Batch-RSA. Proc. Crypto '89, pp. 175-185. 
[5] N. Koblitz, A Course in Number Theory and Co'ptography. Graduate Texts in Mathematics, vol. 114. 

Springer-Verlag. New York, 1987. 
[6] A. K. l,,enstra. Private communication. 
[71 K.S. McCurley, A key distribution system equivalent to factoring, J. Cryptology, vol. 1, no. 2, pp. 95-105, 

1988. 
[8] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key 

cryptosystems, Comm. ACM, vol. 21. pp. 120-126, 1978. 
[91 Z. Shmuely, Composite Diffie-Hellman public-key generating systems are hard to break, Technical 

Report 356. Computer Science Department, Technion, Feb. 1985. 
[10] Y. Yacobi. A key distribution "paradox," Proc. Crypto '90, Santa Barbara. CA, Aug. 11-15, 1990. 


