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Abstract. Problems of secure communication and computation have been studied
extensively in network models. In this work we ask what is possible in the information-
theoretic setting when the adversary is very strong (Byzantine) and the network connec-
tivity is very low (minimum needed for crash-tolerance). We concentrate on a new model
called “multicast lines,” and show a sizable gap between the connectivity required for
perfectsecurity and fomlmost perfecsecurity. Our results also have implications to the
commonly studied simple channel model and to general secure multiparty computation.
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1. Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most networks, many parties are
only indirectly connected, as elements of an incomplete network of private and authen-
ticated channels. The interplay of network connectivity and secure communication has
received a lot of attention in the literature [Dol], [BGW], [CCD], [Bea], [RB], [BCG],
[DDWY], [SA]. Not only is secure communication important in its own right, but it

is also an essential primitive from which general secure computation can be achieved
[BGW], [CCD].

* A preliminary version appeared idvances in Cryptology — Eurocry@8 ProceedingsLecture Notes
in Computer Science 1403, Springer-Verlag, Berlin, pp. 346—-360.
** Work done while at AT&T Labs Research.
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Much is known if the channels asimple i.e., if each channel has a single sender and
a single recipient. If there attefaulty processors, and the faults are pasgiossipers
thent + 1 disjoint paths of channels between sender and receiver are necessary and
sufficient for secure communication. The same is true for a setting in which the only
faults are crash failures. In contrast, if tHfaulty processors are actiByzantindailures,
under the control of a computationally unbounded adversary, thenl2disjoint paths
between sender and receiver are necessary and sufficient [DDWY]. Notice the gap in the
connectivity required to tolerate a weak adversary and a strong one.

Less is known when a channel may have multiple recipients. The case of passive
faults in multirecipient networks has been studied previously [FY]. The case of active
faults in thepublic broadcastmodel (which can be thought of as the largest possible
multirecipient channels) has also been studied previously [GGL]. In this paper we begin
the study of active faults for other kinds of multirecipient networks.

Itis notimmediately obvious whether the change from simple channels to multirecip-
ient channels helps or hurts an active adversary. On one hand, the adversary may benefit
from the loss in privacy of every channel. On the other hand, the adversary too suffers
from a restriction, since an incorrect transmission from a faulty processor on a channel
will always be received identically by all of that channel’s receivers. In the setting that
we consider, we will see that the change hurts the adversary more than it helps.

There are limits to what we can expect to achieve in the most general case. Even
against a passive adversary, it is known to be co-NP-complete to decide the possibil-
ity of secure message transmission for an arbitrary multirecipient network [FY]. Note,
however, that this does not imply a similar result for active adversaries. The decision
problem remains co-NP-complete against a passive adversary when restricted to “neigh-
bor networks” [FY]. In a neighbor network, there is a multirecipient channel from each
processor to all its neighbors in some underlying graph. The main difficulty in working
with neighbor networks is that disjoint paths in the underlying graph do not necessarily
correspond to disjoint paths in the neighbor network. Paths in the neighbor network are
truly disjoint, called “neighbor disjoint,” only when the neighborhoods of the paths in
the underlying graph are disjoint as well.

In this paper we work with neighbor networks that have paths that are neighbor
disjoint. We can then ignore those processors that may be passive observers but not
active participants (since moving a fault from a passive observer to an active participant
on the same path can only help the adversary). Following Dolev et al. [DDWY], we
abstract away the network and consider that sender and recipient are connected by
some number olvires or simple lines Each wire is a disjoint collection of processors
arranged linearly, with communication links only between adjacent processors. We add
the assumption that anything sent to a neighbor on any line is received identically by
the other neighbor, whether or not the originator is faulty. In the literature, this is known
asreliable multicas{PSL], [Ch], [PG]. Hence, we call this propengulticast turning
simple lines intomulticast lines We emphasize that our multicast lines model is more
restrictive than the neighbor network model in general. One could of course execute our
protocols in the more general setting by finding neighbor disjoint paths to act as the
separate multicast lines.

Our model is related to that of Bracha and Toueg [BT], who exs@o-broadcasto
refer to a primitive that restricts the communication behavior of a faulty processor so
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that contradictory messages are not received by different parties. We remark that the
radio network model studied by Alon et al. [ABLP] is somewhat different from what
we consider here. Their work addresses issues of coordination and scheduling that arise
in packet radio networks, and does not consider privacy. Note that it is implicit in our
model that all nodes know the full network structure. In contrast, Burmester et al. show
that the situation may be quite different if the network structure is not known by all
parties [BDK].

We briefly discuss some possibilities of physical realizations of multicast lines. Sup-
pose that all processors are located on a flat physical plane, and equipped with equally
powerful radio transmitter-receivers. Suppose that distances and radio strengths can be
adjusted so that all one’s immediate neighbors are in radio range (for both receiving
and transmitting), while all other processors are out of radio range (for both receiving
and transmitting). Suppose that the adversary can change the behavior of processors,
but cannot tamper with the radios (e.g., cannot change their strengths or move their
locations). In this setting, some number of disjoint multicast lines are realizable, e.g.,
n = 2 disjoint multicast lines between all pairs of processors equidistant around a circle,
andn = 3 between most pairs of processors on the gridpoints of a hexagonal lattice.
To get many disjoint multicast lines from radio broadcast seems to require additional
physical assumptions, such as radios tuned to specific frequencies for transmission and
reception (which the adversary cannot change), physical barriers to block transmission
and reception for certain processors (e.g., rough terrain), or a third dimension for placing
transmitter-receivers (e.g., in deep space).

There are other ways to achieve multicast lines without using radio broadcast. One
approach is to use overlapping token rings or Ethernet buses: give an active tap to one
processor for putting messages onto the ring, and give a passive tap to its immedi-
ate neighbors for listening only. This works under the assumption that the adversary
can influence the behavior of the faulty processors, but cannot affect the behavior of
the physical communication links. Another approach, effective against a polynomially
bounded adversary, is to broadcast encrypted messages using shared cryptographic keys.
Yet another is to rely on a reliable multicast primitive [Ch] supported by some modern
distributed operating systems.

OurResults This paper hastwo main areas of contribution. First, we provide a complete
characterization of when secure communication is possible over multicast lines and an
almost complete characterization of when it is efficient. Second, we compare the power
of multicast lines with the power of simple lines alone and with the power of simple
lines with a broadcast channel. We show that all three models are of equivalent strength
when the security is required to be perfect. In contrast, if a small probability of failure is
allowed, then multicast lines are strictly more powerful than simple lines alone, but are
equivalent to simple lines with broadcast.

More specifically, we consider two different measures of secysiyfect(i.e., zero
probability that the protocol fails to be secure) athost perfec{i.e., an arbitrarily
small probability that the protocol fails to be secure).

We begin by fully exploring the capabilities of multicast lines. Our results for multicast
lines are summarized in Table 1. Note tifat- 1)-connectivity is sufficient to tolerate
t arbitrarily malicious faults—closing the connectivity gap between tolerating a passive
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Table 1. Necessary and sufficient connectivity for secure message transmission over multicast lines.

Privacy

Reliability None Almost perfect Perfect

Almost perfect n > t (Section 3.1) n > t (Section 4.1) n > [3t/2] (Section 4.2)
n > t (Section 4.3)

Perfect n > 2t (Section 3.2) n > 2t (Section 4.4) n > 2t (Section 4.4)

adversary and an active one that exists for simple lines—if we are willing to tolerate a
small probability of error.

In Section 3, we first consider reliability alone, giving protocols that will be used
as building blocks when we consider reliability with privacy. In Section 3.1 we give a
protocol over anyh > t multicast lines for transmitting a message with almost perfect
security. That is, there remain arbitrarily small probabilitfeand ¢ that the protocol
fails to be reliable or private, respectively. The protocol is efficient, in the sense that
the round complexity and bit complexity are (low-degree) polynomials of the size of
the network, logl/§) and log1/¢) (Theorem 4.3). The main building block for this
protocol is an efficient subprotocol for message transmissionrovet multicast lines
with almost perfect reliability but with no privacy (Theorem 3.5). This protocol uses
novel authentication techniques for guaranteeing that the correct message “outscores
the wrong ones, as well as techniques of privacy amplification that are related to the
approach of Bennett et al. [BBR].

We also show (Theorem 3.6) that perfect reliability over multicast lines cannot be
achieved ifn < 2t, providing matching upper and lower bounds. We then turn to the
case of perfect privacy. We modify the almost perfectly private protocol to achieve
perfectprivacy and almost perfect reliability when> [3t/2] (Corollary 4.5). Using
quite different techniques, we can achieve message transmission with perfect privacy
and almost perfect reliability over amy> t multicast lines (Theorem 4.14). While the
round complexity of this protocol is low, the bit complexity is exponentiah.iill of
our almost perfectly secure protocols have the desirable property that if no faults actually
occur, then they will actually provide perfect security.

We then consider the models of simple lines only and simple lines with broadcast.
In [DDWY], only perfect security is considered. Here, we show that @te+ 1)-
connectivity requirement holds even to achieve almost perfect security. Hence, this
connectivity requirement can be considered a property of simple lines, rather than a
property of perfect security. Further, we show that multicast lines are essentially equiva-
lent to simple lines plus a broadcast channel. As shown in [DDWiY3; 2 simple lines
are required for message transmission with perfect privacy and perfect reliability. We
show (Theorem 5.1) that this remains true when privacy is not required and there is a
fairly large probability of failure of reliability.

The comparison between the three models is summarized in Table 2. We remark
that it is not immediately obvious that the lower bound techniques for simple lines do
not generalize to multicast lines with almost perfect security, which makes -eut
sufficiency results all the more surprising.
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Table 2. Necessary and sufficient connectivity: comparison of simple and
multicast lines.

Almost perfect security Perfect security

Simple lines only n > 2t (Theorem 5.1) n > 2t [DDWY]
With b/c channel n >t (Corollary 5.2) n > 2t (Theorem 5.4)
Multicast lines n >t (Theorem 4.3) n > 2t (Corollary 4.15)

Our results can also be used to strengthen the secure multiparty computation result of
Rabin and Ben-Or [RB]. In their setting,> 2t + 1 parties are connected by a complete
graph of private authenticated single-receiver channels, and also have broadcast. We
show that the channel connectivity can be reducedd. in this case (Corollary 5.3).

2. The Model

We begin by precisely defining our model. Throughout the papeéenotes the number
of multicast lines and denotes the number of faults under the control of the adversary.

Communication Model Party A (the message transmitter) and paBy(the mes-
sage recipient) are connected bylines The jth line is a sequence oh + 2 nodes

Xo,js X1js -+ Xmj» Xmy1,j, WhereXo; = A and Xmy1; = B. It is assumed that

m > 1. (Allowing the degenerate case= 0 would change some of our results.) We
may use the ordered pdir, j) to denote the nod¥; ;, andV to denote the set of all
nodes{(i, j): 0 <i <m+1,1<j <n}. LetG = (V, E) be the undirected graph
with edgesE = {(Xij, Xi+1j): 0<i <m,1 <i < n}, i.e, neighbors on a line are
neighbors inG. We may use the terimternal nodeto denotev — {A, B}. It simplifies

the exposition of our protocols to assume all lines are of the same length, but it is clear
how to modify all our protocols and lower bound proofs to the case where lines are of
different lengths.

We considemulticastas our only communication primitive. A message that is multi-
cast by any node is received by all its neighbors (i.e., both neighbors of an internal node,
or all n neighbors ofA or B). Furthermore, a multicast value is received with privacy
(i.e., nonneighbors learn nothing about what was sent) and authentication (i.e., neigh-
bors are guaranteed to receive the value that was multicast and to know which neighbor
multicast it).

In a message transmission protoctile sendeA starts with a messagd ” drawn
from a message spagé with respect to a probability distribution Pr. At the end of the
protocol, the receiveB outputs a messadé¢® € M. We consider a synchronous system
in which messages are sent via multicastoands During each round of the protocol,
each node first receives any messages that were multicast by its neighbors at the end of
the previous round, then flips coins and performs local computations, and then possibly
multicasts a message. For all of the protocols in this papemust be representable as
a subset of a finite fiel&.
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Adversary Model We consideanctive or Byzantineattacks, in whicht internal nodes

are under the control of an adversary of unlimited computational power. The adversary is
assumed to know the complete protocol specification, message/spaiee of network,

and any inputs—other thavl ~—held by any party (i.e., all relevant information except
M* and the coin flips used by during the execution). At the start of the protocol, the
adversary chooses the message distribution Pr artdféludty nodes. It is a simplifying
assumption that all faults are chosen before the start of the protocol, but the results in
this paper are not affected if the adversary is given the additional power to choose faults
during the execution of the protocol. The adversary can view all the behavior at the faulty
nodes (coin flips, computations, messages received) as well as control the messages that
they multicast. The adversary cannot violate the multicast constraint, i.e., whatever is
received by one neighbor of a faulty node is received by both neighbors.

For any execution of the protocol, let adv be the adversary’s view of the entire protocol,
i.e., the behavior of the faulty nodes in every round, the initial state of the adversary, and
the coinflips of the adversary in every round. We write@wlv ) to denote the adversary’s
view whenM#” = m and when the sequence of coin flips used by the adversatry is
Note that adv and adwn, r) are random variables, e.g., ddv, r) depends on the coin
flips of the honest parties.

Privacy. A message transmission protocoleigrivate if, for every two messages
mg, My € M and everyr, > | Prladumg, r) = c] — Prfad\my, r) = ¢]| < 2e.
The probabilities are taken over the coin flips of the honest parties, and the sum is
over all possible values of the adversary’s view.

Reliability . A message transmission protocobiseliable if, with probability at least
1 — 8, B terminates withMB = MA. The probability is over the choice &~
and the coin flips o¥ and the adversary.

Security. A message transmission protocol(is §)-secureif it is e-private ands-
reliable.

Efficiency. An (g, §)-secure message transmission protocaffcientif its round
complexity and bit complexity are polynomial in the size of the network1¢¢)
(if ¢ > 0), and log1/$) (if 5§ > 0).

Note that ift > n, then it is possible to achieve neither reliable nor private message
transmission, since an adversary can place one fault on each line and either block or
monitor all communication betweef and B. We therefore assume< n throughout
the remainder of the paper.

Authentication Codes Our protocols make use of information-theoretically secure au-
thentication over a finite field. For simplicity, we use the same authentication code
throughout this paper:

Definition 1. LetF be a finite field, and lea, b, M € F. We define auttM, a, b) =
aM +b.

This function has been used for similar purposes by many papers (see [RB] and [Rab]).
Throughout the paper we writ&| to denote the number of elements in the SeiVe
write X er Sto indicate a choice with respect to the uniform distributionSon
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3. Reliable Communication over Multicast Lines

In this section we address the question of reliable communication, with no requirement
of privacy. We consider almost perfect reliability first, in Section 3.1, and show that it
is achievable whenever > t. In Section 3.2, we consider perfect reliability, and show
that it is possible only when > 2t.

3.1. Almost Perfect Reliability

In this section we show how to achie§eeliable communication efficiently fatf > 0
whenn > t. To achieve reliable communication, we use two subprotocols. In the Basic
Propagation ProtocolA tries to propagate a valis to B. To do this, the multicast
lines are used essentially as simple lines. Fxstendss” to its neighbors. In turn, each
(nonfaulty) node receives and propaga®&down” the simple line toward.

Basic Propagation Protocol

e Inround 1, partyA multicastss”.

e Inroundp for 2 < p <m, eachX,_1j (1 < j < n) expects to receive a single
element fromX,_5 ;. Letu,_y ; be this value if a value was in fact received,
or a publicly known default element otherwise. At the end of rogngarty
X,—1,j Multicastsu,_q j.

e Inroundm+-2, partyB receives a single element from eaXh j, or substitutes
the default element. LqB be the value received or substituted on line

Itis clear that if there are no faults on a given line, then the value received on that line
by B in roundm + 1 is A’s starting value:

Fact 1. If there are no faults on thith line, thens? = s*.

Inthe Full Distribution Protocol, each internal nodg; tries to transmit an elemest;
to AandB. As in the Basic Propagation Protocol, the lines are used essentially as simple
lines. In order to help recipients keep track of which messages should be propagated and
which messages should be ignored, the “intended” recipient or recipients of a message
are included. Specifically, we sa is an intended recipient ofi if X; receivegm, X;)
or (m, X) whereX; € X.

Full Distribution Protocol

e Inround 1, eactX; ; multicasts(s j, {Xi—1j, Xi+1,j}-
e Inroundpfor2<p <m+1:

— Forl<j <nandp <i <m,partyX ; expects to be the intended recipient
ofan element fronX;_ ; (initiated byX;_,1 ;). Letu; j be the received value
or a default value if none is received.

— Forl<j<nandl<i <m-p+1,partyX;; expects to be the intended
recipient of an element fronX;, ; (initiated by Xi;,—1 ;). Let v j be the
received or default value.
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— For 1< j < n, party A expects to be the intended recipient on fltle line
of a single element (initiated bX,_1 ;). Let s{;l’j be the received or default
value.

— For 1< j < n, party B expects to be the intended recipient on itieline of
a single element fronXm,, ;. Let S,EMJ- be the received or default value.

— Xi j multicasts(ui j, Xi+1,j) if p <1 < m, and(vjj, Xj—1j) ifl <i <
m-—p+ 1.

As with the Basic Propagation Protocol, it is clear in the Full Distribution Protocol
that messages originating on nonfaulty lines are correctly received at their destinations:

Fact 2. If there are no faults on thgh line, theng,Aj = g?j =g foralll<i<m.

In addition, since a message sent by a faulty node is multicast identically to its neigh-
bors (and if no message is sent, the neighbors both substitute the same publicly known
default value), it follows that even on lines with one faltand B agree on the value
originated at the faulty node. Note that this captymegiselythe advantage that multicast
lines give to the parties over simple lines.

Fact3. If X;; is the only fault on thgth line, thens?, = s?,.

To achieve reliable message transmission, each internal node chooses a random au-
thentication key.A's messageM  is authenticated with respect to each of these
random authentication keys. The adversary can only reliably forge an authentication if
it has seen the key, i.e., for keys initiated on a line with at least one fault. By corfrast,
andB agree on at least one authentication key from each fault-free and single-fault line.

If all received messages are rankedByccording to the number of lines from which
corroborating authentication keys originated, then the real message will almost always
get the highest rank.

Reliable Transmission Protocol

e In rounds 1 throughm + 2, the nodes oW execute an instance of the Full
Distribution Protocol. The element thX ; initiates is(a; j, by j) er F2. Let
(ai’fj , bi’fj) and(ay'?j , biEf]-) be the values thah and B receive or substitute as the
element initiated by ;.

e In roundsm + 3 through 2n + 4, the nodes oV execute an instance of
the Basic Propagation Protocol fromto B. The element thaf initiates is
(MA (G, j,authMA, 8%, b)) 1 <i <m,1<j <n}).Inround In + 4,
nodeB receives or substituted 2, {(, j, ui‘?j’k): l<i<ml<j<n})on
thekth line, 1<k <n.

o Letr(k) = |{j: Eli.ui‘f”j’k = authMg, a,-‘?j, bf‘j)}|. Node B outputsM2 for the
k that maximizes (k).

Letwg denote the number of lines with no faults,datdenote the number with exactly
one fault, and leiv, denote the number with two or more faults. Recall thas the
number of multicast lineg, is the number of faults under the control of the adversary,
andn is assumed to be larger than
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Lemma3.1. wp > wy.

Proof. wo+w; = n—w; >t —wy > (w1 +2wy) — wy = wy + wy, SO
wo > Wi. O

Lemma 3.2. There exists k such thatk) > wo + wy and M2 = MA.

Proof. Sincen > t, there exists at least one likavith no faults. By Fact 2, the value
received byB on this line in round &1 + 4 is the same as the value multicastAyn
roundm + 3. That is,M¢ = M* andu®; , = authM*, 8, b)) for 1 <i < mand

1< j < n.SinceM? = MA, the authentication test; , Z auti M8, a?, bP,) that
B performs succeeds Whene\(a;A , b,A ) = (aI bB ). By Facts 2 and 3, thls happens
for everyi when thejth line has no faultswo tlmes) and for at least onavhen thejth
line has one faulty; times). Thusr (k) > wg + wj. O

Lemma3.3. Leta berF,letM e F, and letv = auth(M, a, b). Suppose€P is any
procedure(possibly randomizedot necessarily polynomial timéhat, on input M, v,
outputs M, v* £ M, v. Then the probability that* = authlM*, a, b) is at mostl/|F|,
where the probability is taken over the coin flips of the procedure and the uniform choices
ofaandb

Proof. Sincev = aM + b, it follows thatv* = aM* + b if and only ifa = (v* —
v)(M* — M)~L. ThusP is essentially guessing a value ffrom inputM, v. However,
all values ofa € F are equally likely giverM, v, since there exists a uniquethat is
consistent with every possibM, v, a. ThusP cannot guess the value fawith success
greater than A|F|. O

Lemma 3.4. The probability that there exists k such tha?P™M# M* and r(k) >
w1 4 wy is less than m#y|F|.

Proof. Suppose that(k) > wi + w4 and MkB # MA. LetN = {1,... n} and let
Wo C {1,..., n} be the lines with no faults. Then we must have aMtf, a1 1, by J) =
 for at Ieast one, j, k such thatj € Wy andk € N — Wp. By Lemma 3.3, this
can be achieved with probability at mostE| for any giveni, j, k. Thus it is achieved
over all candidate, j, andk with probability at mostm - [Wp| - |[(N — Wp)|/|F| =
mwo(n — wo)/|F| < mré/|F. O

Theorem 3.5. If § > 0and n> t, the Reliable Transmission Protocol is an efficient
s-reliable message transmission protocol WHEN> mr?/s.

Proof. Supposé > 0 andF 2 M such thatF| > mr?/s. The Reliable Transmission
Protocol takes & + 4 rounds, and the bit complexity is a low degree polynomiahjn

n, and log1/é), so itis efficient. To see that it is reliable, consider a run of the protocol
in which A starts with the messagd” and B outputsM &, By Lemma 3.2, there is
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somek such that (k) > wo + w; andM2 = MA. By Lemma 3.4, the probability that
there existk’ such thatM2 # M” andr (k') > wy + w, is less thamr?/|F| < §. By
Lemma 3.1w; + wy < wo + wy, SO it follows that PfM® = MA] > 1 — §. Hence the
Reliable Transmission Protocoldsreliable. |

Since reliable communication is not possible wher n, this protocol provides
matching upper and lower bounds for almost perfect reliability without privacy.

3.2. Perfect Reliability

In this section we show that perfect reliability is unachievable overulticast lines
whenn < 2t. The proof follows that of Dolev et al. [DDWY].

Theorem 3.6. 0-Reliable message transmission over n multicast lines is impossible
when n< 2t.

Proof. Note that it is sufficient to show that O-reliable message transmission is im-
possible whem = 2t, since an adversary can always choose to use fewert tobits
allowed faults. Consider a graph of= 2t multicast lines, each of length > 1, and
suppose thall is a message transmission protocol. The adversary behaves as follows.
Al faults will be placed on the first processor of some line (X, for somej). The
adversary flips a coin to decide whether to dis\ypt= {1, . . ., t} (first half of the lines)
orWy; ={t+1,...,2t} (second half of the lines). L&W, denote the faulty subset, and
let W;_p, denote the honest subset. The adversary will attempt to maintain a simulation
of a possible behavior oA executingIl for some other message.

Lets;’ be the message multicast by processpr in round p of the execution. Let
sﬁ (respectivel;s[?) be the message multicast By(respectivelyB) in roundp of the
execution. Lel§pA be the message, chosen by the adversaryAlsapposedly multicast
in roundp of the simulation.

In each roung, the adversary causes eaxh; in WP to follow the protocolll as if

the messages that it received frémveres?, ..., éﬁ_l. Thatis, the messagéj that the
adversary will cause to be multicast By j in roundp is a function of these simulated
messages fronA, the real messages’, .. ., si’_‘l from X»;, and local coin flips for

X1,j chosen at random by the adversary.

With nonzero probability, all of the adversary’s choicessfr . . ., éﬁ are consistent
with a possible behavior oA executingIl for some other message, Bocannot halt at
the end of roungb and outputM B with certainty. O

Note that the nonzero probability of this adversary attack succeeding is very small, and
depends on the number of random bits used by the processors. Further, the proof does
not exclude the possibility of&reliable protocol whose complexity is a function g1
Note also that, unlike the simple lines setting of Dolev et al., the seAdiearns which
nodes are faulty during the executionldf The proof shows that this extra information
does not helA andB.
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4. Secure Communication Over Multicast Lines

In this section we consider reliabénd private communication. By Theorem 3.6, we
cannot hope to achieve perfect reliability unless- 2t. Hence, we first consider the
case of almost perfect privacy with almost perfect reliability. We show in Section 4.1
that almost perfect security is achievable whenever t. In Section 4.2 we show that

it is possible to achieve perfect privacy with almost perfect reliability efficiently when
n > [3t/2]. We do not know whether it is possible to achieve perfect privacy efficiently
whent < n < [3t/2], but we are able to give an inefficient solution in Section 4.3.
In Section 4.4 we point out that the protocol of Dolev et al. [DDWY], combined with
our protocols, can be modified to work for perfect privacy with perfect reliability over
multicast lines ifn > 2t.

4.1. Almost Perfect Security

In this section we show it is possible to achigwes)-secure message transmission over
multicast lines efficiently.

In the Private Propagation Protocd\,tries to propagate a differeai{'\ e FtoBon
each linej, 1 < j < n. This protocol demonstrates that it does not matter whether the
multicast property is extended to sender and receiver in our model, since they can use it
to communicate a different value to each of their neighbors.

Private Propagation Protocol

e Inround 1, eactX; ; multicastsj er F.

e Inround 2,A multicasts(uy, . .., Un), where eacllj =s? +rj, 1< j <n.

e Inrounds 3 througm+ 4, eachXy j now proceeds as in the Basic Propagation
Protocol with the valug; = u; —rj. Let SJB be the element ultimately received
by B on thejth line.

Fact4. If there are no faults on thgth line, thens® = s* and Pr§* = sjadv] =
Pr[s® = s].

Using the Private Propagation Protocol, we can achieve private message transmission.
Intuitively, the protocol works as follow# privately propagates a different random one-
time pad on each line tB. Using the Reliable Transmission Protocol from the preceding
section and a randomized authentication procedezndB determine which pads have
been received identically at both endsthen encrypts the message using the sum of the
pads that pass the test, and transmits this encryption reliably (and nonprivatBlyAto
similar protocol appears in [BF]. Formally, we have the following:

Private Transmission Protocol

e In rounds 1 througm + 4, the nodes o¥ execute an instance of the Private
Propagation ProtocoA propagates t® the values*, d* €r F* on each line
j- Letc?, d° be the values received i on thej line.
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e Forl< j <n, Bchooses®? eg F, and computes]B = autr(er, c]-B, ij). In
roundsm+-5 through 3n+ 9, the nodes o¥ execute an instance of the Reliable
Transmission ProtocoB then mir(e, §/3)-reliably transmits toA the values
r?, sP. Letr, s* for 1 < j < nbe the values received by as the output of
the Reliable Transmission Protocol.

o AcomputesV* = {j: s = authrA, ¢, d*)} andz® = MA + 37,y cf. In
rounds 3n + 10 through B + 13, the nodes of execute another instance of
the Reliable Transmission Protoc®.(§/3)-reliably transmits td the values
WA andz”. LetWEB, zB be the values received i®/as the output of the Reliable
Transmission Protocol.

e BcomputesM® =2 — 3~ e c”.

Lemma4.1. The Private Transmission Protocoldsprivate

Proof. Sincen > t, there exists a nonfaulty ling*. Since j* is a nonfaulty line,
¢/ = ¢ andd? = d?. Suppose the reliable transmission fr@ro A succeeds; let
RT denote thls event Then, foralld j <n,r? =r/ands® = s”. In particular, this
implies thats® = % = cr%+d = cfir2+d? and soj* € WA Everyc/: is equally
likely glvenrJA, sJA SlncezA MA +¢ 4 X ewn j»j- ' we have that everid * is
equally likely grvenrjA, sjA, z”. Since thrs is the only reIevant information abodit* in
adv, other than Pr, we have that Pr[é&ahg, r) = ¢c|RT] = Pr[admgy, r) = c|RT] for
every pair of messageasy, m;, adversary coin flipg, and possible vieve. We know
that PrRT] > 1 — ¢, and thus PRT|M” = M, r] > 1— ¢ for all M and all adversary
coin flipsr (since the adversary can choose Pr end
Let C; be the set of adversary views whe#® = m; and RT succeeded:; le€;

be the set of adversary views whek#* = m; and RT failed. By the analysis of
the preceding paragraph,..c, IPrfadmo,r) = c] — Prladumy,r) = c]| = 0 and
> cee [Prladvme, r) = c] — Prladmy,r) = c]| < e. Thus}_  [Prladumo,r) =
c] — Prladumy, r) = c]| < 2e. O

Lemma 4.2. If both reliable transmissions succegdenPr[MB £ MA] < n/|F|.

Proof. Suppose both reliable transmissions succeed. Tiiea r ands1A = sP for
alll < j <n,andW” = W8 andz” = zB. Therefore, ifj € WA, thencAr —i-dA
s =sP =c’rP +d? = cPr* 4 d° which implies thar* = (d® — dA)(cA B) 1
Sincec?, d?, cf, anddB are frxed before the random chmcergﬁ‘f it follows that, for
any fixedj e WA, Pr[cA #cP] < 1/|F|.

If both reliable transmissions succeed ané = M*, thenc? # cP for at least one

j € WA, By the above, this occurs with probability at moat”|/|F| < n/|F|. O

Theorem4.3. If ¢ > 0,8 > 0,and n> t, the Private Transmission Protocol is an
efficient(e, §)-secure message transmission protocol wign> 3n/s.

Proof. TakeF 2> M such thatF| > 3n/5. By Lemma 4.1, the Private Transmission
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Protocol isc-private. It is efficient since the Reliable Transmission Protocol is efficient.
By Theorem 3.5, the probability that either reliable message transmission fails is no
more than 2/3. Hence, by Lemma 4.2, A # MB] < 25/3 4+ n/|F| < 6. O

Since secure communication is not possible wihem, this protocol provides match-
ing upper and lower bounds for almost perfect privacy with almost perfect reliability.

4.2. Perfect Privacy when - [3t/2]

Note that the requirement that> 0 is necessary since the second step of the protocol
requires a mite, §/3)-reliable transmission. In fact, there is an adversary attack against
the protocol that succeeds in compromising privacy with nonzero (atappsibability.
First, the adversary listens dnlines in the private propagation phase. The adversary
then partially disrupts the first reliable transmission fr8nto A, affecting on each of
thet faulty lines all of the values associated with the fault-free lines. If the adversary
successfully guesses the appropriate unseen authentication in the Reliable Transmission
Protocol (as in Lemma 3.4), the disruption succeeds, and no authentication ch&ck by
passes for any fault-free line. In this ca¥¢? contains only faulty lines, allowing the
adversary to determiniél A from zA.

Itis possible to foil this attack if the first reliable transmission frBrio Ais done using
(8/3)-reliable message transmission such tAatan detect when the correct message
is not received. TherA could send nothing when this reliable transmission fails. In
fact, the proof of Lemma 4.1 is easily adapted to show that the adversary never learns
anyinformation about the message. Fortunately, the Reliable Transmission Protocol of
Section 3.1 can easily be modified to provide this property when[3t/2].

Definition 2. A message transmission protocoperfectly detecting B either termi-
nates withM B = M* or terminates and outputs nothing.

Corollary 4.4 (to Theorem 3.5). If § > Oand n> [3t/2], then there exists an efficient
perfectly detecting-reliable message transmission protacol

Proof. We change the output rule f@ in the final step of the Reliable Transmission
Protocol to the following: If there is a uniquesuch thatr (k) > t, B outputsM2.
Otherwise B terminates without output.

Whenn > [3t/2], we have thatvg + w; > t > w; + w,. By Lemma 3.2, there will
always be somé& such thaﬂ\/IkB = M# andr (k) > t. ThusB will always either output
the correct message or will output nothing, and so the modified protocol is perfectly
detecting. By Lemma 3.4, the probability that the protocol outputs nothing is atdmost
when|F| > mr?/s. O

Corollary 4.5. If § > 0and n> [3t/2], then there exists an efficie(, §)-secure
message transmission protocol
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4.3. Perfect Privacy when & n < [3t/2]

In Section 4.2 we showed how to achieve perfect privacy and almost perfect reliability
efficiently whenn > [3t/2]. In this section we continue our investigation of perfect
privacy, and show that perfect privacy and almost perfect reliability can be achieved
at minimum connectivity oh > t, although the bit complexity is exponential in the
number of lines. Subsequently, Wang and Desmedt have shown an effici&€nsecure
message transmission protocol that works fonall t [WD].

Intuitively, our protocol proceeds as follows. The receiver attempts to transmit to the
sender many random, uniquely labeled, one-time pads. The sender is able to find one
pad that was transmitted with perfect privacy and almost perfect reliability. The sender
then transmits to the receiver—with almost perfect reliabidind without privacy—
the encryption of the message using the one-time pad, together with the label of
the pad. The receiver can look up the one-time pad from the label, and decrypt the
message.

Formally, define grobe set S0 be a subset of nodes such that no two nodes are in
the same line: Ifi, j) € Sandi’ #1i, then(i’, j) ¢ S. Let £ denote the set of all probe
sets. Letyr: £ — F be an injective mapping from probe sets to elements.@iven a
function f (x) = (y1, Y2, ¥3), we write fj (x) to denotey;. We define alouble masking
procedure for authentication with secrecy:

DoubleMaskM, a, b,c) = (aM + b, M + ©).

Without knowledge of the “secret ke, b, ¢, no information about the “encrypted”
value M can be inferred, and any tampering is almost always detected. We define the
correspondinginmaskorocedure:

v—=C if a(v—c)=(u-Dh),

UnmasK(u, v), a, b, c) = {undefined otherwise.

Then the protocol is as follows:

Perfectly Private Transmission Protocol

e Inrounds 1througm+1, the nodes o¥ execute aninstance of the Full Distribu-
tion Protocol. The element thaf j initiates isf; j: £ — F3, chosen uniformly
at random from the set of all complete functions franto F2. Let f/ and .2
be the elements received ByandB, respectlvely, corresponding to the element
initiated by X; j. Leta(S) = Z(, ires fi J(S) andg(S) = Z(,’”ES fI’](S), for
every S € L. (The summations are componentwise addition over the finite
field.)

e B computesg®: £ — F2, whereg®(S) = DoubleMaskrE, 1(S), B2(9),
B3(S)) andr 8 eg Ffor everyS € L. In roundsm + 2 through 2 + 3, partyB
propagateg® to A using the Basic Propagation Protocol. g}é‘tbe the element
that A receives on thgth line in round 2n + 3.
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e Next, A computes the tuple” = (¥ (S), MA + rgj), where ré,’j =
Unmasl(ng(S'), 21(S), a2(S), a3(S)) and no larger probe set leads to a suc-
cessful unmasking for anjy. In rounds 2n+ 4 through 4n+ 7, Asends” to B
using the (almost perfect) Reliable Transmission ProtocolzBet (xB, yB)
be the element thaB accepts as the outcome of the Reliable Transmission
Protocol.

e BoutputsMB = yB — rf,l(xs).
The remainder of this section will prove that this protocol achieves perfect privacy

and almost perfect reliability. Note, however, that the protocol is not efficient, since the

message sent in the first step is the description of a function on the set of probe sets,

which is of size(m + 1)".

We first prove the protocol is almost perfectly reliable.

Lemma4.6. Let(u,v) = DoubleMaskM, a, b, ¢), where ab, ¢ er F, and where
M € F. Let P be any procedurépossibly randomizechot necessarily polynomial
time) that, given input(u, v, M) outputs(u’, v') # (u, v). Then the probability that
Unmask(u’, v'), a, b, ¢) is defined is at modt/|F| for every M Here the probability is
over the coin flips of the procedure and the uniform choices bf and c

Proof. First note thati(v — ¢) = (u—b). Second, note that if Unmagk!’, v’), a, b, ¢)
is defined thera(v’ — ¢) = (U — b). Thus a successful unmask witt', v") # (u, v)
must havev’ # v. Now letP be as in the condition of the lemma. is successful,
then it has essentially guessed the values @indb: a = (u — u)(v — v)~* and
b=u—- M@u—u)(— ). However,a, b cannot be guessed frotm, v, M) with
success greater thary|E|, since there is a uniquie, ¢ that is consistent with every
possibleM, u, v, a. O

Lemma 4.7. Let S be the probe setfound by A inrouBoch+4.Then|S| > wo + ws.

Proof. By construction, there is no probe set larger tiSaithat leads to a successful
unmasking for any . Thus it suffices to show that there exists a probe set ofigizew;
that leads to a successful unmasking for sgmBy Facts 2 and 3, there exis® € L
such tha|S*| = wg + w1 anda(S*) = B(S*). By Fact 3.1, there existp* such that
j/i = gB. Sinceg®(S*) is a double masking with respect fa(S"), B2(S"), Ba(S?), it
follows thatS* leads to a successful unmasking fér O

Lemma4.8. Let rQ,j be the unmasked value found by A in routrd + 4. Then
Prrg ; #rgl < niLl/IFI.

Proof. As inthe proof of Lemma 4.7, there exists a lijfeand a probe se8*, |S*| =
wo + w1, such thar@yj* = r&. We next show that, for any probe s8bf equal size
or larger, and for any, the probability that the unmasking is successful a@p;& ré

is at most X|F|. Fix S € £ such that|S] > wo + wy and fix ] € {1,...,n}. By
Lemma 3.1,|S| > w; + w,. Thus, at the end of rouneh + 1, the adversary has no
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information aboutx(S) or B(9). If a(S) = B(S), then it follows from Lemma 4.6 that
Prir&; #r8] < 1/IF|. If a(S) # B(S), then the probability thatf; # r ¢ is at most the
probability that the authentication lB/succeeds, which is at most|E| by Lemma 3.3.
Since in either case R, # r§] < 1/|F|, it follows that Prf & ; #r&] < (t/|FD[{Se
L: S| = wo + wi}| < n|L|/|F|. O

Lemma4.9. Lets > 0and n> t. Then the Perfectly Private Transmission Protocol
is 8-reliable when|F| > (1/8)(n(m+ )" + %mnz).

Proof. Choose= 2 M such thatF| > 1/8(n(m+ 1)" + imr?). If rSA,,]- =r&andthe
Reliable Transmission Protocol is successful, theéh= MB. By Lemma 4.8, the first
requirement fails with probability at most£|/|F|. Since the message to be transmitted
by the Reliable Transmission Protocol in rounas 2 4 through 4n + 7 is from F2,

it follows from Theorem 3.5 that the second requirement fails with probability at most
mr?/2|F|. Hence, the probability that either requirement fails is at nmsi/|F| +
mr?/2|F| = 1/|F|[(n(m+ 1" + 12mrP) < 6. O

Next, we turn to proving perfect privacy. We write aglys to denote the random
variable corresponding to the adversary’s view through the end of round 2.

Lemma 4.10. Ifa, b, c er F, thenPr[R =r|DoubleMaskR, a, b, ¢)] = Pr[R=r].

Proof. For everyu,v,r € F, the equation(u, v) = DoubleMaskr, (a, b, c)) has
exactly|F|? solutions, from which the lemma follows. O

Lemma4.11. Prr8 = r|adwm.s] = 1/|F| for all r and for all S such that|S| >
wo + w1.

Proof. LetL c {1,...,n}denotethelinesthathave nofaults. Get= {(i, j): (i, j) €
S,j € L}. LetyB(S) = > i)eG fi?j(S). By definition, Prf§ = r|adwm 3] =
Prir§ = r1g®(S), {f8(S)}i.jjes—c] = Prlr§ = r|DoubleMaskr§, A(S)), B(S) —
yB(S)]. Since|S| > wo 4+ w1 > wy + wy = n — |L|, we know thatG is nonempty.
For each(i, j) € G we have thatfi?j(S) = fij(S) er F3. This implies that all
possible values of B(S) are equally likely given adw.,3. The result then follows from
Lemma 4.10. |

Lemma4.12. Pr[rQ = r|adwm.3] = 1/|F| for all r and for all S such that|S| >
wo + w1.

Proof. The argumentis similar to the proof of Lemma 4.11. The unmaskinQ ofas
successful, so DoubleMag, a(S)) = gA(S). It follows that Prf§ = r [advem,3] =
Prir§ = r1g”(S), {f5(S)}i.jes—c] = Prlr§ = r|DoubleMaskr§, a(S)), a(S) —
yA(S)], wherey A(S) = > i< fifj(S) er F3.ByLemma4.10, Prf§ = r |advem3]
=Prfr§ =r] = 1/|F. O



Secure Communication in Minimal Connectivity Models 25

Lemma 4.13. The Perfectly Private TransmissionQsprivate for every n> t.

Proof. The only information abou1 ” that the adversary sees, other than P fs+
r§,j for one probe se§. By Lemmas 4.7 and 4.12, we have that all value®/df are
equally likely given what the adversary sees, other than Pr. Thus fagath,, r, ¢, we

have that Pr[adimg, r) = c] = Pr[advmy, r) = c], from which the lemma follows

The security of the protocol follows immediately from Lemmas 4.9 and 4.13.

Theorem 4.14. Lets > Oand n> t. Then the Perfectly Private Transmission Protocol
is (0, §)-secure wheifF| > (1/8)(n(m + D" + imr?).

4.4, Perfect Security

To complete our treatment of secure communications over multicast lines, we note that
it is easy to achieve perfectly secure message transmissiom oveétt multicast lines.

The idea is to use the Private Propagation Protocol from Section 4.1 to simulate the
protocol of Dolev et al. [DDWY] fom > 2t simple lines.

Corollary 4.15. If n > 2t, then there exists an efficie@, 0)-secure message trans-
mission protocal

Note that this protocol can also be used for almost perfect privacy with perfect relia-
bility, so we have now addressed all combinations of reliability and privacy.

5. Secure Communication without Multicast

Inthis section we compare the multicast model to simple lines with and without broadcast.
We say that there aresimple lines connecting sender and receiver if they are connected
by n disjoint paths of single-receiver channels. In this model it does not help the adversary
to have more than one fault on any line. Each line is then either faulty or honest, and
anything transmitted to one party on an honest line is guaranteed to have come from
the other party and to be hidden from the adversary. (See [DDWY] for a more detailed
description of this model.) In addition, we say that there is broadcast if any party can
send an authenticated message that will be received by all parties.

5.1. Simple Lines

Dolev et al. [DDWY] showed thatt2+ 1 simple lines are necessary and sufficient for
perfectly secure message transmission. We showed in Section 3.2 that, similarly, 2
multicast lines are necessary and sufficient for perfectly secure message transmission.
However, as shown in Section 4.1, ortly 1 multicast lines are needed for almost
perfectly secure message transmission. In contrast, we show in this section that the
2t + 1 bound in the simple lines model holds even for almost perfect security. Thus,
multicast lines are strictly more powerful than simple lines alone when a small probability
of failure is allowed, but are equivalent to simple lines if no failure is allowed.
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Specifically, we show thatt2+ 1 simple lines are required for reliable message trans-
mission even if we allow a substantial probability of failure. It is easy to achgeve
reliability whenn = 2t: sendM” on all lines, and hav® take a majority vote, wherB
uses a coin flip to breaktato-t tie. The following theorem shows that it is not possible
to do substantially better.

Theorem5.1. Ifn < 2tands < %(1— 1/|M]), thens-reliable message transmission
over n simple lines is impossible

Proof. Letn = 2t, and letlT be a message transmission protocol fréno B. The

set of all possible transcripts & for IT is drawn from a probability distribution that
depends on Pr, the coin fli@&* of A, the coin flipsC®B of B, the choice of faulty lines by

the adversary, and the other random choices of the adversary. Without loss of generality,
we can assume that the protocol proceeds in phases, Whgsilent during even phases

andB is silent during odd phases (see [DDWY]).

Suppose that the adversary behaves as follows. First, it chooses Pr to be the uniform
distribution onM. Then it chooses to disrupt either the first element on each of the first
t lines or of the last lines, according to the uniform distribution on two elements. Next,
the adversary chooses a messh/g%e F according to the same probability distribution
from which the actual messadé” was drawn, and also chooses a sequence of coin
flips CA sufficiently long to simulate the behavior #fover the course of the protocol.
During the first phase, the adversary simulatefor input messagél” and coin flip
sequencéfA, and puts the corresponding values on the faulty lines. During the second
phase, the adversary prevents any transmission ot A on the faulty lines. The
transcriptEs' of A after two phases includes its coin flips and the messagesBram
the second phase on the honest lines. The transEg‘pmf the simulatedA after two
phases includes its simulated coin flips and the messageHiarthe second phase on
the faulty lines. In general, during phase{21, the adversary simulates the behavior of
A with input messag#/?, coin flip sequenc€?, and transcripE4. The appropriate
messages are inserted on the faulty lines during phiasel2 During phasei2+ 2, the
adversary prevents any transmission frBrio A on the faulty lines. R

Given such an adversary, an execution is completely determindtfhy A, the ad-
versary's coin flip to choose the fault set, the prefi€défactually used by, the prefix of
CB actually used by, and the prefix o€ actually used by the adversary in its simula-
tion. For some execution®, will halt and output a guess fovl B, based on its transcript
and coin flips. Let be the executions such thathalts and outputM B = MA, where
MA £ MA and letE e €. Suppose thaE makes use of the first* bits ofCA, the firstr B
bits of CB and the first A bits of CA. Then let swE) be the execution where the values of
MA andMA are swapped, the adversary’s choice of faulty lines is switched, and the pre-
fixes of CA andCA are swapped. Then, for a@F, the transcript oB is identical forE
and swE). Furthermore, the probabilitgg thatE occurs is the same as the probability
Psw(e) that SWE) occursipe = Pswe) = PIIM*] Pr[MA]2-""-"*~/*~1 Thus PrB halts
andM® = MAIMA # MA] = Y e o PE = Y gce Pswe) < Pr[B halts withM® =
MAIMA £ MA] < Pr[protocol fails|MA A MA] This implies that the probability that
the protocol fails is at leasgPr{M A MA] = $(1—1/|M)). O
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5.2. Simple Lines with Broadcast

In this section we show that simple lines with broadcast are equivalent to multicast lines
in their connectivity requirements for secure communication.

5.2.1. Almost Perfect Security

There is a certain relationship between simple lines with broadcast and multicast lines.
Specifically, anything done over simple lines can be simulated over multicast lines us-
ing the Private Propagation Protocol (Section 4.1), and vice versa. Similarly, broadcast
and the Reliable Transmission Protocol (Section 3.1) have the same result. This allows
translation of certain protocols from one setting to the other.

Corollary 5.2. (0, §)-Secure communication is possible overrt simple lines with
broadcast

Proof. The Private Transmission Protocol can be directly translated into this setting,
as follows. The Private Propagation step is done using the simple lines, and broadcast is
used in place of the Reliable Transmissions. O

Note that simple lines, as used for private propagation, have the same security proper-
ties as the Private Propagation Protocol, while the broadcast acts as a perfectly reliable
transmission. This has the somewhat unintuitive effect that the translated Private Trans-
mission Protocol achieves perfgetvacybut is still only almost perfectlyeliable, since
an adversary can still disrupt the private propagation and cause the receiver to output the
wrong message with nonzero probability.

Implications for Secure Multiparty ComputationCorollary 5.2 can be used to strengthen

the secure multiparty computation result of Rabin and Ben-Or [RB]. In their setting,

n > 2t + 1 parties are connected by a complete graph of private, authenticated, single-
receiver channels, and also any player can broadcast a message that will be received
authentically by all players. The channel connectivity can be reduced-td, since

the (0, §)-protocol from Corollary 5.2 can simulate the missing channels. The small
probability§ that each simulation fails is not significant, since the protocol of Rabin and
Ben-Or already has a negligible probability of failure. Indeed, this error is necessary,
since error-free multiparty computation requirést31 connectivity [BGW], [CCD],

[RB].

Corollary 5.3.  Secure multiparty computatiowith an arbitrarily small probability of
error, is efficient over dt + 1)-connected network of at leat+ 1 nodes in the private
authenticated channels with broadcast model

5.2.2. Perfect Security

One might hope that the broadcast channel would allow us to breakth2t connec-
tivity requirement for perfect security. We show here that this is not the case. Together
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with Corollary 5.2, this shows that multicast lines and simple lines with broadcast are
equivalent for secure communication.

Theorem 5.4. (0, 0)-Secure message transmission over n simple lines with a broadcast
channel is impossible if & 2t.

Proof. The proof follows [DDWY]. Letn = 2t. We show that any protocdl that
achieves perfect reliability in the presence of active faults cannot achieve perfect privacy
on its fault-free executions. A fault-free executionfdfs completely determined by the
initial message and the coin flips used AyandB.

Let Z be the public channel together with any subsetlmfes. It suffices to show that,
for perfect reliability, the information o for every fault-free execution of the protocol
must be consistent with at most one message in the support of Pr. Toward a contradiction,
assume there exisi; # M in the support of Pr, and coin fligg?, C2, C2, C2, such
that the traffic onZ for fault-free execution$I[My, C*, CE] and T1[M,, C4', C2] are
identical.

Let the initial message bé”* = M, and let the coin flips oA andB beC{* andC2
respectively. Consider the following faulty executionlof The adversary controls all
lines notinZ. During the phases wheksends td, the faulty lines send traffic consistent
with the fault-free executiofil[ M,, C4', C2]. During the phases wheB sends toA, the
faulty lines send traffic consistent with the fault-free execufijiiM,, ClA, ClB]. Then
the view of A under these circumstances will be identical to the viewddr the fault-
free executionl1[M;, C{*, CE]. Moreover, the view ofB under these circumstances
will be identical to the view ofB for the fault-free executiol[M,, C4', C2]. Thus,
for this faulty executionA will halt while B will be unable to outpuM® = M4 with
certainty. O

6. Conclusions

We have considered the problem of secure communication over multicast lines. We have
given a complete characterization of when it is possible to give a solution, and an almost
complete characterization of when it is possible to give an efficient solution.

In addition, we compared multicast lines with the simple lines alone or with broadcast.
We showed that all three models are of equivalent strength when the security is required
to be perfect, while multicast lines and simple lines with broadcast are more powerful
than simple lines alone when security need not be perfect. In particular, our results
yield improved protocols for secure multiparty computation in a network of private
authenticated channels with broadcast, reducing the necessary connectivityl to

In all of the multicast protocols described in this paper, the multicast property is only
neededo multicast values drawn from a uniform distribution. With simple modifications,
the protocols would retain their security properties in a communication setting that had
multicast lines for the first round and simple lines thereafter. This suggests that there
may be a more fundamental communication “atom” than multicast for establishing secure
communication with low connectivity.
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A more general setting is a multicast graph, with a channel from each node to its
neighborhood. If a graph hasdisjoint paths whose neighborhoods are also disjoint,
then our multicast lines protocols can be simulated on the multicast graph. However, if
thesen disjoint paths do not have disjoint neighborhoods, then an adversary may be able
to foil our protocols witht < n faults by using one fault to eavesdrop on two disjoint
lines. An obvious direction of further research is to characterize secure communication
fully in this more general setting.
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