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Abstract. We introduce theblack-box modefor cryptographic primitives. In this
model cryptographic primitives are given by a computation graph, where the computa-
tion boxes sitting on the vertices of the graph act as random oracles. We formalize and
study a family of generic attacks which generalize exhaustive search and the birthday
paradox. We establish complexity lower bounds for these attacks and we apply it to
compression functions based on the FFT network.
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Introduction

Cryptographic primitives for encryption, hashing, and pseudorandom generation are
judged according to efficiency and security. Design methods for constructing crypto-
graphic primitives are usually empiristic. The example of Rivest's MD4 hash function
[11], which has been shown to be insecure by Dobbertin [7], demonstrates the need for
a design theory that provides security in a realistic model.

Usually cryptographic primitives are defined as a computation graph in which the
vertices are computation boxes. The cryptanalysis approach of Biham and Shamir [6]
and Matsui [9] initiated an important study of the algebraic properties of the computation
boxes. In this paper we take another view, we neglect the inner structure of the boxes.
We study the security provided by a computation graph, where the boxes act as random
oracles, i.e., ablack-boxes

Generic attacks that do not exploit the inner structure of the boxes play an important
role. Nechaev [10] and Shoup [16] study generic algorithms for the discrete logarithm,
assuming that the group operations are given as black-boxes. The random oracle model of
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126 C. P. Schnorr and S. Vaudenay

Bellare and Rogaway [5] has been used in security proofs for various signature schemes.
Here the hash function is a black-box acting as a random oracle in a network comprising
the signer, the verifier, and the attacker of a signature scheme. We propose a black-box
model in whichall boxes of the computation graph act as random oracles.

The black-box model covers powerful attacks, e.g., the iterative use of exhaustive
search and the birthday paradox applied locally to arbitrary parts of the computation
graph. We only exclude attacks that “split” the boxes. In the black-box model we can
prove interesting and tight complexity bounds for generic attacks. These complexities
correspond to the minimal workload of attacks. We study the average complexity of
these attacks for relevant probability distributions for the boxes. Black-box cryptanalysis
can determine optimal interconnection networks for the design of hash functions and
symmetric encryption functions provided that strong computation boxes are given.

In particular we extend and analyze the FFT network, the computation graph of the
Fast Fourier Transform that is known as the butterfly graph. This network has been used
in several cryptographic proposals [8], [14], [15]. We give evidence that the FFT network
with 2¢ input nodes andi2— 2 layers yields a family of compression functions with
optimal security in the black-box model. This means that for the doubled FFT network
there is no better black-box attack than exhaustive search over the inputs. While our
lower and upper complexity bounds coincide lioear attacks, lower and upper bounds
differ by a factor of 3 in the general case.

In Section 1 we present the black-box model. In Section 2 we consider the FFT hash
network. We prove upper bounds and lower bounds for the complexity of inverting the
function computed by this network. The particular case of linear algorithms for the FFT
network has been studied in [15]. Here we prove lower bounds for general algorithms in
the black-box model. A full formal study is also available in [20, pp. 31-87].

1. The Black-Box Model

1.1. Computation Graphs with Random Boxes

Let G = (V, E) be an undirected graph with vertex 8etnd edge seE.* A “compu-
tation” alongG associates with each edge a value in some falfihabet Z Associated
with each vertex is a set of possible local computations (or local solutidrig) ¢ ZE®
for E(v), the set of edges adjacentitoThusl (v) is the set of assignments of values in
Z to the edges ifE (v) that are admissible for the boxatFor the degred(v) = #E (v)?
of vertexv we must have Bv) < #Z9®_ If #1 (v) = #Z9® the box is trivial as all
assignments are admissible. If verieRasi “input edges,” then ¥(v) = #Z' since the
input values determine the output valuessd@utionfor the graph is a tuplee ZE, i.e.,
a tuple onE such that, for all vertices, the restrictiort,E<v)3 isinl (v).

We call | —the collection of all local solutions—ainterpretationof G. We study
resolution algorithms that work in general, i.e., for random local solutions. We study

1 All graphs are finite and loop-free in the paper.

2 The symbol # denotes the cardinality of a set.

3 The notatiorte: is the restriction of the tupleto the subseE’, i.e., the tuple orE” which is equal td
on all entries inE’.
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the average complexity of these algorithms. We associate with each vestdrgree
of freedomdf(v)—informally the (fractional) number of independent value<ithat
appear inl (v)—which we define as log Exp, #l (v).* In the following all logarithms
have the basisZand log means log.

Definition 1. A computation graphG%, Z) consists of an undirected gragh =
(V, E), a real-valued function @b) satisfying dfv) < d(v), and an alphabeZ. A
random interpretation lis a random map which associates with each vertexset
| (v) € ZE® of local solutions so that ¢) = log Exp, #1 (v).

The computation graptd' is undirected and so is the “computation flow.” To stress
the undirected nature @' it was called arequation graptrather than aomputation
graphin [20].

In the following we assume that all probability distributions fonave the following
two properties:

Local Uniformity. For allv € V andt € ZE®, the probability P € | (v)] is a
constant which depends enThus we have Pr[e | (v)] = #Z%®-d®),

Independence. The setd (v) are independent for distinct vertices

Examples of possible distributions are:

— the uniform distribution over all so thatl (v) is a subset oZ B with #1 (v) =
#de(v);

— for integer degree of freedom (@, the uniform distribution over all so that
| (v) defines a function of edge values of somévgifedges inE (v) to the other
d(v) — df(v) edge values;

— the uniform distribution over all so thatl (v) defines anultipermutatioron ZE® .
(Following Vaudenay [19], [20], a multipermutation withnputs anch outputs is
a set of(r + n)-tuples such that no different tuplasandt, can be simultaneously
equal on any different entries. This way, it is a function of anyentries onto the
remainingn ones. This concept formalizes the notion of perfect diffusion, that all
inputs are perfectly diffused to the outputs in an information theoretic sense. This
is a useful design criterion.)

1.2. Resolution and Complexity of a Computation Graph

For two subset€’, E” ¢ E of edges and corresponding sets of tuplsc ZF,
X" c Z®" we define thgoin

X oa X" = {te ZF" e e X', tier € X'}

to be the set of all tupleson E’ U E” with restrictions toE’ in X’ and toE” in X”.
This operation< is similar to the join used in relational database theory. The join is

4 Here Exp denotes the expected value over the distributioh. of
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associative and commutative and the seaflobal solutions orE turns out to be the join
ofall | (v).

We extend the interpretationhto arbitrary subsets of vertices using that the join is
associative and commutative. Rdrc V we letE(U) denote the set of edges adjacent
to the vertices irJ. We definel (U) to be the join of alll (v) withv € U, i.e.,

l(U) ={te 25V | tigq) € | (v) forallv e U}.

I (U) is the set ofocal solutions forU. Obviouslyl (U UW) = | (U) > | (W) holds
for arbitrary subsets) andW of vertices.

Definition 2. A (resolution)algorithm Afor the graphG is a termA with the two-ary
operation= and allv in V. Itslength|A| is the number of occurrences f plus the
number of occurrences ofs.

Actually, a resolution algorithm specifies the order of allth@perations starting from
the | (v) with v € V. For example, the terrtvy o< v2) > (v3 > v4) Means that we
first form | (vy) < | (v2), | (v3) > | (v4), and then the join of these two sets. There is a
natural notion of subterm, the above term has the subterms v,, v3 < v4. We write
B < Aif B is subterm ofA.
For an arbitrary subternB of an algorithmA let V(B) denote the set of vertices
occurring inB. Sol (V(B)) is the result, or the set of local solutions, of the subt&m
We define the logarithmicomplexity G(A) of an algorithmA to be the maximal
logarithmic size of the result of a subtemn< A (taking the maximum yields a simple
and clean measure that differs from an aveyaggregate measure only by |@g):

Ci(A) =log [Brgx #1 (V(B)).

The logarithmic complexity roughly corresponds tavarkload#Z < (. Counting only

the size of the largest intermediate result is justified since the length of algorithms will

be small and the costs for a join operation corresponds to the cardinality of the operands.
Theaverage complexity QA% of algorithm A is defined to be

C(A") = log Exp max #l (V (B)).

As the distribution of is locally uniform, the expected value Exgepends on df and so
doesC(AY). We let thecomplexity GG of a computation grapB9 be the minimum
of C(AY) over all algorithmsA for G,

1.2.1. Getting Only One Solution

In most cases we are only interested in getting on the averaggolution ofGY'. If there

are many solutions we can decrease the complexity by restricting the resolution process
to random subsets of all tHe&v). Thus, for a given mapping Qfwith df (v) < df(v) for

allv, and a given interpretatidnof (G, Z), we consider arandom subinterpretatih

and a distribution defined by picking independently and uniformly random suits¢is

of | (v) of size #29"®, This means considering a computation graph withrgftead of

df. Note that the construction of" preserves local uniformity and independence. In the
following we consider computation graphs with only one solution on the average.
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1.2.2. Examples of Algorithms

We demonstrate how to use exhaustive search and the birthday paradox iteratively on
parts of the computation graph. Enumerating all values of a fundtisrformalized by

the algorithmx! >« f1. Solving exhaustivelyf (x) = a for given f, a is the intention

of (x! s« 1) > a° where degrees of freedom(dj are denoted by a superscript
onv. Searching foonesolution of f (X, y) = a by pickingx andy at random is the
meaning of(x¥? s« y¥?) =« f1) s« a°. Here the degree of freedom &fandy

have been decreased %o:o get one solution on the average. We can also decrease it
as((x® o< y}) s« f1) > a® which means to fixx arbitrarily and then to search for

y. Using the birthday paradox to get one solutionfak) = g(y) can be written as
(XY2 0« 1) 0« (y¥2 < g). This algorithm makes two lists af#Z x- andy-values

and searches for matchésgx) = g(y).

1.2.3. Linear Complexity

In [15] we only consideredinear resolution algorithms, i.e., algorithms of the form

v1 < (v2 < (- - -)) thatare characterized by the order of traversing the vertices. , vy,.

It is tempting to believe that linear algorithms are already the most powerful ones and
that nothing can be gained from nonlinear ones. The following counterexample shows
this is not the case. Consider the network of Fig. 1 representing the computation graph
of a supposed one-way function which maps six inpyts .., Xg onto six outputs,

all 24-bits long. The direction of the edges in Fig. 1 indicates the underlying network
for computing the function. The problem of inverting this function is defined by the
following computation graph:

V ={X]_,...,Xe,vl,...,ve,wl,...,we}
and
df(Xi) =1, df(vi) =2, df(wi) =1, i=1...,6

It is straightforward to imagine a linear attack to invert the function with logarithmic
complexity 3, that is within workload 2: enumeratex;, x3 and xs exhaustively and
solve the leftmost third of the graph fror andxs and getx, andx, as

A = ((((((X1 2 X3) > V1) B W1) B W) B V2) B X2) > Xg.

Fig. 1. A powerful nonlinear algorithm.
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Then solve the rightmost third fromy and getxg by the algorithm
A’ = (((((A < X5) > V5) <1 W5) <1 We) B<I Vp) B<I K.
Finally check that this yields a solution of the whole graph via
A" = (((A < v3) < w3) B<1 Wa) B< V4.

Itis easy to see that 3 is the lowest complexity for linear algorithms. On the other hand,
one can solve the leftmost third frors andxs by the algorithmA andindependently
solve the rightmost third froms; andxs by

B = ((((((X3 > X5) <1 U5) b<t W5) B<I We) B<I Vg) B<I X4) DI Xg

then join the two sets of partial solutions to get a 8et« B with rank 2 and finally
check whether it contains a global solution

((((A < B) > v3) b w3) b wy) >4 V4.

This is done with a logarithmic complexity 2, that is with worklo&d.2

1.3. Approximating the Complexity

With a computation grapis®" we associate itguadratic form which we also denote
GY, represented by the symmetric mat(@"" ), ,cv, where

v,w

_% if v£w and {v,w}eE,
GY, =t i) i v=w,
0 otherwise

The quadratic form induces a functi®f’: z¥ — Z as
G =) gwgw)G,

veV weV

for g € ZV. We identify a subsdtl c V with its characteristic function if0, 1}V, and

thus
cfuy=> > 6",

vel wel

LetInt(U) = {{v, w} € E | v, w € U} be the set of interior edges bf. It can easily be
seen that

GY(U) =) df(v) — #IntU) = #EWU) + Y _(df(v) — d(v)),

veU vel

where the latter equality comes frop, _, d(v) = #E(U) + #Int(U).

If df (v) = 2d(v) holds for all vertices, then, for any subsét of vertices,G%(U)
equals half the number of edges of the perimetdd dfi.e., the edges betweédh and
V — U). We call this thdocally invertiblecase as all the boxes look like permutations
with the same number of inputs and outputs.

The role of the quadratic form becomes apparent in the following lemma.
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Lemma 3. Every subset U- V of vertices satisfideg Exp #l (U) = G%(U).

Proof. We note that Exp#l (U) = >, Prft € | (U)] where the sum is over all tuples

t on E(U). The event{t € |(U)} is the intersection of all the independent events
{tew € 1 (v)} for v € U. There are #*EY) many tuples orE(U). Local uniformity
and independence of the distribution foyields

log Exp #1 (U) = #E(U) + > _(df(v) — d(v))

veU

which, as we have already seen, equaf§U). O
Theorem 4. Every algorithm A for G with length| A| satisfies
maxG*(V(B)) = C(A") < log|A| + maxG*(V(B)).

Proof. By the definition ofC(Ad), and since a maximum of nonnegative values is
lower than their sum we have

C(A") = logExp maxi# (V (B))

log Exp Z #1 (V(B))

B<A

IA

log Z Exp, #l (V(B))

B<A

IA

log (IAI - MaxExp, #1 (V(B)))
logl Al + rga/idog Exp #l (V(B))

log| Al + @aged%ws)),

where the last equality comes from Lemma 3.
The first inequality of the claim is straightforward by Lemma 3. O

As an immediate consequence of Theorem 4 the expression
redfy o i df
C'(G") = mAnrQSAxG V(B))

is a close approximation to the complex@yG“) which only depends on the quadratic
form GY and not onZ.

Corollary 5. C'(G¥) < C(G) < log|Aopl + C'(G), where Ay is an optimal
algorithm
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1.4. The Spectral Approach

We consider a locally invertible grap?/? so that dfv) = %d(v). Its quadratic form

turns out to have properties similar to the Laplacian operator. In this context, lower
bounds on the complexity can be proven in a similar way to the expander graphs theory
using a well-known link with the spectral values [17], [2], [1]. In this sectionGebe

an undirected graph with vertices and lek.; < --- < A, be the eigenvalues of the
quadratic formG9/2.

Lemma 6. If the graph G is connectedheni; = 0, A, > 0, and every set U of ¢
vertices satisfies &2(U) > r,c(1—c/n).

Proof. 0is an eigenvalue sin@@“/?(U) = 0 holds for all connected componehtsof
G. The fact that the quadratic form is positive and that- O (if G is connected) is an
easy algebra exercise. We note thais the smallest eigenvalue of the quadratic form
in the hyperplan&/+ orthogonal to the sef of all the vertices (i.e., the vector having
all coordinates 1).

For an orthonormal basis of eigenvectors. . ., v, with vy = (1/4/n)V we have (the
dot- denotes the scalar product)

GY2U) = AU -v)? =22 ) (U -u)® =2((U-U) — (U - v)?).
i i=2

i=1

Now, the claim follows fromJ - U = candU - vy = ¢/ /n. O

Then we get a lower bound:

Theorem 7. If the graph G is connectethen Q(G%2) > (21,/9)n.

Proof. Let A be an algorithm foiG%/2 such thatC’(G%?) = maxg<a G¥?(V(B)).
Lemma 6 yieldsC'(G%?) > maxg<a A2 #(V (B))(1 — #(V(B))/n). Let x be an arbi-
trary integer between 0 amd= #V. Every minimal subternB with the property that
#(V(B)) > x also satisfies@/ (B)) < 2x since it can at best be the join of two subterms
which each contain — 1 vertices. For such a subterm we have

HVEBD) y
#<V<B)>(1— . )Zx<rnyl<nzxy<1—ﬁ>

and thus by Corollary 5

2A
C(GY?) > Cc/(GY?) > [max min A, y(l— %) = ?Zn.

<X<Nn X<y<2x

The max min is obtain witkk = y = n/3. O
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1.5. The Symmetric Approach

Similarly, we can apply a theorem due to Babai and Szegedy [3] used in context with
Cayley graphs. We reformulate itin our context and refer to [3] for the proofGlist an
arbitrary undirected, edge-transitive graph witkertices, letd be the harmonic mean

of the degrees of the vertices andddie the average distance between two vertices.

Lemma 8[3]. Every setU of c vertices satisfies

d C
d/2 — - =
D= 28C(1 n) '

A graph is edge-transitive if every edge can be mapped onto any other one by a graph
automorphism. In such a graph the vertices can only have one or two possible degrees.
This suggests using the harmonic medri2d; + 1/d,) of the two degreed; andd,.

A straightforward application of the proof of Theorem 7 to Lemma 8 shows:

Theorem 9. Every undirectegedge-transitive graph G satisfiegG%/?) > (d/98)n.

2. Parallel FFT Hashing

Two previous proposals of a cryptographic hash function based on the FFT network
[12], [13] have been broken (see [4] and [18]). Then, by a joint effort, a family of hash
functions based on the same graph has been proposed in [14] and discussed in [15]. We
now prove the conjectures announced in the latter paper. Interestingly, the FFT network
has independently been used by Massey for the SAFER encryption function [8].

Let Gy s be the graph defined by the set of vertices

V={v;;0<i<20<j<s)
and the set of edges
E = {{vi,j, vi,j+1), (Vi) Vigaimacs j 411} 0 <1 < 21,0< | <s}.

Gy s is roughly the graph of the FFT network fof 2alues extended te + 1 layers.
Considering all vertices as boxes with two inputs coming from a lower layer and two

Fig. 2. TheGs 2 compression functions family.
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outputs going to a higher layer, this corresponds to a function Withpits entering in
layer 0 and -1 outputs going out from layes. Given two message blocks andny
with 2~ values, we let theth value of each block enter into vertey, and write the first
output ofv; s as theith value of the output string. The mappingm, m’) — h defines
a compression function. We propose studying the family of the compression functions
defined byGy s and a relevant distribution of interpretatiohghat defines the boxes.
In [14] we considered the uniform distribution on all multipermutations. The aim of the
present study is to find, by a graph theoretic analysisof, the minimals for optimal
security in the context of black-box cryptanalysis.

The one-wayness of the compression function means hardness of findigiyeor
m andh, onem’ such thattm, m’) — h. (Note: finding for giverh some mm’ with
(m, m’) — h is trivial as we can arbitrarily complement the “half”-outguto (h, h’)
and compute the inverse permutatin h’) +— (m, m’).) The inversion problem is
defined by the computation graf@y s together with

] 1 if j=0 or j=s,
df: vi.j = {2 otherwise
Here one input of the, o and one output of thg s are already known, that is & %d =1
holds for the first and the last layer. The exhaustive search consists in joining &l
guessn’ and joining successively all the other vertices layer by layer. This has complexity
21, S0, we are interested in thatio C(GY/?) /21,

Finally consider the length of the bit string for specifying ttse+ 1)2<~* boxes.
Choosing an alphabet with cardinalify the number of bits to encode the inputis=
2¢logq whereas the length of the description of the function (that is the interpretation)
is (s + 1)2¢g? logq. The family is quite huge, but we hope to find an interesting smaller
subfamily in which the following analysis will be possible too. For instance, if we take the
same box for all the verticés j and concatenate these boxes with independent random
permutations along the inner edgesGfs we decrease the length of the interpretation
to s2¢logq! and we preserve local uniformity and independence.

2.1. The Upper Bounds

Theorem 10. Fork —1 < s < 2k — 2 we have CCGﬂf) < 2K2(1 4 2279),

Thus, fors < 2k — 2 there is an attack faster than exhaustive search. We conjecture that
this inequality is in fact an equality fa&r= 2k — 2, that is to say the exhaustive search
is the best black-box attack @y o_».
Proof. First we show thaC(GY}? ;) < 2“2, For this we guess the first 2 inputs,
that is we join the first 22 verticesuv; . This allows us to compute half of the edges,
namely all edges adjacenttp; fori < 2-2_Then the degree of freedom of ajly_,
becomes 0, so that we can compute the other half of the edges backward and solve the
graph. This has complexity<22.

We can do similar things 06y s: we guess the first2? inputs and solve half of the
vertices from layer O to laydc — 1. Then all connected subgraphs from laker 1 to
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layers are isomorphic t&y 1 with k' = s—k+ 2. We solve them iteratively within a
complexity ¥ —2 = 25X, Having solved all of these subgraphs, we backwardly process
Gk.s. The resolution has complexity 2 + 2¢-5, O

In the following sections we show how to apply the different approaches to find lower
bounds. Finally, we prove that the ratio ®o&= 2k — 2 is lower bounded by a consta%ﬂ
2.2. The Lower Bounds
2.2.1. Use of the Spectral Approach

We use the notation introduced in Sections 1.4 and 2.

Lemma 11.
4sit — = if k<s<2k—1
T < %k —
d/2 2(2k — 1) - ’
22 (6(%) = -
4sif ——— if 2k—1<s.
2(s+1)

The proof is a difficult but unenlightening exercise in calculus which can be found in
[20, pp. 76-80].

Proof. (sketch) We study the spectral properties of the adjacency matrix

Il -iA 0 .. 0 0
~ita 21 -Ia .. 0 0
2 2
o A 21 ... 0 0
Mis = : : : " : : )
0 0 0o - 21 —ZA
0 0 0o - —3A

wherel is the identity matrix and

110000
001100
A 000 - 11
110000
001100
0000 .- 11

We let f, denote the Hadamard vector basis: for any boolean vecteith k — 1
coordinates,f, is a real vector with ©1 entries. Each entry index corresponds to a
boolean vector with k — 1 coordinates and,, is defined by( f,); = (—=1)*' where-



136 C. P. Schnorr and S. Vaudenay

is the dot product. In the basis of all block vectgBs.. ., 0O, f,,0,...,0), the matrix
My s is block-diagonal with(s + 1)m x (s + 1)m-blocks of the form

| -J o ... 0 0
-3 2 -J ... 0 0
0 -3 21 ... 0 0
Bs(J) = : : : ) : : ’
0 0 o --- 2 —-J
0 0 o --- =1 |

whereJ is a Jordarm x m-block and'J its transpose. Studying the spectral properties
of the Bs(J) is a technical algebra exercise. O

Then Theorem 7 implies:

Corollary 12.
8(s+1) in? T

c (Gd/z) o k-1 9 22k — 1)
- 8(s+1) sir? b4
9 2(s+1)

if k<s<?2k-—1,

if 2k—1<s.

This suggests using)= 2k — 1 to get optimal security. The lower bound of the ratio is
here equivalent to2?/9s.

2.2.2. Use of the Symmetric Approach

Though Gy s is not edge-transitive, it is possible to use the symmetric approach for
the cases = k. If we contract layers 0 and 1 following the rule that adjacent edges
are merged, we get the same result (i.e., isomorphic) as if we add symmetrical edges
between the first and the last edge$ef 1 2«-s. The obtained grapG;_, ,,_5 turns out

to be edge-transitive fde > 3. This graph has degree= 4.

Lemma 13. The average distance ofiG, ,,_s is asymptotically3 (k — 2).

Proof. (sketch) By studying the distance between two vertices, we obtain that the
average distance is

5 = 3(k 2)+C"‘2 2 kic-
o2 k=2 k-24& 7"

whereC; is the average length of the longest all-zero subsequence of a random boolean
sequence of lengih Then we prove thaE; < 1+log,i.S0,6 ~ %(k— 2). The complete
proof can be found in [20, pp. 74-76]. O

We letCin (Gi¥) denotes the linear complexity &7, that is

Cin(G) = minC(A™)
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over all linear algorithm#\. The last lemma allows us to prove a technical corollary we
mention for completeness.

Corollary 14. For k > 3 we obtain Q}n(Gﬁ

1) = (21/3)(1+ o(1)).
This establishes the lower bour%dfor the ratio. Unfortunately, we could not prove a
similar result for the general complexity following this approach.

Proof. (sketch) Any linear algorithnA can be rewritten, without increasing its com-
plexity, as an algorithm such that, for any subteBnwhich involves a vertex; ; for

j =0,1,s—1, ors, every one of the other vertices which are merged witheither
already occurs ifB or will be joined immediately hereafter. In such an algorithm, there
is at least one out of four consecutive subteftng/hich has all of its mergedlasses
completei.e., closed with respect to merging. LBt be the merged image of suctBa

in Gy _; 5_s- The completeness property Bfimplies Gy x(B) = G, _; 5_5(B’). Thus,
using the Babai—Szegedy theorem together with the previous lemma, we obtain

#V(B") )
(2k — 422 )"

4
GV (B) = 2= #(V(BY) (1 -

We observe that
#(V(B)) — 3- 2571 < #(V(B')) < #(V(B))

and that at least one out of four consecuti®¥s satisfies thecompletenesproperty,
hence the result. O

2.2.3. Use of the Flow Approach

In the particular case of the grag@i »«—», there is an independent method, dedicated to
this graph and based on the min-cut max-flow theorem.

Lemma 15. Let \p and \4 be respectively the first and the last layer of £a_». For
every function r from YU Vs to Z such thatr (v)| < 2and}_, r(v) = Othere exists a
flow f with source rthat is to say a function from the skt the set of directed edges
to Z such thatfor all v andw:

1. f(v,w)=—f(w,v),
2. [f(v,w)] <1,

_r if veVoUVs,
3. ; fu.v)= {0 otherwise

Proof. Let{vij, v j+1} be an edge with) + 1 < k — 1. We define
f(uij,vij41) = % Mean,, , I (vi* 0),

where the arithmetic mean is taken over all vertigeg such that there exists a straight
path inGy 2—> from vi» o to v j. f(vij, vir j+1) is thus equal to half the mean of all
r (vi,0), the incoming flow inv; ; from previous layers which is equally spread into its
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two outgoing edges. Hence, the incoming flow imall_; will be a constant. Defining
f(virj+1, vi,j) = — T (vi,j, v j41), it is easy to show that the above three conditions are
satisfied for all edges before the layer 1.

Similarly, for j > k — 1, we definef (v; j, v/ j+1) to be half the incoming flow in
vi j+1 from the next layers starting &. The conditions are satisfied for all edges after
the layerk — 1. The flow coming from all the upper layers to the laker 1 is also
equally spread into all the vertices. Then, due to the condition that the sunr ¢ pit
0, the third condition is also satisfied in the lajer 1. O

Using the previous lemma we show:

Lemma 16. For any set U in G2, if ¢ = #U N (Vo U Vy)) where j is the first
layer and \{ is the last ongwe have @3 ,(U) > 21 — |21 —¢|.

Proof. We note thalGy 4_,(U) = Gy/z_,(V — U) (this comes from the fact that

is in the kernel of the quadratic form). Thus, possibly replatingy V — U, we can
assumec < 2K-1. Now, forv € Vp U Vs, we can define (v) to be 2 ifv € U and
r(v) = —2¢/(2¥ — c¢) otherwise. Since satisfies the conditions of the lemma, there
exists a flow with source, hence with capacity@ We note that Gk x_o(U) is equal
to the cardinality of the border oA, which is a cut for the flow. Hence, the min-cut
max-flow theorem says;C'z?kd x_2(U) > 2c. O

Corollary 17.  C(Gg/g_,) > 22«1,

Proof. In a similar way as in the proof of Theorem 7, we get

d/2 K—1 k—1
C(G > max min (2 270 — X)),
(G2 = i VA )

which is equal t2<1. O

A similar method applied oy k-1 (basically, in taking only; into account in the
source of the flow) enables us to prove:

Corollary 18.  C(Ggy ;) > S 2«1,

This confirms the partial result obtained by the symmetric approach.

These results establish a constantratio between the upper bounds and the lower bounds.
Actually, the same method applied to linear algorithms shows@RaiGy s) = 21,
which proves the conjecture in [15]. We conjecture that the upper bounds are the real
complexities also in the general casedoee 2k — 2. This means that = 2k — 2 has to
be chosen to get the optimal security for tBgs compression function family.



The Black-Box Model for Cryptographic Primitives 139
3. Possible Extensions and Conclusion

The analysis on cryptographic primitives proposed here can be extended in a more
general context. To allow several edge domains to exist together in the same primitive,
we can add the notion of edge degree of freedom in the definition of the computation
graphs. This would be the logarithm (in any basis) of the cardinality of the domain. We
mention that all the results still hold if we repladév) by the sum of all the adjacent
edge degrees. We can also allow the value of an edge to be involved in more than two
different vertices replacing the notion of graph by the notion of hypergraph.

We have proposed a new framework for the study of the security of cryptographic
primitives defined as a computation graph. We showed that the complexity of resolving
a computation graph is related to the local expansion properties of the graph. This theory
enables one to prove the one-wayness of a family of compression functions with respect
to the black-box attacks. It can be applied to the compression functions based on the
FFT network. It turns out that the function is the most secure possible (in context with
the black-box cryptanalysis) for a doubled FFT network, that isfer2k — 2.
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