
DOI: 10.1007/s001459910005

J. Cryptology (2000) 13: 107–142

© 2000 International Association for
Cryptologic Research

Randomness versus Fault-Tolerance∗

Ran Canetti
IBM T. J. Watson Research Center,

30 Saw Mill River Road,
Hawthorne, NY 10532, U.S.A.

canetti@watson.ibm.com

Eyal Kushilevitz
Department of Computer Science, Technion,

Haifa, Israel
http://www.cs.technion.ac.il/∼eyalk

Rafail Ostrovsky
Bell Communications Research, MCC-1C365B,

Morristown, NJ 07960-6438, U.S.A.
rafail@bellcore.com

Adi Rosén
Department of Computer Science, University of Toronto,

Toronto, Ontario, Canada
adiro@cs.toronto.edu

Communicated by Oded Goldreich

Received 30 April 1998 and revised 3 January 1999 and 1 July 1999

Abstract. We investigate the relations between two major properties of multiparty
protocols:fault tolerance(or resilience) andrandomness. Fault-tolerance is measured
in terms of the maximum number of colluding faulty parties,t , that a protocol can
withstand and still maintain the privacy of the inputs and the correctness of the outputs
(of the honest parties). Randomness is measured in terms of the total number of random
bits needed by the parties in order to execute the protocol.

Previously, the upper bound on the amount of randomness required by general
constructions for securely computing any nontrivial functionf was polynomial both in
n, the total number of parties, and the circuit-sizeC(f). This was the state of knowledge
even for the special caset = 1 (i.e., when there is at most one faulty party). In this pa-
per we show that for any linear-size circuit, and for any numbert < n/3 of faulty

∗ A preliminary version of this paper appeared in theProceedings of the16th PODC, 1997, pp. 35–45. Eyal
Kushilevitz was supported by the MANLAM Fund. Part of this work was done while Eyal Kushilevitz and
Adi Rosén were visiting Bellcore.

107

108 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

parties,O(poly(t)·logn) randomness is sufficient. More generally, we show that, for any
function f with circuit-sizeC(f), we need onlyO(poly(t) · logn+poly(t) · (C(f)/n))
randomness in order to withstand any coalition of size at mostt . Furthermore, in our
protocol onlyt + 1 parties flip coins and the rest of the parties are deterministic. Our
results generalize to the case ofadaptiveadversaries as well.

Key words. Secure multiparty protocols, Randomness, Limited independence, Com-
position of protocols.

1. Introduction

The goal of this work is to explore the interplay, in the context of multiparty computations,
between two fundamental concerns:security(i.e., fault-tolerance combined with privacy)
andrandomness. Over the past decade, both striving for stronger security and saving ran-
dom bits received considerable amount of attention and yielded many interesting results.

Secure protocols. Secure multiparty protocols (first studied in [Y2] and [GMW]) are
protocols that guarantee the privacy of the inputs and, at the same time, the correctness
of the outputs of honest participants, even if some of the parties are maliciously faulty
(“Byzantine”). Secure multiparty computations has been extensively studied, in a variety
of adversarial models. The following basic settings were considered. The adversary con-
trolling the corrupted (i.e., faulty) parties can be either computationally unbounded (in
which case the communication channels are assumed to be private) [BGW], [CCD], or it
can be limited to efficient (probabilistic polynomial time) computations [Y2], [GMW].
In addition, the adversary can be eitherpassive(in which case the corrupted parties are
honest-but-curious; they follow their protocol and only collude to gather extra infor-
mation) oractive(in which case the corrupted parties may arbitrarily and maliciously
deviate from their protocol). A protocol resilient against passive adversaries is sometimes
calledprivate, rather thansecure. In all settings, a salient parameter is theresilience t,
i.e., the maximum number of colluding faulty parties tolerable by the protocol. An ad-
ditional parameter regarding the power of the adversary isadaptivity: astaticadversary
controls a fixed set of faulty parties, whereas anadaptiveadversary may choose which
parties to corrupt as the computation proceeds, based on the information gathered so far.
To simplify the presentation, we concentrate in this work on thestaticcase although the
results (and techniques) carry onto the adaptive case as well.

We mention some known results: In [Y2] and [GMW] it was shown that, if trapdoor
permutations exist, every poly-time computable functionf can be computed securely
tolerating a computationally bounded, active adversary that controls up tot < n/2
parties. Moreover, in the case of passive adversaries, any numbert ≤ n of colluding
parties is tolerable. In [BGW] and [CCD] protocols for securely computing any function
in the presence of computationally unbounded adversaries are presented. In the case of
passive adversaries these protocols withstand up tot < n/2 corrupted parties. In the
case of active adversaries these protocols withstand up tot < n/3 corrupted parties. In
both cases this is the maximum attainable resilience. A considerable amount of work
has been done in this area (e.g., [BB], [B1], [BDPV], [BDV], [CFGN], [CK1], [FKN],
[FY], [K], [KM4], [KMO], [KOR1], [KR], and [RB]); in what follows we concentrate
on works concerning the relation between multiparty security and randomness.

Randomness versus Fault-Tolerance 109

Randomness. Randomness plays an important role in computer science. In particular,
in the context of distributed computing there are important examples of problems where
there is a provable gap between the power of randomized algorithms and their determin-
istic counterparts. For instance, achieving Byzantine agreement with a linear number of
faults requires a linear number of rounds deterministically [FL] and a constant number
of rounds if randomization is allowed [FM]; reaching a consensus in an asynchronous
distributed system with faults is impossible with deterministic protocols [FLP], but is
possible with the use of randomized protocols (see [CD]). Various techniques to mini-
mize the amount of randomness needed were extensively studied in computer science
(e.g., [AGHP], [BGG], [BM], [CG1], [IZ], [KK], [KM1], [KM2], [KM3], [KM4], [KY],
[N], [NN], [S2], [Y1], and [Z]) and tradeoffs between randomness and other resources
were found (e.g., [BDPV], [BGS], [BDV], [CG2], [CK2], [CRS], [KM4], [KOR1],
[KPU],[KR], and [RS]).

Security versus randomness. It is not hard to show that, except for degenerate cases,
somerandomness is essential to maintain security (if all parties are deterministic, then
the adversary can infer information on the parties’ inputs from their messages). We are
interested in theamount of randomnessrequired for carrying out at-resilient computation
against computationally unbounded adversaries.1

All previous (generic) secure protocols require2(poly(n) ·m) random bits, wheren
is the number of parties andm is the number of multiplication gates in the circuit repre-
senting the function to be computed. This applies both to passive and active adversaries.
Previous research concentrating on reducing the amount of randomness used in secure
computations was limited to the case ofpassive(andstatic) adversaries. Furthermore,
results were obtained either for a specific function (namely, XOR) or for the special case
t = 1:

1. For the XOR function,Ä(t) random bits are necessary fort-private computation,
while O(t2 log(n/t)) random bits are sufficient [KM4]. Additionally, for any func-
tion f with sensitivity n, if t ≥ n− c for some constantc, thenÄ(n2) random bits
are required [BDPV].

2. For the special case of 1-privacy, any linear-size circuit can be computed 1-privately
with a constant number of random bits [KOR1]. More generally, every circuit of
m boolean gates can be computed 1-privately withO(m/n) random bits [KOR1].

Our results. We generalize both of the above results. That is, we show that for both
passive and active adversaries (even adaptive ones), and forany value of t for which
secure computation is possible, any circuit ofm boolean gates can be securely evalu-
ated using onlyO(poly(t) · (logn+m/n)) random bits overall. While these results do

1 When the adversary is limited to probabilistic polynomial time and intractability assumptions are used,
as in [Y2] and [GMW], then by the results of [BM], [H], and [ILL] we may as well assume the existence
of a pseudorandom generator. In this case, if a party needs “many” random bits, it can always choose only
a “small” seed of truly random bits, and expand the seed into a “long” sequence of pseudorandom bits and
use them. Therefore, in the case of computationally bounded adversaries the quantification of the “amount
of randomness needed” is not meaningful (and, in particular, the amount of randomness needed inherently
depends on a security parameter).

110 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

not substantially improve on [BGW] and [CCD] fort = 2(n), they constitute a big
improvement for smaller values oft . In particular, fort = polylog(n), circuits with a
quasi-linear (i.e.,m = O(n · polylog(n))) number of gates can be securely evaluated
using onlypolylog(n) random bits. Fort = 1, we are onlyO(logn) away from the
specialized (to passive adversaries only) result of [KOR1].

An alternative perspective. We suggest the following alternative perspective on our
results. Any distributed computing task (i.e., a task whose input is partitioned among
several parties) can, in the absence of faults, be solved in a centralized manner: all
parties send their input to a single party, who performs the task locally and announces
the results. In many cases this may be the preferred solution, but this solution requires
that the correctness (and privacy) be trusted to a single party. A natural extension of the
centralized solution to the case when up tot faults are possible is to have all parties share
their inputs among a predefined small setSof c · t parties (c > 1), and have the parties
in S compute the function and announce the results. This “partial decentralization”
approach seems especially viable whent = o(n), since the setS need not be much
bigger thant . Our work shows that, with respect to the amount of randomness used,
this “partial decentralization” solution is considerably inferior to a fully distributed
computation: while our solution needs onlyO(poly(t) · (logn + m/n)) randomness,
the above “partial decentralization” solution (according to presently known methods)
requiresO(poly(t) ·m) random bits.

Our constructions. Our results build on many previous ideas in the area of privacy as
well as on limited independence distributions. In particular, we use the general framework
of [BGW], and combine it with ideas from [KOR1] together with techniques for limited
independence, in order to save in randomness. That is, the parties evaluate the given
circuit gate by gate; each gate is computed in a manner similar to the construction of
[BGW]. (In particular, we use the [BGW] modules for secret sharing and evaluating
individual gates as building blocks.) However, as in [KOR1], not all parties participate
in evaluating each gate. Instead, the parties are partitioned intoteamsof small size, and
each gate is evaluated by a single team. We generalize the technique of [KOR1] in a way
which allows us to use limited independence, and then show how this can be done in
a secure and robust manner, building on previous work on both secure protocol design
and derandomization techniques.

Interestingly, we show that not only can we use a small amount of randomness but also
only t +1 parties need to be randomized, and the rest of the parties can be deterministic.
This is nearly optimal against coalitions of sizet , since it was shown in [KM4] that
t-private computations of simple functions require at leastt parties to use randomness,
and that in some cases, such as the XOR function,t is sufficient.

The protocol composition technique. To show the security of our protocols, we use
general definitions of secure multiparty protocols. In particular, we use the formalization
of [C2], which allows modular composition of secure protocols. (This formalization is
based on the approach in [B2] and [B3].) That is, in order to avoid reproving the security
of the [BGW] construction from scratch, we separately prove the security of the overall
design of our protocol, assuming that the [BGW] modules for secret-sharing and for

Randomness versus Fault-Tolerance 111

evaluating individual gates are secure. We then conclude, using the [C2] composition
theorem, that the composition of our “overall design” with the [BGW] modules is secure.
(For self-containment we also sketch a proof of security of our protocol forpassive
adversaries, without relying on [C2].) We remark that a formal proof of security for
[BGW] was never published. (It can be inferred, say, from the security proof of [BCG]
as it appears in [C1].) The modular proof technique used here can be applied also to
proving the security of the [BGW] protocol itself and it has the advantage that it extends
to the adaptive case as well.

Organization. In Section 2 we provide some necessary definitions, including those of
privacy and randomness. In Section 3 we review the solution of [BGW] for the case of
passive adversaries. In Section 4 we provide our solution for the same case. In Section 5
we review the solution of [BGW] for the case of active (i.e., Byzantine) adversaries and
in Section 6 we extend our solutions from the case of passive adversaries to the case of
active adversaries. In Appendix 6.2 we describe a simple extension of the results of [S2]
and [KM4] for sample spaces with limited independence; we use this extension in our
constructions. In Appendix 6.2 we sketch a proof of security of our protocol forpassive
adversaries, without relying on [C2].

2. Preliminaries

In Section 2.1 we review the notion of secure protocols, using the formalization of [C2].
In Section 2.2 we review the notion ofmodular compositionof protocols, introduced
in [MR], and restate the composition theorem from [C2]. Modular composition plays a
central role in the security proofs of our protocols. In Section 2.3 we define other notions
used within the paper. With the exception of Section 2.3, the material in this section is
a summary of the corresponding sections in [C2], and is included here for the sake of
self-containment.2

Multiparty functions. The functions to be evaluated by the parties are formalized as
follows. An n-party function (for somen ∈ N) is a probabilistic functionf : (D)n ×
{0,1}∗ → (D)n, for some finite domainD, where the last input is taken to be the
random input.

2.1. Secure Protocols

We specify the requirements from a protocol for securely computing a functionf whose
inputs are partitioned among several parties. Several definitions of multiparty secure
computation have been proposed in the past (e.g., [GL], [MR], [B3], and [C2]). In this

2 One difference from the formalization of [C2] is that there the complexity measures, and the security
requirement, are stated in terms of asecurity parameterthat tends to infinity. Here we deal with a simpler
case where the inputs are taken from a finite set, and the security is perfect (i.e., no computational restrictions
are made on the adversary and no “negligible probabilities of error” are allowed). Consequently, the security
parameter is not necessary. In fact, the definitions here can be regarded as a statement of the definitions of [C2]
for a specific value of the security parameter.

112 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

work we use the definition of [C2] which we sketch below. We concentrate on the
“secure channels” setting of [BGW] and [CCD], where the adversary is computationally
unbounded but has no access to the communication between nonfaulty parties. Also, for
simplicity of exposition we concentrate on the case ofstatic (nonadaptive) adversaries.
Nevertheless, all the protocols presented in this paper maintain their security even in
the presence of adaptive adversaries. The definitions for the passive and active cases are
very similar; we develop them together, noting the differences as we go.

In a nutshell, secure protocols are protocols that “emulate” an ideal model where
all parties privately hand their inputs to a centralized trusted party who computes the
results, hands them back to the parties, and vanishes. The definition is described in three
stages: First the “real-life” model of computation is formalized; next the ideal model is
formalized; finally the notion of “emulation” and the definition are presented.

The real-life model. An n-party protocol π is a collection ofn interactive, probabilistic
algorithms. Formally, each algorithm is an Interactive Turing machine, as defined in
[GMR]. We use the termparty Pi to refer to thei th algorithm. Each partyPi starts
with input xi ∈ D, and random inputri ∈ {0,1}∗. Informally, we envision each two
parties as connected via aprivate communication channel. A more complete description
of the communication among parties is presented below. At -limited real-life adversary,
A, is another interactive (computationally unbounded) Turing machine describing the
behavior of the corrupted parties. AdversaryA starts off with input that contains the
identities of the corrupted parties (some subsetC ⊆ {1, . . . ,n}), together with their
inputs and random inputs. In addition,A receivesauxiliary input z. (The auxiliary input
is a standard tool that allows proving the composition theorem. Intuitively, the auxiliary
input captures information gathered by the adversary from other interactions occurring
before the current interaction. Auxiliary inputs were first introduced in [GO], in the
context of Zero-Knowledge proofs; for discussion see [GO] and [G].)

The computation proceeds in rounds, where each round proceeds as follows. First the
uncorrupted parties generate their messages of this round, as described in the protocol.
(That is, these messages appear on the outgoing communication tapes of the uncorrupted
parties.) The messages addressed to the corrupted parties become known to the adversary
(i.e., they appear on the adversary’s incoming communication tape). Next the adversary
generates the messages to be sent by the corrupted parties in this round. If the adversary
is passive, then these messages are determined by the protocol. An active adversary
determines the messages sent by the corrupted parties in an arbitrary way. Finally each
uncorrupted party receives all the messages addressed to it in this round (i.e., the messages
addressed toPi appear onPi ’s incoming communication tape).

At the end of the computation all parties locally generate their outputs. The uncor-
rupted parties output whatever is specified in the protocol. The corrupted parties output a
special symbol,⊥, specifying that they are corrupted. In addition, the adversary outputs
some arbitrary function of itsview of the computation. The adversary view consists of
its auxiliary input and random input, followed by the corrupted parties’ inputs, random
inputs, and all the messages sent and received by the corrupted parties during the com-
putation. Without loss of generality, we can imagine that the real-life adversary’s output
consists of its entire view.

Let ADVRπ,A(Ex, z, Er) denote the output of real-life adversaryA with auxiliary input

Randomness versus Fault-Tolerance 113

z and when interacting with parties running protocolπ on input Ex = x1, . . . , xn and
random inputEr = rA, r1, . . . , rn as described above (rA for A, xi andri for party Pi).
Let EXECπ,A(Ex, z, Er)i denote the output of partyPi from this execution. Recall that ifPi

is uncorrupted, then this is the output specified by the protocol; ifPi is corrupted, then
EXECπ,A(Ex, z, Er)i = ⊥. Let

EXECπ,A(Ex, z, Er) = ADVRπ,A(Ex, z, Er), EXECπ,A(Ex, z, Er)1, . . . , EXECπ,A(Ex, z, Er)n.

Let EXECπ,A(Ex, z) denote the probability distribution ofEXECπ,A(Ex, z, Er) whereEr is
uniformly chosen.

The ideal process. The ideal process is parameterized by the function to be evaluated.
This is ann-party function f : (D)n × {0,1}∗ → (D)n, as defined above. Each party
Pi has inputxi ∈ D; no random input is needed for the parties in the ideal process (if
f is a probabilistic function, then the needed randomness will be chosen by the trusted
party). Recall that the parties wish to computef (Ex, r f)1, . . . , f (Ex, r f)n, wherer f is an
appropriately long random string, andPi learnsf (Ex, r f)i (where f (Ex, r f)i denotes thei th
component off (Ex, r f)). An ideal-process-adversary S is an interactive (computationally
unbounded) Turing machine describing the behavior of the corrupted parties. Adversary
S starts off with the identities and inputs of the corrupted parties (partiesPi for i ∈ C),
random input, and auxiliary input. In addition, there is an (incorruptible)trusted party,
T . The ideal process proceeds as follows.

INPUT SUBSTITUTION: The ideal-process-adversaryS sees the inputs of the corrupted
parties. IfS is active, then it may also alter these inputs. LetEb be the|C|-vector of
the altered inputs of the corrupted parties, and letEy be then-vector constructed from
the inputEx by substituting the entries of the corrupted parties by the corresponding
entries inEb. If S is passive, then no substitution is made andEy = Ex.

COMPUTATION: Each partyPi hands its (possibly modified) input value,yi , to the trusted
partyT . Next,T chooses a valuer f randomly fromR f , and hands eachPi the value
f (Ey, r f)i .

OUTPUT: Each uncorrupted partyPi outputs f (Ey, r f)i , and the corrupted parties out-
put⊥. In addition, the adversary outputs some arbitrary function of the information
gathered during the computation in the ideal process. This information consists of
the adversary’s random input, the corrupted parties’ inputs, and the resulting function
values{ f (Ey, r f)i : Pi is corrupted}.
Let ADVR f,S(Ex, z, Er), whereEr = (r f , r), denote the output of ideal process adversary

S on random inputr and auxiliary inputz, when interacting with parties having input
Ex = x1, . . . , xn, and with a trusted party for computingf with random inputr f . Let the
(n+ 1)-vector

IDEAL f,S(Ex, z, Er) = ADVR f,S(Ex, z, Er), IDEAL f,S(Ex, z, Er)1, . . . , IDEAL f,S(Ex, z, Er)n

denote the outputs of the parties on inputsEx, adversaryS, and random inputsEr as de-
scribed above (Pi outputsIDEAL f,S(Ex, z, Er)i). Let IDEAL f,S(Ex, z) denote the distribution
of IDEAL f,S(Ex, z, Er) whenEr is uniformly distributed.

114 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Definition of security. We require that protocolπ emulates the ideal process for eval-
uating f , in the following sense. For any real-life adversaryA there should exist an
ideal-process adversaryS, such that, for any input vectorEx and any auxiliary inputz,
the global outputsIDEAL f,S(Ex, z) andEXECπ,A(Ex, z) are identically distributed. Further-
more, we require that the complexity of the ideal-process adversaryS be comparable
with (i.e., polynomial in) the computational complexity of the real-life adversaryA. (See
[C2] for motivation and discussion of this requirement.)

Definition 1. Let f be ann-party function and letπ be a protocol forn parties. We
say thatπ t -securely evaluates f if for any t-limited real-life adversaryA there exists
an ideal-process adversaryS whose running time is polynomial in the running time of
A, and such that, for any input vectorEx and any auxiliary inputz,

IDEAL f,S(Ex, z) d= EXECπ,A(Ex, z), (1)

where
d= denotes equality between two distributions. IfA andS are passive adversaries,

then we say thatπ t -privately evaluates g.

2.2. Composition of Secure Protocols

In what follows we use the fact that the security of protocols is preserved under a natural
composition operation. For a full exposition and a proof see [C2]. Here we briefly review
the set-up and state the theorem.

Informally, the composition theorem can be stated as follows. Suppose that protocols
ρ1, . . . , ρk securely compute functionsf1, . . . , fk, respectively, and that a protocolπ se-
curely computes a functiong using subroutine calls for “ideal evaluation” off1, . . . , fk.
Let πρ1,...,ρk be a protocol that is identical to protocolπ with the exception that every
subroutine call for an ideal evaluation offi is replaced by an invocation of the corre-
sponding protocolρi . Then the resulting protocolπρ1,...,ρk securely computesg from
scratch.

We call this type of composition of protocolsmodular composition. (This notion was
first suggested in [MR]. There it is calledreducibility of protocols.) In formalizing this
theorem we concentrate on the case where at most one subroutine invocation is running at
any computational round. Showing that security is maintained even in the more general
case, where several subroutine invocations may be running at the same time, requires a
stronger security property than the one presented here and is not dealt with in this paper.
Yet, we remark that our protocols do enjoy this stronger security property.

The hybrid model. To be able to state the composition theorem, we first formulate a
model for computing a functiong with the assistance of a trusted party for computing
a function f , and define secure protocols in that model. This model, called thehybrid
model with ideal access tof (or in short the f -hybrid model), is obtained as follows.
We start with thereal-life modeldescribed above. This model is augmented with an
incorruptible trusted partyTf for computing a functionf . At special rounds (determined
by the protocol run by the uncorrupted parties) all parties interact withTf in a way
that is similar to the ideal process for evaluatingf . That is, the parties hand theirf -
inputs toTf (party Pi handsξi), and are handed back their respective outputs (Pi learns

Randomness versus Fault-Tolerance 115

f (ξ1, . . . , ξn, r f)i). The valuesξi that correspond to corrupted parties are decided by the
adversary, who also learns the values handed byTf to the corrupted parties. The case
of ideal evaluation of several possibly different functionsf1, . . . , fk is treated similarly,
where the protocol specifies in each invocation of the trusted party which functionf j to
evaluate.

Let EXEC
f1,..., fm
π,A (Ex, z) denote the random variable describing the output of the com-

putation in the(f1, . . . , fm)-hybrid model with protocolπ , adversaryA, inputsEx, and
auxiliary input z for the adversary, analogously to the definition ofEXECπ,A(Ex, z) in
Section 2.1. (We stress that hereπ is a hybrid of a real-life protocol with ideal evaluation
calls toT .)

Security in the hybrid model. Protocols for securely computing a functiong in the
(f1, . . . , fk)-hybrid model are defined in the usual way:

Definition 2. Let f1, . . . , fm andg be n-party functions and letπ be a protocol for
n parties in the(f1, . . . , fm)-hybrid model. We say thatπ t -securely evaluates g in the
(f1, . . . , fm)-hybrid model if for any t-limited adversaryA (in the (f1, . . . , fm)-hybrid
model) there exists an ideal-process adversaryS whose running time is polynomial in the
running time ofA, and such that, for any input vectorEx for the parties and any auxiliary
input z for the adversary,

IDEALg,S(Ex, z) d= EXEC
f1,..., fm
π,A (Ex, z). (2)

If A andS are passive adversaries, then we say thatπ t -privately evaluates g in the
(f1, . . . , fm)-hybrid model.

Replacing ideal evaluation with a subroutine. Replacing a call of protocolπ for an ideal
evaluation offi with a call to a real-life subroutine protocolρi is done in a straightforward
way: the code ofπ within each party is changed so that the call for ideal evaluation offi
is replaced with an invocation ofρi . The value to be handed to the trusted party is used as
input toρi ; and, in addition,ρi is given a new, unused part of the party’s random input.
Once the execution ofρi is completed the local output is treated as the value returned by
the trusted party, and the execution ofπ resumes. We assume that all parties terminate
protocolρ at the same round. Letπρ1,...,ρm denote protocolπ where each ideal evaluation
call to fi is replaced by an invocation of protocolρi .

Theorem 1[C2]. Let f1, . . . , fm and g be n-party functions. Let π be an n-party
protocol that t-securely(resp., t-privately) computes g in the(f1, . . . , fm)-hybrid model,
in a way that no more than one ideal evaluation call is made at each round.Letρ1, . . . , ρm

be n-party protocols that t-securely(resp., t-privately) compute f1, . . . , fm, respectively.
Then the protocolπρ1,...,ρm t-securely(resp., t-privately) computes g.

2.3. Other Definitions

Measuring randomness. We measure the amount of randomness used by a protocol as
follows. We provide each partyPi with a random stringri of independent and uniformly

116 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

distributed symbols in the set{0,1, . . . , p − 1}, for somep. Let di be the rightmost
position on the taperi that partyPi reads. In this case we say that partyPi useddi ·dlog pe
random bits.3

Definition 3. A d-random protocol is a protocol such that, for every input assignment
Ex and every auxiliary inputz, the total number of random bits used by all parties inevery
execution is at mostd.

We stress that the definition allows, for example, that in different executions each
individual party will toss a different number of coins. This number may depend on both
the input of the parties, and previous coin tosses.

Circuits. In what follows we represent the functions computed by the parties as arith-
metic circuits. That is, we fix a primep > n (wheren is the number of parties); the
circuit consists of two types of gates: addition modulop and multiplication modulop.
All gates have fan-in two, and unbounded fan-out. The size of a circuit, denotedm, is
the number of gates in the circuit (although, to measure the complexity of our protocols,
m could be taken as the number of multiplication gates only). We remark that a boolean
circuit (e.g., a circuit consisting of standard Or, And, and Not gates) can be transformed
into an equivalent arithmetic circuit in a way that preserves the number of gates, up to a
small multiplicative factor. For instance, consider the transformationNOT a⇒ (1− a);
a AND b⇒ a · b; anda OR b⇒ 1− ((1− a)(1− b)).

For simplicity of presentation and analysis we concentrate on secure evaluation of
deterministicfunctions. Still, as a side-remark we sketch a way for dealing with prob-
abilistic functions. The idea is to “share” each random input to the circuit among the
parties in a way that prevents the adversary from influencing the chosen value, and guar-
antees that the adversary gathers no information on this value on top of the information
leaked by the function value. More precisely, letA be a circuit that hast +1 input wires,
and a single output wire whose value equals the sum of the inputs (modp). Given a
randomized circuitC with random input wiresr1, . . . , rk, construct a circuitC′ that is
identical toC except that inC′ eachri is replaces by anA circuit, denotedAi . Each
partyPj with j ≤ t +1 is assigned to thej th input of eachAi . (This is in addition to the
other, regular input wires assigned toPj .) Pj chooses a random value inGF[p] for each
one of theA-inputs assigned to it, and from this point on treats each such input wire as
a regular input wire. The parties now proceed to evaluateC′.

3 It is standard to view a random selection in the set{0,1, . . . , p− 1} as “choosing”dlog pe random bits.
This can be justified either by entropy considerations, or simply by the fact that to choose a random number
in {0,1, . . . , p− 1} anexpectednumber ofO(dlog pe) random bits suffices (simply choosedlog pe random
bits; if you get a number in the range{0,1, . . . , p− 1} output this number; otherwise, try again). Hence, any
protocol that usesr random bits according to our definition can be converted into a protocol that uses expected
O(r) random bits in a setting where only choices in{0,1} are allowed. Alternatively, we can restrict ourselves
to choices in{0,1} and consider theworst casenumber of random bits if we allow a (small) probability of
failure.

Randomness versus Fault-Tolerance 117

3. An Overview of the Protocol of [BGW] for Passive Adversaries

Our construction for passive adversaries, described in the next section, uses components
used in the general construction of [BGW] fort-securely computing any function in the
presence of passive adversaries, for anyt < n/2. Therefore, we present in this section
a brief overview of [BGW]. The construction (and its proof) is presented in a modular
way, using the formalism from the previous section. This form of presentation enables
us to use the components of [BGW] without reproving their security from scratch.

In the [BGW] protocol the parties first agree on an arithmetic circuit for the function
f to be computed. In particular, the parties agree on a primep > n (all the arithmetic
in what follows is done modulop) and onn distinct elementsµ1, . . . , µn in GF[p] (all
polynomials in the protocol will be evaluated at thesen evaluation points; for example,
we can chooseµ1 = 1, . . . , µn = n). Each party is assigned to some of the input wires.
The party’s input consists of a value for each of the input wires assigned to it. Each
output wire of the circuit is assigned to one or more parties; these are the parties that
will learn the value of this wire.

First, each party uses Shamir’s secret-sharing scheme to share among the parties the
value of each input wire assigned to it. Then the parties evaluate the circuit in a gate-by-
gate fashion (from inputs to outputs); for each gate, the parties engage in a protocol for
computing shares of the output value of the gate from their shares of the input values
of the gate. Finally, the parties let each party reconstruct the values of the output gates
assigned to it. More precisely, the [BGW] protocol consists of a “high-level” protocol for
evaluating the circuit; this protocol uses as “subroutines” protocols for secure evaluation
of the followingn-party functions:

Secret sharing. SHAREn(s, ε, . . . , ε) = F(µ1), . . . , F(µn), wheres ∈ GF[p] is the
“secret” to be shared,ε denotes the empty input, andF() is a random polynomial of
degreet in GF[p] with F(0) = s. Let SHAREn,i denote the functionSHAREn where
the dealer (i.e., the party with nonempty input) isPi . Note that we do not specify how
the coefficients ofF are chosen; this is regarded as the “intrinsic randomness” of the
functionSHARE.

Evaluating an addition gate. ADDn(a1|b1, . . . ,an|bn) = a1+ b1, . . . ,an + bn (where
“ |” denotes concatenation). This function for evaluating an addition gate is trivial and
can be computed securely without any interaction between the parties.

Evaluating a multiplication gate. MULTn(a1|b1, . . . ,an|bn) = C(µ1), . . . ,C(µn),
whereC is distributed uniformly among all polynomials of degreet over GF[p]
with free coefficienta · b. Herea (resp.,b) is the free coefficient of the lowest degree
polynomial A (resp.,B) satisfying A(µi) = ai (resp.,B(µi) = bi) for all i . (Also
here we do not specify how the coefficients ofC are chosen; this is the “intrinsic
randomness” of the functionMULT.)

Reconstruction. RECONSn,W(a1, . . . ,an) = α1, . . . , αn, whereW ⊆ [n], and αi =
(a1, . . . ,an) if i ∈ W, andαi = ε otherwise. In the high-level protocol the parties in
W will interpolate a (degreet) polynomialA satisfyingA(µi) = ai for all i , and will
outputA(0).4

4 An apparently simpler formalization of functionRECONSwould be to letαi = s if i ∈ W, wheres is the

118 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Theorem 2[BGW]. Let t < n/2. Then there exist protocols for t-securely computing
each of the above four functions, in the presence of passive adversaries, for all i ∈ [n]
and W⊆ [n].

We do not prove this theorem here. Yet we note that the protocols for computing
SHAREn,i andRECONSn,W are just Shamir’s secret sharing and reconstruction protocols
[S1]. The secret sharing protocol requires the dealer to chooset random values inGF[p];
namely,O(t log p) random bits. The functionADDn can be computed by each party
locally summing its two inputs. Below we sketch Rabin’s simplification of the protocol
for securely computingMULTn, as it appears in [GRR]. This protocol requires each
participating party to chooseO(t log p) random bits (hence a total ofO(nt log p) random
bits in each invocation of the multiplication protocol).

The multiplication step of[GRR]. First, each partyPi locally computes the valuedi =
ai · bi . These values define a polynomialD(x) whose free coefficient is the valuea · b.
However, the degree ofD is 2t (and nott) which may lead to problems in revealing
the output at the end. In addition,D is not even a random polynomial of degree 2t (for
instance,D cannot be irreducible). We overcome these problems as follows. We show
below that there is a linear combination

D(0) =
2t+1∑
i=1

γi D(µi), (3)

where theγi ’s are known coefficients. Once this is established, the parties can proceed
as follows: Each partyPi (1 ≤ i ≤ 2t + 1) chooses a random polynomial1i (x) of
degreet whose free coefficient isdi . It then sends1i (µj) to Pj . Each partyPj computes
αj =

∑2t+1
i=1 γiαi, j , whereαi, j is the value thatPj receives fromPi . It holds thatαj

is Pj ’s share for the polynomial1(x) = ∑2t+1
i=1 γi1i (x) which is a random, degreet ,

polynomial whose free coefficient is
∑2t+1

i=1 γi D(µi) = D(0).
It remains to showγi ’s that satisfy (3). Denote byEd = (d0,d1, . . . ,d2t) the vector

of coefficients of the polynomialD and letV be the(2t + 1)× (2t + 1) Vandermonde
matrix whose(i, j) entry (for 1≤ i, j ≤ 2t + 1) contains the valuei j−1. Also denote
ED = (D(µ1), D(µ2), . . . , D(µ2t+1)). With this notation we get thatED = V · Ed. Since
V is nonsingular (see, e.g., [vLW]), we can writeEd = V−1 · ED and note that the value
that we are interested in sharing isD(0) = d0, the first element ofEd, which can therefore
be written asD(0) = d0 =

∑2t+1
i=1 V−1

1,i · D(µi) (whereV−1 is a fixed matrix).
For completeness, we state the following theorem:

Theorem 3[BGW]. Let t < n/2. Then, given an arithmetic circuit for computing an
n-party function f, there exists a protocol for t-securely computing f in the hybrid

free coefficient of the polynomialA() satisfyingA(µi) = ai for all i . However, this formalization imposes
an additional (and unnecessary) secrecy requirement, namely, that even the parties inW do not learn the
inputs of the other partiesto the reconstruction protocol. Meeting this additional requirement would require
unnecessarily complex protocols.

Randomness versus Fault-Tolerance 119

model with passive adversaries and with ideal access to the functionsSHAREn,i , ADDn,
MULTn, andRECONSn,W, for all i ∈ [n] and W⊆ [n].

Using the composition theorem (Theorem 1), we get that for anyt < n/2 there exist
protocols fort-securely computing anyn-party function f in the presence of passive
adversaries. The number of random bits used by these protocols isO(mnt log p) (where
m is the size of the circuit forf).

4. Our Protocol for Passive Adversaries

In this section we present our randomness-efficient protocol with respect to passive
adversaries. For simplicity, we restrict the presentation todeterministicfunctions where
each party has boolean input and output. That is, we prove the following theorem:

Theorem 4. Let t < n/2. Then any function f: {0,1}n→ {0,1}n that has a circuit of
size m, can be t-privately computed by a O(t2 logn+ (m/n)t5 log t)-random protocol.

We first present our protocols assuming the existence of a trusted dealer whose role is
restricted to distributing random values to the parties. The trusted dealer does not receive
any messages and has no input. Formally, we present and analyze the protocol in the
hybrid model, with ideal access to a function that takes no input, and generates outputs
from a distribution to be determined in what follows. At the onset of the protocol the
parties first evaluate this function (denotedRANDn), and use the local outputs as their
random inputs for the rest of the protocol. In Section 4.3.3 we present a simple protocol
that securely evaluatesRANDn.

4.1. Overview

Known generic constructions of protocols for secure computations share the follow-
ing structure, described in the previous section: First, each party shares its input; next,
the parties evaluate the given circuit in a gate-by-gate manner from inputs to outputs,
maintaining the property that the value of each wire in the circuit is shared among the
parties. Finally, the parties reconstruct the value of the output wires from their shares.
Our approach can be applied to any protocol that follows this outline. For concrete-
ness, however, we concentrate on the construction of [BGW] (reviewed in the previous
section).

We develop a variation of the above outline. Instead of having the value of each wire
shared amongall parties, and havingall parties participate in evaluating each gate, we
use a different method. We partition the parties into sets of sizes = 2t + 1 which we
call teams. The input of each party will be shared only among the members of its team
(using the [S1] and [BGW] secret-sharing procedure). Each gate will be assigned a team,
and will be evaluated only by the parties in that team. Consequently, the output wire of
each gate will be shared among the parties in the corresponding team. Each of the≈ n/s
teams will be assigned to roughlym/(n/s) = m · s/n gates.

To evaluate a gateg, each party of the corresponding teamT first receives a share of
the value of each of the two input wires to the gateg. These shares are communicated

120 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

by the parties of the teams that evaluated the gates leading to those wires. Now teamT
invokes the procedure of [BGW] for evaluating gateg. (This can be done sinces> 2t .)
At the end of this computation, the parties inT hold shares of the output wire of the
gate. When the values of the output wires of the circuit are known (in a shared manner),
the corresponding teams provide the specified parties with the information needed to
reconstruct these values.

The random input of the parties (needed for sharing their inputs and for the gate
evaluations) is provided by the trusted dealer (i.e., by the functionRANDn), in a way
that guarantees that the view of each subset of at mostt parties depends only on a
“small” fraction of the overall random input of the system. Thus, the random inputs
dealt to the parties may have only limited independence, which leads to saving in overall
randomness.

4.2. Detailed Description(with Trusted Dealer)

We now state the protocol in detail, in theRANDn-hybrid model. Let the team size be
s = 2t + 1 and the number of teams bek = n/s (we assume for convenience that
n is divisible bys; see Remark 1 below). Next, partition then parties intok teams of
parties of sizes each. Each team will evaluate (at most)` = dm/ke gates. We also
specify an enumeration of the parties in each team. Denote byPT, j the j th party in
teamT . Let p > s be a prime, and letµ1, . . . , µs bes evaluation points, as before. All
the computations described below are overGF[p]. First the parties perform an ideal
evaluation call toRANDn, and use the outcome as their random input for the rest. Next, we
describe the “high-level” protocol in the hybrid model with access to ideal evaluation of
the functionsSHAREs,i , ADDs, MULTs, andRECONSs,W. (These functions were described
in the previous section.)

1. (INPUT SHARING)
For each partyPT, j the parties in teamT invoke the trusted party for ideal evaluation
of SHAREs, j with dealerPT, j . The dealer’s input toSHAREs, j is its input to the
computation.

2. (COMPUTATION)
The gates of the circuit are evaluated one by one from the inputs to the outputs.
Each gateg is evaluated by the parties in the teamT assigned to it, as follows:
• Collect shares of inputs to the gate(“baton hand-off”):

Let x and y be the input wires of gateg, and letTx andTy denote the teams
that hold the shares for these inputs (the inputsx andy may come from either
the inputs for the circuit, as shared in the INPUT SHARING stage, or from the
outcome of previously evaluated gates).5 Then thei th party inTx and thei th
party inTy send their shares of the values ofx andy, respectively, toPT,i (i.e.,
thei th party inT). Let ai (resp.,bi) denote the value received fromPTx,i (resp.,
PTy,i). Now, for each of the two input wires to gateg, the parties inT hold shares
of a polynomial of degreet whose free coefficient is the value of that wire.

5 T, Tx , andTy need not be disjoint, or even distinct.

Randomness versus Fault-Tolerance 121

• Compute shares for the output of the gate:
Once the parties inT receive their shares of the input wires, they evaluate the
gate by invoking the trusted party for evaluating the appropriate function (i.e.,
eitherADDs or MULTs).

At the end of this step, the parties in teamT hold shares of a polynomial of
degreet (overGF[p]) whose free coefficient is the value of the gate.

3. (OUTPUT)
Let T be a team that computes the value of an output wire of the circuit. Then
the parties inT invoke the trusted party for evaluating the reconstruction function
RECONSs,W whereW ⊆ [n] is the set of parties that are assigned to this wire. Next,
each party inW interpolates a (degreet) polynomialA satisfyingA(µi) = ai for
all i , and outputsA(0).

The high-level protocol above is turned into a full-fledged protocol by replacing the
ideal evaluation calls with subroutines that securely evaluate the corresponding functions;
for concreteness we use the subroutines of [BGW], sketched in the previous section.

The functionRANDn. We now turn to describing the distribution provided byRANDn.
(Figuratively, this is the distribution provided by the trusted dealer.) The output ofRANDn

consists ofM random elements inGF[p], denotedZ1, . . . , ZM , where each coordinate
out of 1, . . . ,M is assigned to exactly one party. Each party receives the elements
whose coordinates are assigned to it. The elements will have only limited independence;
specifically, they will be onlyβ-wise independent. The valuesM andβ, as well as the
number of field elements received by each party, are determined below.

We count the number of random elements inGF[p] required by the protocol. In the
INPUT SHARING stage the dealer distributes coefficients ofn degree-t polynomials (one
polynomial to each party). Then the dealer distributes additionals polynomials per each
multiplication gate to be computed (one polynomial for each party in the simulating
team). Each polynomial is defined byt coefficients inGF[p]. Therefore, the dealer
generates a total ofM = n · t + m · s · t numbers (inGF[p]). In order to save in
randomness, the dealer does not generate theseM numbers independently. Instead, we
observe that the view of each subset (of size at mostt) of parties depends on a “relatively
small” set of at mostβ = 2((m/n) · t4) numbers, as follows:

• The number ofsharesthat a single partyPi sees is counted as follows:s−1 shares
are seen in the INPUT SHARING stage (one share from each member ofPi ’s team).
For each of the (at most)̀multiplication gates thatPi evaluates, it gets messages
that depend on the inputs and outputs of all members ofPi ’s team. These add up
to at mostO(`s) shares. Hence, any set oft parties sees at mostO(t · ` · s) shares
which are thus depending on at mostO(t2 ·` ·s) numbers that the dealer distributes
as coefficients of polynomials.
• In addition, every partyPi receives some numbers directly from the dealer:t num-

bers in the INPUT SHARING stage (to share its input among its team members); plus,
for each of the (at most)̀multiplication gates thatPi takes part in their evaluation,
it getst numbers (coefficients of a polynomial to be used for sharing its valueD(·)).
Altogether, a set oft parties getsO(t2`) numbers directly from the dealer.

122 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

To conclude, by the choice of parameters (s= 2(t) and` = 2(m/k) = 2(m·t/n)), the
view of a subset of at mostt parties depends on at mostO(t2`s) = O(t3`) = O(t4m/n)
numbers from the distribution. Hence the dealer generatesM numbersZ1, Z2, . . . , ZM

in GF[p] which are uniformly distributed and areβ = 2((m/n) · t4)-wise independent.
We describe two ways for computing the desired distribution. A straightforward

method proceeds as follows. For the purpose of this method, we assume that the prime
p satisfiesp > M (this strengthens the assumption made before thatp > s). The dealer
chooses a random polynomialR(x) in GF[p] of degreeβ and then generates theM
numbersZ1 = R(1), Z2 = R(2), . . . , ZM = R(M). It is a well known fact (and easy
to prove) that ifp > M theseM numbers areβ-wise independent. This procedure uses
O(β · log p) = O((m/n) · t4 · logm) bits of randomness.

The amount of randomness used can be further reduced using a more careful analysis
of the needed independence of the numbers generated by the dealer. The view of any
subset of sizet of parties indeed depends on at mostβ = 2((m/n) · t4) numbers
generated by the dealer. However, we do not needall subsets of sizeβ to be uniformly
distributed. It suffices that the

(n
t

)
subsets of sizeβ, defined by the

(n
t

)
subsets oft

parties, be uniformly distributed. To take advantage of the relaxed requirement, we use a
simple extension of the results of [S2] and [KM4] (which, for self-containment, appears
in Appendix 6.2). The dealer will uniformly sample a space ofM-tuples overGF[p],
which is constructed to suit the specific

(n
t

)
subsets (we emphasize that, for the purpose of

this method, the requirement thatp > s suffices). By [S2] and [KM4], there is a sample
space of size

(n
t

)
pβ such that if we sample the space uniformly, then the projection of

the chosen vector on any of the
(n

t

)
subsets is uniformly distributed.6 To sample this

space,O(t log(n/t)+ (m/n)t4 log p) = O(t log(n/t)+ (m/n)t4 log t) random bits are
needed.

4.3. Proof of Security

Let t < n/2, and let f be the computed function. Fix an arithmetic circuit forf and a
prime p. Letπ be the (full-fledged) protocol described above with respect to that circuit.
We show that protocolπ satisfies the conditions of Definition 1 via the following two
claims. LetπR be a protocol identical to protocolπ with the exception that the parties
use truly random inputs for the protocol, instead of using the output ofRANDn. (That
is, πR is a protocol in the real-life model, whereasπ is a protocol in theRANDn-hybrid
model.)

Claim 1. ProtocolπR t-securely computes f. That is, for any t-limited(passive) real-
life adversaryA there exists an ideal-model adversaryS such that, for any input vector
Ex and any auxiliary input z,

IDEAL f,S(Ex, z) d= EXECπR,A(Ex, z).

6 Both [S2] and [KM4] deal with the fieldGF[2] but can be extended toGF[p]. We note that the time-
complexity of sampling in the sample space ispoly(n, log

(
n
t

)
, β) but the complexity of the known algorithms

that find such a space ispoly(
(

n
t

)
). This is polynomial only fort = O(1) but can be done “off-line” and can

be hard-wired into the protocol.

Randomness versus Fault-Tolerance 123

Claim 2. For any real-life adversaryA, the distributions describing the global output
of the parties inπ andπR are identically distributed. That is, for any input vectorEx and
any auxiliary input z, EXECπR,A(Ex, z) d= EXEC

RANDn
π,A (Ex, z).

Claim 3. There exists an O(t2 logn+ (m/n)t5 log t)-random protocol that t-privately
evaluatesRANDn.

The above claims (to be proven below) imply Theorem 4.

4.3.1. Proof of Claim1

Let π̂ denote the high-level protocol that corresponds to protocolπR in the hybrid model
with ideal evaluation access to the functionsSHAREs,i , ADDs, MULTs, andRECONSs,W. It
suffices to show that̂π is t-secure in the hybrid model. Theorems 1 and 2 then imply
that protocolπR t-privately evaluatesf in the real-life model.

Given a real-life adversaryA, the ideal-model adversaryS proceeds via (black-box)
simulation ofA. That is, given a setC of corrupted parties, inputs{xi | Pi ∈ C}, and
auxiliary inputz, adversaryS proceeds as follows. First,S providesAwith C, {xi | Pi ∈
C}, z. Next,S generates simulated values sent by the uncorrupted parties, and simulated
values given by the trusted parties for the evaluated functions. These values are set to
random elements inGF[p]. In the reconstruction stage,S providesA with random
field elements that “interpolate” to the function value. A more complete description of
simulatorS appears in Fig. 1.

Analysis of simulatorS. Fix some input vectorEx and auxiliary inputz. We show that

IDEAL f,S(Ex, z) d= EXEC
SHARE,ADD,MULT,RECONS

π̂ ,A (Ex, z).

Recall that each one of the random variablesIDEAL f,S(Ex, z) and
EXEC

SHARE,ADD,MULT,RECONS

π̂ ,A (Ex, z) consists of the outputs of the parties plus the adversary
output. The analysis consists of two steps:

1. Show thatA’s view of a simulated execution is distributed identically to its view of
a real execution. (The adversary view consists of its random and auxiliary inputs,
followed by the internal data of the corrupted parties and the messages received by
them.)

2. Fix some possible valuev for A’s view. Let Ev denote the output values of the
uncorrupted parties in a real-life execution ofπ̂ in whichA has viewv. Let Iv
denote the outputs of the uncorrupted parties in an execution of the ideal process
withS, in which the simulatedA’s view isv. (Note that bothEv andIv are uniquely
determined givenEx andv.) ThenEv = Iv.7

Showing step 2 is straightforward: the valueIv is the function value (provided by the
trusted party) at inputEx. It follows from the description of̂π that Ev equals the value
of the circuit on inputsEx. (This follows from the fact that the value of each wire in the

7 If the computed function is randomized, thenEv andIv are random variables having the same distribution.

124 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Simulator S

Initial input: A setC of corrupted parties, inputs{xi | Pi ∈ C}, auxiliary inputz, and random
input r . In addition,S has access to a trusted party in the ideal model for evaluatingf .

1. Invoke a copy ofA, on setC of corrupted parties, inputs{xi | Pi ∈ C}, auxiliary input
z, and a sufficiently long portion ofr .

2. For each partyPT,i , simulate an interaction of teamT with the trusted party for computing
SHAREs,i . That is, for eachPT,i and for each corrupted partyPj in teamT , provideA
with a random number inGF[p] as the value given by the trusted party in the evaluation
of SHAREs,i . If PT,i is corrupted, thenA hands an input value, denotedyT,i , to the trusted
party. Record this value.

3. For each gateg in the circuit, simulate the “baton hand-off” step of the shares of the
input wires to the gate. That is, letT be the team that computes gateg, and letT1, T2

be the teams that hold the values of the input wires to the gate. Then, for eachi , if PT,i

is corrupted andPT1,i (resp.,PT2,i) is not corrupted, then handA a random number in
GF[p]. (If both PT,i and PT1,i , resp.,PT2,i , are corrupted, thenA already knows the
corresponding share and no action is needed.)

4. Once the “baton hand-off” step of a gateg is simulated, simulate an interaction of team
T with the trusted party for computing the function that corresponds to gateg (i.e.,
eitherADDs or MULTs). If the gateg is an addition gate, then handA the sum of the two
input values given by each corrupted party in teamT to the trusted party. If the gate is a
multiplication gate, then handA a random number inGF[p] as the value given by the
trusted party to each corrupted party in teamT .

5. When the simulation of a gate leading to an output wire of the circuit is complete, simulate
an interaction with the trusted party for computingRECONSs,W, whereW is the set of
parties that are to learn the value of this wire. This is done as follows. If no corrupted
party is inW, then no action is needed. Otherwise, invoke the trusted party for the output
value of the main function,f . Let v be the value received from the trusted party. LetT
be the team that holds the value of this wire, and letai denote the share thatA hands
its trusted party forRECONSs,W, in the name of each corrupted partyPT,i in T . Then
choose a random polynomialA of degreet such thatA(0) = v and A(µi) = ai for
each corrupted partyPT,i . (Note that this can always be done sinceA corrupts at mostt
parties.) Next, for each corruptedPT,i , handA the vector(A(µ1), . . . , A(µs)).

6. WhenA generates its output, output whateverA does and halt.

Fig. 1. Description of the simulator for protocolπ̂ .

circuit equals the value at point 0 of the polynomial that the parties associate with this
wire.) Since the circuit computes the function we haveEv = Iv.

We complete the proof by showing step 1. That is we show, by induction on the number
of rounds, that the adversary views of the real and simulated executions are identically
distributed. To see this, fix a prefixp of the adversary view up to some round, and
consider the probability of some continuationc of this prefix to the next round. We claim
that the probability that continuationc occurs, given prefixp, is identical in the real and
simulated interactions. To see that, consider the three possible types of components of
the adversary view at a given round:

1. Messages arriving from the trusted party, regarding an evaluation of eitherSHARE

orMULT. In an interaction in the hybrid model,A receives up tot shares of a random
polynomial of degreet with fixed and unknown free coefficient. In the simulated
interaction, the corresponding (at mostt) values received byA are independently
chosen random numbers inGF[p]. However, these two distributions are identical.

Randomness versus Fault-Tolerance 125

2. Messages arriving from the trusted party, regarding an evaluation ofRECONS. In
both interactions these are values of a polynomial that is uniformly distributed
among all degreet polynomials whose free coefficient is equal to the valuev of the
corresponding output wire of the circuit on inputsEx, and who matches the values
held by the corrupted parties.

3. Messages arriving from uncorrupted parties in a “baton hand-off’ stage. These
messages are completely determined by the prefixp.

This completes the proof of Claim 1.

4.3.2. Proof of Claim2

Fix some values of the inputsEx for the parties, and auxiliary inputz for the adversary.
We show that

EXECπR,A(Ex, z) d= EXEC
RANDn
π,A (Ex, z). (4)

Recall that each side of (4) consists of the outputs of the uncorrupted parties, con-
catenated with the output of the adversary. It can be readily seen that the outputs of
the uncorrupted parties in the execution ofπ and in the execution ofπR are identical.
(In both cases, these are the corresponding output values of the evaluateddeterministic
function f on inputEx.) It remains to be demonstrated that the adversary’s view is equally
distributed in the two cases.

To see this, we first observe the structure of the information of a particular partyPi .
This information (in addition to the party’s inputxi) consists of:

1. Random numbers, obtained from the ideal evaluation ofRANDn, to be used byPi

as coefficients of polynomials (using whichPi will share its information). These
includet coefficients of the polynomialQi that Pi receives in the INPUT SHARING

stage (to be used to share its input); and, during the COMPUTATION stage, for
each of the (at most̀) multiplication-gate evaluations in whichPi participates it
receives additionalt coefficients to be used in the evaluation. Altogether, at most
t (`+ 1) = O(t · `) elements inGF[p] are received, to be used as coefficients.

2. Shares of values, sent toPi = PTu,r by other parties (each such share is the
value ofQ(µr) for some polynomialQ of degreet whose free coefficient is some
informationS). Specifically, these are:
• For each partyPj in Pi ’s team,Tu, a share ofPj ’s input; this message can be

written asQ(µr) =
∑t

m=1 Zkmµ
m
r + S, for some numbersZkm provided by the

dealer andS= xj .
• For each of the (at most)̀ multiplication gates in the evaluation of whichPi

participates,Pi receives during the computation from each partyPj of its team
a share of a valueS that Pj computes locally. This message can be written as
Q(µr) =

∑t
m=1 Zkmµ

m
r + S, for someZkm provided by the dealer.

• For each such gate,Pi also receives shares of the two inputs on which the
computation is to be performed (unless it already has these shares). Each such
message can be written asQ(µr) =

∑s
j=1(

∑t
m=1 Zkj,mµ

m
r + Sj), where each

summand is a share generated by one of the parties in the team that evaluated
the previous gate, during the evaluation. TheZkj,m are numbers provided by the

126 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

dealer to these parties. (The case where the input to the gate is one of thexj ’s is
slightly simpler.)

Altogether,Pi receives a total ofs+ `(s+ 2) elements inGF[p].

Next, we examine the messages that an arbitrary subset (coalition) of parties of size at
mostt can see. Each of the messages of type 1 received by these parties is just a different
numberZk in the space generated by the dealer. Altogether, the messages of type 1 seen
by the parties in the subset are justO(t2`) of the Zk’s.

For messages of type 2, observe that each message can be associated with a polynomial
as discussed above. Each polynomial is defined by a free coefficientS, andt numbersZk

used as coefficients and provided by the dealer to party, say,Pj (this is not necessarily
the party that sends the message; the party that sends the message may only relay on
it). For a partyPj , we denote byδj,d thedth polynomial that this party creates and uses.
Considering the sets of numbersZk used in each polynomial in the protocol, we observe
that the sets are pairwise disjoint. Furthermore, for each message which is associated
with a polynomialδj,d, for Pj which isnot in the set of parties under consideration, these
numbers are also distinct (by definition) from any of theZk’s directly received by any
corrupted party.

The total number of shares a subset of at mostt parties can see ist · (s+` · (2s+s)) =
O(t · ` · s). Each of these shares can be, in the worst case, of a different polynomial;
therefore, these shares may depend on at mostO(t2 · ` · s) of the Zk’s. Together with
theO(t2`) numbersZk that the set of parties sees directly from the dealer (as messages
of type 1), we have that the communication seen by the set of parties depends on at
most O(t2 · ` · s) of the Zk’s. Usings = 2(t) and` = 2(m/k) = 2(m · t/n), we
have that the communication seen by the set of parties depends on at mostO((m/n)t4)

valuesZk. To generate these numbers, the dealer sampled a sample space of vectors over
GF[p] such that the projection of the chosen vector on specific subsets, including the
subset of numbers that the view of the present subset of parties depends on, is uniformly
distributed. Consequently, the distribution of the adversary’s view in the case where the
dealer deals totally independent numbers is the same as in the case where it chooses
them according to our scheme.

Remark1. In the above we assume thatn is divisible bys. If not, thenn = ks+ r for
some 0< r < s. In this case we let the lastr parties share their inputs among the parties
of the first team and then theser parties do not further participate in the protocol. When
one of their inputs is required then the first team will provide the corresponding shares.
This implies that the view of parties in the first team contains slightly more messages
and hence requires slightly increasing the value ofβ (by a constant factor).

4.3.3. Proof of Claim3 (the Protocol without Trusted Dealer)

The protocol of Section 4.2 assumes a trusted dealer whose role is restricted to choosing
random integers inGF[p] and distributing them to the parties. Equivalently, we think
of that protocol as running in a hybrid model with ideal access to the functionRANDn

described above. (Recall that functionRANDn takes empty input and generates anM-
tuple Z = Z1, . . . , ZM according to a distributionZ, which is either the distribution

Randomness versus Fault-Tolerance 127

from Appendix 6.2 or aβ-independent distribution. Each party receives the appropriate
subset ofZ.)

We describe the following simple protocol for securely evaluatingRANDn. Applying
the composition theorem once more, we obtain a protocol that securely evaluates any
function without a trusted dealer. The protocol for securely evaluatingRANDn proceeds
as follows. We designatet + 1 parties (say,P1, . . . , Pt+1) who, in addition to their other
roles in the protocol, will “double up” as the trusted dealer. That is, each of the designated
parties (calleddealers) generatesM = n · t +m · s · t values inGF[p] and distributes
the values to then parties as described for the trusted dealer. Next, each of then parties
locally outputs the sum (overGF[p]) of the values received fromP1, . . . , Pt+1. Let ρ
denote this protocol.

Analysis of protocolρ. First note that the amount of randomness used inρ is larger by a
factor oft+1 than the amount of randomness used to generate a singleM-tuple from the
above distribution. Consequently, the protocol isO(t2 logn+ (m/n)t5 log t)-random.

We show that the protocolt-privately evaluatesRANDn. Informally, as long as at mostt
dealers are corrupted, the random choices of the (at least one) uncorrupted dealers make
sure that the output of each party, being the sum of the values received from the dealers,
is uniformly distributed. Furthermore, the outputs of the parties areβ-independent.

A rigorous proof requires a bit more care. Recall that for each real-life adversaryA
that interacts with the protocol we need to construct an ideal-process adversarySRAND

that causes the global output of the ideal process to be distributed identically to the global
output of runningρ. For this purpose,SRAND will first invoke the trusted party forRANDn

and will obtain the outputs of the corrupted parties in the ideal process. NextSRAND will
generate a view ofA that has the “right distribution”, conditioned on the event that the
outputs of the corrupted parties are identical to the values received from the trusted party.
A more complete description ofSRAND appears in Fig. 2.

Simulator SRAND

Initial input: A setC of corrupted parties, auxiliary inputz, and random inputr . In addition,
SRAND has access to a trusted party in the ideal process for evaluatingRANDn.

1. Invoke the trusted party forRANDn, and obtain the output values of the corrupted parties
{yi | Pi ∈ C}. Recall that each output valueyi consists of a sequence of elements
Zs1, . . . , Zsl in GF[p].

2. InvokeA on the setC of corrupted parties, auxiliary inputz, and random inputr . Next,
determine the messages to be sent from the uncorrupted dealers to the corrupted parties,
as follows:

Recall that each dealerPi generatesM elements inGF[p]. Denote these elements
by Zi,1, . . . , Zi,M . Each coordinates ∈ [M] is assigned to one of the parties, and the
corresponding field element is sent to that party. Lets be assigned to some corrupted
party Pj . If Pi is corrupted, thenZi,s is determined by the protocol and the adversary’s
random inputr . (Recall that the adversary is passive, thus even corrupted parties follow
the protocol.) So it remains to determineZi,s for uncorrupted dealersPi . These values
are chosen at random fromGF[p], under the restriction thatZs =

∑
dealersPi

Zi,s.
Once theZi,s’s are determined, group them into messages sent from uncorrupted

dealers to corrupted parties, and hand these messages toA.
3. WhenA halts, output whateverA outputs and halt.

Fig. 2. Description of the simulator for protocolρ.

128 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Analysis of simulatorSRAND. Fix some value for the auxiliary inputz. We show that

IDEALRANDn,SRAND
(z)

d= EXECρ,A(z). (5)

Assume, without loss of generality, that the (real-life) adversaryA outputs its entire
view of the interaction. This view consists of the setC, the auxiliary inputz, some
random inputr , and the values received from the uncorrupted dealers. Letτ̄ denote the
number ofuncorrupted dealers. To see that (5) holds, we observe that the distributions
in both sides of (5) are obtained in the same way from a single distribution,Z (t+1). This
distribution is obtained by choosingl M -tuples independently fromZ and summing
them coordinatewise, modulop. (As a side remark we note that distributionsZ and
Z (t+1) are in fact identical.)

It is readily seen from the protocol and from the construction ofSRAND that the distri-
butionsIDEALRANDn,SRAND

(z) andEXECρ,A(z) are obtained from distributionZ (t+1) in the
same way, as follows. Choose anM-tuple Z1, . . . , ZM from Z (t+1). Let vi denote the
collection of the values out ofZ1, . . . , ZM whose coordinates are assigned toPi . (That
is, vi = Zs1, . . . , Zsl for some predefined value ofl .) The output of each uncorrupted
partyPi is set tovi . The view of the adversary (eitherA orSRAND) is obtained as follows.
First, include the setC of corrupted parties, the auxiliary inputz, and the random inputr .
It remains to determine the values received from the uncorrupted dealers. These values
are chosen randomly fromGF[p], under the constraint that the output of each corrupted
party Pi matchesvi . That is, lets be assigned to some corrupted partyPj . For each
dealerPi , let Zi,s denote the value thatPj receives fromPi . If Pi is corrupted, thenZi,s

is determined by the protocol and the adversary’s random inputr . The elementsZi,s

for uncorrupted dealersPi are chosen at random fromGF[p], under the restriction that
Zs =

∑
dealersPi

Zi,s.

5. An Overview of the Protocol of [BGW] for Active Adversaries

The general outline of the construction of [BGW] for the case of active (Byzantine)
adversaries is very similar to the case of passive adversaries. Yet, the definitions of the
four “building blocks,”SHARE, ADD, MULT, RECONS, have to be modified to reflect the
additional power of the adversary. As before, letp > n be a prime and letµ1, . . . , µn

ben evaluation points. We now define the followingn-party functions:

Verifiable secret sharing.VSSn(s|F(·), ε, . . . , ε) = α1, . . . , αn, wheres ∈ GF[p]∪
{ε}, andF(·) is eitherε or a polynomial of degreet overGF[p]. If s 6= ε, then
αi = E(µi), whereE() is a random polynomial of degreet with E(0) = s.
(This case represents a sharing by an uncorrupted dealer.) Ifs = ε andF() = ε,
thenαi = ε. (This case represents an unsuccessful sharing by a corrupted dealer.)
Otherwise (s = ε and F() 6= ε), thenαi = F(µi). (This case represents a
successful sharing by a corrupted dealer; here the adversary can determine the
outputs of all parties.)8

8 This formalization captures VSS schemes where the uncorrupted parties know at the end of the sharing
phase whether the sharing of a secret was successful. Schemes where this information becomes known only
later (such as some of the schemes in [GRR]) should be formalized differently.

Randomness versus Fault-Tolerance 129

Looking ahead, we note that uncorrupted parties will invokeVSSwith s 6= ε.
Evaluating an addition gate.The function for evaluating an addition gate remains

unchanged:ADDn(a1|b1, . . . ,an|bn) = a1+ b1, . . . ,an + bn.
Evaluating a multiplication gate.ACT-MULTn(a1|b1|c1, . . . ,an|bn|cn) = C(µ1), . . . ,

C(µn), where eachai ,bi ∈ GF[p], ci ∈ GF[p] ∪ {ε}, andC is a polynomial
distributed uniformly over all polynomials of degreet in GF[p] that meet the
following requirements:
(I) Let A (resp.,B) be the lowest degree polynomial such thatA(µi) = ai (resp.,

B(µi) = bi) for at leastn− t of the parties. ThenC(0) = A(0) · B(0).
(II) If ci 6= ε, thenC(µi) = ci . As in the case of passive adversaries, we do not

specify how the (random) coefficients ofC are determined; this is regarded
as the “intrinsic randomness” of the functionACT-MULT.

Uncorrupted partiesPi will evaluateACT-MULTn with ci = ε. We introduce theci ’s
in order to capture the fact that an active adversary may be able to fix (or influence)
its own shares of the polynomialC. Yet, this capability of the adversary does not
interfere with the secure evaluation of the function. (In particular, the multiplication
step of [BGW] allows the adversary to have such harmless influence.)

Reconstruction.The reconstruction function remains unchanged: i.e.,RECONSn,W(a1,

. . . ,an) = α1, . . . , αn, whereW ⊆ [n], andαi = (a1, . . . ,an) if i ∈ W, and
αi = ε otherwise. In the high-level protocol the parties inW will interpolate a
(degreet) polynomialA satisfyingA(µi) = ai for at leastn− t valuesi , and will
outputA(0).

An additional change from the passive case is that here error correction is required for
obtaining the value of an output line of the circuit. That is, each partyPi with i ∈ W for
some invocation ofRECONSn,W(a1, . . . ,an) receives the valuesa1, . . . ,an; these values
constitute a perturbed code-word of a Generalized Reed–Solomon code. The value of this
line is the free coefficient of the (unique) degree-t polynomial defined bya1, . . . ,an. This
polynomial can be computed using the Berlekamp–Welch algorithm. (See, for instance,
[MS] and [S3].)

Theorem 5[BGW]. Let t < n/3. Then there exist protocols for t-securely computing
the above four functions in the presence of active adversaries, for all i ∈ [n] and
W ⊆ [n].

We do not prove this theorem here. Yet we sketch below the constructions of [BGW]
for computingVSSandACT-MULT.

The VSS protocol of[BGW]. Here a Verifiable Secret Sharing (VSS) scheme is used
instead of Shamir’s secret sharing. (VSS was introduced in [CGMA]; different VSS
schemes are described in [CGMA], [GMW], [BGW], [FM], [CCD], [BCG], and [GRR].)
In general, a VSS scheme makes sure that an honest dealer can successfully share a
secret in a recoverable way, while guaranteeing that even if the dealer is corrupted, at
the end of the sharing protocol the uncorrupted parties hold shares of a well-defined
and reconstructible value. A popular methodology (followed by [BGW] and used in
this paper) for constructing a VSS scheme is to design protocols for secure evaluation

130 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

of the functionsVSS andRECONS. We sketch a VSS scheme described in [BGW], that
withstandst < n/3 faults.

The dealer, sharing a secrets, chooses a random bivariate polynomialH of degreet
in each variable, whose free coefficient iss. That is,H(x, y) =∑t

i, j=0 hi, j xi y j , where
h0,0 = s and the other coefficients are random. Next, the dealer sends the polynomials
fi (·) = H(µi , ·) andgi (·) = H(·, µi) to eachPi . Then eachPi sendsfi (µj) to each
Pj , and verifies that the value received fromPj equalsgi (µj). (Note that fi (µj) =
H(µi , µj) = gj (µi).) If any of its verifications fails, the party requests the dealer to
make the corresponding value (i.e.,H(µi , µj)) public. Next, each partyPi inspects all
publicized values. If any of these values does not matchPi ’s private share (i.e.,fi () and
gi ()), thenPi requests the dealer to makefi () andgi () public. Again, the parties inspect
the public shares. If a partyPi finds any inconsistency with its private share, then it
decides to abort this sharing and sets its share to a default 0. Otherwise, it sets its share
of the secret to bef0(µi) = gi (0).

The reconstruction protocol (i.e., the protocol for computingRECONS) is simple: all
parties broadcast their shares. It is guaranteed that if the sharing protocol completed
successfully, then the unique polynomialf0(·) = H(0, ·) will be reconstructed, using
error correcting techniques of Generalized Reed–Solomon codes. The reconstructed
secret isf0(0) = H(0,0).

The ACT-MULT protocol of [BGW]. Several methods for evaluating a multiplication
step are sketched in [BGW]. An additional, simpler method is described in [GRR]. Here
we only sketch a simple method that works when the fraction of corrupted parties is
less than afourth. (This method combines techniques from [BGW] with the passive
multiplication step of [GRR].) The method here requires a total ofO(nt2 log p) random
bits per multiplication gate. For the case of 4t ≥ n > 3t a total ofO(nt3 log p) random
bits are required per multiplication gate.

Recall that, in the case of passive adversaries, evaluating a multiplication gate consists
of each party resharing a locally computed value, followed by local evaluation of a linear
combination of the newly received shares. The same method is followed here, with two
modifications:

• Each party reshares the locally computed value using the VSS scheme described
above. It should be noted that the local evaluation of the linear combination of the
newly received shares can still be done, since it is guaranteed that the share of each
party is a valuef0(µi) of a random polynomial whose free coefficient is the secret.
• For each partyPi , the parties verify that the valuedi that Pi reshares is indeed

the product ofPi ’s shares of the input wires to the gate. This is done as follows.
Note that all the values that were properly shared “sit on a polynomial” of degree
2t . (This polynomial is the product of the polynomials associated with the input
wires to the gate.) Thus the set of values that were reshared by the parties can be
regarded as a perturbed code-word of a Reed–Solomon code, where the erroneous
entries correspond to the parties that shared incorrect values. As long asn > 4t , the
code-word can be used to identify uniquely and correct up tot erroneous entries.
Note that no party knows the entire code-word. Still, the parties hold shares of
these values. The parties use their shares to reconstruct thesyndromevector of this

Randomness versus Fault-Tolerance 131

code-word. This syndrome, while revealing no information on the values that were
honestly shared, identifies the parties that shared incorrect values (the efficiency
of this computation builds upon the specific choice of evaluation pointsµi). These
shares are not used in the computation of the linear combination (3).

For completeness, we also state the following theorem:

Theorem 6[BGW]. Let t < n/3. Given an arithmetic circuit for computing an n-
party function f, there exists a protocol for t-securely computing f in the hybrid model
with active adversaries and with ideal access to functionsVSSn,i , ADDn, ACT-MULTn, and
RECONSn,W, for all i ∈ [n] and W⊆ [n].

Using the composition theorem (Theorem 1), we get that there exist protocols for
t-securely computing (in the real-life model) anyn-party function f in the presence of
active adversaries for anyt < n/3. The number of random bits used by these protocols
is O(mnt3 log p) (wherem is the size of the circuit forf).

6. Our Protocol for Active Adversaries

In Section 4 we showed how to compute any functiont-privately with anO(t2 logn+
(m/n)t5 log t)-random protocol. In this section we extend the result to the case of active
(“Byzantine”) adversaries. For this, we will need a factor oft2 more randomness than
before. We show:

Theorem 7. Let t < n/3.Then, any function f: {0,1}n→ {0,1}n that has a circuit of
size m, can be t-securely computed by an O(t3 logn+ (m/n)t7 log t)-random protocol.

Proof. The protocol for active adversaries is identical to the one for passive adversaries,
with the exceptions that the size of teams is increased tos= 3t +1, and that the various
components of the [BGW] protocol are replaced by their Byzantine counterparts, for se-
curely computing the functionsVSS, ADD, ACT-MULT,RECONSdescribed in the previous
section. As in Section 4, it suffices to choosep > s ands evaluation pointsµ1, . . . , µs.

The protocol for jointly generating the randomness for the computation remains un-
changed, except for the appropriate increase in the amount of randomness generated.
That is, each one oft + 1 designated dealers will sample the distribution and send the
appropriate subset of the obtainedM-tuple to each party; each party will sum, coordi-
natewise, the tuples received from the dealers. The security guarantees provided by this
protocol are a bit weaker than in the passive case. We capture these guarantees via a
somewhat weaker formalization of the function representing the trusted dealer. We call
this functionACT-RANDn.

The functionACT-RANDn. We describe the function, denotedACT-RANDn, that rep-
resents the requirements from the randomness-generating protocol in the Byzantine
case. There are two differences from the passive case (i.e., from functionRANDn). First,
ACT-RANDn has to supply the parties with sufficiently many elements ofGF[p] to support
the new protocols. In addition, it has to accommodate the fact that an active adversary

132 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

can modify the outputs of the corrupted parties, as well as to influence the outputs of the
uncorrupted parties (to a limited extent).9

We start by counting the number of field elements thatACT-RANDn should output, and
bound the required level of independence. Each invocation of VSS requiresO(t2) values
in GF[p]. Evaluating a multiplication gate requiresO(t) invocations of VSS for each
party in the corresponding team. Furthermore, the adversary’s view of the computation
now depends on at mostβ = O((m/n) · t6) elements inGF[p]. Thus,ACT-RANDn will
use the distributionZ which is either the distribution described in Appendix 6.2, with
M = O(n · t2 + m · s · t3) and the appropriate independence guarantees, or simply a
β-independent distribution with the above value ofM .

We proceed to formalizeACT-RANDn. This is a distribution ofM-tuples of elements
Z1, . . . , ZM in GF[p], where eachZi is assigned to a party. DistributionZ (t+1) is ob-
tained by choosingl M -tuples independently fromZ and summing them coordinatewise,
modulop. FunctionACT-RANDn takes inputsv1, . . . , vn wherevi , the input ofPi , is either
ε or is interpreted as a sequence of elements fromGF[p]. (Uncorrupted parties will in-
vokeACT-RANDn with inputε.) The function value isy1, . . . , yn (partyPi getsyi), where
eachyi is a sequence of numbers inGF[p]. It is helpful to regard the concatenation of
y1, . . . , yn as anM-tuple Z1, . . . , ZM of elements inGF[p], whereyi consists of the
elements whose coordinates are assigned toPi . The M-tuple Z1, . . . , ZM is computed
via the following procedure:

1. For each dealerPi , if vi 6= ε, thenvi is interpreted as a pairvi = (v′i , v′′i), wherev′i
is interpreted as values for the elements ofGF[p] whose coordinates are assigned
to Pi , andv′′i is interpreted as anM-tuple of elements inGF[p].
If Pi is not a dealer andvi 6= ε, thenvi is interpreted asv′i described above.

2. Let Ẑ = Ẑ1, . . . , ẐM be anM-tuple that is chosen from the distributionZ (t+1),
under the constraint that for each coordinates that is assigned to a partyPi where
vi 6= ε, the valueẐs equals the value specified inv′i . (We remark that this condi-
tional distribution is efficiently samplable.)

3. The outputM-tuple Z1, . . . , ZM is the coordinatewise sum, modulop, of Ẑ with
all the M-tuplesv′′i that are notε.

Intuitively, the valuev′i allows a corrupted partyPi to influence its own local output.
The valuev′′i allows a corrupted dealerPi to influence the output distribution of the un-
corrupted parties. Nevertheless, the definition ofACT-RANDn guarantees that the outputs
of the uncorrupted parties will be uniformly distributed inGF[p] and will have at least
the amount of independence guaranteed by distributionZ. Furthermore, the adversary’s
view in the ideal process for evaluatingACT-RANDn consists only of the projection ofZ
on the coordinates assigned to the corrupted parties, plus some independently distributed
information.

Analysis of the protocol. The analysis is very similar to the passive case. Lett < n/3,
and let f be the computed function. Fix an arithmetic circuit forf and a large enough

9 For instance, the adversary may have the corrupted parties send totally random values, thus making the
output ofACT-RANDn totally independent. Intuitively, however, such deviations are “harmless.” This intuition
is made rigorous in the formalization ofACT-RANDn.

Randomness versus Fault-Tolerance 133

prime p. Letπ be the protocol described above with respect to that circuit. (Protocolπ

is designed in theACT-RANDn-hybrid model.) We show that protocolπ satisfies the con-
ditions of Definition 1 via three claims, similar to Claims 1–3. LetπR be identical to
protocolπ with the exception that the parties use totally random elements inGF[p]
for the protocol, instead of the output ofACT-RANDn. (That is,πR is a protocol in the
real-life model, and does not use calls toACT-RANDn.)

Claim 4. ProtocolπR t-securely computes f. That is, for any t-limited(active) real-
life adversaryA, there exists an ideal-model adversaryS such that, for all inputs Ex and
all auxiliary inputs z,

IDEAL f,S(Ex, z) d= EXECπR,A(Ex, z).

Claim 5. For any (active) real-life adversaryA, the global output of the parties
in π and the global output of the parties inπR are identically distributed. That is,
EXECπR,A(Ex, z) d= EXECπ,A(Ex, z).

Claim 6. There exists an O(t3 logn+ (m/n)t7 log t)-random protocol that t-securely
evaluatesACT-RANDn.

Note that, unlike Claim 2, in Claim 5 both random variables are a result of interaction
with anactiveadversary. Still, the proof of Claim 5 is almost identical to the proof of
Claim 2, and is therefore omitted. Claims 4 and 6 are proven below. This completes the
proof of Theorem 7.

6.1. Proof of Claim4

The proof is very similar to the proof of Claim 1. Letπ̂ denote the high-level protocol that
corresponds to protocolπR in the hybrid model with ideal evaluation access to functions
VSSs,i , ADDs, ACT-MULTs, andRECONSs,W. It suffices to show that̂π is t-secure in the
hybrid model. Theorems 1 and 5 then imply that protocolπ is t-secure in the real-life
model.

Given a real-life adversaryA, the ideal-model adversaryS proceeds via a simulation
ofA. SimulatorS starts runningA on its auxiliary inputz0 and random inputrA. Next,
Amay corrupt parties, and will expect to see the internal data and the messages received
by the corrupted parties. SimulatorS proceeds as described in Fig. 3.

The analysis ofS (i.e., the proof that for all inputsEx and all auxiliary inputsz we
haveIDEAL f,S(Ex, z) d= EXEC

VSS,ADD,ACT-MULT,RECONS

π̂ ,A (Ex, z)) is identical to the corresponding
part of the proof of Claim 1, except for the following point that relates to step 2 of the
analysis there. Contrary to the passive case, in the active case the inputs that a corrupted
Pi hands the trusted party (in the ideal model) may be different thanxi . Yet, it still holds
that the inputs that the corrupted parties give the trusted party are uniquely determined
given a viewv of the simulatedA. Furthermore, letEy denote the modified input vector;
then it can be verified that bothIv andEv equal the value of the circuit on inputsEy.10

10 The introduction of active adversaries raises an additional apparent difficulty. When an uncorrupted party

134 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Simulator S

Initial input: A setC of corrupted parties, inputs{xi | Pi ∈ C}, auxiliary inputz, and random
input r . In addition,S has access to a trusted party in the ideal process for evaluatingf .

1. Invoke a copy ofA, on setC of corrupted parties, inputs{xi | Pi ∈ C}, auxiliary input
z, and a sufficiently long portion ofr .

2. For each partyPT,i , simulate an interaction of teamT with the trusted party for computing
VSSs,i . That is, if PT,i is corrupted, then record the values|F() handed byA to its
trusted party, and handA the output value for each corrupted partyPT, j . (This value
is determined bys|F(), as described in the definition of functionVSSs,i .) If PT,i is not
corrupted, then, for each corrupted party in teamT , handA a random number inGF[p]
as the value given by the trusted party. In addition, if the dealer,PT,i , is corrupted, then
provide the trusted party forf with PT,i ’s input for f , computed as follows: Ifs 6= ε,
thenPT,i ’s input is set tos. Else, ifF() is a polynomial of degreet , then the input value
of PT,i is set toF(0). Otherwise (s= F() = ε), the input ofPT,i is set to a default value,
say 0.

3. (This part is identical to the simulator for the passive case, see Fig. 1.) For each gateg
in the circuit, simulate the “baton hand-off” step of the shares of the input wires to the
gate. That is, letT be the team that computes gateg, and letT1, T2 be the teams that hold
the values of the input wires to the gate. Then, for eachi , if PT,i is corrupted andPT1,i

(resp.,PT2,i) is not corrupted, then handA a random number inGF[p]. If both PT,i and
PT1,i (resp.,PT2,i) are corrupted, thenA already knows the corresponding share and no
action is needed.

4. Once the “baton hand-off” step of a gateg is completed, simulate an interaction of team
T with the trusted party for computing the function that corresponds to gateg (i.e., either
ADDs or ACT-MULTs). This is done as follows.

If the gateg is an addition gate, then handA the sum of the two input values given by
each corrupted party in teamT to the trusted party. If the gate is a multiplication gate,
then handA a valuevi determined as follows. If the valueci that PT,i handed to its
trusted party is different thanε, thenvi = ci . Otherwise (ci = ε), vi is set to a random
number inGF[p].

5. When the simulation of a gate leading to an output wire of the circuit is complete, simulate
an interaction with the trusted party for computingRECONSs,W, whereW ⊆ [n] is the
set of parties that are to learn the value of this wire. If no corrupted party is inW, then
no action is needed. Otherwise, invoke the trusted party for the main function,f . Let
v be the output value that corresponds to this output wire, letT be the team that holds
the value of this wire, and letai be the share that each corrupted partyPT,i in T hands
the trusted party forRECONSs,W. Then choose a polynomialB as follows. Say that a
corrupted partyPT,i is conformingif the valueai that PT,i hands to the trusted party for
RECONSs,W equalsPT,i ’s output of the gate leading to the output wire. (Note thatS can
verify whether a party is conforming.) ThenB is chosen uniformly out of all degreet
polynomials such thatB(0) = v and B(µi) = ai for eachconformingcorrupted party
PT,i . Next, hand each corruptedPT,i the vector(B(µ1), . . . , B(µs)). (Note that this can
always be done sinceA corrupts at mostt parties.)

6. OnceA halts, output whateverA outputs and halt.

Fig. 3. The simulator for protocol̂π , Byzantine case.

PTi , j in teamTi receives a share of a valuea from acorruptedparty PTu, j in teamTu, it may well be the case
thatPTi , j will receive a bad share (or perhaps no share at all). If too many uncorrupted parties inTi start off the
computation with wrong shares, then the evaluation will be incorrect. This difficulty is answered as follows.
Since there are at mostt corrupted parties altogether, and each corrupted party can give a bad share to at most
one party inTi , it follows that at mostt parties inTi are either corrupted or start off with an erroneous share.

Randomness versus Fault-Tolerance 135

6.2. Proof of Claim6

The protocol for securely evaluatingACT-RANDn is very similar to the protocol for the
passive case (for computingRANDn). We designatet+1 parties (say,P1, . . . , Pt+1) who,
in addition to their other roles in the protocol, will “double up” as dealers. Each one
of the dealers generatesM = O(n · t2 + m · s · t2) values inGF[p] according to the
distributionZ. Let vi, j be the vector consisting of all the elements inGF[p] that are
chosen byPi and are assigned toPj . ThenPi sendsvi, j to each partyPj . Each partyPj

locally outputs the coordinatewise sum, modulop, of the t + 1 vectors received from
the dealers. LetρA denote this protocol for the active case.

Analysis of protocolρA. First note that the amount of randomness used inρA is larger
by a factor oft+1 than the amount of randomness used to generate a singleM-tuple from
the above distribution. Sampling from the distribution of Appendix 6.2 takesO(t2 logn+
(m/n)t6 log t) random bits. Consequently, the protocol isO(t3 logn+ (m/n)t7 log t)-
random. (Instead we can use anO((m/n)t7)-wise independent distribution and pay
O((m/n)t7 logm) random bits.)

We show that the protocolt-securely evaluatesACT-RANDn. As in the passive case, the
intuition is that, as long as at least one dealer remains uncorrupted, the random choices
of the uncorrupted dealers make sure that the outputs of the parties, being the sum of the
values received from the dealers, have the desired independence structure. (Still, it should
be noted that in the active case the adversary can somewhat influence the distribution of
the outputs of the uncorrupted parties.)

Also here, a rigorous proof is a bit more involved. Recall that for each active real-
life adversaryA that interacts with the protocol we need to construct an ideal-process
adversarySACT-RAND that causes the global output of the ideal process to be distributed
identically to the global output of runningρ. In the passive case, this was done by
making sure that the messages generated bySRAND (representing the messages sent by
the uncorrupted parties) “match” the values provided by the trusted party forRANDn.
This was possible since the messages generated byA depended only on the random
input ofA.

In the active case the messages generated byA (representing the messages sent by the
corrupted parties) may depend on the messages generated bySACT-RAND. Consequently,
in this case we do not know how to generate a view ofA that is consistent with values
that are chosen by the trusted party. Instead, we use the fact that functionACT-RANDn

allowsSACT-RAND to influence somewhat the outputs of the parties. SimulatorSACT-RAND is
presented in Fig. 4.

Analysis of simulatorSACT-RAND. Fix some input vectorEx and auxiliary inputsz. We
show that

IDEALACT-RANDn,SACT-RAND
(z)

d= EXECρA ,A(z). (6)

The analysis is very similar to the passive case (Claim 3). Assume, without loss of
generality, thatA outputs its entire view of the interaction. This view consists of the
set C, the auxiliary inputz, some random inputr , and the values received from the

136 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Simulator SACT-RAND

Initial input: A setC of corrupted parties, auxiliary inputz, and random inputr . In addition,
SACT-RAND has access to a trusted party in the ideal process for evaluatingACT-RANDn.

1. InvokeA on the setC of corrupted parties, auxiliary inputz, and random inputr . For
each uncorrupted dealerPi and each corrupted partyPj , provideA with a messagevi, j

that consists of uniformly distributed elements inGF[p]. (The number of field elements
in vi, j equals the number of field elements inPi ’s output in the specification of function
ACT-RANDn.)

2. For each corrupted dealerPi and uncorrupted partyPj , adversaryA generates a message
vi, j to be sent fromPi to Pj . (Eachvi, j is interpreted as a vector of elements fromGF[p].)
Record those messages.

3. Prepare the input values of the corrupted parties in the ideal process, as follows. (These
values will be handed to the trusted party forACT-RANDn.) Recall that the input of each
corrupted partyPi is vi ; if Pi is a dealer, thenvi = v′i , v′′i ; otherwisevi = v′i . Then:
(a) Eachv′i is the coordinatewise sum modulop of the valuesvj,i thatPi received from

the uncorrupted dealers. (These values were handed toA in step 1 above.)
(b) Let v′′′i be the coordinatewise sum modulop of the valuesvi, j that dealerPi sent

to the uncorrupted parties. (These values were generated byA in step 2 above.)
Let v′′i be the completion ofv′′′i to anM-tuple, computed by placing the value 0 in
all the missing coordinates. (These locations correspond to the coordinates that are
assigned to corrupted parties.)

Hand these inputs to the trusted party forACT-RANDn. (Recall that the inputs of the
uncorrupted parties areε.) The outputs provided by the trusted party to the corrupted
parties can be ignored; they are equal to the inputsv′i .

4. OnceA halts, output whateverA outputs and halt.

Fig. 4. Description of the simulator for protocolρA.

uncorrupted dealers. Let̄τ denote the number ofuncorrupted dealers. To see that (6)
holds, we observe that the distributions in both sides of (6) are equal to a distribution
that is generated as follows:

1. Invoke adversaryA with uniformly chosen random inputr , auxiliary inputz, and
setC of corrupted parties.

2. Independently choosēτ M-tuples from distributionZ. Hand allA the elements in
GF[p] whose coordinates are assigned to corrupted parties.

3. AdversaryA generates the messages to be sent by the corrupted dealers to the
uncorrupted parties. Letwi = wi,1, . . . , wi,M denote theM-tuple of elements
in GF[p] that represents the messages sent by each corrupted dealerPi to all
uncorrupted parties. (The elementswi,s such thats is assigned to a corrupted party
are set to a default 0.)

4. Let Z = Z1, . . . , ZM denote the coordinatewise sum modulop of the τ̄ M-tuples
from step 2 and thet + 1− τ̄ M-tupleswi from step 3.

The output of an uncorrupted partyPi consists of the elements inZ whose
coordinates are assigned toPi . The output of the corrupted parties is⊥. The output
of the adversary consists ofk, r, z,C and the values handed toA in step 2.

This completes the proof of Claim 6.

Randomness versus Fault-Tolerance 137

Acknowledgments

We thank Oded Goldreich for his insightful comments which greatly improved the pre-
sentation of our paper, as well as for suggesting a way to eliminate some more unnecessary
randomness by using [S2] and [KM4]. We also thank Madhu Sudan for discussions re-
garding error-correcting codes. Finally, we would like to thank the anonymous referees
for carefully reading the paper and providing us with very useful comments.

Appendix A. An Extension of [S2] and [KM4]

In this appendix we describe a straightforward extension of results from [S2] and [KM4].
(All arithmetic operations in this section are overGF[p].) The goal is as follows: given
setsS1, . . . , St ⊆ {1, . . . ,n}we wish to construct a multiset11D of n-tuples overGF[p]
such that if we look at the projection ofD on the coordinates in any of the setsSj , then we
get a uniform distribution over all thep|Sj | possible tuples. We start with the following
definition: given ann× ` matrix M we define the following multiset of sizep`:

space(M) = {M · v|v ∈ (GF[p])`} ⊆ (GF[p])n.

For such a matrixM , denote its rows byM1, . . . ,Mn.

Claim 7. Let {wi }i∈Sj be arbitrary elements of GF[p]. If∑
i∈Sj

wi Mi 6= E0,

then, when a vector y is chosen from the probability distribution defined by space(M),
the sum

∑
i∈Sj

wi · yi is uniformly distributed over GF[p].

Proof. Recall that a randomly chosen vectory in space(M) is just the productM · v,
for a randomly chosenv ∈ (GF[p])`; in particular,yi = Mi · v. Then∑

i∈Sj

wi · yi =
∑
i∈Sj

(wi · Mi · v) =
∑
i∈Sj

(wi · Mi) · v.

Since
∑

i∈Sj
wi Mi 6= E0 then the above is a product of a nonzero vector with a uni-

formly distributed vector in(GF[p])` which is just a uniformly distributed element
of GF[p].

The next claim easily follows from Claim 7:

Claim 8. If for every choice of{wi }i∈Sj ,which are not all0’s,we have
∑

i∈Sj
wi Mi 6= E0,

then the projection of space(M) on Sj is uniformly distributed.

11 By “multiset” we mean that an element may appear more than once inD. We interpret a multiset as a
probability distribution in the natural way: each element is drawn with probability proportional to the number
of times it appears in the multiset.

138 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

Proof. By Claim 7, we get that, for every such choice of{wi }i∈Sj , the sum
∑

i∈Sj
wi · yi ,

for y ∈ space(M), is uniformly distributed inGF[p]. It is well known that the only
probability distribution that is uniform with respect to all “linear tests” is the uniform
distribution.12

Algorithm. Letd be a bound on the size of the setsS1, . . . , St . We describe an algorithm
that runs in timepoly(n, t, pd) and generates a matrixM such thatspace(M) satisfies
the property required in Claim 8 with respect to each of thet sets.13 We need to make
sure that, for every setSj , the corresponding rows ofM will be linearly independent. We
will construct M in a row-by-row manner. While choosing the rowMi , we will make
sure that it satisfies the appropriate linear independence constraints. That is, for every
setSj such thati ∈ Sj , we will have to pick a rowMi which is independent of the rows
in Tj = Sj ∩ {1,2, . . . , i − 1}. Fix the value of̀ to be logt/ log p+ d+ 1. This implies
that the size of the space isp` ≈ t · pd. Therefore, for eachTj we can compute the
p|Tj | ≤ pd vectors in the linear space spanned byTj . We do this for each of the (at most
t) sets that containi and so we compute (at most)t · pd vectors which cannot serve as
Mi . Since we havep` possible vectors then, by the choice of`, there exists a vector that
can serve asMi .

Remark (on the efficiency of the algorithm). Since the algorithm runs in time
poly(n, t, pd), if the size of anySj is ω(logn), then the running time is superpoly-
nomial. (Clearly, any set that is uniform overSj must be of size at leastp|Sj |.) However,
even in this case the size of the matrixM is much smaller and sosamplingin the space
remains efficient. Finally, as mentioned in Section 4 (see footnote 6) this construction is
used only for the final saving in randomness and one can stick to the (computationally
more efficient) solution based onβ-wise independent distributions.

Appendix B. A Direct Proof of Claim 1

In this appendix we describe a direct proof for Claim 1; a proof that does not rely on
Theorem 1 but rather shows, specifically for our case, how to compose the subsimulators
for the various components, as guaranteed by [BGW], into a simulator for the entire
protocol. We hope that the reader will get some insight regarding how the composition
technique works, avoiding many of the technical details required for the full composition
theorem. For this purpose, we concentrate on the passive case.

Given a real-life adversaryA, we will construct a simulatorS. For this, we define four
adversariesASHARE,AADD,AMULT , andARECONS that essentially determine the behavior of
A when each of the four subroutinesSHARE, ADD, MULT, andRECONS(respectively) are

12 More formally, since the functions of the formr6wi ·yi , wherer is a root of unity of orderp, are just the
Fourier basis forGF[p], then the behavior of a distribution with respect to these functions determines the
distribution. Therefore, the uniform distribution is the only distribution which is uniform with respect to every
such function.

13 One can describe arandomizedalgorithm to do so, but since this algorithm will be run by each of
the dealers in our protocol and the entire issue is saving randomness we restrict ourselves to deterministic
algorithms.

Randomness versus Fault-Tolerance 139

executed. We note, however, that the adversaryA need not use the same strategy against
all invocations of some subroutine; his decisions may be influenced by the execution
of the protocol so far. To overcome this difficulty, we will provide each of the four
adversaries with the transcript of the protocol up to the point where the execution of
the subroutine starts. This is technically done by includingA’s view of the execution
of the protocol up to this point in the auxiliary input of the current subadversary. So,
for example, adversaryAMULT behaves exactly asA behaves in a certain execution of
MULT when the history is as provided toAMULT via the auxiliary inputsz. As in [C2], we
assume that the subroutines are executed sequentially (and not in parallel to each other).
This makes the above adversaries well defined.

We can now use Theorem 2 to conclude the existence of four simulatorsSSHARE,
SADD, SMULT , andSRECONS, satisfying the definition of security with respect to the four
protocols and the four adversaries. Next we show how to construct a simulatorS for our
protocol using these four simulators. Roughly speaking, we will explicitly describe how
to simulate all messages sent outside of the four subroutines and we use the simulators to
simulate all the communication inside the execution of the subroutines. We first describe
the procedure for running each of these four simulators. When we run a simulator, say
for MULT, we do the following:S runs the corresponding simulatorSMULT as it is. (By the
definition ofAMULT , this in particular implies thatSMULT controls the same set of corrupted
parties, and that at the endSMULT outputs the entire simulated view.) OnceSMULT generates
its output (which is a simulated view of an interaction ofAMULT), simulatorS continues
the simulated run ofA on this output. Our choice of the auxiliary inputs toSMULT and to
the corrupted parties guarantees that the output ofSMULT is consistent with the prefix of
A’s run so far.

We now describe how the simulatorS works, given the above procedure for running
a simulator for a subroutine. As common in such protocols, this relies heavily on the
properties of degreet polynomials.14 In detail, messages are simulated as follows:

• For each partyPT,i , simulatorS simulates an interaction of the parties in teamT in
the subroutineSHAREs,i wherePT,i shares its inputxT,i . That is, ifPT,i is corrupted,
thenS executes the simulatorSSHARE with input xT,i (which is already known to
him), while if PT,i is not corrupted, thenS executes the simulatorSSHARE with a
random number inGF[p] as the input.
• For each gateg in the circuit,S simulates the “baton hand-off” step. That is, let

T be the team that computes gateg, and letT1 andT2 be the teams that hold the
values of the input wires to the gate. Then, for eachi , if PT,i is corrupted andPT1,i

(resp.,PT2,i) is not corrupted, thenS handsA a random number inGF[p]. If both
PT,i andPT1,i (resp.,PT2,i) are corrupted, thenA already knows the corresponding
share.
• Once the “baton hand-off” step of a gateg is simulated,S simulates an interaction

of teamT in the corresponding subroutine (eitherADDs or MULTs) for computing
the function that corresponds to gateg. In each case,S uses the subsimulator (either

14 More specifically, it depends on the fact that if we choose such a polynomial at random, or we first choose
somet ′ ≤ t random points and then choose a random polynomial out of those polynomials that pass through
the chosent ′ points, then in both cases we get the same distribution.

140 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

SADD or SMULT) with input to the corrupted players as already known to it, and with
(uniformly and independently chosen) random numbers inGF[p] as the inputs of
noncorrupted parties.
• At some point during the computation (before any of the invocations ofRECONSs,W

is to be simulated),S hands its trusted party the input values of the corrupted parties,
and receives the output values assigned to them.
• When the simulation of a gate leading to an output wire of the circuit is complete,
S simulates the reconstruction by the subroutineRECONSs,W, whereW is the set of
parties that are to learn the value of this wire. If no corrupted party is inW, thenS
need do nothing. Otherwise,S invokes the corresponding simulatorSRECONS. For this,
letv be the value that should correspond to this output wire (the valuevwas received
from the trusted party), letT be the team that holds the value of this wire, and let
ai be the share that each corrupted partyPT,i in T holds. ThenS chooses a random
polynomial A of degreet such thatA(0) = v and A(µi) = ai for each corrupted
party PT,i . The simulatorS usesSRECONS with input values(A(µ1), . . . , A(µs)).

Analysis of simulatorS (sketch). To show that the output of the simulator is distributed
identically to the distribution of the ideal-model adversary, we repeat the analysis made
in the proof of Claim 1. The only difference is that in Claim 1 we assume ideal invocations
of the four subroutines whereas here the actual subroutines are called. However, based
on the properties of the four subsimulatorsSSHARE, SADD, SMULT , andSRECONS (that is, the
fact that the output generated by each such simulator, given the appropriate inputs and
auxiliary inputs, is identical to the distribution of output by the corresponding adversary)
the analysis still goes through.

References

[AGHP] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple Constructions of Almostk-Wise Indepen-
dent Random Variables, FOCS 90 andRandom Structures Algorithms, Vol. 3, 1992, pp. 289–304.
(Addendum: Vol. 4, 1993, pp. 119–120).

[B1] D. Beaver, Perfect Privacy for Two-Party Protocols, TR-11-89, Harvard University, 1989.
[B2] D. Beaver, Foundations of Secure Interactive Computing,Proc. CRYPTO, 1991, pp. 377–391.
[B3] D. Beaver, Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty

Minority, J. Cryptology, Vol. 4, 1991, pp. 75–122.
[BB] J. Bar-Ilan and D. Beaver, Non-Cryptographic Fault-Tolerant Computing in a Constant Number of

Rounds,Proc. 8th PODC, 1989, pp. 201–209.
[BCG] M. Ben-Or, R. Canetti, and O. Goldreich, Asynchronous Secure Computations,Proc. 25th STOC,

1993, pp. 52–61.
[BDPV] C. Blundo, A. De-Santis, G. Persiano, and U. Vaccaro, On the Number of Random Bits in Totally

Private Computations,Proc. ICALP, LNCS 944, Springer-Verlag, Berlin, 1995, pp. 171–182.
[BDV] C. Blundo, A. De-Santis, and U. Vaccaro, Randomness in Distribution Protocols,Proc. ICALP,

LNCS 820, Springer-Verlag, Berlin, 1994, pp. 568–579.
[BGG] M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in Interactive Proofs,Proc. FOCS, 1990,

pp. 563–571.
[BGS] C. Blundo, A. Giorgio Gaggia, and D. R. Stinson, On the Dealer’s Randomness Required in Secret

Sharing Schemes, EuroCrypt94 andDesigns Codes Cryptography, Vol. 11, No. 2, 1997, pp. 235–
259.

[BGW] M. Ben-or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation,Proc. STOC, 1988, pp. 1–10.

Randomness versus Fault-Tolerance 141

[BM] M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo-Random
Bits, FOCS 82 andSIAM J. Comput., Vol. 13, 1984, pp. 850–864.

[C1] R. Canetti, Studies in Secure Multi-Party Computation and Applications, Ph.D. Thesis, Department
of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, June 1995.

[C2] R. Canetti, Security and Composition of Multiparty Cryptographic Protocols,J. Cryptology, this
issue.

[CCD] D. Chaum, C. Crepeau, and I. Damgard, Multiparty Unconditionally Secure Protocols,Proc. STOC,
1988, pp. 11–19.

[CD] B. Chor and C. Dwork, Randomization in Byzantine Agreement,Adv. Comput. Res., Vol. 5, 1989,
pp. 443–497.

[CFGN] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively Secure Multi-Party Computation,Proc.
28th STOC, 1996, pp. 639–648.

[CG1] B. Chor and O. Goldreich, Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity, FOCS 85 andSICOMP, Vol. 17, 1988, pp. 230–261.

[CG2] R. Canetti and O. Goldreich, Bounds on Tradeoffs between Randomness and Communication
Complexity, FOCS 90 andComput. Complexity, Vol. 3, 1993, pp. 141–167.

[CGMA] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults,Proc. FOCS, 1985, pp. 383–395.

[CK1] B. Chor and E. Kushilevitz, A Zero-One Law for Boolean Privacy, STOC 89 andSIDMA, Vol. 4,
1991, pp. 36–47.

[CK2] B. Chor and E. Kushilevitz, A Communication-Privacy Tradeoff for Modular Addition,Inform.
Process. Lett., Vol. 45, 1993, pp. 205–210.

[CRS] S. Chari, P. Rohatgi, and A. Srinivasan, Randomness-Optimal Unique Element Isolation, with
Application to Perfect Matching and Related Problems,Proc. STOC, 1993, pp. 458–467.

[FKN] U. Feige, J. Kilian, and M. Naor, A Minimal Model for Secure Computation,Proc. STOC, 1994,
pp. 554–563.

[FL] M. Fischer and N. Lynch, A Lower Bound for the Time to Assure Interactive Consistency,IPL,
Vol. 14, No. 4, 1982, pp. 183–186.

[FLP] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of Distributed Consensus with One
Faulty Process,J. Assoc. Comput. Mach., Vol. 32, No. 2, 1985, pp. 374–382.

[FM] P. Feldman and S. Micali, An Optimal Algorithm for Synchronous Byzantine Agreement, STOC
88 andSIAM J. Comput., Vol. 26, No. 4, 1997, pp. 873–933.

[FY] M. Franklin, and M. Yung, Communication Complexity of Secure Computation,Proc. STOC, 1992,
pp. 699–710.

[G] O. Goldreich,Foundations of Cryptography(Fragments of a Book), Weizmann Institute of Science,
1995. (Avaliable at http://philby.ucsd.edu.)

[GMW] O. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental Game,Proc. 19th STOC,
1987, pp. 218–229.

[GL] S. Goldwasser and L. Levin, Fair Computation of General Functions in Presence of Immoral
Majority, Proc. CRYPTO, 1990.

[GMR] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems,
SIAM J. Comput., Vol. 18, No. 1, 1989, pp. 186–208.

[GO] O. Goldreich and Y. Oren, On the Cunning Power of Cheating Verifiers: Some Observations about
Zero-Knowledge Proofs, in preparation. Preliminary version by Y. Oren inProc. 28th FOCS, 1987.

[GRR] R. Gennaro, T. Rabin, and M. Rabin, Simplified VSS and Fact-Track Multiparty Computations with
Applications to Threshold Cryptography,Proc. PODC, 1998, pp. 101–111.

[H] J. Hastad, Pseudo-Random Generators under Uniform Assumptions,Proc. STOC90.
[ILL] R. Impagliazzo, R., L. Levin, and M. Luby, Pseudo-Random Generation from One-Way Functions,

Proc. STOC89.
[IZ] R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits,Proc. 30th FOCS, 1989, pp. 248–

253.
[K] E. Kushilevitz, Privacy and Communication Complexity, FOCS 89, andSIAM J. Discrete Math.,

Vol. 5, No. 2, 1992, pp. 273–284.
[KK] D. Karger and D. Koller, (De)randomized Construction of Small Sample Spaces inNC, FOCS 94

andJ. Comput. System Sci., Vol. 55, No. 3, 1997, pp. 402–413.

142 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en

[KM1] D. Koller and N. Megiddo, Constructing Small Sample Spaces Satisfying Given Constraints, STOC
93 andSIAM J. Discrete Math., Vol. 7, No. 2, 1994, pp. 260–274.

[KM2] D. Karger and R. Motwani, Derandomization through Approximation: AnNC Algorithm for Min-
imum Cuts,Proc. 26th STOC, 1994, pp. 497–506.

[KM3] H. Karloff and Y. Mansour, On Construction ofk-wise Independent Random Variables, STOC 94
andCombinatorica, Vol. 17, No. 1, 1997, pp. 91–107.

[KM4] E. Kushilevitz and Y. Mansour, Randomness in Private Computations, PODC 1996 andSIAM J.
Discrete Math., Vol. 10, No. 4, 1997, pp. 647–661.

[KMO] E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and Completeness in Multi-Party Private
Computations,Proc. 35th FOCS, 1994, pp. 478–489.

[KOR1] E. Kushilevitz, R. Ostrovsky, and A. Ros´en, Characterizing Linear Size Circuits in Terms of Privacy,
STOC 96 andJ. Comput. System Sci., Vol. 58, 1999, pp. 129–136.

[KOR2] E. Kushilevitz, R. Ostrovsky, and A. Ros´en, Amortizing Randomness in Private Multiparty Com-
putations,Proc. 17th PODC, 1998, pp. 81–90.

[KPU] D. Krizanc, D. Peleg, and E. Upfal, A Time-Randomness Tradeoff for Oblivious Routing,Proc.
STOC, 1988, pp. 93–102.

[KR] E. Kushilevitz and A. Ros´en, A Randomness-Rounds Tradeoff in Private Computation, CRYPTO
94 andSIAM J. Discrete Math., Vol. 11, No. 1, 1998, pp. 61–80.

[KY] D. E. Knuth and A. C. Yao, The Complexity of Non-Uniform Random Number Generation, In
Algorithms and Complexity, ed. J. Traub, 1976, pp. 357–428.

[MS] F. J. Macwiliams and N. J. A. Sloane,The Theory of Error Correcting Codes, North-Holland,
Amsterdam, 1977.

[MR] S. Micali and P. Rogaway, Secure Computation, manuscript, 1992 (updated version, 1998). Prelim-
inary version inProc. CRYPTO91, pp. 392–404.

[N] N. Nisan, Pseudorandom Generator for Space Bounded Computation,Proc. 22nd STOC, 1990,
pp. 204–212.

[NN] J. Naor and M. Naor, Small-Bias Probability Spaces: Efficient Constructions and Applications,
STOC 90 andSIAM J. Comput., Vol. 22, No. 4, 1993, pp. 838–856.

[RB] T. Rabin and M. Ben-Or, Verifiable Secret Sharing and Multiparty Protocols with Honest Majority,
Proc. 21st STOC, 1989, pp. 73–85.

[RS] P. Raghavan and M. Snir, Memory vs. Randomization in On-Line Algorithms,Proc. ICALP, 1989,
pp. 687–703.

[S1] A. Shamir, How to Share a Secret,Comm. ACM, Vol. 22, 1979, pp. 612–613.
[S2] L. J. Schulman, Sample Spaces Uniform on Neighborhoods,Proc. 24th STOC, 1992, pp. 17–25.
[S3] M. Sudan, Algorithmic Issues in Coding Theory,Proc. 17th Conf. on Foundations of Soft-

ware Technology and Theoretical Computer Science, Kharapur, India, 1997. Available on-line at
theory.lcs.mit.edu/˜madhu/

[vLW] J. H. van Lint and R. M. Wilson,A Course in Combinatorics, Cambridge University Press,
Cambridge, 1992.

[Y1] A. C. Yao, Theory and Applications of Trapdoor Functions,Proc. 23rd FOCS, 1982, pp. 80–91.
[Y2] A. Yao, Protocols for Secure Computation,Proc. 23rd FOCS, 1982, pp. 160–164.

[Z] D. Zuckerman, Simulating BPP Using a General Weak Random Source, FOCS 91 andAlgorithmica,
Vol. 16, 1996, pp. 367–391.

