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Abstract. We introduce theblack-box modelfor cryptographic primitives. In this
model cryptographic primitives are given by a computation graph, where the computa-
tion boxes sitting on the vertices of the graph act as random oracles. We formalize and
study a family of generic attacks which generalize exhaustive search and the birthday
paradox. We establish complexity lower bounds for these attacks and we apply it to
compression functions based on the FFT network.
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Introduction

Cryptographic primitives for encryption, hashing, and pseudorandom generation are
judged according to efficiency and security. Design methods for constructing crypto-
graphic primitives are usually empiristic. The example of Rivest’s MD4 hash function
[11], which has been shown to be insecure by Dobbertin [7], demonstrates the need for
a design theory that provides security in a realistic model.

Usually cryptographic primitives are defined as a computation graph in which the
vertices are computation boxes. The cryptanalysis approach of Biham and Shamir [6]
and Matsui [9] initiated an important study of the algebraic properties of the computation
boxes. In this paper we take another view, we neglect the inner structure of the boxes.
We study the security provided by a computation graph, where the boxes act as random
oracles, i.e., asblack-boxes.

Generic attacks that do not exploit the inner structure of the boxes play an important
role. Nechaev [10] and Shoup [16] study generic algorithms for the discrete logarithm,
assuming that the group operations are given as black-boxes. The random oracle model of
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Bellare and Rogaway [5] has been used in security proofs for various signature schemes.
Here the hash function is a black-box acting as a random oracle in a network comprising
the signer, the verifier, and the attacker of a signature scheme. We propose a black-box
model in whichall boxes of the computation graph act as random oracles.

The black-box model covers powerful attacks, e.g., the iterative use of exhaustive
search and the birthday paradox applied locally to arbitrary parts of the computation
graph. We only exclude attacks that “split” the boxes. In the black-box model we can
prove interesting and tight complexity bounds for generic attacks. These complexities
correspond to the minimal workload of attacks. We study the average complexity of
these attacks for relevant probability distributions for the boxes. Black-box cryptanalysis
can determine optimal interconnection networks for the design of hash functions and
symmetric encryption functions provided that strong computation boxes are given.

In particular we extend and analyze the FFT network, the computation graph of the
Fast Fourier Transform that is known as the butterfly graph. This network has been used
in several cryptographic proposals [8], [14], [15]. We give evidence that the FFT network
with 2k input nodes and 2k − 2 layers yields a family of compression functions with
optimal security in the black-box model. This means that for the doubled FFT network
there is no better black-box attack than exhaustive search over the inputs. While our
lower and upper complexity bounds coincide forlinear attacks, lower and upper bounds
differ by a factor of 3 in the general case.

In Section 1 we present the black-box model. In Section 2 we consider the FFT hash
network. We prove upper bounds and lower bounds for the complexity of inverting the
function computed by this network. The particular case of linear algorithms for the FFT
network has been studied in [15]. Here we prove lower bounds for general algorithms in
the black-box model. A full formal study is also available in [20, pp. 31–87].

1. The Black-Box Model

1.1. Computation Graphs with Random Boxes

Let G = (V, E) be an undirected graph with vertex setV and edge setE.1 A “compu-
tation” alongG associates with each edge a value in some finitealphabet Z. Associated
with each vertexv is a set of possible local computations (or local solutions)I (v) ⊂ ZE(v)

for E(v), the set of edges adjacent tov. ThusI (v) is the set of assignments of values in
Z to the edges inE(v) that are admissible for the box atv. For the degreed(v) = #E(v)2

of vertexv we must have #I (v) ≤ #Zd(v). If # I (v) = #Zd(v) the box is trivial as all
assignments are admissible. If vertexv hasi “input edges,” then #I (v) = #Zi since the
input values determine the output values. Asolutionfor the graph is a tuplet ∈ ZE, i.e.,
a tuple onE such that, for all verticesv, the restrictiont|E(v)3 is in I (v).

We call I —the collection of all local solutions—aninterpretationof G. We study
resolution algorithms that work in general, i.e., for random local solutions. We study

1 All graphs are finite and loop-free in the paper.
2 The symbol # denotes the cardinality of a set.
3 The notationt|E′ is the restriction of the tuplet to the subsetE′, i.e., the tuple onE′ which is equal tot

on all entries inE′.
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the average complexity of these algorithms. We associate with each vertexv a degree
of freedomdf(v)—informally the (fractional) number of independent values inZ that
appear inI (v)—which we define as log#Z ExpI #I (v).4 In the following all logarithms
have the basis #Z and log means log#Z .

Definition 1. A computation graph(Gdf, Z) consists of an undirected graphG =
(V, E), a real-valued function df(v) satisfying df(v) ≤ d(v), and an alphabetZ. A
random interpretation Iis a random map which associates with each vertexv a set
I (v) ⊂ ZE(v) of local solutions so that df(v) = log ExpI #I (v).

The computation graphGdf is undirected and so is the “computation flow.” To stress
the undirected nature ofGdf it was called anequation graphrather than acomputation
graph in [20].

In the following we assume that all probability distributions forI have the following
two properties:

Local Uniformity. For all v ∈ V and t ∈ ZE(v), the probability Pr[t ∈ I (v)] is a
constant which depends onv. Thus we have Pr[t ∈ I (v)] = #Zdf(v)−d(v).

Independence. The setsI (v) are independent for distinct verticesv.

Examples of possible distributions are:

— the uniform distribution over allI so thatI (v) is a subset ofZE(v) with #I (v) =
#Zdf(v);

— for integer degree of freedom df(v), the uniform distribution over allI so that
I (v) defines a function of edge values of some df(v) edges inE(v) to the other
d(v)− df(v) edge values;

— the uniform distribution over allI so thatI (v)defines amultipermutationonZE(v).
(Following Vaudenay [19], [20], a multipermutation withr inputs andn outputs is
a set of(r +n)-tuples such that no different tuplest1 andt2 can be simultaneously
equal on anyr different entries. This way, it is a function of anyr entries onto the
remainingn ones. This concept formalizes the notion of perfect diffusion, that all
inputs are perfectly diffused to the outputs in an information theoretic sense. This
is a useful design criterion.)

1.2. Resolution and Complexity of a Computation Graph

For two subsetsE′, E′′ ⊂ E of edges and corresponding sets of tuplesX′ ⊂ ZE′ ,
X′′ ⊂ ZE′′ we define thejoin

X′ FG X′′ = {t ∈ ZE′∪E′′ | t|E′ ∈ X′ , t|E′′ ∈ X′′}
to be the set of all tuplest on E′ ∪ E′′ with restrictions toE′ in X′ and toE′′ in X′′.
This operationFG is similar to the join used in relational database theory. The join is

4 Here ExpI denotes the expected value over the distribution ofI .
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associative and commutative and the set ofglobalsolutions onE turns out to be the join
of all I (v).

We extend the interpretationI to arbitrary subsets of vertices using that the join is
associative and commutative. ForU ⊂ V we let E(U ) denote the set of edges adjacent
to the vertices inU . We defineI (U ) to be the join of allI (v) with v ∈ U , i.e.,

I (U ) = {t ∈ ZE(U ) | t|E(v) ∈ I (v) for all v ∈ U }.
I (U ) is the set oflocal solutions forU . Obviously I (U ∪W) = I (U ) FG I (W) holds
for arbitrary subsetsU andW of vertices.

Definition 2. A (resolution)algorithm Afor the graphG is a termA with the two-ary
operationFG and allv in V . Its length|A| is the number of occurrences ofFG plus the
number of occurrences ofv’s.

Actually, a resolution algorithm specifies the order of all theFG operations starting from
the I (v) with v ∈ V . For example, the term(v1 FG v2) FG (v3 FG v4) means that we
first form I (v1) FG I (v2), I (v3) FG I (v4), and then the join of these two sets. There is a
natural notion of subterm, the above term has the subtermsv1 FG v2, v3 FG v4. We write
B ≤ A if B is subterm ofA.

For an arbitrary subtermB of an algorithmA let V(B) denote the set of vertices
occurring inB. So I (V(B)) is the result, or the set of local solutions, of the subtermB.

We define the logarithmiccomplexity CI (A) of an algorithmA to be the maximal
logarithmic size of the result of a subtermB ≤ A (taking the maximum yields a simple
and clean measure that differs from an average/aggregate measure only by log|A|):

CI (A) = log max
B≤A

#I (V(B)).

The logarithmic complexity roughly corresponds to aworkload#ZCI (A). Counting only
the size of the largest intermediate result is justified since the length of algorithms will
be small and the costs for a join operation corresponds to the cardinality of the operands.

Theaverage complexity C(Adf) of algorithmA is defined to be

C(Adf) = log ExpI max
B≤A

#I (V(B)).

As the distribution ofI is locally uniform, the expected value ExpI depends on df and so
doesC(Adf). We let thecomplexity C(Gdf) of a computation graphGdf be the minimum
of C(Adf) over all algorithmsA for Gdf.

1.2.1. Getting Only One Solution

In most cases we are only interested in getting on the averageonesolution ofGdf. If there
are many solutions we can decrease the complexity by restricting the resolution process
to random subsets of all theI (v). Thus, for a given mapping df′, with df′(v) ≤ df(v) for
all v, and a given interpretationI of (Gdf, Z), we consider a random subinterpretationI df′

and a distribution defined by picking independently and uniformly random subsetsI df′(v)

of I (v) of size #Zdf′(v). This means considering a computation graph with df′ instead of
df. Note that the construction ofI df′ preserves local uniformity and independence. In the
following we consider computation graphs with only one solution on the average.
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1.2.2. Examples of Algorithms

We demonstrate how to use exhaustive search and the birthday paradox iteratively on
parts of the computation graph. Enumerating all values of a functionf is formalized by
the algorithmx1 FG f 1. Solving exhaustivelyf (x) = a for given f,a is the intention
of (x1 FG f 1) FG a0, where degrees of freedom df(v) are denoted by a superscript
on v. Searching foronesolution of f (x, y) = a by picking x and y at random is the
meaning of((x1/2 FG y1/2) FG f 1) FG a0. Here the degree of freedom ofx and y
have been decreased to1

2 to get one solution on the average. We can also decrease it
as ((x0 FG y1) FG f 1) FG a0 which means to fixx arbitrarily and then to search for
y. Using the birthday paradox to get one solution off (x) = g(y) can be written as
(x1/2 FG f 1) FG (y1/2 FG g1). This algorithm makes two lists of

√
#Z x- andy-values

and searches for matchesf (x) = g(y).

1.2.3. Linear Complexity

In [15] we only consideredlinear resolution algorithms, i.e., algorithms of the form
v1 FG (v2 FG (· · ·)) that are characterized by the order of traversing the verticesv1, . . . , vn.
It is tempting to believe that linear algorithms are already the most powerful ones and
that nothing can be gained from nonlinear ones. The following counterexample shows
this is not the case. Consider the network of Fig. 1 representing the computation graph
of a supposed one-way function which maps six inputsx1, . . . , x6 onto six outputs,
all 24-bits long. The direction of the edges in Fig. 1 indicates the underlying network
for computing the function. The problem of inverting this function is defined by the
following computation graph:

V = {x1, . . . , x6, v1, . . . , v6, w1, . . . , w6}
and

df(xi ) = 1, df(vi ) = 2, df(wi ) = 1, i = 1, . . . ,6.

It is straightforward to imagine a linear attack to invert the function with logarithmic
complexity 3, that is within workload 272: enumeratex1, x3 and x5 exhaustively and
solve the leftmost third of the graph fromx1 andx3 and getx2 andx4 as

A = ((((((x1 FG x3) FG v1) FG w1) FG w2) FG v2) FG x2) FG x4.

Fig. 1. A powerful nonlinear algorithm.
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Then solve the rightmost third fromx5 and getx6 by the algorithm

A′ = (((((A FG x5) FG v5) FG w5) FG w6) FG v6) FG x6.

Finally check that this yields a solution of the whole graph via

A′′ = (((A′ FG v3) FG w3) FG w4) FG v4.

It is easy to see that 3 is the lowest complexity for linear algorithms. On the other hand,
one can solve the leftmost third fromx1 andx3 by the algorithmA and independently
solve the rightmost third fromx3 andx5 by

B = ((((((x3 FG x5) FG v5) FG w5) FG w6) FG v6) FG x4) FG x6

then join the two sets of partial solutions to get a setA FG B with rank 2 and finally
check whether it contains a global solution

((((A FG B) FG v3) FG w3) FG w4) FG v4.

This is done with a logarithmic complexity 2, that is with workload 248.

1.3. Approximating the Complexity

With a computation graphGdf we associate itsquadratic form, which we also denote
Gdf, represented by the symmetric matrix(Gdf

v,w)v,w∈V , where

Gdf
v,w =def

−
1
2 if v 6= w and {v,w} ∈ E,

df(v) if v = w,
0 otherwise.

The quadratic form induces a functionGdf: ZV → Z as

Gdf(g) =
∑
v∈V

∑
w∈V

g(v)g(w)Gdf
v,w

for g ∈ ZV . We identify a subsetU ⊂ V with its characteristic function in{0, 1}V , and
thus

Gdf(U ) =
∑
v∈U

∑
w∈U

Gdf
v,w.

Let Int(U ) = {{v,w} ∈ E | v,w ∈ U } be the set of interior edges ofU . It can easily be
seen that

Gdf(U ) =
∑
v∈U

df(v)− #Int(U ) = #E(U )+
∑
v∈U
(df(v)− d(v)),

where the latter equality comes from
∑

v∈U d(v) = #E(U )+ #Int(U ).
If df(v) = 1

2d(v) holds for all verticesv, then, for any subsetU of vertices,Gdf(U )
equals half the number of edges of the perimeter ofU (i.e., the edges betweenU and
V − U ). We call this thelocally invertiblecase as all the boxes look like permutations
with the same number of inputs and outputs.

The role of the quadratic form becomes apparent in the following lemma.
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Lemma 3. Every subset U⊂ V of vertices satisfieslog ExpI #I (U ) = Gdf(U ).

Proof. We note that ExpI #I (U ) =∑t Pr[t ∈ I (U )] where the sum is over all tuples
t on E(U ). The event{t ∈ I (U )} is the intersection of all the independent events
{t|E(v) ∈ I (v)} for v ∈ U . There are #Z#E(U ) many tuples onE(U ). Local uniformity
and independence of the distribution forI yields

log ExpI #I (U ) = #E(U )+
∑
v∈U
(df(v)− d(v))

which, as we have already seen, equalsGdf(U ).

Theorem 4. Every algorithm A for Gdf with length|A| satisfies

max
B≤A

Gdf(V(B)) ≤ C(Adf) ≤ log |A| +max
B≤A

Gdf(V(B)).

Proof. By the definition ofC(Adf), and since a maximum of nonnegative values is
lower than their sum we have

C(Adf) = log ExpI max
B≤A

#I (V(B))

≤ log ExpI

∑
B≤A

#I (V(B))

= log
∑
B≤A

ExpI #I (V(B))

≤ log

(
|A| ·max

B≤A
ExpI #I (V(B))

)
= log|A| +max

B≤A
log ExpI #I (V(B))

= log|A| +max
B≤A

Gdf(V(B)),

where the last equality comes from Lemma 3.
The first inequality of the claim is straightforward by Lemma 3.

As an immediate consequence of Theorem 4 the expression

C′(Gdf) := min
A

max
B≤A

Gdf(V(B))

is a close approximation to the complexityC(Gdf) which only depends on the quadratic
form Gdf and not onZ.

Corollary 5. C′(Gdf) ≤ C(Gdf) ≤ log|Aopt| + C′(Gdf), where Aopt is an optimal
algorithm.
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1.4. The Spectral Approach

We consider a locally invertible graphGd/2 so that df(v) = 1
2d(v). Its quadratic form

turns out to have properties similar to the Laplacian operator. In this context, lower
bounds on the complexity can be proven in a similar way to the expander graphs theory
using a well-known link with the spectral values [17], [2], [1]. In this section letG be
an undirected graph withn vertices and letλ1 ≤ · · · ≤ λn be the eigenvalues of the
quadratic formGd/2.

Lemma 6. If the graph G is connected, thenλ1 = 0, λ2 > 0, and every set U of c
vertices satisfies Gd/2(U ) ≥ λ2 c (1− c/n).

Proof. 0 is an eigenvalue sinceGd/2(U ) = 0 holds for all connected componentsU of
G. The fact that the quadratic form is positive and thatλ2 > 0 (if G is connected) is an
easy algebra exercise. We note thatλ2 is the smallest eigenvalue of the quadratic form
in the hyperplaneV⊥ orthogonal to the setV of all the vertices (i.e., the vector having
all coordinates 1).

For an orthonormal basis of eigenvectorsv1, . . . , vn with v1 = (1/
√

n)V we have (the
dot · denotes the scalar product)

Gd/2(U ) =
n∑

i=1

λi (U · vi )
2 ≥ λ2

n∑
i=2

(U · vi )
2 = λ2((U ·U )− (U · v1)

2).

Now, the claim follows fromU ·U = c andU · v1 = c/
√

n.

Then we get a lower bound:

Theorem 7. If the graph G is connected, then C(Gd/2) ≥ (2λ2/9)n.

Proof. Let A be an algorithm forGd/2 such thatC′(Gd/2) = maxB≤A Gd/2(V(B)).
Lemma 6 yieldsC′(Gd/2) ≥ maxB≤A λ2 #(V(B))(1− #(V(B))/n). Let x be an arbi-
trary integer between 0 andn = #V . Every minimal subtermB with the property that
#(V(B)) ≥ x also satisfies #(V(B)) ≤ 2x since it can at best be the join of two subterms
which each containx − 1 vertices. For such a subterm we have

#(V(B))

(
1− #(V(B))

n

)
≥ min

x≤y≤2x
y

(
1− y

n

)
and thus by Corollary 5

C(Gd/2) ≥ C′(Gd/2) ≥ max
0≤x≤n

min
x≤y≤2x

λ2 y

(
1− y

n

)
= 2λ2

9
n.

The max min is obtain withx = y = n/3.
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1.5. The Symmetric Approach

Similarly, we can apply a theorem due to Babai and Szegedy [3] used in context with
Cayley graphs. We reformulate it in our context and refer to [3] for the proof. LetG be an
arbitrary undirected, edge-transitive graph withn vertices, letd be the harmonic mean
of the degrees of the vertices and letδ be the average distance between two vertices.

Lemma 8 [3]. Every set U of c vertices satisfies

Gd/2(U ) ≥ d

2δ
c
(
1− c

n

)
.

A graph is edge-transitive if every edge can be mapped onto any other one by a graph
automorphism. In such a graph the vertices can only have one or two possible degrees.
This suggests using the harmonic mean 2/(1/d1 + 1/d2) of the two degreesd1 andd2.
A straightforward application of the proof of Theorem 7 to Lemma 8 shows:

Theorem 9. Every undirected, edge-transitive graph G satisfies C(Gd/2) ≥ (d/9δ)n.

2. Parallel FFT Hashing

Two previous proposals of a cryptographic hash function based on the FFT network
[12], [13] have been broken (see [4] and [18]). Then, by a joint effort, a family of hash
functions based on the same graph has been proposed in [14] and discussed in [15]. We
now prove the conjectures announced in the latter paper. Interestingly, the FFT network
has independently been used by Massey for the SAFER encryption function [8].

Let Gk,s be the graph defined by the set of vertices

V = {vi, j ; 0≤ i < 2k−1, 0≤ j ≤ s}
and the set of edges

E = {{vi, j , vi, j+1}, {vi, j , vi⊕2 j modk−1, j+1}; 0≤ i < 2k−1, 0≤ j < s}.
Gk,s is roughly the graph of the FFT network for 2k values extended tos+ 1 layers.
Considering all vertices as boxes with two inputs coming from a lower layer and two

Fig. 2. TheG3,2 compression functions family.



134 C. P. Schnorr and S. Vaudenay

outputs going to a higher layer, this corresponds to a function with 2k inputs entering in
layer 0 and 2k−1 outputs going out from layers. Given two message blocksm andm′

with 2k−1 values, we let thei th value of each block enter into vertexvi,0 and write the first
output ofvi,s as thei th value of the output stringh. The mapping(m,m′) 7→ h defines
a compression function. We propose studying the family of the compression functions
defined byGk,s and a relevant distribution of interpretationsI that defines the boxes.
In [14] we considered the uniform distribution on all multipermutations. The aim of the
present study is to find, by a graph theoretic analysis ofGk,s, the minimals for optimal
security in the context of black-box cryptanalysis.

The one-wayness of the compression function means hardness of finding, forgiven
m andh, onem′ such that(m,m′) 7→ h. (Note: finding for givenh some m,m′ with
(m,m′) 7→ h is trivial as we can arbitrarily complement the “half”-outputh to (h, h′)
and compute the inverse permutation(h, h′) 7→ (m,m′).) The inversion problem is
defined by the computation graphGk,s together with

df: vi, j 7→
{

1 if j = 0 or j = s,
2 otherwise.

Here one input of thevi,0 and one output of thevi,s are already known, that is df= 1
2d = 1

holds for the first and the last layer. The exhaustive search consists in joining allvi,0 to
guessm′ and joining successively all the other vertices layer by layer. This has complexity
2k−1. So, we are interested in theratio C(Gd/2

k,s )/2
k−1.

Finally consider the length of the bit string for specifying the(s + 1)2k−1 boxes.
Choosing an alphabet with cardinalityq, the number of bits to encode the input isn =
2k logq whereas the length of the description of the function (that is the interpretation)
is (s+ 1)2kq2 logq. The family is quite huge, but we hope to find an interesting smaller
subfamily in which the following analysis will be possible too. For instance, if we take the
same box for all the verticesi, j and concatenate these boxes with independent random
permutations along the inner edges ofGk,s we decrease the length of the interpretation
to s2k logq! and we preserve local uniformity and independence.

2.1. The Upper Bounds

Theorem 10. For k− 1≤ s ≤ 2k− 2 we have C(Gd/2
k,s ) ≤ 2k−2(1+ 22−s).

Thus, fors< 2k− 2 there is an attack faster than exhaustive search. We conjecture that
this inequality is in fact an equality fors = 2k − 2, that is to say the exhaustive search
is the best black-box attack onGk,2k−2.

Proof. First we show thatC(Gd/2
k,k−1) ≤ 2k−2. For this we guess the first 2k−2 inputs,

that is we join the first 2k−2 verticesvi,0. This allows us to compute half of the edges,
namely all edges adjacent tovi, j for i < 2k−2. Then the degree of freedom of allvi,k−1

becomes 0, so that we can compute the other half of the edges backward and solve the
graph. This has complexity 2k−2.

We can do similar things onGk,s: we guess the first 2k−2 inputs and solve half of the
vertices from layer 0 to layerk − 1. Then all connected subgraphs from layerk − 1 to
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layers are isomorphic toGk′,k′−1 with k′ = s−k+2. We solve them iteratively within a
complexity 2k

′−2 = 2s−k. Having solved all of these subgraphs, we backwardly process
Gk,s. The resolution has complexity 2k−2+ 2k−s.

In the following sections we show how to apply the different approaches to find lower
bounds. Finally, we prove that the ratio fors= 2k−2 is lower bounded by a constant2

3.

2.2. The Lower Bounds

2.2.1. Use of the Spectral Approach

We use the notation introduced in Sections 1.4 and 2.

Lemma 11.

λ2

(
Gd/2

k,s

)
=


4 sin2 π

2(2k− 1)
if k ≤ s< 2k− 1,

4 sin2 π

2(s+ 1)
if 2k− 1≤ s.

The proof is a difficult but unenlightening exercise in calculus which can be found in
[20, pp. 76–80].

Proof. (sketch) We study the spectral properties of the adjacency matrix

Mk,s =



I − 1
2 A 0 · · · 0 0

− 1
2

t A 2I − 1
2 A · · · 0 0

0 − 1
2

t A 2I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2I − 1
2 A

0 0 0 · · · − 1
2

t A I


,

whereI is the identity matrix and

A =



1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1


.

We let fα denote the Hadamard vector basis: for any boolean vectorα with k − 1
coordinates,fα is a real vector with 2k−1 entries. Each entry index corresponds to a
boolean vectori with k − 1 coordinates andfα is defined by( fα)i = (−1)α·i where·
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is the dot product. In the basis of all block vectors(0, . . . ,0, fα, 0, . . . ,0), the matrix
Mk,s is block-diagonal with(s+ 1)m× (s+ 1)m-blocks of the form

Bs(J) =



I −J 0 · · · 0 0
−t J 2I −J · · · 0 0

0 −t J 2I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2I −J
0 0 0 · · · −t J I


,

whereJ is a Jordanm×m-block andt J its transpose. Studying the spectral properties
of the Bs(J) is a technical algebra exercise.

Then Theorem 7 implies:

Corollary 12.

C
(

Gd/2
k,s

)
≥ 2k−1


8(s+ 1)

9
sin2 π

2(2k− 1)
if k ≤ s< 2k− 1,

8(s+ 1)

9
sin2 π

2(s+ 1)
if 2k− 1≤ s.

This suggests usings = 2k− 1 to get optimal security. The lower bound of the ratio is
here equivalent to 2π2/9s.

2.2.2. Use of the Symmetric Approach

ThoughGk,s is not edge-transitive, it is possible to use the symmetric approach for
the cases = k. If we contract layers 0 and 1 following the rule that adjacent edges
are merged, we get the same result (i.e., isomorphic) as if we add symmetrical edges
between the first and the last edges ofGk−1,2k−5. The obtained graphG′k−1,2k−5 turns out
to be edge-transitive fork ≥ 3. This graph has degreed = 4.

Lemma 13. The average distance of G′k−1,2k−5 is asymptotically3
2(k− 2).

Proof. (sketch) By studying the distance between two vertices, we obtain that the
average distance is

δ = 3
2(k− 2)+ Ck−2

k− 2
− 2

k− 2

k−2∑
i=1

Ci ,

whereCi is the average length of the longest all-zero subsequence of a random boolean
sequence of lengthi . Then we prove thatCi ≤ 1+ log2 i . So,δ ∼ 3

2(k−2). The complete
proof can be found in [20, pp. 74–76].

We letClin(G
d/2
k,k ) denotes the linear complexity ofGd/2

k,k , that is

Clin(G
d/2
k,k ) = min

A
C(Adf)
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over all linear algorithmsA. The last lemma allows us to prove a technical corollary we
mention for completeness.

Corollary 14. For k ≥ 3 we obtain Clin(G
d/2
k,k ) ≥ (2k−1/3)(1+ o(1)).

This establishes the lower bound1
3 for the ratio. Unfortunately, we could not prove a

similar result for the general complexity following this approach.

Proof. (sketch) Any linear algorithmA can be rewritten, without increasing its com-
plexity, as an algorithm such that, for any subtermB which involves a vertexvi, j for
j = 0, 1,s− 1, ors, every one of the other vertices which are merged withvi, j either
already occurs inB or will be joined immediately hereafter. In such an algorithm, there
is at least one out of four consecutive subtermsB which has all of its mergedclasses
complete, i.e., closed with respect to merging. LetB′ be the merged image of such aB
in G′k−1,2k−5. The completeness property ofB impliesGk,k(B) = G′k−1,2k−5(B

′). Thus,
using the Babai–Szegedy theorem together with the previous lemma, we obtain

Gd/2
k,k (V(B)) ≥

4

3(k− 2)
#(V(B′))

(
1− #(V(B′))

(2k− 4)2k−2

)
.

We observe that

#(V(B))− 3 · 2k−1 ≤ #(V(B′)) ≤ #(V(B))

and that at least one out of four consecutiveB’s satisfies thecompletenessproperty,
hence the result.

2.2.3. Use of the Flow Approach

In the particular case of the graphGk,2k−2, there is an independent method, dedicated to
this graph and based on the min-cut max-flow theorem.

Lemma 15. Let V0 and Vs be respectively the first and the last layer of Gk,2k−2. For
every function r from V0 ∪ Vs to Z such that|r (v)| ≤ 2 and

∑
v r (v) = 0 there exists a

flow f with source r, that is to say a function from the setĒ, the set of directed edges,
to Z such that, for all v andw:

1. f (v,w) = − f (w, v),
2. | f (v,w)| ≤ 1,

3.
∑

u

f (u, v) =
{

r (v) if v ∈ V0 ∪ Vs,

0 otherwise.

Proof. Let {vi, j , vi ′, j+1} be an edge withj + 1≤ k− 1. We define

f (vi, j , vi ′, j+1) = 1
2 Meanvi ′′ ,0 r (vi ′′,0),

where the arithmetic mean is taken over all verticesvi ′′,0 such that there exists a straight
path inGk,2k−2 from vi ′′,0 to vi, j . f (vi, j , vi ′, j+1) is thus equal to half the mean of all
r (vi ′′,0), the incoming flow invi, j from previous layers which is equally spread into its
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two outgoing edges. Hence, the incoming flow in allvi,k−1 will be a constant. Defining
f (vi ′, j+1, vi, j ) = − f (vi, j , vi ′, j+1), it is easy to show that the above three conditions are
satisfied for all edges before the layerk− 1.

Similarly, for j ≥ k − 1, we definef (vi, j , vi ′, j+1) to be half the incoming flow in
vi ′, j+1 from the next layers starting atVs. The conditions are satisfied for all edges after
the layerk − 1. The flow coming from all the upper layers to the layerk − 1 is also
equally spread into all the vertices. Then, due to the condition that the sum of allr (v) is
0, the third condition is also satisfied in the layerk− 1.

Using the previous lemma we show:

Lemma 16. For any set U in Gk,2k−2, if c = #(U ∩ (V0 ∪ Vs)) where V0 is the first
layer and Vs is the last one, we have Gd/2

k,2k−2(U ) ≥ 2k−1− |2k−1− c|.

Proof. We note thatGd/2
k,2k−2(U ) = Gd/2

k,2k−2(V − U ) (this comes from the fact thatV
is in the kernel of the quadratic form). Thus, possibly replacingU by V − U , we can
assumec ≤ 2k−1. Now, for v ∈ V0 ∪ Vs, we can definer (v) to be 2 if v ∈ U and
r (v) = −2c/(2k − c) otherwise. Sincer satisfies the conditions of the lemma, there
exists a flow with sourcer , hence with capacity 2c. We note that 2Gd/2

k,2k−2(U ) is equal
to the cardinality of the border ofA, which is a cut for the flow. Hence, the min-cut
max-flow theorem says 2Gd/2

k,2k−2(U ) ≥ 2c.

Corollary 17. C(Gd/2
k,2k−2) ≥ 2

3 2k−1.

Proof. In a similar way as in the proof of Theorem 7, we get

C(Gd/2
k,2k−2) ≥ max

0≤x≤2k
min

x≤y≤2x
(2k−1− |2k−1− x|),

which is equal to2
32k−1.

A similar method applied onGk,k−1 (basically, in taking onlyV0 into account in the
source of the flow) enables us to prove:

Corollary 18. C(Gd/2
k,k−1) ≥ 1

3 2k−1.

This confirms the partial result obtained by the symmetric approach.
These results establish a constant ratio between the upper bounds and the lower bounds.

Actually, the same method applied to linear algorithms shows thatClin(Gk,s) = 2k−1,
which proves the conjecture in [15]. We conjecture that the upper bounds are the real
complexities also in the general case fors= 2k− 2. This means thats= 2k− 2 has to
be chosen to get the optimal security for theGk,s compression function family.
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3. Possible Extensions and Conclusion

The analysis on cryptographic primitives proposed here can be extended in a more
general context. To allow several edge domains to exist together in the same primitive,
we can add the notion of edge degree of freedom in the definition of the computation
graphs. This would be the logarithm (in any basis) of the cardinality of the domain. We
mention that all the results still hold if we replaced(v) by the sum of all the adjacent
edge degrees. We can also allow the value of an edge to be involved in more than two
different vertices replacing the notion of graph by the notion of hypergraph.

We have proposed a new framework for the study of the security of cryptographic
primitives defined as a computation graph. We showed that the complexity of resolving
a computation graph is related to the local expansion properties of the graph. This theory
enables one to prove the one-wayness of a family of compression functions with respect
to the black-box attacks. It can be applied to the compression functions based on the
FFT network. It turns out that the function is the most secure possible (in context with
the black-box cryptanalysis) for a doubled FFT network, that is fors= 2k− 2.
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