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Abstract. Problems of secure communication and computation have been studied
extensively in network models. In this work we ask what is possible in the information-
theoretic setting when the adversary is very strong (Byzantine) and the network connec-
tivity is very low (minimum needed for crash-tolerance). We concentrate on a new model
called “multicast lines,” and show a sizable gap between the connectivity required for
perfectsecurity and foralmost perfectsecurity. Our results also have implications to the
commonly studied simple channel model and to general secure multiparty computation.
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1. Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most networks, many parties are
only indirectly connected, as elements of an incomplete network of private and authen-
ticated channels. The interplay of network connectivity and secure communication has
received a lot of attention in the literature [Dol], [BGW], [CCD], [Bea], [RB], [BCG],
[DDWY], [SA]. Not only is secure communication important in its own right, but it
is also an essential primitive from which general secure computation can be achieved
[BGW], [CCD].
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Much is known if the channels aresimple, i.e., if each channel has a single sender and
a single recipient. If there aret faulty processors, and the faults are passivegossipers,
then t + 1 disjoint paths of channels between sender and receiver are necessary and
sufficient for secure communication. The same is true for a setting in which the only
faults are crash failures. In contrast, if thet faulty processors are activeByzantinefailures,
under the control of a computationally unbounded adversary, then 2t + 1 disjoint paths
between sender and receiver are necessary and sufficient [DDWY]. Notice the gap in the
connectivity required to tolerate a weak adversary and a strong one.

Less is known when a channel may have multiple recipients. The case of passive
faults in multirecipient networks has been studied previously [FY]. The case of active
faults in thepublic broadcastmodel (which can be thought of as the largest possible
multirecipient channels) has also been studied previously [GGL]. In this paper we begin
the study of active faults for other kinds of multirecipient networks.

It is not immediately obvious whether the change from simple channels to multirecip-
ient channels helps or hurts an active adversary. On one hand, the adversary may benefit
from the loss in privacy of every channel. On the other hand, the adversary too suffers
from a restriction, since an incorrect transmission from a faulty processor on a channel
will always be received identically by all of that channel’s receivers. In the setting that
we consider, we will see that the change hurts the adversary more than it helps.

There are limits to what we can expect to achieve in the most general case. Even
against a passive adversary, it is known to be co-NP-complete to decide the possibil-
ity of secure message transmission for an arbitrary multirecipient network [FY]. Note,
however, that this does not imply a similar result for active adversaries. The decision
problem remains co-NP-complete against a passive adversary when restricted to “neigh-
bor networks” [FY]. In a neighbor network, there is a multirecipient channel from each
processor to all its neighbors in some underlying graph. The main difficulty in working
with neighbor networks is that disjoint paths in the underlying graph do not necessarily
correspond to disjoint paths in the neighbor network. Paths in the neighbor network are
truly disjoint, called “neighbor disjoint,” only when the neighborhoods of the paths in
the underlying graph are disjoint as well.

In this paper we work with neighbor networks that have paths that are neighbor
disjoint. We can then ignore those processors that may be passive observers but not
active participants (since moving a fault from a passive observer to an active participant
on the same path can only help the adversary). Following Dolev et al. [DDWY], we
abstract away the network and consider that sender and recipient are connected by
some number ofwiresor simple lines. Each wire is a disjoint collection of processors
arranged linearly, with communication links only between adjacent processors. We add
the assumption that anything sent to a neighbor on any line is received identically by
the other neighbor, whether or not the originator is faulty. In the literature, this is known
asreliable multicast[PSL], [Ch], [PG]. Hence, we call this propertymulticast, turning
simple lines intomulticast lines. We emphasize that our multicast lines model is more
restrictive than the neighbor network model in general. One could of course execute our
protocols in the more general setting by finding neighbor disjoint paths to act as the
separate multicast lines.

Our model is related to that of Bracha and Toueg [BT], who useecho-broadcastto
refer to a primitive that restricts the communication behavior of a faulty processor so
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that contradictory messages are not received by different parties. We remark that the
radio network model studied by Alon et al. [ABLP] is somewhat different from what
we consider here. Their work addresses issues of coordination and scheduling that arise
in packet radio networks, and does not consider privacy. Note that it is implicit in our
model that all nodes know the full network structure. In contrast, Burmester et al. show
that the situation may be quite different if the network structure is not known by all
parties [BDK].

We briefly discuss some possibilities of physical realizations of multicast lines. Sup-
pose that all processors are located on a flat physical plane, and equipped with equally
powerful radio transmitter-receivers. Suppose that distances and radio strengths can be
adjusted so that all one’s immediate neighbors are in radio range (for both receiving
and transmitting), while all other processors are out of radio range (for both receiving
and transmitting). Suppose that the adversary can change the behavior of processors,
but cannot tamper with the radios (e.g., cannot change their strengths or move their
locations). In this setting, some number of disjoint multicast lines are realizable, e.g.,
n = 2 disjoint multicast lines between all pairs of processors equidistant around a circle,
andn = 3 between most pairs of processors on the gridpoints of a hexagonal lattice.
To get many disjoint multicast lines from radio broadcast seems to require additional
physical assumptions, such as radios tuned to specific frequencies for transmission and
reception (which the adversary cannot change), physical barriers to block transmission
and reception for certain processors (e.g., rough terrain), or a third dimension for placing
transmitter-receivers (e.g., in deep space).

There are other ways to achieve multicast lines without using radio broadcast. One
approach is to use overlapping token rings or Ethernet buses: give an active tap to one
processor for putting messages onto the ring, and give a passive tap to its immedi-
ate neighbors for listening only. This works under the assumption that the adversary
can influence the behavior of the faulty processors, but cannot affect the behavior of
the physical communication links. Another approach, effective against a polynomially
bounded adversary, is to broadcast encrypted messages using shared cryptographic keys.
Yet another is to rely on a reliable multicast primitive [Ch] supported by some modern
distributed operating systems.

Our Results. This paper has two main areas of contribution. First, we provide a complete
characterization of when secure communication is possible over multicast lines and an
almost complete characterization of when it is efficient. Second, we compare the power
of multicast lines with the power of simple lines alone and with the power of simple
lines with a broadcast channel. We show that all three models are of equivalent strength
when the security is required to be perfect. In contrast, if a small probability of failure is
allowed, then multicast lines are strictly more powerful than simple lines alone, but are
equivalent to simple lines with broadcast.

More specifically, we consider two different measures of security:perfect(i.e., zero
probability that the protocol fails to be secure) andalmost perfect(i.e., an arbitrarily
small probability that the protocol fails to be secure).

We begin by fully exploring the capabilities of multicast lines. Our results for multicast
lines are summarized in Table 1. Note that(t + 1)-connectivity is sufficient to tolerate
t arbitrarily malicious faults—closing the connectivity gap between tolerating a passive
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Table 1. Necessary and sufficient connectivity for secure message transmission over multicast lines.

Privacy

Reliability None Almost perfect Perfect

Almost perfect n > t (Section 3.1) n > t (Section 4.1) n > d3t/2e (Section 4.2)
n > t (Section 4.3)

Perfect n > 2t (Section 3.2) n > 2t (Section 4.4) n > 2t (Section 4.4)

adversary and an active one that exists for simple lines—if we are willing to tolerate a
small probability of error.

In Section 3, we first consider reliability alone, giving protocols that will be used
as building blocks when we consider reliability with privacy. In Section 3.1 we give a
protocol over anyn > t multicast lines for transmitting a message with almost perfect
security. That is, there remain arbitrarily small probabilitiesδ andε that the protocol
fails to be reliable or private, respectively. The protocol is efficient, in the sense that
the round complexity and bit complexity are (low-degree) polynomials of the size of
the network, log(1/δ) and log(1/ε) (Theorem 4.3). The main building block for this
protocol is an efficient subprotocol for message transmission overn > t multicast lines
with almost perfect reliability but with no privacy (Theorem 3.5). This protocol uses
novel authentication techniques for guaranteeing that the correct message “outscores”
the wrong ones, as well as techniques of privacy amplification that are related to the
approach of Bennett et al. [BBR].

We also show (Theorem 3.6) that perfect reliability over multicast lines cannot be
achieved ifn ≤ 2t , providing matching upper and lower bounds. We then turn to the
case of perfect privacy. We modify the almost perfectly private protocol to achieve
perfectprivacy and almost perfect reliability whenn > d3t/2e (Corollary 4.5). Using
quite different techniques, we can achieve message transmission with perfect privacy
and almost perfect reliability over anyn > t multicast lines (Theorem 4.14). While the
round complexity of this protocol is low, the bit complexity is exponential inn. All of
our almost perfectly secure protocols have the desirable property that if no faults actually
occur, then they will actually provide perfect security.

We then consider the models of simple lines only and simple lines with broadcast.
In [DDWY], only perfect security is considered. Here, we show that the(2t + 1)-
connectivity requirement holds even to achieve almost perfect security. Hence, this
connectivity requirement can be considered a property of simple lines, rather than a
property of perfect security. Further, we show that multicast lines are essentially equiva-
lent to simple lines plus a broadcast channel. As shown in [DDWY], 2t + 1 simple lines
are required for message transmission with perfect privacy and perfect reliability. We
show (Theorem 5.1) that this remains true when privacy is not required and there is a
fairly large probability of failure of reliability.

The comparison between the three models is summarized in Table 2. We remark
that it is not immediately obvious that the lower bound techniques for simple lines do
not generalize to multicast lines with almost perfect security, which makes ourt + 1
sufficiency results all the more surprising.
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Table 2. Necessary and sufficient connectivity: comparison of simple and
multicast lines.

Almost perfect security Perfect security

Simple lines only n > 2t (Theorem 5.1) n > 2t [DDWY]
With b/c channel n > t (Corollary 5.2) n > 2t (Theorem 5.4)
Multicast lines n > t (Theorem 4.3) n > 2t (Corollary 4.15)

Our results can also be used to strengthen the secure multiparty computation result of
Rabin and Ben-Or [RB]. In their setting,n ≥ 2t +1 parties are connected by a complete
graph of private authenticated single-receiver channels, and also have broadcast. We
show that the channel connectivity can be reduced tot + 1 in this case (Corollary 5.3).

2. The Model

We begin by precisely defining our model. Throughout the paper,n denotes the number
of multicast lines andt denotes the number of faults under the control of the adversary.

Communication Model. Party A (the message transmitter) and partyB (the mes-
sage recipient) are connected byn lines. The j th line is a sequence ofm + 2 nodes
X0, j , X1, j , . . . , Xm, j , Xm+1, j , whereX0, j = A and Xm+1, j = B. It is assumed that
m ≥ 1. (Allowing the degenerate casem = 0 would change some of our results.) We
may use the ordered pair(i, j ) to denote the nodeXi, j , andV to denote the set of all
nodes{(i, j ): 0 ≤ i ≤ m+ 1,1 ≤ j ≤ n}. Let G = (V, E) be the undirected graph
with edgesE = {(Xi, j , Xi+1, j ): 0 ≤ i ≤ m,1 ≤ i ≤ n}, i.e., neighbors on a line are
neighbors inG. We may use the terminternal nodeto denoteV − {A, B}. It simplifies
the exposition of our protocols to assume all lines are of the same length, but it is clear
how to modify all our protocols and lower bound proofs to the case where lines are of
different lengths.

We considermulticastas our only communication primitive. A message that is multi-
cast by any node is received by all its neighbors (i.e., both neighbors of an internal node,
or all n neighbors ofA or B). Furthermore, a multicast value is received with privacy
(i.e., nonneighbors learn nothing about what was sent) and authentication (i.e., neigh-
bors are guaranteed to receive the value that was multicast and to know which neighbor
multicast it).

In a message transmission protocol, the senderA starts with a messageM A drawn
from a message spaceM with respect to a probability distribution Pr. At the end of the
protocol, the receiverB outputs a messageM B ∈M. We consider a synchronous system
in which messages are sent via multicast inrounds. During each round of the protocol,
each node first receives any messages that were multicast by its neighbors at the end of
the previous round, then flips coins and performs local computations, and then possibly
multicasts a message. For all of the protocols in this paper,Mmust be representable as
a subset of a finite fieldF.
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Adversary Model. We consideractive, or Byzantine, attacks, in whicht internal nodes
are under the control of an adversary of unlimited computational power. The adversary is
assumed to know the complete protocol specification, message spaceM, size of network,
and any inputs—other thanM A—held by any party (i.e., all relevant information except
M A and the coin flips used byV during the execution). At the start of the protocol, the
adversary chooses the message distribution Pr and thet faulty nodes. It is a simplifying
assumption that all faults are chosen before the start of the protocol, but the results in
this paper are not affected if the adversary is given the additional power to choose faults
during the execution of the protocol. The adversary can view all the behavior at the faulty
nodes (coin flips, computations, messages received) as well as control the messages that
they multicast. The adversary cannot violate the multicast constraint, i.e., whatever is
received by one neighbor of a faulty node is received by both neighbors.

For any execution of the protocol, let adv be the adversary’s view of the entire protocol,
i.e., the behavior of the faulty nodes in every round, the initial state of the adversary, and
the coin flips of the adversary in every round. We write adv(m, r ) to denote the adversary’s
view whenM A = m and when the sequence of coin flips used by the adversary isr .
Note that adv and adv(m, r ) are random variables, e.g., adv(m, r ) depends on the coin
flips of the honest parties.

Privacy. A message transmission protocol isε-private if, for every two messages
m0,m1 ∈M and everyr ,

∑
c |Pr[adv(m0, r ) = c] − Pr[adv(m1, r ) = c]| ≤ 2ε.

The probabilities are taken over the coin flips of the honest parties, and the sum is
over all possible values of the adversary’s view.

Reliability . A message transmission protocol isδ-reliable if, with probability at least
1− δ, B terminates withM B = M A. The probability is over the choice ofM A

and the coin flips ofV and the adversary.
Security. A message transmission protocol is(ε, δ)-secureif it is ε-private andδ-

reliable.
Efficiency. An (ε, δ)-secure message transmission protocol isefficient if its round

complexity and bit complexity are polynomial in the size of the network, log(1/ε)
(if ε > 0), and log(1/δ) (if δ > 0).

Note that ift ≥ n, then it is possible to achieve neither reliable nor private message
transmission, since an adversary can place one fault on each line and either block or
monitor all communication betweenA and B. We therefore assumet < n throughout
the remainder of the paper.

Authentication Codes. Our protocols make use of information-theoretically secure au-
thentication over a finite field. For simplicity, we use the same authentication code
throughout this paper:

Definition 1. Let F be a finite field, and leta,b,M ∈ F. We define auth(M,a,b) =
aM + b.

This function has been used for similar purposes by many papers (see [RB] and [Rab]).
Throughout the paper we write|S| to denote the number of elements in the setS. We

write x ∈R S to indicate a choice with respect to the uniform distribution onS.
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3. Reliable Communication over Multicast Lines

In this section we address the question of reliable communication, with no requirement
of privacy. We consider almost perfect reliability first, in Section 3.1, and show that it
is achievable whenevern > t . In Section 3.2, we consider perfect reliability, and show
that it is possible only whenn > 2t .

3.1. Almost Perfect Reliability

In this section we show how to achieveδ-reliable communication efficiently forδ > 0
whenn > t . To achieve reliable communication, we use two subprotocols. In the Basic
Propagation Protocol,A tries to propagate a valuesA to B. To do this, the multicast
lines are used essentially as simple lines. First,A sendssA to its neighbors. In turn, each
(nonfaulty) node receives and propagatessA “down” the simple line towardB.

Basic Propagation Protocol

• In round 1, partyA multicastssA.
• In roundρ for 2≤ ρ ≤ m, eachXρ−1, j (1≤ j ≤ n) expects to receive a single

element fromXρ−2, j . Let uρ−1, j be this value if a value was in fact received,
or a publicly known default element otherwise. At the end of roundρ, party
Xρ−1, j multicastsuρ−1, j .
• In roundm+2, partyB receives a single element from eachXm, j , or substitutes

the default element. LetsB
j be the value received or substituted on linej .

It is clear that if there are no faults on a given line, then the value received on that line
by B in roundm+ 1 is A’s starting value:

Fact 1. If there are no faults on thej th line, thensB
j = sA.

In the Full Distribution Protocol, each internal nodeXi, j tries to transmit an elementsi, j

to A andB. As in the Basic Propagation Protocol, the lines are used essentially as simple
lines. In order to help recipients keep track of which messages should be propagated and
which messages should be ignored, the “intended” recipient or recipients of a message
are included. Specifically, we sayXi is an intended recipient ofm if Xi receives(m, Xi )

or (m, X) whereXi ∈ X.

Full Distribution Protocol

• In round 1, eachXi, j multicasts(si, j , {Xi−1, j , Xi+1, j }).
• In roundρ for 2≤ ρ ≤ m+ 1:
– For 1≤ j ≤ n andρ ≤ i ≤ m, partyXi, j expects to be the intended recipient

of an element fromXi−1, j (initiated byXi−ρ+1, j ). Letui, j be the received value
or a default value if none is received.

– For 1≤ j ≤ n and 1≤ i ≤ m− ρ + 1, partyXi, j expects to be the intended
recipient of an element fromXi+1, j (initiated by Xi+ρ−1, j ). Let vi, j be the
received or default value.
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– For 1≤ j ≤ n, party A expects to be the intended recipient on thej th line
of a single element (initiated byXρ−1, j ). Let sA

ρ−1, j be the received or default
value.

– For 1≤ j ≤ n, partyB expects to be the intended recipient on thej th line of
a single element fromXm+ρ, j . Let sB

m+ρ, j be the received or default value.
– Xi, j multicasts(ui, j , Xi+1, j ) if ρ ≤ i ≤ m, and (vi, j , Xi−1, j ) if 1 ≤ i ≤

m− ρ + 1.

As with the Basic Propagation Protocol, it is clear in the Full Distribution Protocol
that messages originating on nonfaulty lines are correctly received at their destinations:

Fact 2. If there are no faults on thej th line, thensA
i, j = sB

i, j = si, j for all 1≤ i ≤ m.

In addition, since a message sent by a faulty node is multicast identically to its neigh-
bors (and if no message is sent, the neighbors both substitute the same publicly known
default value), it follows that even on lines with one fault,A andB agree on the value
originated at the faulty node. Note that this capturespreciselythe advantage that multicast
lines give to the parties over simple lines.

Fact 3. If Xi, j is the only fault on thej th line, thensA
i, j = sB

i, j .

To achieve reliable message transmission, each internal node chooses a random au-
thentication key.A’s messageM A is authenticated with respect to each of thesemn
random authentication keys. The adversary can only reliably forge an authentication if
it has seen the key, i.e., for keys initiated on a line with at least one fault. By contrast,A
andB agree on at least one authentication key from each fault-free and single-fault line.
If all received messages are ranked byB according to the number of lines from which
corroborating authentication keys originated, then the real message will almost always
get the highest rank.

Reliable Transmission Protocol

• In rounds 1 throughm + 2, the nodes ofV execute an instance of the Full
Distribution Protocol. The element thatXi, j initiates is(ai, j ,bi, j ) ∈R F2. Let
(aA

i, j ,b
A
i, j ) and(aB

i, j ,b
B
i, j ) be the values thatA andB receive or substitute as the

element initiated byXi, j .
• In roundsm + 3 through 2m + 4, the nodes ofV execute an instance of

the Basic Propagation Protocol fromA to B. The element thatA initiates is
(M A, {(i, j,auth(M A,aA

i, j ,b
A
i, j )): 1 ≤ i ≤ m,1 ≤ j ≤ n}). In round 2m+ 4,

nodeB receives or substitutes(M B
k , {(i, j,uB

i, j,k): 1 ≤ i ≤ m,1 ≤ j ≤ n}) on
thekth line, 1≤ k ≤ n.
• Let r (k) = |{ j : ∃i .uB

i, j,k = auth(M B
k ,a

B
i, j ,b

B
i, j )}|. NodeB outputsM B

k for the
k that maximizesr (k).

Letw0 denote the number of lines with no faults, letw1 denote the number with exactly
one fault, and letw+ denote the number with two or more faults. Recall thatn is the
number of multicast lines,t is the number of faults under the control of the adversary,
andn is assumed to be larger thant .
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Lemma 3.1. w0 > w+.

Proof. w0 + w1 = n − w+ > t − w+ ≥ (w1 + 2w+) − w+ = w1 + w+, so
w0 > w+.

Lemma 3.2. There exists k such that r(k) ≥ w0+ w1 and MB
k = M A.

Proof. Sincen > t , there exists at least one linek with no faults. By Fact 2, the value
received byB on this line in round 2m+ 4 is the same as the value multicast byA in
roundm+ 3. That is,M B

k = M A anduB
i, j,k = auth(M A,aA

i, j ,b
A
i, j ) for 1 ≤ i ≤ m and

1 ≤ j ≤ n. SinceM B
k = M A, the authentication testuB

i, j,k
?= auth(M B

k ,a
B
i, j ,b

B
i, j ) that

B performs succeeds whenever(aA
i, j ,b

A
i, j ) = (aB

i, j ,b
B
i, j ). By Facts 2 and 3, this happens

for everyi when thej th line has no faults (w0 times), and for at least onei when thej th
line has one fault (w1 times). Thus,r (k) ≥ w0+ w1.

Lemma 3.3. Let a,b ∈R F, let M ∈ F, and letv = auth(M,a,b). SupposeP is any
procedure(possibly randomized, not necessarily polynomial time) that, on input M, v,
outputs M∗, v∗ 6= M, v. Then the probability thatv∗ = auth(M∗,a,b) is at most1/|F|,
where the probability is taken over the coin flips of the procedure and the uniform choices
of a and b.

Proof. Sincev = aM + b, it follows thatv∗ = aM∗ + b if and only if a = (v∗ −
v)(M∗ −M)−1. ThusP is essentially guessing a value fora from inputM, v. However,
all values ofa ∈ F are equally likely givenM, v, since there exists a uniqueb that is
consistent with every possibleM, v,a. ThusP cannot guess the value fora with success
greater than 1/|F|.

Lemma 3.4. The probability that there exists k such that MB
k 6= M A and r(k) >

w1+ w+ is less than mn2/|F|.

Proof. Suppose thatr (k) > w1 + w+ and M B
k 6= M A. Let N = {1, . . . ,n}, and let

W0 ⊆ {1, . . . ,n} be the lines with no faults. Then we must have auth(M B
k ,a

B
i, j ,b

B
i, j ) =

uB
i, j,k for at least onei, j, k such thatj ∈ W0 andk ∈ N − W0. By Lemma 3.3, this

can be achieved with probability at most 1/|F| for any giveni, j, k. Thus it is achieved
over all candidatei , j , andk with probability at mostm · |W0| · |(N − W0)|/|F| =
mw0(n− w0)/|F| < mn2/|F|.

Theorem 3.5. If δ > 0 and n> t , the Reliable Transmission Protocol is an efficient
δ-reliable message transmission protocol when|F| ≥ mn2/δ.

Proof. Supposeδ > 0 andF ⊇M such that|F| ≥ mn2/δ. The Reliable Transmission
Protocol takes 2m+ 4 rounds, and the bit complexity is a low degree polynomial inm,
n, and log(1/δ), so it is efficient. To see that it is reliable, consider a run of the protocol
in which A starts with the messageM A and B outputsM B. By Lemma 3.2, there is
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somek such thatr (k) ≥ w0 + w1 andM B
k = M A. By Lemma 3.4, the probability that

there existsk′ such thatM B
k′ 6= M A andr (k′) > w1 + w+ is less thanmn2/|F| ≤ δ. By

Lemma 3.1,w1+w+ < w0+w1, so it follows that Pr[M B = M A] ≥ 1− δ. Hence the
Reliable Transmission Protocol isδ-reliable.

Since reliable communication is not possible whent ≥ n, this protocol provides
matching upper and lower bounds for almost perfect reliability without privacy.

3.2. Perfect Reliability

In this section we show that perfect reliability is unachievable overn multicast lines
whenn ≤ 2t . The proof follows that of Dolev et al. [DDWY].

Theorem 3.6. 0-Reliable message transmission over n multicast lines is impossible
when n≤ 2t .

Proof. Note that it is sufficient to show that 0-reliable message transmission is im-
possible whenn = 2t , since an adversary can always choose to use fewer thant of its
allowed faults. Consider a graph ofn = 2t multicast lines, each of lengthm ≥ 1, and
suppose that5 is a message transmission protocol. The adversary behaves as follows.
All faults will be placed on the first processor of some line (i.e.,X1. j , for somej ). The
adversary flips a coin to decide whether to disruptW0 = {1, . . . , t} (first half of the lines)
or W1 = {t + 1, . . . ,2t} (second half of the lines). LetWb denote the faulty subset, and
let W1−b denote the honest subset. The adversary will attempt to maintain a simulation
of a possible behavior ofA executing5 for some other message.

Let si, j
ρ be the message multicast by processorXi, j in roundρ of the execution. Let

sA
ρ (respectivelysB

ρ ) be the message multicast byA (respectivelyB) in roundρ of the
execution. Let̂sA

ρ be the message, chosen by the adversary, thatA supposedly multicast
in roundρ of the simulation.

In each roundρ, the adversary causes eachX1, j in Wb to follow the protocol5 as if
the messages that it received fromA wereŝA

1 , . . . , ŝ
A
ρ−1. That is, the messages1, j

ρ that the
adversary will cause to be multicast byX1, j in roundρ is a function of these simulated
messages fromA, the real messagess2, j

1 , . . . , s2, j
ρ−1 from X2 j , and local coin flips for

X1, j chosen at random by the adversary.
With nonzero probability, all of the adversary’s choices forŝA

1 , . . . , ŝ
A
ρ are consistent

with a possible behavior ofA executing5 for some other message, soB cannot halt at
the end of roundρ and outputM B with certainty.

Note that the nonzero probability of this adversary attack succeeding is very small, and
depends on the number of random bits used by the processors. Further, the proof does
not exclude the possibility of aδ-reliable protocol whose complexity is a function of 1/δ.
Note also that, unlike the simple lines setting of Dolev et al., the senderA learns which
nodes are faulty during the execution of5. The proof shows that this extra information
does not helpA andB.
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4. Secure Communication Over Multicast Lines

In this section we consider reliableand private communication. By Theorem 3.6, we
cannot hope to achieve perfect reliability unlessn > 2t . Hence, we first consider the
case of almost perfect privacy with almost perfect reliability. We show in Section 4.1
that almost perfect security is achievable whenevern > t . In Section 4.2 we show that
it is possible to achieve perfect privacy with almost perfect reliability efficiently when
n > d3t/2e. We do not know whether it is possible to achieve perfect privacy efficiently
when t < n ≤ d3t/2e, but we are able to give an inefficient solution in Section 4.3.
In Section 4.4 we point out that the protocol of Dolev et al. [DDWY], combined with
our protocols, can be modified to work for perfect privacy with perfect reliability over
multicast lines ifn > 2t .

4.1. Almost Perfect Security

In this section we show it is possible to achieve(ε, δ)-secure message transmission over
multicast lines efficiently.

In the Private Propagation Protocol,A tries to propagate a differentsA
j ∈ F to B on

each linej , 1 ≤ j ≤ n. This protocol demonstrates that it does not matter whether the
multicast property is extended to sender and receiver in our model, since they can use it
to communicate a different value to each of their neighbors.

Private Propagation Protocol

• In round 1, eachX1, j multicastsr j ∈R F.
• In round 2,A multicasts(u1, . . . ,un), where eachuj = sA

j + r j , 1≤ j ≤ n.
• In rounds 3 throughm+4, eachX1, j now proceeds as in the Basic Propagation

Protocol with the valuesj = uj − r j . Let sB
j be the element ultimately received

by B on the j th line.

Fact 4. If there are no faults on thej th line, thensB
j = sA

j and Pr[sA
j = s|adv] =

Pr[sA
j = s].

Using the Private Propagation Protocol, we can achieve private message transmission.
Intuitively, the protocol works as follows.A privately propagates a different random one-
time pad on each line toB. Using the Reliable Transmission Protocol from the preceding
section and a randomized authentication procedure,A andB determine which pads have
been received identically at both ends.A then encrypts the message using the sum of the
pads that pass the test, and transmits this encryption reliably (and nonprivately) toB. A
similar protocol appears in [BF]. Formally, we have the following:

Private Transmission Protocol

• In rounds 1 throughm+ 4, the nodes ofV execute an instance of the Private
Propagation Protocol.A propagates toB the valuescA

j ,d
A
j ∈R F2 on each line

j . Let cB
j , dB

j be the values received byB on the j line.
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• For 1≤ j ≤ n, B choosesr B
j ∈R F, and computessB

j = auth(r B
j , c

B
j ,d

B
j ). In

roundsm+5 through 3m+9, the nodes ofV execute an instance of the Reliable
Transmission Protocol.B then min(ε, δ/3)-reliably transmits toA the values
r B

j , s
B
j . Let r A

j , sA
j for 1 ≤ j ≤ n be the values received byA as the output of

the Reliable Transmission Protocol.
• A computesWA = { j : sA

j = auth(r A
j , c

A
j ,d

A
j )} andzA = M A +∑j∈WA cA

j . In
rounds 3m+ 10 through 5m+ 13, the nodes ofV execute another instance of
the Reliable Transmission Protocol.A (δ/3)-reliably transmits toB the values
WA andzA. LetWB, zB be the values received byB as the output of the Reliable
Transmission Protocol.
• B computesM B = zB −∑j∈WB cB

j .

Lemma 4.1. The Private Transmission Protocol isε-private.

Proof. Sincen > t , there exists a nonfaulty linej ∗. Since j ∗ is a nonfaulty line,
cA

j ∗ = cB
j ∗ anddA

j ∗ = dB
j ∗ . Suppose the reliable transmission fromB to A succeeds; let

RT denote this event. Then, for all 1≤ j ≤ n, r B
j = r A

j andsB
j = sA

j . In particular, this
implies thatsA

j ∗ = sB
j ∗ = cB

j ∗r
B
j ∗ +dB

j ∗ = cA
j ∗r

A
j ∗ +dA

j ∗ , and soj ∗ ∈ WA. EverycA
j ∗ is equally

likely given r A
j , s

A
j . SincezA = M A + cA

j ∗ +
∑

j∈WA, j 6= j ∗ cA
j , we have that everyM A is

equally likely givenr A
j , s

A
j , z

A. Since this is the only relevant information aboutM A in
adv, other than Pr, we have that Pr[adv(m0, r ) = c|RT] = Pr[adv(m1, r ) = c|RT] for
every pair of messagesm0,m1, adversary coin flipsr , and possible viewc. We know
that Pr[RT] ≥ 1− ε, and thus Pr[RT|M A = M, r ] ≥ 1− ε for all M and all adversary
coin flipsr (since the adversary can choose Pr andr ).

Let Ci be the set of adversary views whereM A = mi and RT succeeded; let̄Ci

be the set of adversary views whereM A = mi and RT failed. By the analysis of
the preceding paragraph,

∑
c∈Ci
|Pr[adv(m0, r ) = c] − Pr[adv(m1, r ) = c]| = 0 and∑

c∈C̄i
|Pr[adv(m0, r ) = c] − Pr[adv(m1, r ) = c]| ≤ ε. Thus

∑
c |Pr[adv(m0, r ) =

c] − Pr[adv(m1, r ) = c]| ≤ 2ε.

Lemma 4.2. If both reliable transmissions succeed, thenPr[M B 6= M A] ≤ n/|F|.

Proof. Suppose both reliable transmissions succeed. Thenr A
j = r B

j andsA
j = sB

j for
all 1 ≤ j ≤ n, andWA = WB andzA = zB. Therefore, if j ∈ WA, thencA

j r A
j + dA

j =
sA

j = sB
j = cB

j r B
j + dB

j = cB
j r A

j + dB
j which implies thatr A

j = (dB
j − dA

j )(c
A
j − cB

j )
−1.

SincecA
j , dA

j , cB
j , anddB

j are fixed before the random choice ofr A
j , it follows that, for

any fixed j ∈ WA, Pr[cA
j 6= cB

j ] ≤ 1/|F|.
If both reliable transmissions succeed andM B 6= M A, thencA

j 6= cB
j for at least one

j ∈ WA. By the above, this occurs with probability at most|WA|/|F| < n/|F|.

Theorem 4.3. If ε > 0, δ > 0, and n> t , the Private Transmission Protocol is an
efficient(ε, δ)-secure message transmission protocol when|F| ≥ 3n/δ.

Proof. TakeF ⊇M such that|F| ≥ 3n/δ. By Lemma 4.1, the Private Transmission
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Protocol isε-private. It is efficient since the Reliable Transmission Protocol is efficient.
By Theorem 3.5, the probability that either reliable message transmission fails is no
more than 2δ/3. Hence, by Lemma 4.2, Pr[M A 6= M B] ≤ 2δ/3+ n/|F| ≤ δ.

Since secure communication is not possible whent ≥ n, this protocol provides match-
ing upper and lower bounds for almost perfect privacy with almost perfect reliability.

4.2. Perfect Privacy when n> d3t/2e
Note that the requirement thatε > 0 is necessary since the second step of the protocol
requires a min(ε, δ/3)-reliable transmission. In fact, there is an adversary attack against
the protocol that succeeds in compromising privacy with nonzero (at mostε) probability.
First, the adversary listens ont lines in the private propagation phase. The adversary
then partially disrupts the first reliable transmission fromB to A, affecting on each of
the t faulty lines all of the values associated with the fault-free lines. If the adversary
successfully guesses the appropriate unseen authentication in the Reliable Transmission
Protocol (as in Lemma 3.4), the disruption succeeds, and no authentication check byA
passes for any fault-free line. In this case,WA contains only faulty lines, allowing the
adversary to determineM A from zA.

It is possible to foil this attack if the first reliable transmission fromB to A is done using
(δ/3)-reliable message transmission such thatA can detect when the correct message
is not received. ThenA could send nothing when this reliable transmission fails. In
fact, the proof of Lemma 4.1 is easily adapted to show that the adversary never learns
any information about the message. Fortunately, the Reliable Transmission Protocol of
Section 3.1 can easily be modified to provide this property whenn > d3t/2e.

Definition 2. A message transmission protocol isperfectly detectingif B either termi-
nates withM B = M A or terminates and outputs nothing.

Corollary 4.4 (to Theorem 3.5). If δ > 0and n> d3t/2e, then there exists an efficient
perfectly detectingδ-reliable message transmission protocol.

Proof. We change the output rule forB in the final step of the Reliable Transmission
Protocol to the following: If there is a uniquek such thatr (k) > t , B outputsM B

k .
Otherwise,B terminates without output.

Whenn > d3t/2e, we have thatw0+w1 > t ≥ w1+w+. By Lemma 3.2, there will
always be somek such thatM B

k = M A andr (k) > t . ThusB will always either output
the correct message or will output nothing, and so the modified protocol is perfectly
detecting. By Lemma 3.4, the probability that the protocol outputs nothing is at mostδ

when|F| ≥ mn2/δ.

Corollary 4.5. If δ > 0 and n> d3t/2e, then there exists an efficient(0, δ)-secure
message transmission protocol.
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4.3. Perfect Privacy when t< n < d3t/2e
In Section 4.2 we showed how to achieve perfect privacy and almost perfect reliability
efficiently whenn > d3t/2e. In this section we continue our investigation of perfect
privacy, and show that perfect privacy and almost perfect reliability can be achieved
at minimum connectivity ofn > t , although the bit complexity is exponential in the
number of lines. Subsequently, Wang and Desmedt have shown an efficient(0, δ)-secure
message transmission protocol that works for alln > t [WD].

Intuitively, our protocol proceeds as follows. The receiver attempts to transmit to the
sender many random, uniquely labeled, one-time pads. The sender is able to find one
pad that was transmitted with perfect privacy and almost perfect reliability. The sender
then transmits to the receiver—with almost perfect reliabilityand without privacy—
the encryption of the message using the one-time pad, together with the label of
the pad. The receiver can look up the one-time pad from the label, and decrypt the
message.

Formally, define aprobe set Sto be a subset of nodes such that no two nodes are in
the same line: If(i, j ) ∈ Sandi ′ 6= i , then(i ′, j ) /∈ S. LetL denote the set of all probe
sets. Letψ : L→ F be an injective mapping from probe sets to elements ofF. Given a
function f (x) = (y1, y2, y3), we write fi (x) to denoteyi . We define adouble masking
procedure for authentication with secrecy:

DoubleMask(M,a,b, c) = (aM + b,M + c).

Without knowledge of the “secret key”a,b, c, no information about the “encrypted”
value M can be inferred, and any tampering is almost always detected. We define the
correspondingunmaskprocedure:

Unmask((u, v),a,b, c) =
{
v − c if a(v − c) = (u− b),
undefined otherwise.

Then the protocol is as follows:

Perfectly Private Transmission Protocol

• In rounds 1 throughm+1, the nodes ofV execute an instance of the Full Distribu-
tion Protocol. The element thatXi, j initiates is fi, j : L→ F3, chosen uniformly
at random from the set of all complete functions fromL to F3. Let f A

i, j and f B
i, j

be the elements received byA andB, respectively, corresponding to the element
initiated byXi, j . Let α(S) =∑(i, j )∈S f A

i, j (S) andβ(S) =∑(i, j )∈S f B
i, j (S), for

every S ∈ L. (The summations are componentwise addition over the finite
field.)
• B computesgB: L → F2, wheregB(S) = DoubleMask(r B

S , β1(S), β2(S),
β3(S)) andr B

S ∈R F for everyS∈ L. In roundsm+ 2 through 2m+ 3, partyB
propagatesgB to A using the Basic Propagation Protocol. LetgA

j be the element
that A receives on thej th line in round 2m+ 3.
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• Next, A computes the tuplezA = (ψ(S′),M A + r A
S′, j ), where r A

S′, j =
Unmask(gA

j (S
′), α1(S′), α2(S′), α3(S′)) and no larger probe set leads to a suc-

cessful unmasking for anyj . In rounds 2m+4 through 4m+7, A sendszA to B
using the (almost perfect) Reliable Transmission Protocol. LetzB = (xB, yB)

be the element thatB accepts as the outcome of the Reliable Transmission
Protocol.
• B outputsM B = yB − r B

ψ−1(xB)
.

The remainder of this section will prove that this protocol achieves perfect privacy
and almost perfect reliability. Note, however, that the protocol is not efficient, since the
message sent in the first step is the description of a function on the set of probe sets,
which is of size(m+ 1)n.

We first prove the protocol is almost perfectly reliable.

Lemma 4.6. Let (u, v) = DoubleMask(M,a,b, c), where a,b, c ∈R F, and where
M ∈ F. Let P be any procedure(possibly randomized, not necessarily polynomial
time) that, given input(u, v,M) outputs(u′, v′) 6= (u, v). Then the probability that
Unmask((u′, v′),a,b, c) is defined is at most1/|F| for every M. Here the probability is
over the coin flips of the procedure and the uniform choices of a, b, and c.

Proof. First note thata(v−c) = (u−b). Second, note that if Unmask((u′, v′),a,b, c)
is defined thena(v′ − c) = (u′ − b). Thus a successful unmask with(u′, v′) 6= (u, v)
must havev′ 6= v. Now letP be as in the condition of the lemma. IfP is successful,
then it has essentially guessed the values ofa and b: a = (u − u′)(v − v′)−1 and
b = u − M(u − u′)(v − v′)−1. However,a,b cannot be guessed from(u, v,M) with
success greater than 1/|F|, since there is a uniqueb, c that is consistent with every
possibleM,u, v,a.

Lemma 4.7. Let S′ be the probe set found by A in round2m+4.Then|S′| ≥ w0+w1.

Proof. By construction, there is no probe set larger thanS′ that leads to a successful
unmasking for anyj . Thus it suffices to show that there exists a probe set of sizew0+w1

that leads to a successful unmasking for somej . By Facts 2 and 3, there existsS∗ ∈ L
such that|S∗| = w0 + w1 andα(S∗) = β(S∗). By Fact 3.1, there existsj ∗ such that
gA

j ∗ = gB. SincegB(S∗) is a double masking with respect toβ1(S∗), β2(S∗), β3(S∗), it
follows thatS∗ leads to a successful unmasking forj ∗.

Lemma 4.8. Let rA
S′, j be the unmasked value found by A in round2m + 4. Then

Pr[r A
S′, j 6= r B

S′ ] ≤ n|L|/|F|.

Proof. As in the proof of Lemma 4.7, there exists a linej ∗ and a probe setS∗, |S∗| =
w0 + w1, such thatr A

S∗, j ∗ = r B
S∗ . We next show that, for any probe setS of equal size

or larger, and for anyj , the probability that the unmasking is successful andr A
S, j 6= r B

S
is at most 1/|F|. Fix S ∈ L such that|S| ≥ w0 + w1 and fix j ∈ {1, . . . ,n}. By
Lemma 3.1,|S| > w1 + w+. Thus, at the end of roundm+ 1, the adversary has no
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information aboutα(S) or β(S). If α(S) = β(S), then it follows from Lemma 4.6 that
Pr[r A

S, j 6= r B
S ] ≤ 1/|F|. If α(S) 6= β(S), then the probability thatr A

S, j 6= r B
S is at most the

probability that the authentication byB succeeds, which is at most 1/|F| by Lemma 3.3.
Since in either case Pr[r A

S, j 6= r B
S ] ≤ 1/|F|, it follows that Pr[r A

S′, j 6= r B
S′ ] ≤ (t/|F|)|{S∈

L: |S| ≥ w0+ w1}| < n|L|/|F|.

Lemma 4.9. Let δ > 0 and n> t . Then the Perfectly Private Transmission Protocol
is δ-reliable when|F| ≥ (1/δ)(n(m+ 1)n + 1

2mn2).

Proof. ChooseF ⊇M such that|F| > 1/δ(n(m+ 1)n+ 1
2mn2). If r A

S′, j = r B
S′ and the

Reliable Transmission Protocol is successful, thenM A = M B. By Lemma 4.8, the first
requirement fails with probability at mostn|L|/|F|. Since the message to be transmitted
by the Reliable Transmission Protocol in rounds 2m+ 4 through 4m+ 7 is from F2,
it follows from Theorem 3.5 that the second requirement fails with probability at most
mn2/2|F|. Hence, the probability that either requirement fails is at mostn|L|/|F| +
mn2/2|F| = 1/|F|(n(m+ 1)n + 12mn2) ≤ δ.

Next, we turn to proving perfect privacy. We write adv2m+3 to denote the random
variable corresponding to the adversary’s view through the end of round 2m+ 3.

Lemma 4.10. If a,b, c ∈R F, thenPr[R= r |DoubleMask(R,a,b, c)] = Pr[R= r ].

Proof. For everyu, v, r ∈ F, the equation(u, v) = DoubleMask(r, (a,b, c)) has
exactly|F|2 solutions, from which the lemma follows.

Lemma 4.11. Pr[r B
S′ = r |adv2m+3] = 1/|F| for all r and for all S′ such that|S′| ≥

w0+ w1.

Proof. Let L ⊂ {1, . . . ,n}denote the lines that have no faults. LetG = {(i, j ): (i, j ) ∈
S′, j ∈ L}. Let γ B(S′) = ∑

(i, j )∈G f B
i, j (S

′). By definition, Pr[r B
S′ = r |adv2m+3] =

Pr[r B
S′ = r |gB(S′), { f B

i, j (S
′)}(i, j )∈S′−G] = Pr[r B

S′ = r |DoubleMask(r B
S′ , β(S

′)), β(S′) −
γ B(S′)]. Since|S′| ≥ w0 + w1 > w1 + w+ = n − |L|, we know thatG is nonempty.
For each(i, j ) ∈ G we have thatf B

i, j (S
′) = fi, j (S′) ∈R F3. This implies that all

possible values ofγ B(S′) are equally likely given adv2m+3. The result then follows from
Lemma 4.10.

Lemma 4.12. Pr[r A
S′ = r |adv2m+3] = 1/|F| for all r and for all S′ such that|S′| ≥

w0+ w1.

Proof. The argument is similar to the proof of Lemma 4.11. The unmasking ofr A
S′ was

successful, so DoubleMask(r A
S′ , α(S

′)) = gA(S′). It follows that Pr[r A
S′ = r |adv2m+3] =

Pr[r A
S′ = r |gA(S′), { f A

i, j (S
′)}(i, j )∈S′−G] = Pr[r A

S′ = r |DoubleMask(r A
S′ , α(S

′)), α(S′) −
γ A(S′)], whereγ A(S′) =∑(i, j )∈G f A

i, j (S
′) ∈R F3. By Lemma 4.10, Pr[r A

S′ = r |adv2m+3]
= Pr[r A

S′ = r ] = 1/|F|.
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Lemma 4.13. The Perfectly Private Transmission is0-private for every n> t .

Proof. The only information aboutM A that the adversary sees, other than Pr, isM A+
r A

S′, j for one probe setS′. By Lemmas 4.7 and 4.12, we have that all values ofM A are
equally likely given what the adversary sees, other than Pr. Thus for allm0,m1, r, c, we
have that Pr[adv(m0, r ) = c] = Pr[adv(m1, r ) = c], from which the lemma follows.

The security of the protocol follows immediately from Lemmas 4.9 and 4.13.

Theorem 4.14. Letδ > 0and n> t . Then the Perfectly Private Transmission Protocol
is (0, δ)-secure when|F| ≥ (1/δ)(n(m+ 1)n + 1

2mn2).

4.4. Perfect Security

To complete our treatment of secure communications over multicast lines, we note that
it is easy to achieve perfectly secure message transmission overn > 2t multicast lines.
The idea is to use the Private Propagation Protocol from Section 4.1 to simulate the
protocol of Dolev et al. [DDWY] forn > 2t simple lines.

Corollary 4.15. If n > 2t , then there exists an efficient(0,0)-secure message trans-
mission protocol.

Note that this protocol can also be used for almost perfect privacy with perfect relia-
bility, so we have now addressed all combinations of reliability and privacy.

5. Secure Communication without Multicast

In this section we compare the multicast model to simple lines with and without broadcast.
We say that there aren simple lines connecting sender and receiver if they are connected
byn disjoint paths of single-receiver channels. In this model it does not help the adversary
to have more than one fault on any line. Each line is then either faulty or honest, and
anything transmitted to one party on an honest line is guaranteed to have come from
the other party and to be hidden from the adversary. (See [DDWY] for a more detailed
description of this model.) In addition, we say that there is broadcast if any party can
send an authenticated message that will be received by all parties.

5.1. Simple Lines

Dolev et al. [DDWY] showed that 2t + 1 simple lines are necessary and sufficient for
perfectly secure message transmission. We showed in Section 3.2 that, similarly, 2t + 1
multicast lines are necessary and sufficient for perfectly secure message transmission.
However, as shown in Section 4.1, onlyt + 1 multicast lines are needed for almost
perfectly secure message transmission. In contrast, we show in this section that the
2t + 1 bound in the simple lines model holds even for almost perfect security. Thus,
multicast lines are strictly more powerful than simple lines alone when a small probability
of failure is allowed, but are equivalent to simple lines if no failure is allowed.
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Specifically, we show that 2t + 1 simple lines are required for reliable message trans-
mission even if we allow a substantial probability of failure. It is easy to achieve1

2-
reliability whenn = 2t : sendM A on all lines, and haveB take a majority vote, whereB
uses a coin flip to break at-to-t tie. The following theorem shows that it is not possible
to do substantially better.

Theorem 5.1. If n ≤ 2t andδ < 1
2(1−1/|M|), thenδ-reliable message transmission

over n simple lines is impossible.

Proof. Let n = 2t , and let5 be a message transmission protocol fromA to B. The
set of all possible transcripts ofB for 5 is drawn from a probability distribution that
depends on Pr, the coin flipsCA of A, the coin flipsCB of B, the choice of faulty lines by
the adversary, and the other random choices of the adversary. Without loss of generality,
we can assume that the protocol proceeds in phases, whereA is silent during even phases
andB is silent during odd phases (see [DDWY]).

Suppose that the adversary behaves as follows. First, it chooses Pr to be the uniform
distribution onM. Then it chooses to disrupt either the first element on each of the first
t lines or of the lastt lines, according to the uniform distribution on two elements. Next,
the adversary chooses a messageM̂ A ∈ F according to the same probability distribution
from which the actual messageM A was drawn, and also chooses a sequence of coin
flips ĈA sufficiently long to simulate the behavior ofA over the course of the protocol.
During the first phase, the adversary simulatesA for input messagêM A and coin flip
sequencêCA, and puts the corresponding values on the faulty lines. During the second
phase, the adversary prevents any transmission fromB to A on the faulty lines. The
transcriptEA

2 of A after two phases includes its coin flips and the messages fromB in
the second phase on the honest lines. The transcriptÊA

2 of the simulatedA after two
phases includes its simulated coin flips and the messages fromB in the second phase on
the faulty lines. In general, during phase 2i + 1, the adversary simulates the behavior of
A with input messagêM A, coin flip sequencêCA, and transcript̂EA

2i . The appropriate
messages are inserted on the faulty lines during phase 2i + 1. During phase 2i + 2, the
adversary prevents any transmission fromB to A on the faulty lines.

Given such an adversary, an execution is completely determined byM A, M̂ A, the ad-
versary’s coin flip to choose the fault set, the prefix ofCA actually used byA, the prefix of
CB actually used byB, and the prefix of̂CA actually used by the adversary in its simula-
tion. For some executions,B will halt and output a guess forM B, based on its transcript
and coin flips. LetE be the executions such thatB halts and outputsM B = M A, where
M A 6= M̂ A, and letE ∈ E . Suppose thatE makes use of the firstr A bits ofCA, the firstr B

bits ofCB and the first̂r A bits ofĈA. Then let sw(E) be the execution where the values of
M A andM̂ A are swapped, the adversary’s choice of faulty lines is switched, and the pre-
fixes ofCA andĈA are swapped. Then, for anyCB, the transcript ofB is identical forE
and sw(E). Furthermore, the probabilitypE thatE occurs is the same as the probability
psw(E) that sw(E)occurs:pE = psw(E) = Pr[M A] Pr[M̂ A]2−r A−r B−r̂ A−1. Thus Pr[B halts
and M B = M A|M A 6= M̂ A] = ∑

E∈E pE =
∑

E∈E psw(E) ≤ Pr[B halts withM B =
M̂ A|M A 6= M̂ A] ≤ Pr[protocol fails|M A 6= M̂ A]. This implies that the probability that
the protocol fails is at least12 Pr[M A 6= M̂ A] = 1

2(1− 1/|M|).
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5.2. Simple Lines with Broadcast

In this section we show that simple lines with broadcast are equivalent to multicast lines
in their connectivity requirements for secure communication.

5.2.1. Almost Perfect Security

There is a certain relationship between simple lines with broadcast and multicast lines.
Specifically, anything done over simple lines can be simulated over multicast lines us-
ing the Private Propagation Protocol (Section 4.1), and vice versa. Similarly, broadcast
and the Reliable Transmission Protocol (Section 3.1) have the same result. This allows
translation of certain protocols from one setting to the other.

Corollary 5.2. (0, δ)-Secure communication is possible over n> t simple lines with
broadcast.

Proof. The Private Transmission Protocol can be directly translated into this setting,
as follows. The Private Propagation step is done using the simple lines, and broadcast is
used in place of the Reliable Transmissions.

Note that simple lines, as used for private propagation, have the same security proper-
ties as the Private Propagation Protocol, while the broadcast acts as a perfectly reliable
transmission. This has the somewhat unintuitive effect that the translated Private Trans-
mission Protocol achieves perfectprivacybut is still only almost perfectlyreliable, since
an adversary can still disrupt the private propagation and cause the receiver to output the
wrong message with nonzero probability.

Implications for Secure Multiparty Computation. Corollary 5.2 can be used to strengthen
the secure multiparty computation result of Rabin and Ben-Or [RB]. In their setting,
n > 2t + 1 parties are connected by a complete graph of private, authenticated, single-
receiver channels, and also any player can broadcast a message that will be received
authentically by all players. The channel connectivity can be reduced tot + 1, since
the (0, δ)-protocol from Corollary 5.2 can simulate the missing channels. The small
probabilityδ that each simulation fails is not significant, since the protocol of Rabin and
Ben-Or already has a negligible probability of failure. Indeed, this error is necessary,
since error-free multiparty computation requires 3t + 1 connectivity [BGW], [CCD],
[RB].

Corollary 5.3. Secure multiparty computation, with an arbitrarily small probability of
error, is efficient over a(t +1)-connected network of at least2t +1 nodes in the private
authenticated channels with broadcast model.

5.2.2. Perfect Security

One might hope that the broadcast channel would allow us to break then > 2t connec-
tivity requirement for perfect security. We show here that this is not the case. Together
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with Corollary 5.2, this shows that multicast lines and simple lines with broadcast are
equivalent for secure communication.

Theorem 5.4. (0,0)-Secure message transmission over n simple lines with a broadcast
channel is impossible if n≤ 2t .

Proof. The proof follows [DDWY]. Letn = 2t . We show that any protocol5 that
achieves perfect reliability in the presence of active faults cannot achieve perfect privacy
on its fault-free executions. A fault-free execution of5 is completely determined by the
initial message and the coin flips used byA andB.

Let Z be the public channel together with any subset oft lines. It suffices to show that,
for perfect reliability, the information onZ for every fault-free execution of the protocol
must be consistent with at most one message in the support of Pr. Toward a contradiction,
assume there existsM1 6= M2 in the support of Pr, and coin flipsCA

1 ,C
B
1 ,C

A
2 ,C

B
2 , such

that the traffic onZ for fault-free executions5[M1,CA
1 ,C

B
1 ] and5[M2,CA

2 ,C
B
2 ] are

identical.
Let the initial message beM A = M1, and let the coin flips ofA andB beCA

1 andCB
2

respectively. Consider the following faulty execution of5. The adversary controls allt
lines not inZ. During the phases whenAsends toB, the faulty lines send traffic consistent
with the fault-free execution5[M2,CA

2 ,C
B
2 ]. During the phases whenB sends toA, the

faulty lines send traffic consistent with the fault-free execution5[M1,CA
1 ,C

B
1 ]. Then

the view ofA under these circumstances will be identical to the view ofA for the fault-
free execution5[M1,CA

1 ,C
B
1 ]. Moreover, the view ofB under these circumstances

will be identical to the view ofB for the fault-free execution5[M2,CA
2 ,C

B
2 ]. Thus,

for this faulty execution,A will halt while B will be unable to outputM B = M A with
certainty.

6. Conclusions

We have considered the problem of secure communication over multicast lines. We have
given a complete characterization of when it is possible to give a solution, and an almost
complete characterization of when it is possible to give an efficient solution.

In addition, we compared multicast lines with the simple lines alone or with broadcast.
We showed that all three models are of equivalent strength when the security is required
to be perfect, while multicast lines and simple lines with broadcast are more powerful
than simple lines alone when security need not be perfect. In particular, our results
yield improved protocols for secure multiparty computation in a network of private
authenticated channels with broadcast, reducing the necessary connectivity tot + 1.

In all of the multicast protocols described in this paper, the multicast property is only
neededto multicast values drawn from a uniform distribution. With simple modifications,
the protocols would retain their security properties in a communication setting that had
multicast lines for the first round and simple lines thereafter. This suggests that there
may be a more fundamental communication “atom” than multicast for establishing secure
communication with low connectivity.
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A more general setting is a multicast graph, with a channel from each node to its
neighborhood. If a graph hasn disjoint paths whose neighborhoods are also disjoint,
then our multicast lines protocols can be simulated on the multicast graph. However, if
thesen disjoint paths do not have disjoint neighborhoods, then an adversary may be able
to foil our protocols witht < n faults by using one fault to eavesdrop on two disjoint
lines. An obvious direction of further research is to characterize secure communication
fully in this more general setting.
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