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Abstract. In this paper we improve Davies" attack [2] on DES to become capable of 
breaking the full 16-round DES faster than the exhaustive search. Our attack requires 
250 known plaintexts and 2 ~~ complexity of analysis. If independent subkeys are used, a 
variant of this attack can find 26 bits out of the 768 key bits using 252 known plaintexts. 
All the 768 bits of the subkeys can be found using 26o known plaintexts. The data 
analysis requires only several minutes on a SPARC workstation. Therefore. this is the 
third successful attack on DES, faster than brute force, after differential cryptanalysis [ I ] 
and linear cryptanalysis [5]. We also suggest criteria which make the S-boxes immune 
to this attack. 

Key words. Data Encryption Standard (DES), Cryptanalysis. 

I. Introduction 

In 1987, Davies [2] described a potential attack on DES [6] that is based on the nonuni- 
form distribution of outputs from adjacent S-boxes, which theoretically allows a crypt- 
analyst to determine 16 parity bits of the key. However, the direct application of Davies' 
attack is impractical since the resulting distribution is too close to uniform. The variant 
based on the best pair $7/$8 requires about 256.6 known plaintexts and finds two parity 
bits of the key with a 95.5% success rate (each bit with a 97% success rate). 

In this paper we improve Davies' attack to break the full 16-round DES faster than 
brute force. We describe a tradeoff between the number of plaintexts, the success rate, 
and the time of analysis. The best tradeoff requires 250 known plaintexts and 2 ~~ steps 
(249 in average) of analysis. If independent subkeys are used, a variant of this attack can 
find 26 bits out of the 768 key bits using 252 known plaintexts. All the 768 bits of the 
subkey can be found using 260 known plaintexts. It is interesting to note that the data 
analysis phase is independent of the number of rounds and runs only several minutes on 
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a SPARC workstation. We also suggest how to make the S-boxes immune to our new 
attack. 

In all further discussions we ignore the existence of the initial permutation I P and 
the final permutation I P -  ~, since they have no influence on the properties of DES that 
are studied in this paper. 

2. Davies' Attack 

The expansion operation of  DES duplicates 16 data bits, so that each pair of adjacent 
S-boxes shares two data bits. These bits are XORed with different key bits before they 
serve as inputs to the S-boxes. As a result, the output of adjacent pairs (and triplets, etc.) 
of  S-boxes has a nonuniform distribution. Davies found that this distribution depends 
only on the parity of  the four key bits which are mixed with the shared data bits. We 
denote this parity by p~ and the mean value of the various values of  the distribution by 
E(Da ). The distribution of  the output of  a pair of  S-boxes can be written as 

Dl(x,  y, Pl) = E(DI )  + ( - I )  t'' �9 dl(x,  y), (1) 

where x is the output of the left S-box of the pair and y is the output of  the right S-box 
and for some dl (x, y).l The XOR of the outputs of  the F-functions in the eight even 
(odd) rounds can be calculated by XORing of the right- (left-)half of  the plaintext with 
the left- (right-)half of the ciphertext and applying the inverse permutation P -  ~. Davies 
found that the n-fold XOR distributions of  the outputs of  adjacent pairs of  S-boxes have 
a form similar to ( I ) 

D.(x ,  y, p . )  = E(D,,) + ( - 1 )  p" �9 d.(x ,  y), (2) 

where p,, is the parity of the 4n subkey bits which are mixed with the data bits in the n 
even (odd) rounds, and E(D. )  = 21~ is the mean of  the distribution, and for some 
d,,(x, y). Note that d. (x, y) can be easily computed as a convolution of d._ t(x, y) and 

dt (x. y). 
Davies suggested collecting many known plaintexts and calculating their empirical 

distribution D'(x,  y, p . ) .  Given sufficiently many known plaintexts, the sign in the D. 
distribution can be identified, along with one parity bit of  the key, using the indicator 

d. (x, y) 
I = y~(D'(X,x.r y' Pn) - E(Dn))"  X//~'x.~ d " ( x ' y ) 2 '  (3) 

whose sign observes the parity bit of the key: if I > 0 the parity is zero and if I < 0 the 
parity is one. 

Davies estimated the required amount of data for his attack as 

210 �9 E(Dn) 2 220n-6 

N = y~r,yd.(x  ' y)2 = ~ x . y d . ( x  ' y)2" (4) 

I dl (x, y) is an extension of Davies' product d(x) �9 e(y), since for pairs of DES S-boxes it can be factored 
into the two one-variable functions d(x) and e(y). In 131 Dn(x, y, p, ) is denoted by Sx.v(s, t). 
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Table l. The complexities of Davies" attack. 
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Rounds Distribution S1/2 $2/3 $3/4 $4/5 $5/6 $6/7 $7/8 $8/I 

2,3 D I 264 26~ 288 267 2 TM 2 TM 262 277 
4, 5 D2 2163 2157 2204 2167 2176 2168 2145 2185 
6. 7 D3 2252 2249 2~1 4 226o 227 0 225 4 221 8 2286 
8, 9 D4 233 6 233q 242 3 235 i 236 i 233 7 228 9 2385 

10, 11 D5 2418 2428 253 I 244 I 2450 241 S 2359 248.2 
12, 13 D6 2499 2516 2 ~ ~  2529 2539 2499 2428 2579 
14, 15 D7 257 9 2~)5 274 8 261 8 262 8 257 9 249 7 2676 

16 D8 2660 2693 2856 2706 2716 266~ 2566 2773 

With this amount of data a 97% success rate is achieved. Table 1 summarizes the com- 
plexities of Davies' attack on different S-box pairs and different numbers of rounds (to 
find two bits for an even number of rounds, and one bit for an odd number of rounds). 
The best pair of S-boxes $7/8 requires 256.6 known plaintexts [2], [3] to find two parity 
bits. Therefore, Davies' attack is not practical and is only of theoretical interest. 

3. The Improved Attack 

In this section we present an improved version of Davies' attack which breaks the full 
16-round DES faster than exhaustive search. 

We observed that the distribution D7 can be used instead of Ds. D7 is much less uniform 
than D8 and thus a smaller number of known plaintexts is required. In order to use D7 we 
should peel off one round of DES--we do that by guessing all the possible values of the 
key bits of the pair of S-boxes in the last round, and calculating the distribution which 
results for each of the guessed values (by XORing the plaintext and ciphertext bits with 
the output of the S-boxes in the last round). We receive 212 distributions, of which the 
one which corresponds to the right value of the 12 key bits should be similar to D7. The 
analysis of this distribution is similar to the original analysis of the 15-round variant. 
Still we should identify the right distribution out of the 2 ]2 distributions. We select 
the distribution which has the highest absolute value of the indicator I. This analysis 
recovers both a parity bit of the key and additional 12 actual key bits entering the pair 
of adjacent S-boxes. We study only the distribution of the S-box pair $7/8 which is the 
least uniform (see Table 1). All other pairs of adjacent S-boxes result with complexity 
higher than exhaustive search. 

Davies' attack on the 15-round DES uses D7 and finds one parity bit of the key in 
249 74 steps. Our improved attack adds one round to this attack and can find 24 bits of the 
key of the 16-round DES by applying the analysis twice: both to the even rounds (with 
the additional last round) and to the odd rounds (with the additional first round). The 24 
bits are two parity bits of subsets of the key bits plus 12 + 12 - 2 = 22 actual key bits: 
two key bits are common to the first and the last rounds. 

We calculate the output of the pair of S-boxes in the last round by performing one-round 
partial decryption of the pair of S-boxes. The value of the 12 bits of the key entering these 
S-boxes is unknown. We try all the 2 ]2 possibilities, doing the counting for 4096 different 
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The complexity and the success rate of the improved Davies' attack for diflerent numbers 
of key bits found. 

Success rate for m key bits tbund (ok) 

Complexity 13 12 11 I0 9 8 7 6 

2 4o 0.0 0.0 O. I O. I 0.2 0.5 0.9 1.9 
2 4t 0.0 0.0 O. 1 0.1 0.3 0.5 1.0 2.0 
242 0.0 0.0 0.1 0.2 0.3 0.6 1.1 2.2 
24~ 0.0 0.0 0. I 0.2 0.4 0.7 1.3 2.5 
2 ~ 0.0 0. I 0. I 0.2 0.4 0.9 1.6 3.0 
245 0.1 O. 1 (1.2 0.3 0.6 I. I 2. I 3.9 
24~' O. I 0.2 0.3 0.5 1.0 1.7 3.1 5.4 
247 0.2 0.3 0.6 1.0 1.7 3.0 5.0 8.4 
248 (1.5 0.8 1.4 2.2 3.6 5.9 9.3 14.5 
24'~ 1.5 2.5 ~.9 6.0 9.0 13.2 19.2 ~7.. 
25o 6.2 9.1 13.0 17.9 24.1 31.7 40.9 51.3 

251 25.5 32.9 40.9 49.3 57.9 66.6 75.0 82.6 
252 71.9 79.2 85.0 89.6 93.0 95.6 97.5 98.7 
253 99.0 99.5 99.8 99.9 99.9 I00.0 10@0 I00.0 
.- .)s4 100.0 I00.0 I (X).O I00.0 100.0 I00.0 I00.0 100.0 

distributions (each distribution has 2 s counters)---a distribution for each possible value 
of the 12 key bits. Since for each ciphertext about I/64 of a DES decryption is performed, 
the complexity of this attack could have been more than 4.249.74. 212/64 ~ 258. Later we 
will describe an efficient algorithm to solve this problem. Once we get 4096 distributions 
we use a statistical technique (see Appendix) to distinguish the right distribution from 
the 4095 other (random-looking) distributions. Since we should distinguish the right 
distribution, we require about four times the number of plaintexts than if the distribution is 
known. We identify the actual distribution and the 13 bits of the key with 0.72 probability 
of success. The mean of the indicator should be greater than four times the standard 
deviation. With probability 0.53 we find 24 key bits by applying the method twice. 
There is a tradeoff between the number of bits that the attack finds and the number of 
known plaintexts it requires, since we can consider the n maximal indicators rather than 
only one indicator. This is equivalent to finding the m = 13 - log z n bits of the key. 
Table 2 summarizes this tradeoff. 

In the efficient algorithm the attack incorporates a data collection phase and a data 
analysis phase. Only 10 ciphertext bits arc required for the partial decryption. The data 
collection phase counts the number of occurrences of each possible value of the eight 
distribution bits (which are received as XOR of plaintext and ciphertext bits) together 
with these ten ciphertext bits (entering the pair of S-boxes in the last round), and outputs 
an array of the 2 TM counters. Note that the data collection phase only increments one 
counter for each plaintext that it encrypts. 

The data analysis phase starts by calculating the 212 distributions. For each possible 
value of the 12 key bits and I 0 ciphertext bits (u) entering the pair of S-boxes, the output 
of the pair of S-boxes is calculated. The result (eight bits) is XORed to each possible 8-bit 
value (fl) and the corresponding entry (S ' (E ' (u)  ~ K ) (9 r in the distribution generated 
with the particular value of the key is increased by the value of the corresponding counter 
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(tr,/~). We get 212 distributions which we analyze (as described above) to find the right 
value of the key. We receive 12 key bits of the subkey KI6 of the last round plus one 

1 : 216 parity bit of the key. The cost of the data analysis phase is about 2 ]2 �9 2 a~ �9 
s -) ~o DES encryption., plus ,.- counter increments. It runs only several minutes on a SPARC 

station. 
This attack is repeated twice, once for the even rounds and once tot the odd rounds 

(with the only difference that one round encryption of the first round is applied, guessing 
2 j2 bits of subkey Ki ). The data collection phase counts simultaneously into the two 
counting arrays, and the data analysis phase is applied for each array. Among the 24 
actual key bits found during the attack two bits are common to both rounds and are used 
to discard some wrong keys that are left after the data analysis phase. Finally we obtain 
24 bits of the key. The other 32 key bits can be found by exhaustive search. 

Figure 1 compares the known attacks on DES. It shows the success rate of each attack 
versus the number of known/chosen plaintexts it requires. Our attack is represented 
by the five curves corresponding to the different numbers of effective bits found. We 
have cut the success curves when they reach the probability of a random guess. These 
cut points differ for each curve, since the numbers of key bits are different. There is 
a tradeoff between the number of bits the attack finds, and the data complexity of the 
attack for particular success rate. We found that the best tradeoff is reached when the 
attack finds six effective bits with 250 known plaintexts and success rate 51.3% and the 
remaining 50 key bits are found by exhaustive search. 

We wrote a program that implements our improved attack and finds 13 bits of the key 
of reduced round variants of DES. In tests we made, this program found the key with 
the expected success rate. 

4. Independent Subkeys 

In this section we show a method of attack on the independent subkeys variant of DES 
(768 key bits), that finds all the 768 bits of the subkeys using 2 ~'~ known plaintexts and 
250 complexity of analysis. 

The first phase of the attack uses 2 ~") known plaintexts and performs our improved 
Davies" attack for each of the three S-box pairs S I /$2,  $6/$7, $7/$8 finding 66 key bits 
(30 bits of Ki, 30 bits of KI6 and six parity bits). If we would know now all the bits of KI 
and KI6, we could peel off the first and the last rounds, and attack the resultant 14-round 
cryptosystem with the distribution D6, and with fewer known plaintexts. However, we 
do not know all the bits of Kj and Kj~. 

Since we know 30 key bits out of 48 of K 16 we can perlorm the attack on the reduced 15- 
round DES 2Is times with the 25o known plaintexts required for detection of distribution 
D,. Nevertheless, improved attack can do better. Table 3 describes the missing and 
known bits entering the S-boxes in the fifteenth round after partial decryption of the 
sixteenth round using 30 key bits. Known bits are marked by x and unknown bits are 
represented by the number of the S-box of the sixteenth round they originate from. We 
pay attention to 32 bits: (a) the 14 input bits entering S-boxes $3, $4, $5 in the last 
round; (b) five bits of the input to pair $7/$8 on fifteenth round (the x bits in Table 3 are 
received by partial decryption): (c) eight bits resulting from XORing eight plaintext bits 
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Fig. !" Comparison of the success probability of differential cryptanalysis, linear cryptanalysis, Davies' 
attack, and the improved attack. 

with eight ciphertext bits and eight output bits of  the pair $7/$8  from the first round; 
and (d) five bits of the ciphertext which correspond to unknown five bits entering $7/$8  
in the fifteenth round. 

The second phase of  the attack uses 250 known plaintexts and for each plaintext/cipher- 
text pair increments one of  the 214+5+5+8 = 232 counters which corresponds to the 32 
bits of  (a), (b), (c), (d). 

The third phase analyzes each counter in the resultant array for each of the possible 
values of  the 18 key bits (denoted by k) entering the S-boxes $3, $4, $5 in the last 
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Table 3. Known and un- 
known bits, entering S- 
boxes in the fifteenth round. 

S-box Bits 

S I x4xSxx 
$2 xx3x5x 
$3 5x4tx* 
$4 xx5x3x 
$5 3xxx4x 
$6 4xxx35 
$7 354xxx 
$8 xx3xx4 
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round. It translates them to counters corresponding to: (I) those 18 key bits (k); and 
(2) five unknown bits of  the input of $7/$8 in the fifteenth round (calculated in inaccurate 
notation by F(a, k) @d), and the 5 + 8 bits of (b), (c). This phase performs 218. 232 = 250 
counterincrements and results with a new array containing 2 ~s+5+5+8 = 236 counters. 2 

In the fourth phase we create 230 distributions by trying all the possible values of the 
12 key bits entering $7/$8 with 248 operations. Note that in this attack we use a lot more 
known plaintexts than required in the attack on D6 (250 instead of  the approximation of  
(4) N = 24z8), thus the success rate is very high although we should identify the right 
distribution from a large set of  230 distributions. In the fourth phase of the attack we find 
18 bits of KI6 and 12 key bits of Kjs. Similarly, in the attack on the even rounds, we find 
18 bits of  Ki and 12 bits of  K2. Thus Ki and Kl~, are fully known and we can reduce 
the attacked cryptosystem to 14 rounds and know 120 actual bits of  the subkeys and 8 
parity bits out of the 768 independent bits of the subkeys. 

In the fifth phase, a similar method is used to find the rest of  the subkeys, using the 
reduction to a fewer number of  rounds. This phase is much faster and does not require 
additional known plaintexts. 

5. Protecting Design Criteria 

DES was not optimized against Davies' attack: even a simple reordering of the S-boxes 
can increase the complexity of  the attack by a factor of  about 600. In this section we 
show that S-boxes can be chosen to be immune against this attack, by eliminating the 
properties that it uses. 

Davies estimates that the correlations of  the outputs of  the pairs of  the S-boxes were 
reduced in DES. He claims that much stronger reductions are possible. In this section 
we suggest additional design principles that render DES-like S-boxes immune against 
Davies' attacks. 

S-boxes immune to Davies' attack must have uniform joint distribution: 

Dj(x,  y ,0 )  = D l ( x , y ,  !) = E(DI).  (5) 

-' Vector processors with 2 i3 vector addition operations can process groups of 2 ~3 entries at once and thus 
increase the speed of the analysis. 
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In order to make DES-like S-boxes immune, it suffices to eliminate either the differ- 
ential property abcdOOo --~ 0 in the left S-box in each pair, or the differential property 
OOcde.l~, ---, 0 in the right S-box in each pair (we denote binary numbers by the subscript 
b, where the letters a, b . . . . .  f denote arbitrary values in {0, I }). In DES all the patterns 
of  the described type (except OOcdOlb) are impossible, or were intentionally lowered by 
the designers to prevent differential cryptanalysis. 

Following Davies we define D(x ,  k) to be the distribution of the output x of the left 
S-box in a pair and E(y ,  k) be the distribution of the output y of the right S-box in the 
pair, when the value of  the two common bits is constrained to be k (k 6 {0. . .  3}). 3 For 
DES S-boxes Davies derived the formula 

Di (x, y, O) = 4 + (D(x ,  O) - D(x ,  1 )) �9 (E (y ,  O) - E(y ,  2)) (6) 

(this formula holds for any S-boxes with the differential property ObcdeOo ~ 0). Thus, 
any pair of DES-like S-boxes must have a uniform joint distributions if and only if 

D(x,  O) = D(x ,  I) or E(y ,  O) = E(y ,  2). (7) 

Lemma 1. The additional differential property Obcd I I b ;A 0 leads to uniform joint  

distribution. 

Proof. Let {pbcdqO} be a set of eight entries for some fixed p and q. Since ObcdeOh 7~ 

0 for any b, c, d, and e, the values in the eight entries {pbcd~lO} (where ~ is the comple- 
ment of q) are different from the eight values in the entries {pbcdqO}. Since we assume 
that Obcdl lh -/~ 0, the eight values in the entries {pbcd(t 1} are different from the eight 
values in the entries {pbcdqO}. Thus, {pbcd(lO} = {pbcdq I } for any p and q, which 
causes D(x,  O) = D(x ,  I). [] 

Lemma 2. Tile additional differential property 1 I cdeOb -/* 0 leads to uniform joint 

distribution. 

The proof is similar to the proof of Lentma 1, and leads to E(y ,  O) = E(y ,  2). 
Note that 1 lcdOOh 7 ~ 0 is already a design principle of DES. The s 3 DES S-boxes 

[4] were designed with the additional criteria I Icdl0h 74 0, and are thus immune to 
Davies" attack and to the improved attack. 

6. Summary  

We improved Davies' attack on DES. Wc describe a tradeoff between the number of 
plaintexts, the success rate, and the time of analysis. The best tradeoff requires 25o 
known plaintexts and 25o steps (249 on averagel of analysis and has about a 51% success 
rate. If independent subkeys are used, a variant of this attack can find 26 bits out of the 
768 key bits using 2 se known plaintexts. All the 768 bits of the subkeys can be found 

They are denoted by dx (s. t ) and d~ (.~. t ) in 13]. 
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using 26o known plaintext. The data analysis requires only several minutes on a SPARC 
workstation. We also suggest how to make S-boxes immune to these attacks. 

Note. Davies has pointed out that H. Gilbert observed independently that Davies' 
attack can be improved, and estimated the complexity of the improvement by 252 (see 
note in [3]). 

Appendix 

In this Appendix we present the details of the calculations of the success rate of our 
attack versus its data complexity. These calculations were used to generate Table 2 and 
Fig. 1. 

The data analysis phase of our attack calculates 4096 distributions---one for each pos- 
sible value of the 12 key bits. 4095 distributions correspond to the incorrect values of the 
key bits and are assumed to be multinomial with Px,y = 1/256. One distribution corre- 
sponds to the actual values of the 12 key bits, and is thus distributed as D7. We calculate 
the indicator I (equation (3)) for each of the 4096 distributions. Given sufficiently many 
known plaintexts, the absolute value of the indicator corresponding to the right value of 
the key should be the largest. 

We start with the calculation of the mean and the standard deviation of the indicators 
of the right distribution IK, and of the indicators of the other multinomial distributions 
IR , . . .  IR4095. We assume that all the indicators have normal distributions. We denote the 
measure of nonuniformity of D,, by 

S : / Z d n ( x '  y)2. (8) 

V x , Y  

The empirical distribution D~:(x, y, Pn) is multinomial with the probabilities p~,y = 
Dn(x, y, p , ) / (2  s . E(D,)). Thus the mean of Ix is 

(z( ) E(IK) ~ - -  E D~(x, y, p,,) - N . d,(x, y) 
\ x v -  S 

= ~ d,,(X,s y) e(D)~(x, y, p,,)) - ~ 
X V 

( 1 = 2 ~N Z d,,(X,s y) D,,(X,E(D,) y' p') 1 = (-1)/ '" 2 8 �9 E(D,,) '  
x , y  

The variance of I,~ is (we assume independence of D'(x, y, p,,) for the different x, y): 

Var(IK) ~ Z Var(D}(x, y, p,,)) 

~, S-" d,,( y) 2 N .  D,,(x, y, p,,) 

E(D,,) �9 2 8 2 8. 
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The other multinomial distributions satisfy E (DR, (x, y, Pn )) = N/28 , Var(D'~, (x, y, Pn )) 
-~ N /28 and thus: 

N 
E(IR,) = O, Var(IR,) ~ i-if, i = 1 . . . 4095 .  (9) 

We have shown that IK and IR, have approximately the same standard deviation which 
grows as a square root of the number of known plaintexts N. The mean of IK grows 
linearly with N and the mean of IR~ is zero. Then for sufficiently large N 

[IKI > max [IRi[ (10) 
i = 1 . . . 4 0 9 5  

with a high probability PI (N). 
Our goal is to calculate the success rate of our attack PI (N). The density function of 

IK is 

- , r  - ~  ~ x  24--E--~n ) . (11) 

The density function of the other indicators are 

le_x2/2rr2 2 4 { 2N_~ x2 } 
f R , ( X ) -  V / ~ c  r -- ~ e x p  -- = fR(X).  (12) 

Then 

( ) I  PI(N)  = P IIKI > max Ilil = fK (x )  . PR(Irl < x)4~ dx,  (13) 
i = 1 . . . 4 0 9 5  

where 

PR(Irl < X) = f R ( y ) d y .  (14) 
X 

The probability that I IKI is one of the n highest indicators (rather than the maximal one) 
is 

f0 +~ n - ' (  4095 ) X)4095-i (1 P , ( N )  = fK(X) E i eR(lrl < -- PR(Irl < x))i  dx .  (15) 
i=0 

Table 2 shows P, (N) for n = 2 k, k = 0 . . . . .  7 for N = 240 . . . . .  254 (note that in the 
table m = 13 - k). Figure 1 shows Pn(N) for n = 1,2, 8, 32, 128. 
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