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Abstract. We discuss new algorithms for multiplying points on elliptic curves defined
over small finite fields of characteristic two. This algorithm is an extension of previous
results by Koblitz, Meier, and Staffelbach. Experimental results show that the new
methods can give a running time improvement of up to 50% compared with the ordinary
binary algorithm for multiplication. Finally, we present a table of elliptic curves, which
are well suited for elliptic curve public key cryptosystems, and for which the new
algorithm can be used.
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1. Introduction

Elliptic curves over finite fields have gained much attention in public key cryptography
in recent years [3], [10]. For practical reasons, elliptic curves over fields of characteristic
two are of special interest. Diffie—Hellman type cryptosystems using elliptic curves over
Fxss were implemented and compared with RSA (see [12]). The most time consuming
operation of these cryptosystems is multiplication of a point on the elliptic curve with
an integer, whose size is approximately equal to the order of the underlying group. In
[4] Koblitz proposed distinguishing between the field of definition for the elliptic curve
E and the field for the group of points di He suggested using the group of points on
so-called “anomalous” elliptic curves for such cryptosystems. In [7] the authors showed
how to speed up point multiplication on the anomalous cyA# yx = x3 + 1, defined
overlF,.

* Part of this work was done when the author was a Postdoctoral Fellow at the University of Waterloo,
Canada. The support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is
gratefully acknowledged.
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In this paper we extend the ideas presented in [7] to arbitrary nonsupersingular elliptic
curves defined over small extension&ef We describe a new algorithm for multiplying
points that are defined over arbitrary extensions of the definition field. The new algo-
rithm is up to 50% faster than the ordinary binary multiplication algorithm. We examine
its running time both in theory and in practice. Finally, we list some examples of non-
supersingular elliptic curves defined oy, Fg, F16, respectively, and corresponding
extension fields that are well suited for public key cryptosystems. All extension fields
are chosen in such a way that the order of the group of points over the given extension
field has a large prime factor. Therefore neither the algorithm of Pohlig and Hellman (see
[11]) nor the attacks on supersingular curves (see [8]) can be used to compute discrete
logarithms in the group of points on the given elliptic curves.

We start with a short introduction to elliptic curves. More information on elliptic
curves over fields of characteristic two and their use in cryptography can be found in [9].

Let [y be the finite field withy elements, wherg is a “small” power of two, and let
Fq be its algebraic closure. A (nonsupersingular) elliptic culfvaverFy can be defined
by an equation of the form

Y24+ xy=x3+ayx?+ a, D

whereay, as € Fq andas # 0. The setE(Fy) of points onE over an extension field
Fq« of Fq is given by the set of solutions [ﬁék to (1) together with a “point at infinity”
0. There exist simple algebraic formulas for adding two arbitrary poinE(ify«) (see
[12]); with this addition, E(Fq) forms an additive abelian group with zero element
O. The disadvantage of thaffine representatiors the fact that addition involves one
inversion inFq. There exists another representation of points, the so-calgective
representationwhich eliminates this problem. On the other hand, point addition in
projective representation needs more multiplications and squarings of eleméyts in
as point addition in affine representation (see [9] for a detailed description of these
representations and corresponding addition formulas).

The Frobenius endomorphism BEfis given as

®: E(Fy) — E(Fy), 2
X, y) — (x9, y9).

This endomorphism satisfies the equation
®2—c- d+q=0, 3)

wherec € Z and|c| < 2,/q. There is a strong connection between this equation in
the endomorphism ring dE and the order of the group of points @ over the field
of definition, namely, we haveB(IFq) = q + 1 — c. SinceE is nonsupersingular, the
endomorphism ring oE is an order in the imaginary quadratic fie(\/c? — 4q).
Moreover, the trace of ® must be odd. Obviously, the rirng[®] is a subring of the
endomorphism ring oE.

In Section 2 we show how to represent rational integers as power sums of the Frobenius
endomorphisn®. The main result of this paper is given in Theorem 1, where we prove
the existence of such expansions and sharp upper bounds for their length. In Section 3
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we use these expansions to develop a new algorithm for multiplying points on suitable
elliptic curves. In Section 4 we discuss extensions to this algorithm which use block
ideas. Moreover, we report on some practical results achieved with an implementation
of the algorithm (Section 5). Finally, we list several elliptic curves which are well suited
for cryptographic purposes.

2. Representing Integers as Power Sums of the Frobenius Endomorphism

Let g be a power of two, let be an odd integer withc| < 2./q, and let® be an

elementin the maximal order of the imaginary quadratic figlg/ c2 — 4q) with minimal
polynomial given in (3). The first lemma proves the existence of a “divisio lwith
remainder” in the rindZ[ ®].

Lemmal. Letse Z[®]. There exists an integere Z, —q/2 <r < q/2,and an
element te Z[®] such that

S=t-d4r.
If we choosere {—q/2+1,...,q9/2}, thenr and t are unique

Proof. Lets=gs+s,-®withs, s, € Z. We want to find integers, t,, r € Z, such
that

Si+S-P=(H+1t - D)-D+r.
Using the minimal polynomial o given in (3), we transform the right-hand side of
this equation into
t1+t2-®)- d4+r=t1-d+t2-(cPd—-q)+r.

Comparing coefficients, we gef = —t,q + r. This equation must be solvable in the
rational integers, therefore we have= s; modq. Choosing as the absolute smallest
residue ofs; modq, we compute
b= " and t=S—Clh=S—C— .
q q
The uniqueness af andt follows from the fact thaf—q/2 + 1,...,q/2} forms a
minimal complete set of residues moduyjo O

Obviously, one can iterate the process of division®lwith remainder. This procedure
leads to so-called Frobenius expansions for an elemer#t[ ]. We prove the existence
of such expansions in the following theorem. Note thpb] can be embedded into the
complex numbers; defings|| to be the euclidean length ef

Theorem 1. Letq> 4,and let se Z[®]. If we set k= [2log,|[s|| 1 + 3, then there
exist rational integersjre {—q/2, ..., q/2}, 0 < j <k, such that

k
s=Y 1ol
=0
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Proof. We setsy = s, and define foij > 0 inductively the elementg,, € Z[®] by
S =S41- P41y, 4

wherer; € {—q/2, ..., 0/2}. By Lemma 1, such integerg always exist. The elements
S, 0 <] <i+1, lead to an expansion of the form

=S -PHro=( - P+r) - d+ro=---=» rj-d 45,40

i
j=0
Using the triangle inequality in (4) and observing|| < /2, we obtain

sl + frill _ lisll+9a/2
vaooooo VA

If we iterate this process, we can show per induction that

l1Si+1ll <

lsoll |1 < i
||3+1||§m+§'jzzlq .

Forq > 4, we bound this expression as

|1Soll 1

Va [0l
||S+l|| < q(i+1)/2 + §<ﬁ+ «/ﬁ_l = q(i+1)/2+\/a'
Therefore we know that for > [2log,||so|| T — 1 the length ofs ;; is smaller than

Ja+1L

Now we try to bound the length of expansions for elements of euclidean length bounded
by ./q + 1. Note that the norm of an arbitrary element-b - ® e Z[®] is given as
N@+b-®) =|la+b- ®||?and that

2
N(a+b.q>)=a2+cab+qb2=<a—|—%)> -I-%(4q—cz)b2. 5)
Therefore we have to examine the length of expansions for all elemeatirof norm
smaller than(,/q + 1)2. Assume thaf + b - @ is such an element. Sincds odd, it is
easy to see by (5) tht| < gq/2. Forb = 0, we havda| < ,/q+1. Since,/q+1 < q/2
for all g > 8 andv/4 + 1 = 3, we conclude that we haye| < q/2 for all g, and the
expansion length is therefore one.

So consider the situatigh| = 1. Then we obtain the upper bourad < |c|/2+ ,/q+
1<2/9+1<3/2q.If |]a] < q/2, then obviousha + @ is itself a valid Frobenius
expansion of length two. Otherwise we use the minimal polynomial (& ahd obtain
fora > q/2 (the case < —q/2 can be treated symmetrically)

azxd=@—-q)+(C=*1) d— b2

Nowa—qisinthe correctrange, big+ 1| might be bigger thag/2. However, note that
there are only two situations when this can hapgesa: 4, c = £3 orq = 8, ¢ = £5.
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In all other situations, the expansion ®x- @ satisfies all conditions, and its length is
exactly 3. For the two special situations we get the expansi¢uds = (a—4)+2-&?— 3
and(@—8) +2- & + 4. &> — @3 (and the symmetric cases), i.e., the length of these
expansions is bounded by four. Therefore we have proven that all eleméii$ jirof
length smaller, /g + 1 have a Frobenius expansion of length at most four.

For|b] > 2 andq = 4, 8, 16, we can check per hand that all these elements have a
Frobenius expansion of length at most three. ¢rer 32, we sharpen the upper bound
for b (note that(4q — c¢?) > 3) and obtairlb| < 2(,/q + 1)/3 and|a| > . Testing the
different possibilities fon, we check that there exists a Frobenius expansioa feb®
ofr length at most three.

Thus we can conclude that fér> [2log, ||sol| 1 + 3 we havesq;1 = 0, and the
theorem is proven. O

Theorem 1 states the existence of a Frobenius expansion of the given length. Nev-
ertheless, it is not clear whether we really can compute this expansion in reasonable
time. An algorithm for computing such an expansion will iterate the division with re-
mainder given in (4). Unfortunately, there are two possibilities for the remaindér
r; = q/2 modg. If we remember the proof of Theorem 1, then it does not matter which
candidate we choose as long as the iteration index is smallef21ag, ||s||1 — 1. The
shortest expansions for the remaining elemantsb - ® with |a] < 3/2q and|b] < 1
can be precomputed and stored, such that it is possible to compute Frobenius expansions
whose length is bounded by the values given in Theorem 1.

In the following corollaries, we sharpen the upper bound for the length of Frobenius
expansions for the different valugs= 4,q = 8,q = 16, and all possible traces. These
better bounds are obtained by using the actual valug ofin the proof of Theorem 1.
Moreover, we restrict ourselves to computing expansions for rational integers

Corollary 1. Letq = 4,and letse Z C Z[®]. If c = +1, then there exists a
Frobenius expansion for s such that the index k of the “last” nonzero coefficient of this
expansion satisfies k [log,|s|] + 1. For ¢ = +3, there exists a Frobenius expansion
with k < [log,|s|1 + 4.

Proof. We sharpen the bounds given in the proof of Theorem 1. First, we note that for
i = [log,|s| ] — 1 the elements ;1 have length smaller than three. Foe= £1, we get

the following possibilitiess ;3 € {0, £1, 42, £, 1+ &, —2+ &}. Forc = £3,

we compute this set &8, +1, +2, +®, +14+ &, —24+ &, —2& + P2, 1 — 2P +

D2, —20% + O3, 1 — 202 + D3}, O

Corollary 2. Letq= 8,and letse Z C Z[®]. There exists a Frobenius expansion
for s such that the index k of the “last” nonzero coefficient of this expansion satisfies

y [2log,ls|1+1  for c==+1, £3,
<
" (3 log,ls|1+2  for c=d5.
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Corollary 3. Letqg= 16,and let se Z C Z[®]. There exists a Frobenius expansion
for s such that the index k of the “last” nonzero coefficient of this expansion satisfies
k< T2 log,ls|1+ 1.

In the next section we show how we can use these Frobenius expansions to multiply
points on elliptic curves defined ovEy. We give a formal description of the algorithm,
and we analyze the expected number of additions of this algorithm.

3. Multiplication of Points Using Frobenius Expansions

The main computational problem in elliptic curve public key cryptosystems is the com-
putation ofm - P for an integem € Z and a pointP € E(Fq). Usually, the size ofm
is approximately equal tg¥, since we can redusa modulo the group order & (Fge).
The theorem of Hasse states that this group order is boundgtl-byl + 2\/?. More-
over, we can assume thattis positive (otherwise we negate and P). In this section
we explain how we can use Frobenius expansions for speeding up this multiplication on
elliptic curves defined over small extensiondref

Let E be an elliptic curve defined over the fidly, whereq is a “small” power of
two, and let #£(Fy) = q + 1 — c. Assume that we want to compute- P for some
integerm e N and a pointP € E(Fg), whereFq is an extension field ofy. Let
be the Frobenius endomorphismifin Theorem 1 we showed that we can expand the
integerm as a power sum of the Frobenius endomorphism

m=>"m ol

j=0

=~

where the coefficients satisfy the condition € {—q/2, ..., q/2}. Since multiplication
by mis an endomorphism aiftiC Z[®] € End(E), we can interpret this equation as an
equation in the endomorphism ring Bf The most important observation in our context
is the fact that the evaluation &f(P) can be done in 2 logq) squarings (compare (2)),
which is—for smallg—usually faster than doubling a point.

In [7] the authors showed, for the special chogte= 2, ¢ = 1, how to com-
pute a Frobenius expansion for an integere N, where the length of the expan-
sion (i.e., the number of coefficients in the expansion) is bounde@bgg, m| + 1.

By a suitable reduction moduloEfF), they could reduce the expansion length to
min{k — 1, |2 log, m] + 1}. The coefficients in this expansion are absolutely bounded
by one. Therefore they could develop an ordinary “right-to-left binary” multiplication al-
gorithm, which examines the bits wffrom the low order to the high order bit, computes
the corresponding coefficient of the Frobenius expansion, @nd uses this coefficient
“on the fly” (see p. 339 of [7]).

If q is bigger than two, the situation is more complicated. Since in this case the
coefficients of the Frobenius expansion might be bigger than one, additional point ad-
ditions would be necessary if we would use a “right-to-left” technique. Therefore such
an algorithm would in general be of no advantage compared with the binary method.
Fortunately, these additions can be replaced by a table lookup if we use a “left-to-right”
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exponentiation variant. On the other hand, we know no way to compute a Frobenius
expansion for an integen by scanning the bits afi from the high order to the low order
bit. Therefore the new algorithm consists of three different parts:

1.
2.

3.

precompute a “small” table of multiples X,

compute and store a Frobenius expansionnfioii.e., compute (and store) the
coefficientamy, . . ., M in ascending order (“right-to-left”),

use the table and the stored coefficients of this expansion in descending order to
computem - P (“left-to-right”).

A C**-like description of this idea is given in Algorithm 1. Let=r Mod g denote
the rational integer’ € {—q/2+1, ..., q/2} that satisfies’ =r modg.

Algorithm 1 (Fast Multiplication using Frobenius Expansions)

E is an elliptic curve defined ovély, Frobenius endomorphisifor E(Fy)
satisfiesp? —c® 4 q = 0.

INPUT: m e NandP € E(Fg).
OuTPUT: m- P.

Precompute table of points
(1) compute and stofie- P forall1 <i < q/2.

Compute Frobenius expansion
(2) sets;=m, s,=0andi =0.
(3) while (ls1] > qor|s| > g/2)do
(4) compute and stone, = s; Mod g.
(5) seth=(m —s)/q, i =i+1 s=5—c-hands, =h.
(6) od

“Left-to-right” multiplication
(7) determineH =s,- ®(P) + s - P.

(8) for (j =i —1downto0)do
9) if (m; > 0) then
(20) setH = ®(H) +m; - P.
(12) else
(12) setH = ®(H) — |m;| - P.
(13) od

(14) return H

The correctness of Algorithm 1 follows directly from the observation thatvthiée-
loop in steps (3)—(6) is a direct translation of the sequence introduced in the proof of
Theorem 1. Then observe that

m-

P = (g m; -<1>i>(P)

= O - (P - P(P)+Mg_1-P)+mg_2-P)---4+mg-P)+mgp- P.

A time critical part of Algorithm 1 is the precomputation of the table in step (1). All
rational integers; in steps (10) and (12) ars] in step (7) are absolutely bounded by
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g/2. Therefore we do not have to compute the postsP, |rj| - P, but we can take
these points out of the precomputed table.

As already mentioned above, there is one ambiguity in the computation of the Frobe-
nius expansion fom. In step (4) we might have two choices forif s; = q/2 modg.
Unfortunately, we do not know a priori what choice is the better one. One possibility to
overcome this problem is to choose the valuerfowhich minimizes the norm of the
new elemens; + s, - ®. Another possible solution to this problem is not to care about
this ambiguity and to examine the computed coefficienis the second part. As a first
step of thefor-loop in step (8), we test whethgr_, = q/2. If this condition is fulfilled,
we check whether addingtor;_, and—1 tor; does not violate the range condition for
ri,rj—1. Such a substitution should then be done if the number ofrzeetues increases
(note that in this case we do not have to add a point in steps (10) and (12)). Obviously,
there can be recursive effects, such that this heuristic is not necessary optimal.

We analyze the crossover point of Algorithm 1 compared with the ordinary binary
method. First note that we do not have to care about the arithmetic operations for com-
puting the Frobenius expansions.

Lemma 2. All rational integer operations in Algorithm with input (m, P) can be
done in time @(log, m)?).

Proof. Note that all operations on rational integers (subtractions and division with
remainder byg) can be done in linear time, singas a power of two. The result follows

by observing that the absolute maximumsgf s, in thewhile-loop (3)—(6) is bounded

by the inputm (proof per induction) and that the number of loop iteration® {fog m)

(see Theorem 1). O

We can assume that the multiplier € N is reduced modulo the group order of the
used curve. By Hasse’s theorem, we know timak gk + 1 + Zﬁ, i.e., all integer
operations take approximately the same time as one multiplication in the finit&field
Therefore we can ignore the complexity of the integer operations in the remainder of
this section.

The more important part for the running time of Algorithm 1 is the number of point
additions inE (Fg«) and the number of evaluations of the Frobenius endomorphism. It is
obvious that the number of point additions performed by Algorithm 1 with iGpLitP)
is bounded byy/2 + kq.c(m) — 1, wherek, (m) is the maximal index in the Frobenius
expansion form (note that this index depends an ¢, see Corollaries 1, 2, and 3).
Moreover, the number of Frobenius evaluations is boundeki, bym). The following
lemma counts the number of field operations for an addition and a doubling of a point
(the exact formulas can be found in [12] and [9]).

Lemma 3. In affine representatigrone addition of two different points of(Eqx) can

be done with one inversigimne squaringtwo multiplications and eight additions in
Fq; doubling a point needs one inversidwo squaringstwo multiplications and four
additions inF . An addition of different points in projective representation involves two
squarings thirteen multiplicationsand seven additiongloubling of points takes five
squarings seven multiplicationsand four additions i .
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If we combine the previous results, we obtain the following upper bounds for the
number of (quadratic) field operations for the different versions.

Theorem 2. Assume that we want to compute- i for an integer me N.; and a
point P € E(IFg) in affine representatiariThen Algorithml performs at most (2 +
Kq,c(m) inversionsq + 2kq c(m) multiplications and (2 10g,(q) + 1) - kg c + /2 many
squarings inFy. If P is given in projective representatipAlgorithm 1 needs at most
13(kg,c(M) 4+ g/2) multiplications and2 10g,(q) - Kq.c(M) 4+ g — 2 squarings infx.

We compare the maximal and expected number of field operations used in Algorithm
1forq = 4,9 = 8, andg = 16 to the ordinary binary method. The expected number
of operations is computed under the assumption that about half the bits of a “random”
multiplier are zero. For the new method, we assume that the nursbierthefor -loop
of Algorithm 1 behave like random integers such that abgug % 1) of all coefficients
in a Frobenius expansion are zero. Note that we indeed observe this behavior in practice.
The first table describes the affine situation, then we present these values for points in
projective representation.

Operation Binary method qg=4 q=38 q=16
Inversion
Maximum 2 log(m) log,(m) + 6 Zlog,(M) +7 1 logy(m) + 10
Average 2 log,(m) tlog,(m +4  Llog,(m) +6 £ log,(m) +8
Squaring
Maximum 3log(m)  5log(m)+22 *log,(m)+25 2 log,(m) + 26
Average 2 logy(m)  4logy(m) +13 X2 log,(m) +20 Zlog,(m) + 16
Multiplication
Maximum 4 log(m) 2log,(m) + 12 g log,(m) + 14 log,(m) + 20
Average 3 log(m) Slog,(m) +7  £log,(m) +12 12log,(m) + 16
Operation Binary Method g=4 q=28 g=16
Squaring
Maximum 7 log(m) 6log,(m) +26  Llog,(m) + 30 5log,(m) + 54
Average 6 log(m) 2 log,(m) + 19 2 log,(m) +24 2 log,(m) + 39
Multiplication
Maximum 20 log(m)  13log,(m) +65 2 log,(m) +78 Flog,(m) + 117
Average Zlogy(m)  F logy(m) +52 22log,(m) + 70 Zlog,(m) + 111

Obviously, the ordinary binary method can also be accelerated by using a precomputed
table and ag-ary decomposition of the multiplier. However, such a strategy does not
decrease the number of doublings of points. The table only decreases the number of
points additions. In Section 5 we give timings for both variants of the binary algorithm.

Nevertheless, the main advantage of Algorithm 1 is the fact that the number of quadra-
tic field operations i« is smaller than in the binary algorithm. Note especially that in
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affine representation the number of inversions decreases by about a half. These theoretical
complexity improvements can also be seen in practice, as we show in Section 5.

4. Variants of Algorithm 1

4.1. The Block Variant

Several authors have used block techniques for accelerating the ordinary binary method
for multiplication of points (for an overview, see [1]). In these methods, several bits
of the multiplier are processed in one iteration step. We can use similar techniques to
develop a block Frobenius expansion algorithm.

Again, the first part of the block version consists of computing a Frobenius expansion
for the given integem. Instead of using this expansion coefficient per coefficient, we
simultaneously use blocks of coefficients in the second part of the algorithm. Assume
that the Frobenius expansion for € N is given as in Section 3, and that we use a
blocking factors > 1. Then we have

Lk/s] ) s—1 )
m-P=>" oF (Z Mist - <I>J(P)> :

i=0 i=0

In the precomputation step we have to compute and store all nonzero points which
might occur in the “inner sum.” It is easy to see that the number of points which we have
to store is((q + 1)° — 1)/2 (note that we should make use of the fact that the pei@t
can easily be derived fror®).

Theorem 3. Letme Nand P e E(Fq). If we use a block variant of Algorithtwith
blocking factor s> 1, then this variant performs at most

s_ 21 4
(q+12) 3, ogq(;n)+ .

many point additions andlog, (m) + s + 3 Frobenius evaluations

Since the number of Frobenius evaluations is approximately the same for different
blocking factors, we concentrate on the number of point additions. The following table
lists the maximal number of points additions for a few possibilitiegjfands, and the
sizes of the corresponding tables.

S q=4 #Ty q=28 #Tg q=16 #Te

1 logMm+4 2 Zlog,(m)+7 4 Zlogy(m) + 11 8
2 Zlogy(m)+12 12 llog,(m)+40 40 7logy(m)+144 144
3 1logy(m)+61 62 Zlogy(m)+ 363 364 %log,(m)+ 2455 2456

It is obvious that large block sizes lead to a huge precomputed table. Therefore this
variant of Algorithm 1 is restricted to the situation where multiples of one fixed point
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are computed. Another algorithm for this special situation is described in the following
section.

4.2. Several Multiplications of a Fixed Point

In [6] the authors present a fast exponentiation techniques which reduces the number of
multiplications if we want to exponentiate a fixed element several times. We can extend
these ideas to our situation.

Assume that the poin® € E(Fq) is fixed, and that we want to compute- P for
several integerm € N. Again we use a precomputation part, which reduces the number
of additions by about a half. Lét be an upper bound for the maximal length of all
Frobenius expansions for the possible multipliardVe set’ = |k/2]| and precompute
the pointP’ = &K (P). Additionally, we precompute a table of poirits P + j - P’
for —q/2 <i, j < q/2. Since the base poift is fixed, these tables can be initialized
before the actual multiplication starts.

For computingn- P, we again use atwo round method: first we compute all coefficients
mo, . .., M of the Frobenius expansion for. The second part of the algorithm uses the
equation

k-1 k—k’

k
mP=>maeP=>moPE+> myd(P)
i=0 i=0 i=0
K-1 k _
=Y O'm-P+mye-P)+ Y '(m P). (6)
i=0 =2k

If we evaluate these sums “from the high index to the low index,” we can use the
table of precomputed points to reduce the maximal number of required additions to
approximately half of the number of additions which Algorithm 1 would need.

Obviously, it is again possible to develop a block variant of this idea. In such a variant,
k’ would be chosen ak/s| for some blocking factos € N.,. Then we can split the
sum (6) intos subsums and thus reduce the number of additionk ts|. On the other
hand, the size of the precomputed table will grow.

5. Running Times

We present some running times achieved with our implementation of Algorithm 1. As
underlying field arithmetic, we use an implementation written by Kirsch (see [2], also
included inLiDIA, see [5]). We have implemented the fast multiplication algorithms of
this paper for points in both affine and projective representation.

The following table presents average running times for multiplication of a point in
affine representation using the different methods. We choose the ellipticyéurvey =
x3 +x2 + 1 with group order & (F,) = 2. If we set# (F,) = 2' +1— ¢, then we have
the following values for the Frobenius tracegs:= 1,c; = —3,¢c3 = —5,¢4 = 1, and
¢s = 11. We use the following test: we multiply a random point (in affine representation)
in the group of pointsE (Fx) for the given elliptic curve with 100 randomly chosen
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integers of size< 2¥. In addition to the usual binary method, we also give timings for
a binary method with precomputed tables of size 4 and 8, respectively. The table shows
the average time for one such multiplication in milliseconds (on a sparc4).

Binary Binary
Field Binary withT, withTs q=4 g=8 g=16 q=32
IF 60 27.2 25.1 247 165 136 124 13.8
Fo2o  85.3 78.6 75.0 489 402 351 34.2
Faueo 210.3 193.8 184.0 1174 942 79.8 75.0

The results show that the running time improvements of Algorithm 1 are not an effect
of the usage of tables, but of the Frobenius expansions of the multipliers. In the following
table we compare the average number of operations used in the different methods. We
list the average number of point additions (A), point doublings (D), and Frobenius
evaluations ) (note that these evaluations dependyrespectively.

Field Binary method g=4 q=28 g=16 q=32
IF 560 29.1A 43.8 A 36.3A 34.1A 38.1A
58.0D 58.6F, 38.8Fg 29.0F;s 23.8F;;
Fo120 59.9 A 86.8 A 71.7A 61.4 A 61.3A
1179D 118.8, 79.5Fg 58.8F;s 48.0F3;
150 90.3A 131.9A 107.6 A 89.7 A 84.8 A
1779D 178.8~, 119.7Fg 88.8Fis 72.1F3

The next table lists running times for the same test as above, but how we use points
in projective representation. Since inversion is relatively slow in the chosen field im-
plementation, absolute running times in projective representation are superior to affine
representation. Nevertheless, the timing differences between the different methods re-
main approximately the same.

Binary Binary
Field Binary  withT, withTgs q=4 g=8 q=16 q=32
IF o60 19.7 14.8 13.4 12.3 9.2 8.1 8.9
Fo120 79.4 58.2 52.2 46.3 33.6 27.6 26.5
150 2124 154.1 136.3 117.6 84.0 67.2 59.2

Finally we present some timings for the block version of the new algorithm which we
have described in Section 4.1. The average running times are determined with exactly
the same strategy as before. Note that we only show timings for affine representation of
points and block size two.
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Field q=4 Block versionfomq=4 =38 Block version forg = 8

Foe0 16.5 15.0 13.6 21.9
F o120 48.9 40.8 40.2 47.7
[F o180 117.4 91.5 94.2 95.7

It is obvious that the size of the precomputed table in the block variant of Algorithm
1 causes these negative impacts on the running time fer 4. In the next section
we describe the possible usage of the ideas of this paper in elliptic curve public key
cryptosystems.

6. Elliptic Curves for Public Key Cryptography

Algorithm 1 can be used for multiplication in the group of poifg§F), when the
given elliptic curve is defined over a “small” field,. For public key cryptography, one
additional requirement is necessary, since the security of these cryptosystems depends
on the difficulty of the discrete logarithm problem E(Fg). If the group order of
E(Fq) is smooth (i.e., all prime factors of2{[F) are “small”), then the algorithm of
Pohlig—Hellman (see [11]) can be used to solve the DL problem.

The order of the groufg (IF4«) can easily be computed if we know the group order of
E(Fq). Letcg = 2,¢1 = g+ 1 — #E(Fy), and define, for > 2,

CG=C-CG_1—0- G2

Then the group order dE(Fy) is given as £Fg) = g* + 1 — c. In this section we
tabulate “cryptographically good” elliptic curves over the different base figjdsNVe
show that there exist nonsupersingular elliptic curves definedyvtar q = 4,9 = 8,
q = 16, andq = 32, such that the group order Bf(F«) for some extension degrée
“of reasonable size” is divided by a large prime factor of length at least 155 bit. These
groups of points are well suited as the basis for elliptic curve public key cryptosystems,
since—as far as | know—no attack on the discrete logarithm problem in these groups is
known.

We list the trace of the Frobenius endomorphism for an elliptic curve definedrgver
and the prime factorization of the order of the group of polfBx) for given extension
degreek. Actual equations for these curves can be found in the Appendix.

6.1. The Case g= 4

Extension
degree
c overF, Order of group of points over extension field

1 79 2 .91343852333181432387730573045979447452365303319
1 97 2 .14551. 4313862782892365310862338961757871165359349Q4510
183171
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6.2. The Case =8
Extension degree
c overlg Order of group of points over extension field
-3 73 2 .3.702081944457047911319453517891136268141569147
45347160559455187521
-1 59 2.5.191561942608236107294793379157473183750481370
80701777
-1 71 2.5.1279- 102924444554883880666456242849560534192
3318808855090142845407
3 59 2-3-319269904347060178824655632115211597235347156
89440269
6.3. The Case = 16
Extension degree
c overlFig Order of group of points over extension field
-1 47 2.3%.280121. 778074194250317120378806220180330135343
22754237321
7 47 2.5.39231885846166754773973683894299771512806466793
403150729
7 53 2.5.17424917 37773598745318696029483966725519639943
987745326964290877
6.4. The Case g= 32
Extension degree
C overlFs; Order of group of points over extension field
-1 47 2-17-1693- 95920869278907109376807697609909669§077
075840815351216229813232821
5 43 2 .7-188057663693852119103425049435126986168359368
2897108316059976983
9 41 2 .3.83.25814265771228759446457222366926208364%231
89254186044190931

6.5. Using Elliptic Curves Proposed by Menezes

In [9, Example 6.2, p. 89] Menezes proposes using suitable elliptic curves defined over
F3, for a public key cryptosystem working ifi,ss. We tested one of the proposed
curves and obtained the following running times: For one multiplication of a random
point in E(Fss) with a random integer of size: 2°° our implementation of the
usual binary method needed on average 176.9 milliseconds in affine representation
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(174.7 milliseconds in projective representation), Algorithm 1 took on average 62.9 milli-
seconds (52.3 milliseconds in projective representation). These practical results show that
the new algorithm leads to a real improvement for elliptic curve cryptosystems in
practical use.
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Appendix

We present one example of an elliptic curve suitable for cryptographic systems for all
choices for, c as described in Section 6. The finite fiels are given by a generating
irreducible polynomial ovelf,, elements in the field are represented as polynomials.
We describe these polynomials oy in “decimal representation,” i.e., the number

a € N represents the polynomial induced by the binary representatien Afl the
computations were done with the helplabIA (for a description, see [5]).

The Caseg=4
c Generating polynomial a as
1 X198 4 x76 4 x33 4 x32 41 0 859827731025703354080816055129781186
46444597228
1 x4 x84 0 309102977189082588317712512077173687

3452974439586799473446

The Case g= 8

c Generating polynomial  a; s

-3 x4 x4 x¥4x¥41 0 2801159814205779757519469415818395811080
61460627082480666517728685

-1 xT+x®B41 1  3181931642933075904430737403863671449228
8809306721799

-1 x4 xP4x¥4x%241 1 3174935408637498283622005592879686207788
398581481910767191717662

3 xM7 4 xB8 4+ 1 1 1526262677713764696299159372597171337406

65058561311972
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The Case ¢= 16

Generating
(% polynomial a as

-1  x1px% 4 x33  89704831002846141956257 1
+x¥2 41 35597872677711832704243
1878979890
7 x188 1 x4 x33  2693230905029162369669  315650283090070518133437
+x¥2 41 9646999561164375338944  2233620388302506182241
6053375083648 76443616196
7 X212 4 x105 4 1 59130727864844554885839 204922009664346506116(1
2551790464066282160061  83438375656795599974674
8114191535279284548 683239185599768319

The Case g= 32

c Generating polynomial a as

-1 X284 x4 xB 4 x4+ 1 1 2836767645663110865939099428022059
9577533192290815616725673561575651998
5 X254 x5 41 0 1343295875625225206737450972784092
4330763383981049950024826287335
9 X205 4 x9 + xB 4 x32+ 1 0 4589802852128673122406605315385879
3402811962616419539897036781
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