
J. Cryptology (1998) 11: 219–234

© 1998 International Association for
Cryptologic Research

Fast Multiplication on Elliptic Curves over Small Fields
of Characteristic Two∗

Volker Müller
Fachbereich Informatik, Technische Universit¨at Darmstadt,

Alexanderstrasse 10, 64283 Darmstadt, Germany
vmueller@cdc.informatik.tu-darmstadt.de

Communicated by Johannes Buchmann

Received 14 January 1997 and revised 4 September 1997

Abstract. We discuss new algorithms for multiplying points on elliptic curves defined
over small finite fields of characteristic two. This algorithm is an extension of previous
results by Koblitz, Meier, and Staffelbach. Experimental results show that the new
methods can give a running time improvement of up to 50% compared with the ordinary
binary algorithm for multiplication. Finally, we present a table of elliptic curves, which
are well suited for elliptic curve public key cryptosystems, and for which the new
algorithm can be used.

Key words. Elliptic curves, Characteristic two, Multiplication, Frobenius expansion,
Frobenius endomorphism.

1. Introduction

Elliptic curves over finite fields have gained much attention in public key cryptography
in recent years [3], [10]. For practical reasons, elliptic curves over fields of characteristic
two are of special interest. Diffie–Hellman type cryptosystems using elliptic curves over
F2155 were implemented and compared with RSA (see [12]). The most time consuming
operation of these cryptosystems is multiplication of a point on the elliptic curve with
an integer, whose size is approximately equal to the order of the underlying group. In
[4] Koblitz proposed distinguishing between the field of definition for the elliptic curve
E and the field for the group of points onE. He suggested using the group of points on
so-called “anomalous” elliptic curves for such cryptosystems. In [7] the authors showed
how to speed up point multiplication on the anomalous curvey2+ yx = x3+1, defined
overF2.

∗ Part of this work was done when the author was a Postdoctoral Fellow at the University of Waterloo,
Canada. The support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is
gratefully acknowledged.

219

220 V. Müller

In this paper we extend the ideas presented in [7] to arbitrary nonsupersingular elliptic
curves defined over small extensions ofF2. We describe a new algorithm for multiplying
points that are defined over arbitrary extensions of the definition field. The new algo-
rithm is up to 50% faster than the ordinary binary multiplication algorithm. We examine
its running time both in theory and in practice. Finally, we list some examples of non-
supersingular elliptic curves defined overF4, F8,F16, respectively, and corresponding
extension fields that are well suited for public key cryptosystems. All extension fields
are chosen in such a way that the order of the group of points over the given extension
field has a large prime factor. Therefore neither the algorithm of Pohlig and Hellman (see
[11]) nor the attacks on supersingular curves (see [8]) can be used to compute discrete
logarithms in the group of points on the given elliptic curves.

We start with a short introduction to elliptic curves. More information on elliptic
curves over fields of characteristic two and their use in cryptography can be found in [9].

Let Fq be the finite field withq elements, whereq is a “small” power of two, and let
Fq be its algebraic closure. A (nonsupersingular) elliptic curveE overFq can be defined
by an equation of the form

y2+ x y= x3+ a2 x2+ a6, (1)

wherea2, a6 ∈ Fq anda6 6= 0. The setE(Fqk) of points onE over an extension field
Fqk of Fq is given by the set of solutions inF2

qk to (1) together with a “point at infinity”
O. There exist simple algebraic formulas for adding two arbitrary points inE(Fqk) (see
[12]); with this addition,E(Fqk) forms an additive abelian group with zero element
O. The disadvantage of thisaffine representationis the fact that addition involves one
inversion inFqk . There exists another representation of points, the so-calledprojective
representation, which eliminates this problem. On the other hand, point addition in
projective representation needs more multiplications and squarings of elements inFqk

as point addition in affine representation (see [9] for a detailed description of these
representations and corresponding addition formulas).

The Frobenius endomorphism ofE is given as

8: E(Fq) −→ E(Fq), (2)

(x, y) 7−→ (xq, yq).

This endomorphism satisfies the equation

82− c ·8+ q = 0, (3)

wherec ∈ Z and |c| ≤ 2
√

q. There is a strong connection between this equation in
the endomorphism ring ofE and the order of the group of points onE over the field
of definition, namely, we have #E(Fq) = q + 1− c. SinceE is nonsupersingular, the
endomorphism ring ofE is an order in the imaginary quadratic fieldQ(

√
c2− 4q).

Moreover, the tracec of 8 must be odd. Obviously, the ringZ[8] is a subring of the
endomorphism ring ofE.

In Section 2 we show how to represent rational integers as power sums of the Frobenius
endomorphism8. The main result of this paper is given in Theorem 1, where we prove
the existence of such expansions and sharp upper bounds for their length. In Section 3

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 221

we use these expansions to develop a new algorithm for multiplying points on suitable
elliptic curves. In Section 4 we discuss extensions to this algorithm which use block
ideas. Moreover, we report on some practical results achieved with an implementation
of the algorithm (Section 5). Finally, we list several elliptic curves which are well suited
for cryptographic purposes.

2. Representing Integers as Power Sums of the Frobenius Endomorphism

Let q be a power of two, letc be an odd integer with|c| ≤ 2
√

q, and let8 be an
element in the maximal order of the imaginary quadratic fieldQ(

√
c2− 4q)with minimal

polynomial given in (3). The first lemma proves the existence of a “division by8 with
remainder” in the ringZ[8].

Lemma 1. Let s ∈ Z[8]. There exists an integer r∈ Z, −q/2 ≤ r ≤ q/2, and an
element t∈ Z[8] such that

s= t ·8+ r.

If we choose r∈ {−q/2+ 1, . . . ,q/2}, then r and t are unique.

Proof. Let s= s1+s2 ·8with s1, s2 ∈ Z. We want to find integerst1, t2, r ∈ Z, such
that

s1+ s2 ·8 = (t1+ t2 ·8) ·8+ r.

Using the minimal polynomial of8 given in (3), we transform the right-hand side of
this equation into

(t1+ t2 ·8) ·8+ r = t1 ·8+ t2 · (c8− q)+ r.

Comparing coefficients, we gets1 = −t2 q + r . This equation must be solvable in the
rational integers, therefore we haver ≡ s1 modq. Choosingr as the absolute smallest
residue ofs1 modq, we compute

t2 = r − s1

q
and t1 = s2− c t2 = s2− c

r − s1

q
.

The uniqueness ofr and t follows from the fact that{−q/2 + 1, . . . ,q/2} forms a
minimal complete set of residues moduloq.

Obviously, one can iterate the process of divisions by8with remainder. This procedure
leads to so-called Frobenius expansions for an elements ∈ Z[8]. We prove the existence
of such expansions in the following theorem. Note thatZ[8] can be embedded into the
complex numbers; define||s|| to be the euclidean length ofs.

Theorem 1. Let q ≥ 4, and let s∈ Z[8]. If we set k= d2 logq||s|| e + 3, then there
exist rational integers rj ∈ {−q/2, . . . , q/2}, 0≤ j ≤ k, such that

s=
k∑

j=0

r j ·8 j .

222 V. Müller

Proof. We sets0 = s, and define forj ≥ 0 inductively the elementssj+1 ∈ Z[8] by

sj = sj+1 ·8+ r j , (4)

wherer j ∈ {−q/2, . . . ,q/2}. By Lemma 1, such integersr j always exist. The elements
sj , 0≤ j ≤ i + 1, lead to an expansion of the form

s0 = s1 ·8+ r0 = (s2 ·8+ r1) ·8+ r0 = · · · =
i∑

j=0

r j ·8 j + si+1 ·8i+1.

Using the triangle inequality in (4) and observing||ri || ≤ q/2, we obtain

||si+1|| ≤ ||si || + ||ri ||√
q

≤ ||si || + q/2√
q

.

If we iterate this process, we can show per induction that

||si+1|| ≤ ||s0||
q(i+1)/2

+ 1

2
·

i−1∑
j=−1

q− j/2.

Forq ≥ 4, we bound this expression as

||si+1|| < ||s0||
q(i+1)/2

+ 1

2

(√
q +

√
q√

q − 1

)
≤ ||s0||

q(i+1)/2
+√q.

Therefore we know that fori ≥ d2 logq||s0|| e − 1 the length ofsi+1 is smaller than√
q + 1.
Now we try to bound the length of expansions for elements of euclidean length bounded

by
√

q + 1. Note that the norm of an arbitrary elementa + b · 8 ∈ Z[8] is given as
N(a+ b ·8) = ||a+ b ·8||2 and that

N(a+ b ·8) = a2+ c a b+ q b2 =
(

a + c b

2

)2

+ 1
4(4q − c2)b2. (5)

Therefore we have to examine the length of expansions for all elements inZ[8] of norm
smaller than(

√
q + 1)2. Assume thata+ b ·8 is such an element. Sincec is odd, it is

easy to see by (5) that|b| ≤ q/2. Forb = 0, we have|a| < √q+1. Since
√

q+1< q/2
for all q ≥ 8 and

√
4+ 1 = 3, we conclude that we have|a| ≤ q/2 for all q, and the

expansion length is therefore one.
So consider the situation|b| = 1. Then we obtain the upper bound|a| < |c|/2+√q+

1 ≤ 2
√

q + 1 ≤ 3/2q. If |a| ≤ q/2, then obviouslya ± 8 is itself a valid Frobenius
expansion of length two. Otherwise we use the minimal polynomial (3) of8 and obtain
for a > q/2 (the casea < −q/2 can be treated symmetrically)

a±8 = (a− q)+ (c± 1) ·8−82.

Nowa−q is in the correct range, but|c±1|might be bigger thanq/2. However, note that
there are only two situations when this can happen:q = 4, c = ±3 or q = 8, c = ±5.

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 223

In all other situations, the expansion fora+8 satisfies all conditions, and its length is
exactly 3. For the two special situations we get the expansionsa+8 = (a−4)+2·82−83

and(a − 8) + 2 · 8 + 4 · 82 − 83 (and the symmetric cases), i.e., the length of these
expansions is bounded by four. Therefore we have proven that all elements inZ[8] of
length smaller

√
q + 1 have a Frobenius expansion of length at most four.

For |b| ≥ 2 andq = 4,8,16, we can check per hand that all these elements have a
Frobenius expansion of length at most three. Forq ≥ 32, we sharpen the upper bound
for b (note that(4q − c2) ≥ 3) and obtain|b| ≤ 2(

√
q + 1)/3 and|a| ≥ q. Testing the

different possibilities fora, we check that there exists a Frobenius expansion fora+b8
ofr length at most three.

Thus we can conclude that fork ≥ d2 logq ||s0|| e + 3 we havesk+1 = 0, and the
theorem is proven.

Theorem 1 states the existence of a Frobenius expansion of the given length. Nev-
ertheless, it is not clear whether we really can compute this expansion in reasonable
time. An algorithm for computing such an expansion will iterate the division with re-
mainder given in (4). Unfortunately, there are two possibilities for the remainderr j if
r j ≡ q/2 modq. If we remember the proof of Theorem 1, then it does not matter which
candidate we choose as long as the iteration index is smaller thand2 logq||s0||e−1. The
shortest expansions for the remaining elementsa+ b ·8 with |a| ≤ 3/2q and|b| ≤ 1
can be precomputed and stored, such that it is possible to compute Frobenius expansions
whose length is bounded by the values given in Theorem 1.

In the following corollaries, we sharpen the upper bound for the length of Frobenius
expansions for the different valuesq = 4, q = 8, q = 16, and all possible traces. These
better bounds are obtained by using the actual value ofq, c in the proof of Theorem 1.
Moreover, we restrict ourselves to computing expansions for rational integerss.

Corollary 1. Let q = 4, and let s ∈ Z ⊆ Z[8]. If c = ±1, then there exists a
Frobenius expansion for s such that the index k of the “last” nonzero coefficient of this
expansion satisfies k≤ dlog2|s|e + 1. For c = ±3, there exists a Frobenius expansion
with k ≤ dlog2|s|e + 4.

Proof. We sharpen the bounds given in the proof of Theorem 1. First, we note that for
i = dlog2|s| e − 1 the elementssi+1 have length smaller than three. Forc = ±1, we get
the following possibilities:si+1 ∈ {0, ±1, ±2, ±8, ±1± 8, −2± 8}. For c = ±3,
we compute this set as{0, ±1, ±2, ±8, ±1± 8, −2± 8, −28 + 82, 1− 28 +
82, −282+83, 1− 282+83}.

Corollary 2. Let q = 8, and let s∈ Z ⊆ Z[8]. There exists a Frobenius expansion
for s such that the index k of the “last” nonzero coefficient of this expansion satisfies

k ≤
{d 2

3 log2|s| e + 1 for c = ±1, ±3,

d 2
3 log2|s| e + 2 for c = ±5.

224 V. Müller

Corollary 3. Let q= 16,and let s∈ Z ⊆ Z[8]. There exists a Frobenius expansion
for s such that the index k of the “last” nonzero coefficient of this expansion satisfies
k ≤ d 1

2 log2|s| e + 1.

In the next section we show how we can use these Frobenius expansions to multiply
points on elliptic curves defined overFq. We give a formal description of the algorithm,
and we analyze the expected number of additions of this algorithm.

3. Multiplication of Points Using Frobenius Expansions

The main computational problem in elliptic curve public key cryptosystems is the com-
putation ofm · P for an integerm ∈ Z and a pointP ∈ E(Fqk). Usually, the size ofm
is approximately equal toqk, since we can reducem modulo the group order ofE(Fqk).
The theorem of Hasse states that this group order is bounded byqk + 1+ 2

√
qk. More-

over, we can assume thatm is positive (otherwise we negatem and P). In this section
we explain how we can use Frobenius expansions for speeding up this multiplication on
elliptic curves defined over small extensions ofF2.

Let E be an elliptic curve defined over the fieldFq, whereq is a “small” power of
two, and let #E(Fq) = q + 1− c. Assume that we want to computem · P for some
integerm ∈ N and a pointP ∈ E(Fqk), whereFqk is an extension field ofFq. Let8
be the Frobenius endomorphism ofE. In Theorem 1 we showed that we can expand the
integerm as a power sum of the Frobenius endomorphism8:

m=
k∑

j=0

mj ·8 j ,

where the coefficients satisfy the conditionmj ∈ {−q/2, . . . ,q/2}. Since multiplication
bym is an endomorphism andZ ⊆ Z[8] ⊆ End(E), we can interpret this equation as an
equation in the endomorphism ring ofE. The most important observation in our context
is the fact that the evaluation of8(P) can be done in 2 log2(q) squarings (compare (2)),
which is—for smallq—usually faster than doubling a point.

In [7] the authors showed, for the special choiceq = 2, c = 1, how to com-
pute a Frobenius expansion for an integerm ∈ N, where the length of the expan-
sion (i.e., the number of coefficients in the expansion) is bounded byb2 log2 mc + 1.
By a suitable reduction modulo #E(F2k), they could reduce the expansion length to
min{k− 1, b2 log2 mc + 1}. The coefficients in this expansion are absolutely bounded
by one. Therefore they could develop an ordinary “right-to-left binary” multiplication al-
gorithm, which examines the bits ofm from the low order to the high order bit, computes
the corresponding coefficient of the Frobenius expansion ofm, and uses this coefficient
“on the fly” (see p. 339 of [7]).

If q is bigger than two, the situation is more complicated. Since in this case the
coefficients of the Frobenius expansion might be bigger than one, additional point ad-
ditions would be necessary if we would use a “right-to-left” technique. Therefore such
an algorithm would in general be of no advantage compared with the binary method.
Fortunately, these additions can be replaced by a table lookup if we use a “left-to-right”

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 225

exponentiation variant. On the other hand, we know no way to compute a Frobenius
expansion for an integerm by scanning the bits ofm from the high order to the low order
bit. Therefore the new algorithm consists of three different parts:

1. precompute a “small” table of multiples ofP,
2. compute and store a Frobenius expansion form, i.e., compute (and store) the

coefficientsm0, . . ., mk in ascending order (“right-to-left”),
3. use the table and the stored coefficients of this expansion in descending order to

computem · P (“left-to-right”).

A C++-like description of this idea is given in Algorithm 1. Letr ′ = r Mod q denote
the rational integerr ′ ∈ {−q/2+ 1, . . . ,q/2} that satisfiesr ′ ≡ r modq.

Algorithm 1 (Fast Multiplication using Frobenius Expansions)

E is an elliptic curve defined overFq, Frobenius endomorphism8 for E(Fq)

satisfies82− c8+ q = 0.

INPUT: m ∈ N andP ∈ E(Fqk).
OUTPUT: m · P.

Precompute table of points
(1) compute and storei · P for all 1≤ i ≤ q/2.

Compute Frobenius expansion
(2) sets1 = m, s2 = 0 andi = 0.
(3) while (|s1| > q or |s2| > q/2) do
(4) compute and storemi = s1 Mod q.
(5) seth = (mi − s1)/q, i = i + 1, s1 = s2− c · h ands2 = h.
(6) od

“Left-to-right” multiplication
(7) determineH = s2 ·8(P)+ s1 · P.
(8) for (j = i − 1 downto 0) do
(9) if (mj ≥ 0) then

(10) setH = 8(H)+mj · P.
(11) else
(12) setH = 8(H)− |mj | · P.
(13) od
(14) return H

The correctness of Algorithm 1 follows directly from the observation that thewhile-
loop in steps (3)–(6) is a direct translation of the sequence introduced in the proof of
Theorem 1. Then observe that

m · P =
(

k∑
i=0

mi ·8i

)
(P)

= 8(· · ·8(8(mk ·8(P)+mk−1 · P)+mk−2 · P) · · · +m1 · P)+m0 · P.
A time critical part of Algorithm 1 is the precomputation of the table in step (1). All

rational integersr j in steps (10) and (12) ands1 in step (7) are absolutely bounded by

226 V. Müller

q/2. Therefore we do not have to compute the pointss1 · P, |r j | · P, but we can take
these points out of the precomputed table.

As already mentioned above, there is one ambiguity in the computation of the Frobe-
nius expansion form. In step (4) we might have two choices forri if s1 ≡ q/2 modq.
Unfortunately, we do not know a priori what choice is the better one. One possibility to
overcome this problem is to choose the value forri which minimizes the norm of the
new elements1 + s2 ·8. Another possible solution to this problem is not to care about
this ambiguity and to examine the computed coefficientsri in the second part. As a first
step of thefor -loop in step (8), we test whetherr j−2 = q/2. If this condition is fulfilled,
we check whether addingc to r j−1 and−1 to r j does not violate the range condition for
r j , r j−1. Such a substitution should then be done if the number of zeror -values increases
(note that in this case we do not have to add a point in steps (10) and (12)). Obviously,
there can be recursive effects, such that this heuristic is not necessary optimal.

We analyze the crossover point of Algorithm 1 compared with the ordinary binary
method. First note that we do not have to care about the arithmetic operations for com-
puting the Frobenius expansions.

Lemma 2. All rational integer operations in Algorithm1 with input (m, P) can be
done in time O((log2 m)2).

Proof. Note that all operations on rational integers (subtractions and division with
remainder byq) can be done in linear time, sinceq is a power of two. The result follows
by observing that the absolute maximum ofs1, s2 in thewhile-loop (3)–(6) is bounded
by the inputm (proof per induction) and that the number of loop iterations isO(logm)
(see Theorem 1).

We can assume that the multiplierm ∈ N is reduced modulo the group order of the
used curve. By Hasse’s theorem, we know thatm ≤ qk + 1+ 2

√
qk, i.e., all integer

operations take approximately the same time as one multiplication in the finite fieldFqk .
Therefore we can ignore the complexity of the integer operations in the remainder of
this section.

The more important part for the running time of Algorithm 1 is the number of point
additions inE(Fqk) and the number of evaluations of the Frobenius endomorphism. It is
obvious that the number of point additions performed by Algorithm 1 with input(m, P)
is bounded byq/2+ kq,c(m)− 1, wherekq,c(m) is the maximal index in the Frobenius
expansion form (note that this index depends onq, c, see Corollaries 1, 2, and 3).
Moreover, the number of Frobenius evaluations is bounded bykq,c(m). The following
lemma counts the number of field operations for an addition and a doubling of a point
(the exact formulas can be found in [12] and [9]).

Lemma 3. In affine representation, one addition of two different points of E(Fqk) can
be done with one inversion, one squaring, two multiplications, and eight additions in
Fqk ; doubling a point needs one inversion, two squarings, two multiplications, and four
additions inFqk . An addition of different points in projective representation involves two
squarings, thirteen multiplications, and seven additions, doubling of points takes five
squarings, seven multiplications, and four additions inFqk .

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 227

If we combine the previous results, we obtain the following upper bounds for the
number of (quadratic) field operations for the different versions.

Theorem 2. Assume that we want to compute m· P for an integer m∈ N>1 and a
point P ∈ E(Fqk) in affine representation. Then Algorithm1 performs at most q/2+
kq,c(m) inversions, q+ 2kq,c(m)multiplications, and(2 log2(q)+ 1) · kq,c+ q/2 many
squarings inFqk . If P is given in projective representation, Algorithm1 needs at most
13(kq,c(m)+ q/2) multiplications and2 log2(q) · kq,c(m)+ q − 2 squarings inFqk .

We compare the maximal and expected number of field operations used in Algorithm
1 for q = 4, q = 8, andq = 16 to the ordinary binary method. The expected number
of operations is computed under the assumption that about half the bits of a “random”
multiplier are zero. For the new method, we assume that the numberss1 in thefor -loop
of Algorithm 1 behave like random integers such that about 1/(q+ 1) of all coefficients
in a Frobenius expansion are zero. Note that we indeed observe this behavior in practice.
The first table describes the affine situation, then we present these values for points in
projective representation.

Operation Binary method q = 4 q = 8 q = 16

Inversion
Maximum 2 log2(m) log2(m)+ 6 2

3 log2(m)+ 7 1
2 log2(m)+ 10

Average 3
2 log2(m)

4
5 log2(m)+ 4 16

27 log2(m)+ 6 8
17 log2(m)+ 8

Squaring
Maximum 3 log2(m) 5 log2(m)+ 22 14

3 log2(m)+ 25 9
2 log2(m)+ 26

Average 5
2 log2(m) 4 log2(m)+ 13 112

27 log2(m)+ 20 72
17 log2(m)+ 16

Multiplication
Maximum 4 log2(m) 2 log2(m)+ 12 4

3 log2(m)+ 14 log2(m)+ 20

Average 3 log2(m)
8
5 log2(m)+ 7 32

27 log2(m)+ 12 16
17 log2(m)+ 16

Operation Binary Method q = 4 q = 8 q = 16

Squaring
Maximum 7 log2(m) 6 log2(m)+ 26 16

3 log2(m)+ 30 5 log2(m)+ 54

Average 6 log2(m)
28
5 log2(m)+ 19 124

27 log2(m)+ 24 76
17 log2(m)+ 39

Multiplication
Maximum 20 log2(m) 13 log2(m)+ 65 26

3 log2(m)+ 78 13
2 log2(m)+ 117

Average 27
2 log2(m)

52
5 log2(m)+ 52 208

27 log2(m)+ 70 105
17 log2(m)+ 111

Obviously, the ordinary binary method can also be accelerated by using a precomputed
table and aq-ary decomposition of the multiplier. However, such a strategy does not
decrease the number of doublings of points. The table only decreases the number of
points additions. In Section 5 we give timings for both variants of the binary algorithm.

Nevertheless, the main advantage of Algorithm 1 is the fact that the number of quadra-
tic field operations inFqk is smaller than in the binary algorithm. Note especially that in

228 V. Müller

affine representation the number of inversions decreases by about a half. These theoretical
complexity improvements can also be seen in practice, as we show in Section 5.

4. Variants of Algorithm 1

4.1. The Block Variant

Several authors have used block techniques for accelerating the ordinary binary method
for multiplication of points (for an overview, see [1]). In these methods, several bits
of the multiplier are processed in one iteration step. We can use similar techniques to
develop a block Frobenius expansion algorithm.

Again, the first part of the block version consists of computing a Frobenius expansion
for the given integerm. Instead of using this expansion coefficient per coefficient, we
simultaneously use blocks of coefficients in the second part of the algorithm. Assume
that the Frobenius expansion form ∈ N is given as in Section 3, and that we use a
blocking factors ≥ 1. Then we have

m · P =
bk/sc∑
i=0

8is

(
s−1∑
j=0

mis+ j ·8 j (P)

)
.

In the precomputation step we have to compute and store all nonzero points which
might occur in the “inner sum.” It is easy to see that the number of points which we have
to store is((q+ 1)s− 1)/2 (note that we should make use of the fact that the point−Q
can easily be derived fromQ).

Theorem 3. Let m∈ N and P∈ E(Fqk). If we use a block variant of Algorithm1 with
blocking factor s≥ 1, then this variant performs at most

(q + 1)s − 3

2
+ 2 logq(m)+ 4

s
− 1

many point additions and2 logq(m)+ s+ 3 Frobenius evaluations.

Since the number of Frobenius evaluations is approximately the same for different
blocking factors, we concentrate on the number of point additions. The following table
lists the maximal number of points additions for a few possibilities forq ands, and the
sizes of the corresponding tables.

s q= 4 #T4 q = 8 #T8 q = 16 #T16

1 log2(m)+ 4 2 2
3 log2(m)+ 7 4 1

2 log2(m)+ 11 8

2 1
2 log2(m)+ 12 12 1

3 log2(m)+ 40 40 1
4 log2(m)+ 144 144

3 1
3 log2(m)+ 61 62 2

9 log2(m)+ 363 364 1
6 log2(m)+ 2455 2456

It is obvious that large block sizes lead to a huge precomputed table. Therefore this
variant of Algorithm 1 is restricted to the situation where multiples of one fixed point

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 229

are computed. Another algorithm for this special situation is described in the following
section.

4.2. Several Multiplications of a Fixed Point

In [6] the authors present a fast exponentiation techniques which reduces the number of
multiplications if we want to exponentiate a fixed element several times. We can extend
these ideas to our situation.

Assume that the pointP ∈ E(Fqk) is fixed, and that we want to computem · P for
several integersm ∈ N. Again we use a precomputation part, which reduces the number
of additions by about a half. Letk be an upper bound for the maximal length of all
Frobenius expansions for the possible multipliersm. We setk′ = bk/2c and precompute
the pointP′ = 8k′(P). Additionally, we precompute a table of pointsi · P + j · P′

for −q/2 ≤ i, j ≤ q/2. Since the base pointP is fixed, these tables can be initialized
before the actual multiplication starts.

For computingm·P, we again use a two round method: first we compute all coefficients
m0, . . . ,mk of the Frobenius expansion form. The second part of the algorithm uses the
equation

m · P =
k∑

i=0

mi 8
i (P) =

k′−1∑
i=0

mi 8
i (P)+

k−k′∑
i=0

mi+k′ 8
i (P′)

=
k′−1∑
i=0

8i (mi · P +mi+k′ · P′)+
k∑

i=2k′
8i (mi · P). (6)

If we evaluate these sums “from the high index to the low index,” we can use the
table of precomputed points to reduce the maximal number of required additions to
approximately half of the number of additions which Algorithm 1 would need.

Obviously, it is again possible to develop a block variant of this idea. In such a variant,
k′ would be chosen asbk/sc for some blocking factors ∈ N≥2. Then we can split the
sum (6) intos subsums and thus reduce the number of additions tobk/sc. On the other
hand, the size of the precomputed table will grow.

5. Running Times

We present some running times achieved with our implementation of Algorithm 1. As
underlying field arithmetic, we use an implementation written by Kirsch (see [2], also
included inLiDIA, see [5]). We have implemented the fast multiplication algorithms of
this paper for points in both affine and projective representation.

The following table presents average running times for multiplication of a point in
affine representation using the different methods. We choose the elliptic curvey2+x y=
x3+ x2+1 with group order #E(F2) = 2. If we set #E(F2i) = 2i +1−ci , then we have
the following values for the Frobenius traces:c1 = 1, c2 = −3, c3 = −5, c4 = 1, and
c5 = 11. We use the following test: we multiply a random point (in affine representation)
in the group of pointsE(F2k) for the given elliptic curve with 100 randomly chosen

230 V. Müller

integers of size< 2k. In addition to the usual binary method, we also give timings for
a binary method with precomputed tables of size 4 and 8, respectively. The table shows
the average time for one such multiplication in milliseconds (on a sparc4).

Binary Binary
Field Binary withT4 with T8 q = 4 q = 8 q = 16 q = 32

F260 27.2 25.1 24.7 16.5 13.6 12.4 13.8
F2120 85.3 78.6 75.0 48.9 40.2 35.1 34.2
F2180 210.3 193.8 184.0 117.4 94.2 79.8 75.0

The results show that the running time improvements of Algorithm 1 are not an effect
of the usage of tables, but of the Frobenius expansions of the multipliers. In the following
table we compare the average number of operations used in the different methods. We
list the average number of point additions (A), point doublings (D), and Frobenius
evaluations (Fq) (note that these evaluations depend onq), respectively.

Field Binary method q = 4 q = 8 q = 16 q = 32

F260 29.1 A 43.8 A 36.3 A 34.1 A 38.1 A
58.0 D 58.6F4 38.8F8 29.0F16 23.8F32

F2120 59.9 A 86.8 A 71.7 A 61.4 A 61.3 A
117.9 D 118.8F4 79.5F8 58.8F16 48.0F32

F2180 90.3 A 131.9 A 107.6 A 89.7 A 84.8 A
177.9 D 178.8F4 119.7F8 88.8F16 72.1F32

The next table lists running times for the same test as above, but now we use points
in projective representation. Since inversion is relatively slow in the chosen field im-
plementation, absolute running times in projective representation are superior to affine
representation. Nevertheless, the timing differences between the different methods re-
main approximately the same.

Binary Binary
Field Binary withT4 with T8 q = 4 q = 8 q = 16 q = 32

F260 19.7 14.8 13.4 12.3 9.2 8.1 8.9
F2120 79.4 58.2 52.2 46.3 33.6 27.6 26.5
F2180 212.4 154.1 136.3 117.6 84.0 67.2 59.2

Finally we present some timings for the block version of the new algorithm which we
have described in Section 4.1. The average running times are determined with exactly
the same strategy as before. Note that we only show timings for affine representation of
points and block size two.

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 231

Field q = 4 Block version forq = 4 q = 8 Block version forq = 8

F260 16.5 15.0 13.6 21.9
F2120 48.9 40.8 40.2 47.7
F2180 117.4 91.5 94.2 95.7

It is obvious that the size of the precomputed table in the block variant of Algorithm
1 causes these negative impacts on the running time forq > 4. In the next section
we describe the possible usage of the ideas of this paper in elliptic curve public key
cryptosystems.

6. Elliptic Curves for Public Key Cryptography

Algorithm 1 can be used for multiplication in the group of pointsE(Fqk), when the
given elliptic curve is defined over a “small” fieldFq. For public key cryptography, one
additional requirement is necessary, since the security of these cryptosystems depends
on the difficulty of the discrete logarithm problem inE(Fqk). If the group order of
E(Fqk) is smooth (i.e., all prime factors of #E(Fqk) are “small”), then the algorithm of
Pohlig–Hellman (see [11]) can be used to solve the DL problem.

The order of the groupE(Fqk) can easily be computed if we know the group order of
E(Fq). Let c0 = 2, c1 = q + 1− #E(Fq), and define, fori ≥ 2,

ci = c1 · ci−1− q · ci−2.

Then the group order ofE(Fqk) is given as #E(Fqk) = qk + 1− ck. In this section we
tabulate “cryptographically good” elliptic curves over the different base fieldsFq. We
show that there exist nonsupersingular elliptic curves defined overFq for q = 4, q = 8,
q = 16, andq = 32, such that the group order ofE(Fqk) for some extension degreek
“of reasonable size” is divided by a large prime factor of length at least 155 bit. These
groups of points are well suited as the basis for elliptic curve public key cryptosystems,
since—as far as I know—no attack on the discrete logarithm problem in these groups is
known.

We list the trace of the Frobenius endomorphism for an elliptic curve defined overFq

and the prime factorization of the order of the group of pointsE(Fqk) for given extension
degreek. Actual equations for these curves can be found in the Appendix.

6.1. The Case q= 4

Extension
degree

c overF4 Order of group of points over extension field

1 79 22 · 91343852333181432387730573045979447452365303319
1 97 22 · 14551· 431386278289236531086233896175787116535934904510\

183171

232 V. Müller

6.2. The Case q= 8

Extension degree
c overF8 Order of group of points over extension field

−3 73 22 · 3 · 702081944457047911319453517891136268141569147\
45347160559455187521

−1 59 2· 5 · 191561942608236107294793379157473183750481370\
80701777

−1 71 2· 5 · 1279· 102924444554883880666456242849560534192\
3318808855090142845407

3 59 2· 3 · 319269904347060178824655632115211597235347156\
89440269

6.3. The Case q= 16

Extension degree
c overF16 Order of group of points over extension field

−1 47 2· 32 · 280121· 778074194250317120378806220180330135343\
22754237321

7 47 2· 5 · 39231885846166754773973683894299771512806466793\
403150729

7 53 2· 5 · 17424917· 37773598745318696029483966725519639943\
987745326964290877

6.4. The Case q= 32

Extension degree
c overF32 Order of group of points over extension field

−1 47 2· 17 · 1693· 959208692789071093768076976099096696077\
075840815351216229813232821

5 43 22 · 7 · 188057663693852119103425049435126986168359368\
2897108316059976983

9 41 23 · 3 · 83 · 258142657712287594464572223669262083644231\
89254186044190931

6.5. Using Elliptic Curves Proposed by Menezes

In [9, Example 6.2, p. 89] Menezes proposes using suitable elliptic curves defined over
F32 for a public key cryptosystem working inF2155. We tested one of the proposed
curves and obtained the following running times: For one multiplication of a random
point in E(F2155) with a random integer of size≈ 2155, our implementation of the
usual binary method needed on average 176.9 milliseconds in affine representation

Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two 233

(174.7 milliseconds in projective representation), Algorithm 1 took on average 62.9 milli-
seconds (52.3 milliseconds in projective representation). These practical results show that
the new algorithm leads to a real improvement for elliptic curve cryptosystems in
practical use.

Acknowledgments

I am especially grateful to Scott A. Vanstone who pointed me to the problem of general-
izing the results of Koblitz and Meier et al., and I would like to thank Ingrid Biehl from
the Universität des Saarlandes, Germany, for helpful discussions concerning the proof
of Theorem 1.

Appendix

We present one example of an elliptic curve suitable for cryptographic systems for all
choices forq, c as described in Section 6. The finite fieldsFqk are given by a generating
irreducible polynomial overF2, elements in the field are represented as polynomials.
We describe these polynomials overF2 in “decimal representation,” i.e., the number
a ∈ N represents the polynomial induced by the binary representation ofa. All the
computations were done with the help ofLiDIA (for a description, see [5]).

The Case q= 4

c Generating polynomial a2 a6

1 x158+ x76+ x33+ x32+ 1 0 859827731025703354080816055129781186\
46444597228

1 x194+ x87+ 1 0 309102977189082588317712512077173687\
3452974439586799473446

The Case q= 8

c Generating polynomial a2 a6

−3 x219+ x54+ x33+ x32+ 1 0 2801159814205779757519469415818395811080\
61460627082480666517728685

−1 x177+ x88+ 1 1 3181931642933075904430737403863671449228\
8809306721799

−1 x213+ x75+ x33+ x32+ 1 1 3174935408637498283622005592879686207788\
398581481910767191717662

3 x177+ x88+ 1 1 1526262677713764696299159372597171337406\
65058561311972

234 V. Müller

The Case q= 16

Generating
c polynomial a2 a6

−1 x188+ x46+ x33 89704831002846141956257\ 1
+ x32+ 1 35597872677711832704243\

1878979890
7 x188+ x46+ x33 2693230905029162369669\ 315650283090070518133437\

+ x32+ 1 9646999561164375338944\ 2233620388302506182241\
6053375083648 76443616196

7 x212+ x105+ 1 59130727864844554885839\ 20492200966434650611611\
2551790464066282160061\ 83438375656795599974674\
8114191535279284548 683239185599768319

The Case q= 32

c Generating polynomial a2 a6

−1 x235+ x34+ x33+ x32+ 1 1 2836767645663110865939099428021059\
9577533192290815616725673561575651998

5 x215+ x51+ 1 0 1343295875625225206737450972784092\
4330763383981049950024826287335

9 x205+ x94+ x33+ x32+ 1 0 4589802852128673122406605315385879\
3402811962616419539897036781

References

[1] D. Fox, A.W. Röhm: Effiziente Digitale Signatursysteme auf der Basis elliptischer Kurven, inDigitale
Signaturen, P. Horster, ed., DuD Fachberichte, Vieweg, 1996, pp. 256–266.

[2] P. Kirsch: Implementierung einer Arithmetik des PolynomringsGF(2)[X] und des KörpersGF(2n),
Diplomarbeit, Universit¨at des Saarlandes, Saarbr¨ucken, 1996.

[3] N. Koblitz: Elliptic Curve Cryptosystems,Math. Comp., 48 (1987), 203–209.
[4] N. Koblitz: CM-Curves with Good Cryptographic Properties,Advances in Cryptology—CRYPTO91,

Lecture Notes in Computer Science, No. 576, Springer-Verlag, Berlin, 1992, pp. 279–287.
[5] LiDIA—A Library for Computational Number Theory, available per ftp from

http://www.informatik.tu-darmstadt.de/TI/ .
[6] C.H. Lim, P.J. Lee: More Flexible Exponentiation with Precomputation,Advances in Cryptology—

CRYPTO94, Lecture Notes in Computer Science, No. 839, Springer-Verlag, Berlin, 1994, pp. 95–107.
[7] W. Meier, O. Staffelbach: Efficient Multiplication on Certain Nonsupersingular Elliptic Curves,Advances

in Cryptology—CRYPTO92, Lecture Notes in Computer Science, No. 740, Springer-Verlag, Berlin, 1992,
pp. 333–344.

[8] A. Menezes, T. Okamoto, S.A. Vanstone: Reducing Elliptic Curve Logarithms to Logarithms in a Finite
Field,Proceedings of the23rd ACM Symp. on Theory of Computing, 1991, pp. 1639–1646.

[9] A. Menezes:Elliptic Curve Public Key Cryptosystems, Kluwer, Dordrecht, 1993.
[10] V.S. Miller: Use of Elliptic Curves in Cryptography,Advances in Cryptology—CRYPTO85, Lecture

Notes in Computer Science, No. 218, Springer-Verlag, Berlin, 1986, pp. 417–426.
[11] S.C. Pohlig, M.E. Hellman: An Improved Algorithm for Computing Logarithms overGF(p) and Its

Cryptographic Significance,IEEE Trans. Inform. Theory, 24 (1978), 106–110.
[12] R. Schroeppel, H. Orman, S. O’Malley, O. Spatschek: Fast Key Exchange with Elliptic Curve Systems,

Advances in Cryptology—CRYPTO95, Lecture Notes in Computer Science, No. 963, Springer-Verlag,
Berlin, 1995, pp. 43–56.

