J. Cryptology (2000) 13: 107-142 Journal of

DOI: 10.10075001459910005 CRYPTOLOGY

© 2000 International Association for
Cryptologic Research

Randomness versus Fault-Tolerance

Ran Canetti
IBM T. J. Watson Research Center,
30 Saw Mill River Road,
Hawthorne, NY 10532, U.S.A.
canetti@watson.ibm.com

Eyal Kushilevitz
Department of Computer Science, Technion,
Haifa, Israel
http://www.cs.technion.ac.ifeyalk

Rafail Ostrovsky
Bell Communications Research, MCC-1C365B,
Morristown, NJ 07960-6438, U.S.A.
rafail@bellcore.com

Adi Rosn
Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada
adiro@cs.toronto.edu

Communicated by Oded Goldreich

Received 30 April 1998 and revised 3 January 1999 and 1 July 1999

Abstract. We investigate the relations between two major properties of multiparty
protocols:fault tolerance(or resilienc§ andrandomnessFault-tolerance is measured
in terms of the maximum number of colluding faulty partiesthat a protocol can
withstand and still maintain the privacy of the inputs and the correctness of the outputs
(of the honest parties). Randomness is measured in terms of the total number of random
bits needed by the parties in order to execute the protocol.

Previously, the upper bound on the amount of randomness required by general
constructions for securely computing any nontrivial functfowas polynomial both in
n, the total number of parties, and the circuit-9tzgf). This was the state of knowledge
even for the special case= 1 (i.e., when there is at most one faulty party). In this pa-
per we show that for any linear-size circuit, and for any nuntber n/3 of faulty

* A preliminary version of this paper appeared in Breceedings of th&6th PODC 1997, pp. 35-45. Eyal
Kushilevitz was supported by the MANLAM Fund. Part of this work was done while Eyal Kushilevitz and
Adi Rog2n were visiting Bellcore.

107

108 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

parties O(poly(t)-logn) randomness is sufficient. More generally, we show that, for any
function f with circuit-sizeC(f), we need onlyO (poly(t) - logn+ poly(t) - (C(f)/n))
randomness in order to withstand any coalition of size at mdstirthermore, in our
protocol onlyt + 1 parties flip coins and the rest of the parties are deterministic. Our
results generalize to the caseanfaptiveadversaries as well.

Key words. Secure multiparty protocols, Randomness, Limited independence, Com-
position of protocols.

1. Introduction

The goal of this work is to explore the interplay, in the context of multiparty computations,
between two fundamental concersscurity(i.e., fault-tolerance combined with privacy)
andrandomnesdOver the past decade, both striving for stronger security and saving ran-
dom bits received considerable amount of attention and yielded many interesting results.

Secure protocols Secure multiparty protocols (first studied in [Y2] and [GMW)]) are
protocols that guarantee the privacy of the inputs and, at the same time, the correctness
of the outputs of honest participants, even if some of the parties are maliciously faulty
(“Byzantine”). Secure multiparty computations has been extensively studied, in a variety
of adversarial models. The following basic settings were considered. The adversary con-
trolling the corrupted (i.e., faulty) parties can be either computationally unbounded (in
which case the communication channels are assumed to be private) [BGW], [CCD], or it
can be limited to efficient (probabilistic polynomial time) computations [Y2], [GMW].

In addition, the adversary can be eitlpassive(in which case the corrupted parties are
honest-but-curious; they follow their protocol and only collude to gather extra infor-
mation) oractive (in which case the corrupted parties may arbitrarily and maliciously
deviate from their protocol). A protocol resilient against passive adversaries is sometimes
calledprivate, rather tharsecure In all settings, a salient parameter is thsilience §

i.e., the maximum number of colluding faulty parties tolerable by the protocol. An ad-
ditional parameter regarding the power of the adversaag&ptivity. a staticadversary
controls a fixed set of faulty parties, whereasaglaptiveadversary may choose which
parties to corrupt as the computation proceeds, based on the information gathered so far.
To simplify the presentation, we concentrate in this work orstagiccase although the
results (and techniques) carry onto the adaptive case as well.

We mention some known results: In [Y2] and [GMW] it was shown that, if trapdoor
permutations exist, every poly-time computable functionan be computed securely
tolerating a computationally bounded, active adversary that controls tip<ton/2
parties. Moreover, in the case of passive adversaries, any number of colluding
parties is tolerable. In [BGW] and [CCD] protocols for securely computing any function
in the presence of computationally unbounded adversaries are presented. In the case of
passive adversaries these protocols withstand up<ton/2 corrupted parties. In the
case of active adversaries these protocols withstand up:ta/3 corrupted parties. In
both cases this is the maximum attainable resilience. A considerable amount of work
has been done in this area (e.g., [BB], [B1], [BDPV], [BDV], [CFGN], [CK1], [FKN],
[FY], [K], [KM4], [KMO], [KOR1], [KR], and [RB]); in what follows we concentrate
on works concerning the relation between multiparty security and randomness.

Randomness versus Fault-Tolerance 109

Randomness Randomness plays an important role in computer science. In particular,
in the context of distributed computing there are important examples of problems where
there is a provable gap between the power of randomized algorithms and their determin-
istic counterparts. For instance, achieving Byzantine agreement with a linear number of
faults requires a linear number of rounds deterministically [FL] and a constant number
of rounds if randomization is allowed [FM]; reaching a consensus in an asynchronous
distributed system with faults is impossible with deterministic protocols [FLP], but is
possible with the use of randomized protocols (see [CD]). Various techniques to mini-
mize the amount of randomness needed were extensively studied in computer science
(e.g., [AGHP], [BGG], [BM], [CG1], [I1Z], [KK], [KM1], [KMZ2], [KM3], [KM4], [KY],

[N], [NN], [S2], [Y1], and [Z]) and tradeoffs between randomness and other resources
were found (e.g., [BDPV], [BGS], [BDV], [CG2], [CK2], [CRS], [KM4], [KOR1],
[KPU],[KR], and [RS])).

Security versus randomnesslt is not hard to show that, except for degenerate cases,
somerandomness is essential to maintain security (if all parties are deterministic, then
the adversary can infer information on the parties’ inputs from their messages). We are
interested in thamount of randomnessquired for carrying out&resilient computation
against computationally unbounded adversaries.

All previous (generic) secure protocols requidépoly(n) - m) random bits, whera
is the number of parties amd is the number of multiplication gates in the circuit repre-
senting the function to be computed. This applies both to passive and active adversaries.
Previous research concentrating on reducing the amount of randomness used in secure
computations was limited to the casepafssive(andstatic) adversaries. Furthermore,
results were obtained either for a specific function (namely, XOR) or for the special case
t=1:

1. For the XOR function§2 (t) random bits are necessary teprivate computation,
while O(t? log(n/t)) random bits are sufficient [KM4]. Additionally, for any func-
tion f with sensitivity nif t > n — ¢ for some constart, then$2 (n?) random bits
are required [BDPV].

2. Forthe special case of 1-privacy, any linear-size circuit can be computed 1-privately
with a constant number of random bits [KOR1]. More generally, every circuit of
m boolean gates can be computed 1-privately v@itm/n) random bits [KOR1].

Our results We generalize both of the above results. That is, we show that for both
passive and active adversaries (even adaptive ones), aathyfoalue oft for which
secure computation is possible, any circuinoboolean gates can be securely evalu-
ated using onhO(poly(t) - (logn + m/n)) random bits overall. While these results do

1 When the adversary is limited to probabilistic polynomial time and intractability assumptions are used,
as in [Y2] and [GMW], then by the results of [BM], [H], and [ILL] we may as well assume the existence
of a pseudorandom generator. In this case, if a party needs “many” random bits, it can always choose only
a “small” seed of truly random bits, and expand the seed into a “long” sequence of pseudorandom bits and
use them. Therefore, in the case of computationally bounded adversaries the quantification of the “amount
of randomness needed” is not meaningful (and, in particular, the amount of randomness needed inherently
depends on a security parameter).

110 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

not substantially improve on [BGW] and [CCD] for= ©(n), they constitute a big
improvement for smaller values of In particular, fort = polylog(n), circuits with a
qguasi-linear (i.e.m = O(n - polylog(n))) number of gates can be securely evaluated
using onlypolylog(n) random bits. Fot = 1, we are onlyO(logn) away from the
specialized (to passive adversaries only) result of [KOR1].

An alternative perspective We suggest the following alternative perspective on our
results. Any distributed computing task (i.e., a task whose input is partitioned among
several parties) can, in the absence of faults, be solved in a centralized manner: all
parties send their input to a single party, who performs the task locally and announces
the results. In many cases this may be the preferred solution, but this solution requires
that the correctness (and privacy) be trusted to a single party. A natural extension of the
centralized solution to the case when up faults are possible is to have all parties share
their inputs among a predefined small Seif c - t parties ¢ > 1), and have the parties

in S compute the function and announce the results. This “partial decentralization”
approach seems especially viable whea o(n), since the set need not be much
bigger thant. Our work shows that, with respect to the amount of randomness used,
this “partial decentralization” solution is considerably inferior to a fully distributed
computation: while our solution needs orB(poly(t) - (logn + m/n)) randomness,

the above “partial decentralization” solution (according to presently known methods)
requiresO(poly(t) - m) random bits.

Our constructions Our results build on many previous ideas in the area of privacy as
well as on limited independence distributions. In particular, we use the general framework
of [BGW], and combine it with ideas from [KOR1] together with techniques for limited
independence, in order to save in randomness. That is, the parties evaluate the given
circuit gate by gate; each gate is computed in a manner similar to the construction of
[BGW]. (In particular, we use the [BGW] modules for secret sharing and evaluating
individual gates as building blocks.) However, as in [KOR1], not all parties participate
in evaluating each gate. Instead, the parties are partitionetkiamosof small size, and

each gate is evaluated by a single team. We generalize the technique of [KOR1] in a way
which allows us to use limited independence, and then show how this can be done in
a secure and robust manner, building on previous work on both secure protocol design
and derandomization techniques.

Interestingly, we show that not only can we use a small amount of randomness but also
onlyt + 1 parties need to be randomized, and the rest of the parties can be deterministic.
This is nearly optimal against coalitions of sigzesince it was shown in [KM4] that
t-private computations of simple functions require at legsdrties to use randomness,
and that in some cases, such as the XOR functignsufficient.

The protocol composition techniqueTo show the security of our protocols, we use
general definitions of secure multiparty protocols. In particular, we use the formalization
of [C2], which allows modular composition of secure protocols. (This formalization is
based on the approach in [B2] and [B3].) That s, in order to avoid reproving the security
of the [BGW] construction from scratch, we separately prove the security of the overall
design of our protocol, assuming that the [BGW] modules for secret-sharing and for

Randomness versus Fault-Tolerance 111

evaluating individual gates are secure. We then conclude, using the [C2] composition
theorem, that the composition of our “overall design” with the [BGW] modules is secure.
(For self-containment we also sketch a proof of security of our protocopdssive
adversaries, without relying on [C2].) We remark that a formal proof of security for
[BGW] was never published. (It can be inferred, say, from the security proof of [BCG]
as it appears in [C1].) The modular proof technique used here can be applied also to
proving the security of the [BGW] protocol itself and it has the advantage that it extends
to the adaptive case as well.

Organization In Section 2 we provide some necessary definitions, including those of
privacy and randomness. In Section 3 we review the solution of [BGW] for the case of
passive adversaries. In Section 4 we provide our solution for the same case. In Section 5
we review the solution of [BGW] for the case of active (i.e., Byzantine) adversaries and
in Section 6 we extend our solutions from the case of passive adversaries to the case of
active adversaries. In Appendix 6.2 we describe a simple extension of the results of [S2]
and [KM4] for sample spaces with limited independence; we use this extension in our
constructions. In Appendix 6.2 we sketch a proof of security of our protocqldesive
adversaries, without relying on [C2].

2. Preliminaries

In Section 2.1 we review the notion of secure protocols, using the formalization of [C2].
In Section 2.2 we review the notion afodular compositiorof protocols, introduced

in [MR], and restate the composition theorem from [C2]. Modular composition plays a
central role in the security proofs of our protocols. In Section 2.3 we define other notions
used within the paper. With the exception of Section 2.3, the material in this section is
a summary of the corresponding sections in [C2], and is included here for the sake of
self-containment.

Multiparty functions The functions to be evaluated by the parties are formalized as
follows. An n-party function (for somen € N) is a probabilistic functionf: (D)" x

{0, 1}* — (D)", for some finite domairD, where the last input is taken to be the
random input.

2.1. Secure Protocols

We specify the requirements from a protocol for securely computing a funttiemose
inputs are partitioned among several parties. Several definitions of multiparty secure
computation have been proposed in the past (e.g., [GL], [MR], [B3], and [C2]). In this

2 One difference from the formalization of [C2] is that there the complexity measures, and the security
requirement, are stated in terms o$ecurity parametethat tends to infinity. Here we deal with a simpler
case where the inputs are taken from a finite set, and the security is perfect (i.e., no computational restrictions
are made on the adversary and no “negligible probabilities of error” are allowed). Consequently, the security
parameter is not necessary. In fact, the definitions here can be regarded as a statement of the definitions of [C2]
for a specific value of the security parameter.

112 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

work we use the definition of [C2] which we sketch below. We concentrate on the
“secure channels” setting of [BGW] and [CCD], where the adversary is computationally
unbounded but has no access to the communication between nonfaulty parties. Also, for
simplicity of exposition we concentrate on the casatafic (nonadaptive) adversaries.
Nevertheless, all the protocols presented in this paper maintain their security even in
the presence of adaptive adversaries. The definitions for the passive and active cases are
very similar; we develop them together, noting the differences as we go.

In a nutshell, secure protocols are protocols that “emulate” an ideal model where
all parties privately hand their inputs to a centralized trusted party who computes the
results, hands them back to the parties, and vanishes. The definition is described in three
stages: First the “real-life” model of computation is formalized; next the ideal model is
formalized; finally the notion of “emulation” and the definition are presented.

The real-life model An n-party protocol 7 is a collection of interactive, probabilistic
algorithms. Formally, each algorithm is an Interactive Turing machine, as defined in
[GMR]. We use the ternparty B to refer to theith algorithm. Each partyp, starts

with inputx; € D, and random input; € {0, 1}*. Informally, we envision each two
parties as connected vigdvate communication channel. A more complete description

of the communication among parties is presented belotvlirited real-life adversary,

A, is another interactive (computationally unbounded) Turing machine describing the
behavior of the corrupted parties. Adversatystarts off with input that contains the
identities of the corrupted parties (some suliSe€ {1,..., n}), together with their
inputs and random inputs. In additiad, receivesauxiliary input z. (The auxiliary input

is a standard tool that allows proving the composition theorem. Intuitively, the auxiliary
input captures information gathered by the adversary from other interactions occurring
before the current interaction. Auxiliary inputs were first introduced in [GO], in the
context of Zero-Knowledge proofs; for discussion see [GO] and [G].)

The computation proceeds in rounds, where each round proceeds as follows. First the
uncorrupted parties generate their messages of this round, as described in the protocol.
(Thatis, these messages appear on the outgoing communication tapes of the uncorrupted
parties.) The messages addressed to the corrupted parties become known to the adversary
(i.e., they appear on the adversary’s incoming communication tape). Next the adversary
generates the messages to be sent by the corrupted parties in this round. If the adversary
is passive, then these messages are determined by the protocol. An active adversary
determines the messages sent by the corrupted parties in an arbitrary way. Finally each
uncorrupted party receives allthe messages addressedtoitinthisround (i.e., the messages
addressed t® appear orP’s incoming communication tape).

At the end of the computation all parties locally generate their outputs. The uncor-
rupted parties output whatever is specified in the protocol. The corrupted parties output a
special symbol,L, specifying that they are corrupted. In addition, the adversary outputs
some arbitrary function of itgiew of the computation. The adversary view consists of
its auxiliary input and random input, followed by the corrupted parties’ inputs, random
inputs, and all the messages sent and received by the corrupted parties during the com-
putation. Without loss of generality, we can imagine that the real-life adversary’s output
consists of its entire view.

Let ADVR, _4(X, z,T) denote the output of real-life adversadywith auxiliary input

Randomness versus Fault-Tolerance 113

z and when interacting with parties running proto@obn inputX = X, ..., X, and
random input =r4,rq, ..., I, as described above (for A, x; andr; for party P).
LetEXEC, 4(X, z, T); denote the output of party from this execution. Recall that B
is uncorrupted, then this is the output specified by the protocé#; i$ corrupted, then
EXEC, 4(X,2,T); = L. Let

EXECy, A(X, Z,T) = ADVR A(X, Z,T), EXECy A(X, Z, 1)1, . .., EXECy A(X, Z,)n.

Let EXEC, 4 (X, 2) denote the probability distribution &fxec, 4(X, z,) wheref is
uniformly chosen.

The ideal process The ideal process is parameterized by the function to be evaluated.
This is ann-party functionf: (D)" x {0, 1}* — (D)", as defined above. Each party

P, has inputx; € D; no random input is needed for the parties in the ideal process (if

f is a probabilistic function, then the needed randomness will be chosen by the trusted
party). Recall that the parties wish to compuité, r¢)1, ..., f (X, r¢)n, wherers is an
appropriately long random string, aRdlearnsf (X, r¢); (wheref (X, r¢); denotes thith
component off (X, r¢)). Anideal-process-adversary S is an interactive (computationally
unbounded) Turing machine describing the behavior of the corrupted parties. Adversary
S starts off with the identities and inputs of the corrupted parties (paRiésr i € C),
random input, and auxiliary input. In addition, there is an (incorruptible}ed party,

T. The ideal process proceeds as follows.

INPUT SUBSTITUTION The ideal-process-adversaysees the inputs of the corrupted
parties. IfS is active, then it may also alter these inputs. lkebe the|C|-vector of
the altered inputs of the corrupted parties, and/lbe then-vector constructed from
the inputx by substituting the entries of the corrupted parties by the corresponding
entries inb. If S is passive, then no substitution is made afid= X.

CoMmPUTATION: Each partyP, hands its (possibly modified) input valug, to the trusted
party T. Next, T chooses a valug randomly fromR ¢, and hands eack the value
f (y’ It)i .

OuTpPuT. Each uncorrupted part outputs f (Y, r¢);, and the corrupted parties out-
put L. In addition, the adversary outputs some arbitrary function of the information
gathered during the computation in the ideal process. This information consists of
the adversary’s random input, the corrupted parties’ inputs, and the resulting function
values{ f (¥, r¢)i: P, is corruptedi.

Let ADVR¢ s(X, z, T), wheref = (r¢, r), denote the output of ideal process adversary
S on random input and auxiliary inputz, when interacting with parties having input
X = Xy, ..., Xn, and with a trusted party for computirfgwith random input. Let the
(n + 1)-vector

IDEAL¢ s(X, Z,T) = ADVR¢ s(X, Z,T), IDEALt s(X, Z,F)1, ..., IDEALf s(X, Z, F)n
denote the outputs of the parties on inpxtsidversary, and random inputs as de-

scribed aboveR, outputsiDEAL¢ s (X, z, T);). LetIDEAL s(X, 2) denote the distribution
of IDEAL¢ s(X, z,) whenr is uniformly distributed.

114 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Definition of security We require that protocet emulates the ideal process for eval-
uating f, in the following sense. For any real-life adversatythere should exist an
ideal-process adversasy, such that, for any input vecter and any auxiliary inpug,
the global output®EAL ¢ 5(X, 2) andEXEC, 4(X, z) are identically distributed. Further-
more, we require that the complexity of the ideal-process advetség comparable
with (i.e., polynomial in) the computational complexity of the real-life adversariSee
[C2] for motivation and discussion of this requirement.)

Definition 1. Let f be ann-party function and letr be a protocol fon parties. We
say thatr t-securely evaluates f if for any t-limited real-life adversary4 there exists
an ideal-process adversasywhose running time is polynomial in the running time of
A, and such that, for any input vectorand any auxiliary input,

IDEAL 1,5 (X, 2) = EXECy 4(X, 2), &)

where= denotes equality between two distributionsAdlandS are passive adversaries,
then we say that t-privately evaluates g.

2.2. Composition of Secure Protocols

In what follows we use the fact that the security of protocols is preserved under a natural
composition operation. For a full exposition and a proof see [C2]. Here we briefly review
the set-up and state the theorem.

Informally, the composition theorem can be stated as follows. Suppose that protocols
01, - - ., Pk Securely compute functiorts, . . ., fx, respectively, and that a protoceke-
curely computes a functiagpusing subroutine calls for “ideal evaluation” &f, . . ., f.
Let 7P+ be a protocol that is identical to protocelwith the exception that every
subroutine call for an ideal evaluation &f is replaced by an invocation of the corre-
sponding protocop;. Then the resulting protocat* securely computeg from
scratch.

We call this type of composition of protocatsodular composition(This notion was
first suggested in [MR]. There it is calledducibility of protocols.) In formalizing this
theorem we concentrate on the case where at most one subroutine invocation is running at
any computational round. Showing that security is maintained even in the more general
case, where several subroutine invocations may be running at the same time, requires a
stronger security property than the one presented here and is not dealt with in this paper.
Yet, we remark that our protocols do enjoy this stronger security property.

The hybrid model To be able to state the composition theorem, we first formulate a
model for computing a functiog with the assistance of a trusted party for computing
a function f, and define secure protocols in that model. This model, calledythra
model with ideal access td (or in short thef-hybrid model), is obtained as follows.
We start with thereal-life modeldescribed above. This model is augmented with an
incorruptible trusted party; for computing a functiorf . At special rounds (determined
by the protocol run by the uncorrupted parties) all parties interact Witin a way

that is similar to the ideal process for evaluatihgThat is, the parties hand thefr
inputs toT; (party P, handsgj), and are handed back their respective outpBtégarns

Randomness versus Fault-Tolerance 115

f(&1,...,&n, rf)i). The valueg; that correspond to corrupted parties are decided by the
adversary, who also learns the values handed:bip the corrupted parties. The case
of ideal evaluation of several possibly different functidis. . ., fx is treated similarly,
where the protocol specifies in each invocation of the trusted party which furigtion
evaluate.

putation in the(f, ..., fm)-hybrid model with protocofr, adversary4, inputsX, and
auxiliary inputz for the adversary, analogously to the definitionesc, 4(X, z) in
Section 2.1. (We stress that herés a hybrid of a real-life protocol with ideal evaluation
callstoT.)

Security in the hybrid model Protocols for securely computing a functignin the
(fq, ..., fx)-hybrid model are defined in the usual way:

Definition 2. Let fq,..., f, andg be n-party functions and let be a protocol for
n parties in theg fq, ..., fm)-hybrid model. We say that t-securely evaluates g in the
(f1, ..., fm)-hybrid model if for any t-limited adversaryA4 (in the (fq, ..., fy)-hybrid
model) there exists an ideal-process adverSamnose running time is polynomial in the
running time ofA4, and such that, for any input vectéfor the parties and any auxiliary
input z for the adversary,

- d froesfm, =
IDEALg s(X, 2) = EXEC,"" "(X, 2). 2

If A andS are passive adversaries, then we say thatprivately evaluates g in the
(f1, ..., fm)-hybrid model.

Replacing ideal evaluation with a subroutineReplacing a call of protoceal for anideal
evaluation off; with a call to a real-life subroutine protogglis done in a straightforward
way: the code ofr within each party is changed so that the call for ideal evaluatidi of

is replaced with an invocation @f. The value to be handed to the trusted party is used as
input to p;; and, in additionp; is given a new, unused part of the party’s random input.
Once the execution gf; is completed the local output is treated as the value returned by
the trusted party, and the executiormofesumes. We assume that all parties terminate
protocolp atthe same round. Let’-#m denote protocat where each ideal evaluation
call to fj is replaced by an invocation of protocgl.

Theorem 1[C2]. Let fi,..., f and g be n-party functiond et = be an n-party
protocol that t-securelgresp, t-privately) computes g inthéfy, . .., f)-hybrid model
in away that no more than one ideal evaluation call is made at each tdugtgs, . . ., pm
be n-party protocols that t-securdliesp, t-privately) compute {, . . ., fy, respectively
Then the protocak *+#m t-securely(resp, t-privately) computes g

2.3. Other Definitions

Measuring randomness We measure the amount of randomness used by a protocol as
follows. We provide each partly; with a random string; of independent and uniformly

116 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

distributed symbols in the s¢0, 1,..., p — 1}, for somep. Letd, be the rightmost
position on the tapr that partyP, reads. In this case we say that pdetyisedd; - [log p]
random bits

Definition 3. A d-random protocol is a protocol such that, for every input assignment
X and every auxiliary input, the total number of random bits used by all partiesviary
execution is at modd.

We stress that the definition allows, for example, that in different executions each
individual party will toss a different number of coins. This number may depend on both
the input of the parties, and previous coin tosses.

Circuits. In what follows we represent the functions computed by the parties as arith-
metic circuits. That is, we fix a primg > n (wheren is the number of parties); the
circuit consists of two types of gates: addition modpland multiplication modula.

All gates have fan-in two, and unbounded fan-out. The size of a circuit, dengtid

the number of gates in the circuit (although, to measure the complexity of our protocols,
m could be taken as the number of multiplication gates only). We remark that a boolean
circuit (e.g., a circuit consisting of standard Or, And, and Not gates) can be transformed
into an equivalent arithmetic circuit in a way that preserves the number of gates, up to a
small multiplicative factor. For instance, consider the transformatioma = (1 — a);

aAND b= a-bjandaorb=1- ((1-a)(1—h)).

For simplicity of presentation and analysis we concentrate on secure evaluation of
deterministicfunctions. Still, as a side-remark we sketch a way for dealing with prob-
abilistic functions. The idea is to “share” each random input to the circuit among the
parties in a way that prevents the adversary from influencing the chosen value, and guar-
antees that the adversary gathers no information on this value on top of the information
leaked by the function value. More precisely, Aebe a circuit that has+ 1 input wires,
and a single output wire whose value equals the sum of the inputs fhddiven a
randomized circuiC with random input wires, ..., ry, construct a circuiC’ that is
identical toC except that inC’ eachr; is replaces by arA circuit, denotedA;. Each
party P; with j <t + 1is assigned to thgth input of eachA;. (This is in addition to the
other, regular input wires assignedRp) P; chooses a random value@F[p] for each
one of theA-inputs assigned to it, and from this point on treats each such input wire as
a regular input wire. The parties now proceed to eval@ate

3 It is standard to view a random selection in the{getl, . . ., p — 1} as “choosing’flog p] random bits.
This can be justified either by entropy considerations, or simply by the fact that to choose a random number
in{0,1,..., p — 1} anexpectechumber ofO([log p1) random bits suffices (simply choo§leg p] random
bits; if you get a number in the range, 1, . .., p — 1} output this number; otherwise, try again). Hence, any
protocol that usesrandom bits according to our definition can be converted into a protocol that uses expected
O(r) random bits in a setting where only choiceg@n1} are allowed. Alternatively, we can restrict ourselves
to choices in{0, 1} and consider thevorst casenumber of random bits if we allow a (small) probability of
failure.

Randomness versus Fault-Tolerance 117
3. An Overview of the Protocol of [BGW] for Passive Adversaries

Our construction for passive adversaries, described in the next section, uses components
used in the general construction of [BGW] tesecurely computing any function in the
presence of passive adversaries, for ary n/2. Therefore, we present in this section
a brief overview of [BGW]. The construction (and its proof) is presented in a modular
way, using the formalism from the previous section. This form of presentation enables
us to use the components of [BGW] without reproving their security from scratch.

In the [BGW] protocol the parties first agree on an arithmetic circuit for the function
f to be computed. In particular, the parties agree on a ppmen (all the arithmetic

in what follows is done modul@) and onn distinct elementgq, ..., un in GF[p] (all
polynomials in the protocol will be evaluated at thesevaluation points; for example,
we can choos@; = 1,..., uy, = n). Each party is assigned to some of the input wires.

The party’s input consists of a value for each of the input wires assigned to it. Each
output wire of the circuit is assignhed to one or more parties; these are the parties that
will learn the value of this wire.

First, each party uses Shamir’s secret-sharing scheme to share among the parties the
value of each input wire assigned to it. Then the parties evaluate the circuit in a gate-by-
gate fashion (from inputs to outputs); for each gate, the parties engage in a protocol for
computing shares of the output value of the gate from their shares of the input values
of the gate. Finally, the parties let each party reconstruct the values of the output gates
assignedtoit. More precisely, the [BGW] protocol consists of a “high-level” protocol for
evaluating the circuit; this protocol uses as “subroutines” protocols for secure evaluation
of the followingn-party functions:

Secret sharing. SHARE,(S, ¢, ..., &) = F(u1), ..., F(un), wheres € GF[p] is the
“secret” to be shared, denotes the empty input, aid) is a random polynomial of
degreet in GF[p] with F(0) = s. Let SHARE,; denote the functioSHARE, where
the dealer (i.e., the party with nonempty inputPs Note that we do not specify how
the coefficients of are chosen; this is regarded as the “intrinsic randomness” of the
functionsSHARE.

Evaluating an addition gate. ADDp(a4|bs, ..., @y|by) = a1 + by, ..., a, + by (where
“|” denotes concatenation). This function for evaluating an addition gate is trivial and
can be computed securely without any interaction between the parties.

Evaluating a multiplication gate. MULT,(a1]bg, ..., anlbn) = C(u1),..., Clun),
whereC is distributed uniformly among all polynomials of degreever G F[p]
with free coefficientn - b. Herea (resp. b) is the free coefficient of the lowest degree
polynomial A (resp.,B) satisfying A(ui) = & (resp.,B(ui) = by) for all i. (Also
here we do not specify how the coefficients@fare chosen; this is the “intrinsic
randomness” of the functionuLT.)

Reconstruction. RECON$, w(@1, ..., an) = d1,...,an, WhereW C [n], anda; =
(a1, ...,ay) if i € W, ande; = ¢ otherwise. In the high-level protocol the parties in
W will interpolate a (degre€) polynomial A satisfyingA(ui) = & for all i, and will
output A(0).*

4 An apparently simpler formalization of functiseconswould be to letrj = sif i € W, wheres is the

118 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Theorem 2[BGW]. Lett < n/2.Then there exist protocols for t-securely computing
each of the above four functiaria the presence of passive adversaries all i € [n]
and WcC [n].

We do not prove this theorem here. Yet we note that the protocols for computing
SHARE, i andRECONS, w are just Shamir's secret sharing and reconstruction protocols
[S1]. The secret sharing protocol requires the dealer to choasdom values i F[p];
namely, O(t log p) random bits. The functiompD, can be computed by each party
locally summing its two inputs. Below we sketch Rabin’s simplification of the protocol
for securely computingauLt,,, as it appears in [GRR]. This protocol requires each
participating party to choog@(t log p) random bits (hence atotal 6f(nt log p) random
bits in each invocation of the multiplication protocol).

The multiplication step JiGRR. First, each party?, locally computes the valud =

g - bj. These values define a polynomia(x) whose free coefficient is the valae b.
However, the degree dD is 2 (and nott) which may lead to problems in revealing
the output at the end. In additioB, is not even a random polynomial of degree(far
instance,D cannot be irreducible). We overcome these problems as follows. We show
below that there is a linear combination

2t4+1

D) = > nD(u), €)
i=1

where they;’s are known coefficients. Once this is established, the parties can proceed
as follows: Each party?, (1 < i < 2t + 1) chooses a random polynomial (x) of
degrea whose free coefficientid . It then sends\; (1) to P;. Each partyP; computes

= Y1y i, whereo ; is the value thaP; receives fromP.. It holds thata;
|s P.’s share for the polynomiah (x) = Y2411 A; (x) which is a random, degree
polynomial whose free coefficient 54" 1 D(ui) = D(0).

It remains to showy,’s that satisfy (3). Denote by = (dg, dy, ..., dx) the vector
of coefficients of the polynomidD and letV be the(2t + 1) x (2t + 1) Vandermonde
matrix whose(i, j) entry (for 1< i, j < 2t + 1) contains the value -1 . Also denote
D= (D(1), D(w2), ..., D(uaty1)). With this notat|on we get thdd = V - d. Since
V is nonsingular (see e.g., [vLWY]), we can wride= V-1. D and note that the value
that we are interested in sharlngJ$O) = dp, the first element aofl, which can therefore
be written asD(0) = dp = Y2+ V.t - D(ui) (whereV 1 is a fixed matrix).

For completeness, we state the following theorem:

Theorem 3[BGW]. Lett < n/2.Then given an arithmetic circuit for computing an
n-party function f there exists a protocol for t-securely computing f in the hybrid

free coefficient of the polynomiah() satisfying A(uj) = & for all i. However, this formalization imposes
an additional (and unnecessary) secrecy requirement, namely, that even the paNie®inot learn the
inputs of the other partie® the reconstruction protocoMeeting this additional requirement would require
unnecessarily complex protocols.

Randomness versus Fault-Tolerance 119

model with passive adversaries and with ideal access to the functiosrs, ;, ADDy,,
MULT,, andRECONS, w, for alli € [n] and W C [n].

Using the composition theorem (Theorem 1), we get that fortaayn/2 there exist
protocols fort-securely computing ang-party function f in the presence of passive
adversaries. The number of random bits used by these proto(siatlog p) (where
m is the size of the circuit forf).

4. Our Protocol for Passive Adversaries

In this section we present our randomness-efficient protocol with respect to passive
adversaries. For simplicity, we restrict the presentatiaeterministidunctions where
each party has boolean input and output. That is, we prove the following theorem:

Theorem 4. Lett < n/2.Then any function f {0, 1}" — {0, 1}" that has a circuit of
size m can be t-privately computed by a(@logn 4 (m/n)t°logt)-random protocal

We first present our protocols assuming the existence of a trusted dealer whose role is
restricted to distributing random values to the parties. The trusted dealer does not receive
any messages and has no input. Formally, we present and analyze the protocol in the
hybrid model, with ideal access to a function that takes no input, and generates outputs
from a distribution to be determined in what follows. At the onset of the protocol the
parties first evaluate this function (denotealND,,), and use the local outputs as their
random inputs for the rest of the protocol. In Section 4.3.3 we present a simple protocol
that securely evaluat&anD,,.

4.1. Overview

Known generic constructions of protocols for secure computations share the follow-
ing structure, described in the previous section: First, each party shares its input; next,
the parties evaluate the given circuit in a gate-by-gate manner from inputs to outputs,
maintaining the property that the value of each wire in the circuit is shared among the
parties. Finally, the parties reconstruct the value of the output wires from their shares.
Our approach can be applied to any protocol that follows this outline. For concrete-
ness, however, we concentrate on the construction of [BGW] (reviewed in the previous
section).

We develop a variation of the above outline. Instead of having the value of each wire
shared amongll parties, and havingll parties participate in evaluating each gate, we
use a different method. We partition the parties into sets ofsize2t + 1 which we
call teams The input of each party will be shared only among the members of its team
(using the [S1] and [BGW] secret-sharing procedure). Each gate will be assigned a team,
and will be evaluated only by the parties in that team. Consequently, the output wire of
each gate will be shared among the parties in the corresponding team. Eackafthe
teams will be assigned to roughty/(n/s) = m - s/n gates.

To evaluate a gatg, each party of the corresponding tednfirst receives a share of
the value of each of the two input wires to the ggtdhese shares are communicated

120 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

by the parties of the teams that evaluated the gates leading to those wires. NoWw team
invokes the procedure of [BGW] for evaluating ggteThis can be done singe> 2t.)
At the end of this computation, the partiesTinhold shares of the output wire of the
gate. When the values of the output wires of the circuit are known (in a shared manner),
the corresponding teams provide the specified parties with the information needed to
reconstruct these values.

The random input of the parties (needed for sharing their inputs and for the gate
evaluations) is provided by the trusted dealer (i.e., by the fun&inb,), in a way
that guarantees that the view of each subset of at tpsirties depends only on a
“small” fraction of the overall random input of the system. Thus, the random inputs
dealt to the parties may have only limited independence, which leads to saving in overall
randomness.

4.2. Detailed Description(with Trusted Dealér

We now state the protocol in detail, in tRaND,-hybrid model. Let the team size be

s = 2t + 1 and the number of teams lle= n/s (we assume for convenience that

n is divisible bys; see Remark 1 below). Next, partition theparties intok teams of
parties of sizes each. Each team will evaluate (at moéty= [m/k] gates. We also
specify an enumeration of the parties in each team. DenotBrhythe jth party in
teamT. Let p > shbe a prime, and letq, ..., us bes evaluation points, as before. All
the computations described below are o@&d¥[p]. First the parties perform an ideal
evaluation call tRANDp, and use the outcome as their random input for the rest. Next, we
describe the “high-level” protocol in the hybrid model with access to ideal evaluation of
the functionsSHARE; ;, ADDs, MULT s, andRECONS w. (These functions were described

in the previous section.)

1. (INPUT SHARING)
For each partyr ; the partiesin teari invoke the trusted party for ideal evaluation
of SHAREs j with dealerPr ;. The dealer’s input tGHARE; j is its input to the
computation.
2. (COMPUTATION)
The gates of the circuit are evaluated one by one from the inputs to the outputs.
Each gate is evaluated by the parties in the tednassigned to it, as follows:
e Collect shares of inputs to the gatéaton hand-off”):
Let x andy be the input wires of gatg, and letT, and T, denote the teams
that hold the shares for these inputs (the inpugdy may come from either
the inputs for the circuit, as shared in the°UT SHARING stage, or from the
outcome of previously evaluated gatésjhen theith party inT, and theith
party in Ty send their shares of the valuesxofndy, respectively, tdPr; (i.e.,
theith party inT). Letg; (resp. o) denote the value received froRy, ; (resp.,
Pr,.i)- Now, for each of the two input wires to gajethe parties il hold shares
of a polynomial of degreewhose free coefficient is the value of that wire.

5T, T, andTy need not be disjoint, or even distinct.

Randomness versus Fault-Tolerance 121

e Compute shares for the output of the gate
Once the parties i receive their shares of the input wires, they evaluate the
gate by invoking the trusted party for evaluating the appropriate function (i.e.,
eitherADDg Or MULTs).
At the end of this step, the parties in tedithold shares of a polynomial of
degree (overG F[p]) whose free coefficient is the value of the gate.
3. (OuTPUT)
Let T be a team that computes the value of an output wire of the circuit. Then
the parties inT invoke the trusted party for evaluating the reconstruction function
RECONg w WhereW C [n] is the set of parties that are assigned to this wire. Next,
each party iW interpolates a (degrd¢ polynomial A satisfyingA(u;) = & for
all i, and outputsA(0).

The high-level protocol above is turned into a full-fledged protocol by replacing the
ideal evaluation calls with subroutines that securely evaluate the corresponding functions;
for concreteness we use the subroutines of [BGW], sketched in the previous section.

The functiorRAND,,. We now turn to describing the distribution provided ’anD,,.
(Figuratively, this is the distribution provided by the trusted dealer.) The outputas,
consists oM random elements i@ F[p], denotedZ,, ..., Zy, where each coordinate

out of 1,..., M is assigned to exactly one party. Each party receives the elements
whose coordinates are assigned to it. The elements will have only limited independence;
specifically, they will be only8-wise independent. The valud and g, as well as the
number of field elements received by each party, are determined below.

We count the number of random element&Gk[p] required by the protocol. In the
INPUT SHARING stage the dealer distributes coefficientmafegreet polynomials (one
polynomial to each party). Then the dealer distributes additi®palynomials per each
multiplication gate to be computed (one polynomial for each party in the simulating
team). Each polynomial is defined ycoefficients inG F[p]. Therefore, the dealer
generates a total dl = n-t + m-s-t numbers (inGF[p]). In order to save in
randomness, the dealer does not generate thilesambers independently. Instead, we
observe that the view of each subset (of size at jadtparties depends on a “relatively
small” set of at mosg = ©((m/n) - t*) numbers, as follows:

e The number ofhareghat a single party?, sees is counted as follows:- 1 shares
are seen in theNPUT SHARING stage (one share from each membePd$ team).
For each of the (at most)multiplication gates thaP, evaluates, it gets messages
that depend on the inputs and outputs of all membeid 'sfteam. These add up
to at mostO (¢£s) shares. Hence, any settgbarties sees at mo€i(t - £ - s) shares
which are thus depending on at m@tt? - ¢ - s) numbers that the dealer distributes
as coefficients of polynomials.

e In addition, every partyp; receives some numbers directly from the dedleum-
bers in the NPUT SHARING stage (to share its input among its team members); plus,
for each of the (at most) multiplication gates thal®; takes part in their evaluation,
it getst numbers (coefficients of a polynomial to be used for sharing its vRIug.
Altogether, a set of parties get©(t2¢) numbers directly from the dealer.

122 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

To conclude, by the choice of parameters{ ©(t) and¢ = ®(m/k) = ©®(m-t/n)), the
view of a subset of at mosparties depends on at ma3tt2¢s) = O(t3¢) = O(t*m/n)
numbers from the distribution. Hence the dealer genefdtesimbersZy, Z,, ..., Zy
in G F[p] which are uniformly distributed and age= © ((m/n) - t*)-wise independent.

We describe two ways for computing the desired distribution. A straightforward
method proceeds as follows. For the purpose of this method, we assume that the prime
p satisfiesp > M (this strengthens the assumption made beforefhats). The dealer
chooses a random polynomiBix) in G F[p] of degrees and then generates thé
numbersZ; = R(1), Z, = R(2), ..., Zy = R(M). It is a well known fact (and easy
to prove) that ifp > M theseM numbers arg-wise independent. This procedure uses
O(B - log p) = O((m/n) - t* - logm) bits of randomness.

The amount of randomness used can be further reduced using a more careful analysis
of the needed independence of the numbers generated by the dealer. The view of any
subset of size of parties indeed depends on at m@st= ©((m/n) - t%) numbers
generated by the dealer. However, we do not redksgubsets of sizg to be uniformly
distributed. It suffices that thf) subsets of size8, defined by the({) subsets ot
parties, be uniformly distributed. To take advantage of the relaxed requirement, we use a
simple extension of the results of [S2] and [KM4] (which, for self-containment, appears
in Appendix 6.2). The dealer will uniformly sample a spacéMbtuples overG F[p],
which is constructed to suit the speciﬂf} subsets (we emphasize that, for the purpose of
this method, the requirement that> s suffices). By [S2] and [KM4], there is a sample
space of siz€}) p? such that if we sample the space uniformly, then the projection of
the chosen vector on any of ti(&) subsets is uniformly distributétdTo sample this
spaceQ(t log(n/t) + (m/m)t*log p) = O(t log(n/t) 4+ (m/n)t*logt) random bits are
needed.

4.3. Proof of Security

Lett < n/2, and letf be the computed function. Fix an arithmetic circuit foland a
prime p. Lets be the (full-fledged) protocol described above with respect to that circuit.
We show that protocat satisfies the conditions of Definition 1 via the following two
claims. Letrg be a protocol identical to protocal with the exception that the parties
use truly random inputs for the protocol, instead of using the outpetsb,. (That

is, R is a protocol in the real-life model, whereass a protocol in the&kAND,-hybrid
model.)

Claim 1. Protocolrg t-securely computes. fThat is for any t-limited(passive real-
life adversaryA there exists an ideal-model adversahsuch thatfor any input vector
X and any auxiliary input z

- d =
IDEAL f,5(X, Z) = EXECyy, 4(X, 2).

6 Both [S2] and [KM4] deal with the fields F[2] but can be extended 16 F[p]. We note that the time-
complexity of sampling in the sample spacedy(n, log (rt‘) B) but the complexity of the known algorithms

that find such a space ﬂmly((?)). This is polynomial only fot = O(1) but can be done “off-line” and can
be hard-wired into the protocol.

Randomness versus Fault-Tolerance 123

Claim 2. For any real-life adversary, the distributions describing the global output
of the parties int andnr are identically distributedThat is for any input vectok and
any auxiliary input ZEXEC,, (X, z) = EXECE" (X, 2).

Claim 3. There exists an @?logn+ (m/n)t®logt)-random protocol that t-privately
evaluateRAND;,.

The above claims (to be proven below) imply Theorem 4. O

4.3.1. Proof of Claiml

Let# denote the high-level protocol that corresponds to protegah the hybrid model
with ideal evaluation access to the functi®RE; ;, ADDs, MULT s, andRECONS w . It
suffices to show that is t-secure in the hybrid model. Theorems 1 and 2 then imply
that protocolry t-privately evaluated in the real-life model.

Given a real-life adversary, the ideal-model adversaty proceeds via (black-box)
simulation of.A. That is, given a seé€ of corrupted parties, inputs; | P, € C}, and
auxiliary inputz, adversarys proceeds as follows. Firs§, providesA withC, {x; | P €
C}, z. Next,S generates simulated values sent by the uncorrupted parties, and simulated
values given by the trusted parties for the evaluated functions. These values are set to
random elements i F[p]. In the reconstruction stage, provides.A with random
field elements that “interpolate” to the function value. A more complete description of
simulatorS appears in Fig. 1.

Analysis of simulato§. Fix some input vectox and auxiliary inputz. We show that

IDEAL {5 (X, 2) = EXEC] AEAPP MUTRECONS 1 7).
Recall that each one of the random variable®EALfs(X,2) and
EXECS "y APP MU RECONS R 7) consists of the outputs of the parties plus the adversary
output. The analysis consists of two steps:

1. Show that4’s view of a simulated execution is distributed identically to its view of
a real execution. (The adversary view consists of its random and auxiliary inputs,
followed by the internal data of the corrupted parties and the messages received by
them.)

2. Fix some possible value for A’s view. Let E, denote the output values of the
uncorrupted parties in a real-life executionsofin which A has viewwv. Let I,
denote the outputs of the uncorrupted parties in an execution of the ideal process
with S, in which the simulated!’s view isv. (Note that bottE, andl, are uniquely
determined givex andv.) ThenE, = I,.”

Showing step 2 is straightforward: the valiyds the function value (provided by the
trusted party) at inpuX. It follows from the description oft that E, equals the value
of the circuit on input. (This follows from the fact that the value of each wire in the

7 If the computed function is randomized, thEpandl, are random variables having the same distribution.

124 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Simulator S

Initial input: A setC of corrupted parties, inputx; | P € C}, auxiliary inputz, and random
inputr. In addition,S has access to a trusted party in the ideal model for evaludting

1. Invoke a copy of4, on setC of corrupted parties, inputs; | P € C}, auxiliary input
z, and a sufficiently long portion of.

2. Foreach partfr i, simulate an interaction of teafmwith the trusted party for computing
SHAREsj . That is, for eactPr ; and for each corrupted parfj in teamT, provide. A
with a random number i@ F[p] as the value given by the trusted party in the evaluation
of SHAREs; . If Prj is corrupted, thend hands an input value, denotgtl; , to the trusted
party. Record this value.

3. For each gatg in the circuit, simulate the “baton hand-off” step of the shares of the
input wires to the gate. That is, I&t be the team that computes gateand letT;, T,
be the teams that hold the values of the input wires to the gate. Then, for,eaéh ;
is corrupted andPr, i (resp.,Pr,,i) is not corrupted, then hand a random number in
GF[p]. (If both Pr; and Py, ;, resp.,Pr, i, are corrupted, thepl already knows the
corresponding share and no action is needed.)

4. Once the “baton hand-off” step of a gatés simulated, simulate an interaction of team
T with the trusted party for computing the function that corresponds to géie.,
eitherADDs or MULT). If the gateg is an addition gate, then haotithe sum of the two
input values given by each corrupted party in tekrto the trusted party. If the gate is a
multiplication gate, then hand a random number i F[p] as the value given by the
trusted party to each corrupted party in tedm

5. When the simulation of a gate leading to an output wire of the circuitis complete, simulate
an interaction with the trusted party for computiRBCONS w, whereW is the set of
parties that are to learn the value of this wire. This is done as follows. If no corrupted
party is inW, then no action is needed. Otherwise, invoke the trusted party for the output
value of the main functionf. Let v be the value received from the trusted party. Tet
be the team that holds the value of this wire, andhjedenote the share that hands
its trusted party fOoRECONS v, in the name of each corrupted pafy ; in T. Then
choose a random polynomi&l of degreet such thatA(0) = v and A(uj) = & for
each corrupted partlr i . (Note that this can always be done sipéeorrupts at most
parties.) Next, for each corrupté?t ;, hand A the vector(A(i1), . . ., A(is)).

6. WhenA generates its output, output whatevédoes and halt.

Fig. 1. Description of the simulator for protocdl.

circuit equals the value at point O of the polynomial that the parties associate with this
wire.) Since the circuit computes the function we h&ye= 1,.

We complete the proof by showing step 1. That is we show, by induction on the number
of rounds, that the adversary views of the real and simulated executions are identically
distributed. To see this, fix a prefig of the adversary view up to some round, and
consider the probability of some continuatioaf this prefix to the next round. We claim
that the probability that continuatianoccurs, given prefixp, is identical in the real and
simulated interactions. To see that, consider the three possible types of components of
the adversary view at a given round:

1. Messages arriving from the trusted party, regarding an evaluation of sHhReE
OrMuLT. In aninteraction in the hybrid moded, receives up tb shares of arandom
polynomial of degree with fixed and unknown free coefficient. In the simulated
interaction, the corresponding (at mostvalues received byl are independently
chosen random numbers@F[p]. However, these two distributions are identical.

Randomness versus Fault-Tolerance 125

2. Messages arriving from the trusted party, regarding an evaluatisa@dNS In
both interactions these are values of a polynomial that is uniformly distributed
among all degreepolynomials whose free coefficient is equal to the valoéthe
corresponding output wire of the circuit on inpi&tsand who matches the values
held by the corrupted parties.

3. Messages arriving from uncorrupted parties in a “baton hand-off’ stage. These
messages are completely determined by the prefix

This completes the proof of Claim 1. O

4.3.2. Proof of Claim2

Fix some values of the inpufsfor the parties, and auxiliary inpatfor the adversary.
We show that

EXECrp A (X, 2) = EXECh " (X, 2). (4)

Recall that each side of (4) consists of the outputs of the uncorrupted parties, con-
catenated with the output of the adversary. It can be readily seen that the outputs of
the uncorrupted parties in the executionmofind in the execution of are identical.

(In both cases, these are the corresponding output values of the evalatgadinistic
function f oninputX.) It remains to be demonstrated that the adversary’s view is equally
distributed in the two cases.

To see this, we first observe the structure of the information of a particular Barty
This information (in addition to the party’s input) consists of:

1. Random numbers, obtained from the ideal evaluatiaraeiD,,, to be used by~
as coefficients of polynomials (using whiéh will share its information). These
includet coefficients of the polynomiaD; that P receives in theNPUT SHARING
stage (to be used to share its input); and, during tb&rUTATION stage, for
each of the (at mogt) multiplication-gate evaluations in whidR participates it
receives additional coefficients to be used in the evaluation. Altogether, at most
t(¢+ 1) = O(t - £) elements inG F[p] are received, to be used as coefficients.

2. Shares of values, sent & = Py, , by other parties (each such share is the
value of Q(u,) for some polynomial) of degree whose free coefficient is some
informationS). Specifically, these are:

e For each partyp; in B’s team, Ty, a share ofP;’s input; this message can be
written asQ(u,) = Ztm:l Z, " + S, for some numbergy, provided by the
dealer ands = x;.

e For each of the (at most) multiplication gates in the evaluation of whidh
participatesP; receives during the computation from each patyf its team
a share of a valus that P, computes locally. This message can be written as
Q(ur) = an:l Z, " + S, for somez,, provided by the dealer.

e For each such gate} also receives shares of the two inputs on which the
computation is to be performed (unless it already has these shares). Each such
message can be written §8u,;) = Zle(z;zl Zy, " + §), where each
summand is a share generated by one of the parties in the team that evaluated
the previous gate, during the evaluation. The, are numbers provided by the

126 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

dealer to these parties. (The case where the input to the gate is onexgétise
slightly simpler.)
Altogether,P, receives a total of + £(s + 2) elements irG F[p].

Next, we examine the messages that an arbitrary subset (coalition) of parties of size at
mostt can see. Each of the messages of type 1 received by these parties is just a different
numberZy in the space generated by the dealer. Altogether, the messages of type 1 seen
by the parties in the subset are j@¢t>¢) of the Z,’s.

For messages of type 2, observe that each message can be associated with a polynomial
as discussed above. Each polynomial is defined by a free coeffiantit numberszy
used as coefficients and provided by the dealer to party,Rg¥his is not necessarily
the party that sends the message; the party that sends the message may only relay on
it). For a partyP;, we denote by; 4 thedth polynomial that this party creates and uses.
Considering the sets of numbetg used in each polynomial in the protocol, we observe
that the sets are pairwise disjoint. Furthermore, for each message which is associated
with a polynomiab; g, for P; which isnotin the set of parties under consideration, these
numbers are also distinct (by definition) from any of thes directly received by any
corrupted party.

The total number of shares a subset of at mestrties can seets (s+¢- (25+5S)) =
O(t - ¢ - s). Each of these shares can be, in the worst case, of a different polynomial;
therefore, these shares may depend on at 19gtt - £ - s) of the Z,’s. Together with
the O(t?¢) numbersz, that the set of parties sees directly from the dealer (as messages
of type 1), we have that the communication seen by the set of parties depends on at
mostO(t? - ¢ - s) of the Z,’s. Usings = O(t) and¢ = ®(m/k) = ®(m - t/n), we
have that the communication seen by the set of parties depends on @ fwgin)t)
valuesZy. To generate these numbers, the dealer sampled a sample space of vectors over
G F[p] such that the projection of the chosen vector on specific subsets, including the
subset of numbers that the view of the present subset of parties depends on, is uniformly
distributed. Consequently, the distribution of the adversary’s view in the case where the
dealer deals totally independent numbers is the same as in the case where it chooses
them according to our scheme. O

Remarkl. Inthe above we assume thmeis divisible bys. If not, thenn = ks+r for

some O< r < s. Inthis case we let the lastparties share their inputs among the parties
of the first team and then thes@arties do not further participate in the protocol. When
one of their inputs is required then the first team will provide the corresponding shares.
This implies that the view of parties in the first team contains slightly more messages
and hence requires slightly increasing the valug @by a constant factor).

4.3.3. Proof of Claim3 (the Protocol without Trusted Dealer

The protocol of Section 4.2 assumes a trusted dealer whose role is restricted to choosing
random integers i F[p] and distributing them to the parties. Equivalently, we think

of that protocol as running in a hybrid model with ideal access to the funetiaib,
described above. (Recall that functieBanD,, takes empty input and generatesidn

tupleZ = Z,,..., Zy according to a distributio®, which is either the distribution

Randomness versus Fault-Tolerance 127

from Appendix 6.2 or g8-independent distribution. Each party receives the appropriate
subset ofZ.)

We describe the following simple protocol for securely evaluaRagb,. Applying
the composition theorem once more, we obtain a protocol that securely evaluates any
function without a trusted dealer. The protocol for securely evaluaing, proceeds
as follows. We designatet 1 parties (sayPs, . . ., Pry1) who, in addition to their other
roles in the protocol, will “double up” as the trusted dealer. Thatis, each of the designated
parties (callediealers) generatedd = n -t + m-s-t values inG F[p] and distributes
the values to the parties as described for the trusted dealer. Next, each of plaeties
locally outputs the sum (oves F[p]) of the values received frorRy, ..., Py;. Letp
denote this protocol.

Analysis of protocop. First note that the amount of randomness used&iarger by a
factor oft + 1 than the amount of randomness used to generate a $ikgiple from the
above distribution. Consequently, the protocoDi&? logn + (m/n)t®logt)-random.

We show that the protocoiprivately evaluateBAND,. Informally, as long as at most
dealers are corrupted, the random choices of the (at least one) uncorrupted dealers make
sure that the output of each party, being the sum of the values received from the dealers,
is uniformly distributed. Furthermore, the outputs of the partiegairelependent.

A rigorous proof requires a bit more care. Recall that for each real-life adversary
that interacts with the protocol we need to construct an ideal-process adv8tsary
that causes the global output of the ideal process to be distributed identically to the global
output of runningo. For this purposeSganp Will first invoke the trusted party faRAND,,
and will obtain the outputs of the corrupted parties in the ideal process SNgxtwill
generate a view a#l that has the “right distribution”, conditioned on the event that the
outputs of the corrupted parties are identical to the values received from the trusted party.
A more complete description &:ano appears in Fig. 2.

Simulator Sgano

Initial input: A setC of corrupted parties, auxiliary inpat and random input. In addition,
Sranp has access to a trusted party in the ideal process for evaluetimy,.

1. Invoke the trusted party f&@aNDp, and obtain the output values of the corrupted parties
{yi | B e C}. Recall that each output valug consists of a sequence of elements
Zs),..., 25 inGF[p].

2. Invoke A on the seC of corrupted parties, auxiliary inpat and random input. Next,
determine the messages to be sent from the uncorrupted dealers to the corrupted parties,
as follows:

Recall that each deald® generateVl elements inG F[p]. Denote these elements
by Zi 1, ..., Zj,m. Each coordinats € [M] is assigned to one of the parties, and the
corresponding field element is sent to that party. $ e assigned to some corrupted
party P;. If P is corrupted, theiZ; s is determined by the protocol and the adversary's
random input . (Recall that the adversary is passive, thus even corrupted parties follow
the protocol.) So it remains to determidgs for uncorrupted dealerB,. These values
are chosen at random fro@F[p], under the restriction thats = ZdealersR Zjs.

Once theZz; s's are determined, group them into messages sent from uncorrupted
dealers to corrupted parties, and hand these messages to

3. WhenA halts, output whateved outputs and halt.

Fig. 2. Description of the simulator for protocpl

128 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Analysis of simulatoSz.p. Fix some value for the auxiliary inpat We show that
IDEAL pany. S (2) = EXEC, 4(2). (5)

Assume, without loss of generality, that the (real-life) adverségutputs its entire
view of the interaction. This view consists of the €&tthe auxiliary inputz, some
random input, and the values received from the uncorrupted dealerst Hehote the
number ofuncorrupted dealers. To see that (5) holds, we observe that the distributions
in both sides of (5) are obtained in the same way from a single distribultnY . This
distribution is obtained by choosirigM -tuples independently fron® and summing
them coordinatewise, modulp. (As a side remark we note that distributiogsand
ZUD are in fact identical.)

It is readily seen from the protocol and from the constructio§:Qf, that the distri-
bUtIONSIDEAL ranp, Swu (Z) @NDEXEC, 4(2) are obtained from distributiog *+? in the
same way, as follows. Choose Mtuple Z1, ..., Zy from Z&D | Let v; denote the
collection of the values out df4, . .., Zyy whose coordinates are assigned’to(That
is, vi = Zg, ..., Zg for some predefined value bj) The output of each uncorrupted
party P, is set tov;. The view of the adversary (eithgror Sganp) is Obtained as follows.
First, include the set of corrupted parties, the auxiliary inpgtand the random input
It remains to determine the values received from the uncorrupted dealers. These values
are chosen randomly fro@ F[p], under the constraint that the output of each corrupted
party P matchesy;. That is, lets be assigned to some corrupted paRy For each
dealerR;, let Z; s denote the value thd; receives fromP,. If P, is corrupted, therZ; s
is determined by the protocol and the adversary’s random inplihe element<Z; s
for uncorrupted dealer8 are chosen at random fro@F[p], under the restriction that

Zs = ZdealersP. Zi,S-

5. An Overview of the Protocol of [BGW] for Active Adversaries

The general outline of the construction of [BGW] for the case of active (Byzantine)
adversaries is very similar to the case of passive adversaries. Yet, the definitions of the
four “building blocks,” SHARE, ADD, MULT, RECONS have to be modified to reflect the
additional power of the adversary. As before, pet- n be a prime and let,, ..., un

ben evaluation points. We now define the followingparty functions:

Verifiable secret sharing.vss,(s|F (), ¢, ..., &) = a3, ..., an, Wwheres € GF[p]U
{e}, andF (.) is eithere or a polynomial of degreeoverGF[p]. If s # ¢, then
ai = E(ui), whereE() is a random polynomial of degragewith E(0) = s.
(This case represents a sharing by an uncorrupted deale K andF () = ¢,
thena; = ¢. (This case represents an unsuccessful sharing by a corrupted dealer.)
Otherwise § = ¢ and F() # ¢), thena; = F(ui). (This case represents a
successful sharing by a corrupted dealer; here the adversary can determine the
outputs of all parties®)

8 This formalization captures VSS schemes where the uncorrupted parties know at the end of the sharing
phase whether the sharing of a secret was successful. Schemes where this information becomes known only
later (such as some of the schemes in [GRR]) should be formalized differently.

Randomness versus Fault-Tolerance 129

Looking ahead, we note that uncorrupted parties will invegswith s # ¢.

Evaluating an addition gate. The function for evaluating an addition gate remains
unchangedabbDn(az|by, ..., anby) = a3 + by, ..., &y + by,

Evaluating amultiplication gate. ACT-MULT y(a1|by|Cy, . . ., @nlbnlCh) = C(ua), ...,
C(un), where eacls, by € GF[p], ¢ € GF[p] U {¢}, andC is a polynomial
distributed uniformly over all polynomials of degréen G F[p] that meet the
following requirements:

(I) LetA(resp.,B) be the lowest degree polynomial such tAat;) = & (resp.,
B(ui) = by) for at leasin — t of the parties. The€(0) = A(0) - B(0).

(I If ¢ # e, thenC(ui) = ¢ . As in the case of passive adversaries, we do not
specify how the (random) coefficients Gfare determined; this is regarded
as the “intrinsic randomness” of the functiaaT-MULT.

Uncorrupted partieB; will evaluateacT-MULT, with ¢; = ¢. We introduce the;’s

in order to capture the fact that an active adversary may be able to fix (or influence)

its own shares of the polynomi@l. Yet, this capability of the adversary does not

interfere with the secure evaluation of the function. (In particular, the multiplication
step of [BGW] allows the adversary to have such harmless influence.)

Reconstruction.The reconstruction function remains unchanged RECONS, w (a1,

.., @) = d1,...,an, WhereW C [n], ando; = (&g,...,8,) if i € W, and

a; = ¢ otherwise. In the high-level protocol the partieswhwill interpolate a

(degred) polynomial A satisfyingA(ui) = g for at leasin —t valuesi, and will

output A(0).

An additional change from the passive case is that here error correction is required for
obtaining the value of an output line of the circuit. That is, each pBrtyith i € W for
some invocation 0RECONS, w(as, .. ., a,) receives the values, . . ., a,; these values
constitute a perturbed code-word of a Generalized Reed—Solomon code. The value of this
line is the free coefficient of the (unique) degtgaslynomial defined by, . . ., a,. This
polynomial can be computed using the Berlekamp—Welch algorithm. (See, for instance,
[MS] and [S3].)

Theorem 5[BGW]. Lett < n/3. Then there exist protocols for t-securely computing
the above four functions in the presence of active adversaioesall i < [n] and
W C [n].

We do not prove this theorem here. Yet we sketch below the constructions of [BGW]
for computingvss andACT-MULT.

The VSS protocol gBGW]. Here a Verifiable Secret Sharing (VSS) scheme is used
instead of Shamir's secret sharing. (VSS was introduced in [CGMA]; different VSS
schemes are described in[CGMA], [GMW], [BGW], [FM], [CCD], [BCG], and [GRR].)

In general, a VSS scheme makes sure that an honest dealer can successfully share a
secret in a recoverable way, while guaranteeing that even if the dealer is corrupted, at
the end of the sharing protocol the uncorrupted parties hold shares of a well-defined
and reconstructible value. A popular methodology (followed by [BGW] and used in
this paper) for constructing a VSS scheme is to design protocols for secure evaluation

130 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

of the functionsvss andRECONS We sketch a VSS scheme described in [BGW], that
withstandg < n/3 faults.

The dealer, sharing a secetchooses a random bivariate polynontitlof degreet
in each variable, whose free coefficiensisThat is,H (x, y) = 3 ;_ohi,jx'y}, where
hoo = s and the other coefficients are random. Next, the dealer sends the polynomials
fi() = H(ui,) andgi(-) = H(., ui) to eachP,. Then eachP, sendsf;(u;) to each
P, and verifies that the value received fraf equalsg; (1j). (Note that f; (uj) =
H(ui, 1j) = gj(ui).) If any of its verifications fails, the party requests the dealer to
make the corresponding value (i.el (i, uj)) public. Next, each part? inspects all
publicized values. If any of these values does not m&&hprivate share (i.e.fij () and
g 0), thenP, requests the dealer to makg) andg; () public. Again, the parties inspect
the public shares. If a partl finds any inconsistency with its private share, then it
decides to abort this sharing and sets its share to a default 0. Otherwise, it sets its share
of the secret to bdo(ui) = g (0).

The reconstruction protocol (i.e., the protocol for computkegoNg is simple: all
parties broadcast their shares. It is guaranteed that if the sharing protocol completed
successfully, then the unique polynomigl-) = H (0, -) will be reconstructed, using
error correcting techniques of Generalized Reed—Solomon codes. The reconstructed
secret isfo(0) = H(O, 0).

The AcT-MULT protocol of[BGW]. Several methods for evaluating a multiplication
step are sketched in [BGW]. An additional, simpler method is described in [GRR]. Here
we only sketch a simple method that works when the fraction of corrupted parties is
less than dourth. (This method combines techniques from [BGW] with the passive
multiplication step of [GRR].) The method here requires a tota@d @fit? log p) random

bits per multiplication gate. For the case 6f4 n > 3t a total ofO(nt® log p) random

bits are required per multiplication gate.

Recall that, in the case of passive adversaries, evaluating a multiplication gate consists
of each party resharing a locally computed value, followed by local evaluation of a linear
combination of the newly received shares. The same method is followed here, with two
modifications:

e Each party reshares the locally computed value using the VSS scheme described
above. It should be noted that the local evaluation of the linear combination of the
newly received shares can still be done, since it is guaranteed that the share of each
party is a valuefg(ui) of a random polynomial whose free coefficient is the secret.

e For each partyP,, the parties verify that the valug that P, reshares is indeed
the product ofP’s shares of the input wires to the gate. This is done as follows.
Note that all the values that were properly shared “sit on a polynomial” of degree
2t. (This polynomial is the product of the polynomials associated with the input
wires to the gate.) Thus the set of values that were reshared by the parties can be
regarded as a perturbed code-word of a Reed—Solomon code, where the erroneous
entries correspond to the parties that shared incorrect values. As lang 8t the
code-word can be used to identify uniquely and correct upelwoneous entries.

Note that no party knows the entire code-word. Still, the parties hold shares of
these values. The parties use their shares to reconstrugtileomerector of this

Randomness versus Fault-Tolerance 131

code-word. This syndrome, while revealing no information on the values that were
honestly shared, identifies the parties that shared incorrect values (the efficiency
of this computation builds upon the specific choice of evaluation pgintsThese
shares are not used in the computation of the linear combination (3).

For completeness, we also state the following theorem:

Theorem 6[BGW]. Lett < n/3. Given an arithmetic circuit for computing an n-
party function f, there exists a protocol for t-securely computing f in the hybrid model
with active adversaries and with ideal access to functv8s ; , ADDy,, ACT-MULT , and
RECONS,w, for alli € [n] and W C [n].

Using the composition theorem (Theorem 1), we get that there exist protocols for
t-securely computing (in the real-life model) amparty functionf in the presence of
active adversaries for anly< n/3. The number of random bits used by these protocols
is O(mntlog p) (wherem is the size of the circuit forf).

6. Our Protocol for Active Adversaries

In Section 4 we showed how to compute any functigarivately with anO(t2logn +
(m/n)t®logt)-random protocol. In this section we extend the result to the case of active
(“Byzantine”) adversaries. For this, we will need a factot®dfmore randomness than
before. We show:

Theorem 7. Lett < n/3.Thenany function £ {0, 1}" — {0, 1}" that has a circuit of
size m can be t-securely computed by arit®logn + (m/n)t” logt)-random protocal

Proof. The protocolfor active adversaries is identical to the one for passive adversaries,
with the exceptions that the size of teams is increassd@t + 1, and that the various
components of the [BGW] protocol are replaced by their Byzantine counterparts, for se-
curely computing the functionsss, ADD, ACT-MULT, RECONSdescribed in the previous
section. As in Section 4, it suffices to chogse- s ands evaluation pointges, . . ., us.

The protocol for jointly generating the randomness for the computation remains un-
changed, except for the appropriate increase in the amount of randomness generated.
That is, each one df+ 1 designated dealers will sample the distribution and send the
appropriate subset of the obtainBtituple to each party; each party will sum, coordi-
natewise, the tuples received from the dealers. The security guarantees provided by this
protocol are a bit weaker than in the passive case. We capture these guarantees via a
somewhat weaker formalization of the function representing the trusted dealer. We call
this functionACT-RAND;,.

The functionACT-RAND,. We describe the function, denotedT-RAND,, that rep-
resents the requirements from the randomness-generating protocol in the Byzantine
case. There are two differences from the passive case (i.e., from furetion). First,
ACT-RAND,, has to supply the parties with sufficiently many element Bf p] to support
the new protocols. In addition, it has to accommodate the fact that an active adversary

132 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

can modify the outputs of the corrupted parties, as well as to influence the outputs of the
uncorrupted parties (to a limited exteft).

We start by counting the number of field elements fwat-RAND,, should output, and
bound the required level of independence. Each invocation of VSS re@itésvalues
in G F[p]. Evaluating a multiplication gate requir€3(t) invocations of VSS for each
party in the corresponding team. Furthermore, the adversary’s view of the computation
now depends on at mogt= O((m/n) - t®) elements irG F[p]. Thus,ACT-RAND,, will
use the distributiorg which is either the distribution described in Appendix 6.2, with
M = O(n-t?> 4+ m-s- t3) and the appropriate independence guarantees, or simply a
B-independent distribution with the above value\bf

We proceed to formalizeCT-RAND,. This is a distribution oM-tuples of elements
Z1,..., Zy in GF[p], where eacly; is assigned to a party. DistributioA®+1 is ob-
tained by choosingM -tuples independently frotf and summing them coordinatewise,
modulop. FunctionACT-RAND, takes inputss, . . ., vy Wherev;, the input ofP,, is either
¢ or is interpreted as a sequence of elements f®Hij p]. (Uncorrupted parties will in-
VOKeACT-RAND,, with inpute.) The function value iy, . . ., Yy, (party P getsy;), where
eachy; is a sequence of numbers@F[p]. It is helpful to regard the concatenation of
V1, ..., Yo @s anM-tuple Z,, ..., Zy of elements inG F[p], wherey; consists of the
elements whose coordinates are assigndg tdhe M-tuple Z,, ..., Zy is computed
via the following procedure:

1. For each deald®, if v; # ¢, theny; is interpreted as a pait = (v, v{"), wherev|
is interpreted as values for the element&d¥[p] whose coordinates are assigned
to B, andv; is interpreted as aNi-tuple of elements ilG F[p].
If B is not a dealer and # ¢, thenu; is interpreted as; described above.

2. LetZ = Z4,..., Zy be anM-tuple that is chosen from the distributicg(' 2,
under the constraint that for each coordimatkat is assigned to a pari where
v # ¢, the valueZs equals the value specified . (We remark that this condi-
tional distribution is efficiently samplable.)

3. The outputM-tuple Z1, ..., Zy is the coordinatewise sum, modubo of Z with
all the M-tuplesv/” that are not.

Intuitively, the valuev; allows a corrupted part, to influence its own local output.

The valuev]” allows a corrupted deald? to influence the output distribution of the un-
corrupted parties. Nevertheless, the definition@f-RAND,, guarantees that the outputs

of the uncorrupted parties will be uniformly distributed@+[p] and will have at least

the amount of independence guaranteed by distribuioRurthermore, the adversary’s

view in the ideal process for evaluatingT-RAND,, consists only of the projection &

on the coordinates assigned to the corrupted parties, plus some independently distributed
information.

Analysis of the protocol The analysis is very similar to the passive casetletn/3,
and letf be the computed function. Fix an arithmetic circuit foand a large enough

9 For instance, the adversary may have the corrupted parties send totally random values, thus making the
output of ACT-RAND,, totally independent. Intuitively, however, such deviations are “harmless.” This intuition
is made rigorous in the formalization a€T-RAND,.

Randomness versus Fault-Tolerance 133

prime p. Letz be the protocol described above with respect to that circuit. (Protocol
is designed in thecT-RAND,-hybrid model.) We show that protocslsatisfies the con-
ditions of Definition 1 via three claims, similar to Claims 1-3. kgt be identical to
protocolz with the exception that the parties use totally random elemen&Hfp]
for the protocol, instead of the output aET-RAND,. (That is, R is a protocol in the
real-life model, and does not use callsator-RAND,.)

Claim 4. Protocol g t-securely computes. fThat is for any t-limited(active real-
life adversaryA, there exists an ideal-model adversahgsuch thatfor all inputsX and
all auxiliary inputs z

IDEAL { 5(X, Z) = EXECyrp (X, 2).

Claim 5. For any (active real-life adversary.A, the global output of the parties
in 7 and the global output of the parties imgz are identically distributed That ig

EXECyn 4 (X, Z) = EXEC, 4(X, 2).

Claim 6. There exists an @%logn + (m/n)t” logt)-random protocol that t-securely
evaluatesA\CT-RANDy,.

Note that, unlike Claim 2, in Claim 5 both random variables are a result of interaction
with anactiveadversary. Still, the proof of Claim 5 is almost identical to the proof of
Claim 2, and is therefore omitted. Claims 4 and 6 are proven below. This completes the
proof of Theorem 7. O

6.1. Proof of Claim4

The proofis very similar to the proof of Claim 1. Letdenote the high-level protocol that
corresponds to protocalg in the hybrid model with ideal evaluation access to functions
VSSsi, ADDs, ACT-MULT, andRECONS w. It suffices to show that is t-secure in the
hybrid model. Theorems 1 and 5 then imply that protoeas t-secure in the real-life
model.

Given a real-life adversary, the ideal-model adversay/proceeds via a simulation
of A. SimulatorS starts running4 on its auxiliary inputzg and random input 4. Next,
A may corrupt parties, and will expect to see the internal data and the messages received
by the corrupted parties. SimulatSrproceeds as described in Fig. 3.

The analysis ofS (i.e., the proof that for all inputg and all auxiliary inputsz we
havelDEAL (X, Z) = EXEC, 5/ \PPACTMULT RECONY % | 7)) is identical to the corresponding
part of the proof of Claim 1, except for the following point that relates to step 2 of the
analysis there. Contrary to the passive case, in the active case the inputs that a corrupted
P, hands the trusted party (in the ideal model) may be differentxharet, it still holds
that the inputs that the corrupted parties give the trusted party are uniquely determined
given a viewv of the simulated4. Furthermore, lef denote the modified input vector;
then it can be verified that both and E, equal the value of the circuit on inpuyst®

10 The introduction of active adversaries raises an additional apparent difficulty. When an uncorrupted party

134 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Simulator S

Initial input: A setC of corrupted parties, inpufs; | P € C}, auxiliary inputz, and random
inputr. In addition,S has access to a trusted party in the ideal process for evalufating

1. Invoke a copy of4, on setC of corrupted parties, inputs; | P € C}, auxiliary input
z, and a sufficiently long portion of.

2. Foreach partfr i, simulate an interaction of teafmwith the trusted party for computing
vsSsi. That is, if Prj is corrupted, then record the valsg=() handed byA to its
trusted party, and hand the output value for each corrupted paRy j. (This value
is determined b|F (), as described in the definition of functiesss;.) If Pr; is not
corrupted, then, for each corrupted party in tenhandA a random number i F[p]
as the value given by the trusted party. In addition, if the de&er, is corrupted, then
provide the trusted party fof with Py ;’s input for f, computed as follows: I$ # &,
thenPy ;’s input is set tes. Else, if F() is a polynomial of degreg then the input value
of Pr; is settoF (0). Otherwise $ = F() = ¢), the input ofPy ; is set to a default value,
say 0.

3. (This part is identical to the simulator for the passive case, see Fig. 1.) For eath gate
in the circuit, simulate the “baton hand-off” step of the shares of the input wires to the
gate. Thatis, leT be the team that computes ggtand letT;, T, be the teams that hold
the values of the input wires to the gate. Then, for éaéhPr ; is corrupted andPr,
(resp.,Pr,,i) is not corrupted, then hand a random number i@ F[p]. If both Py ; and
Pr,i (resp.,Pr,,i) are corrupted, thes already knows the corresponding share and no
action is needed.

4. Once the “baton hand-off” step of a gatés completed, simulate an interaction of team
T with the trusted party for computing the function that corresponds tog@e,, either
ADDs O ACT-MULT). This is done as follows.

If the gateg is an addition gate, then hantithe sum of the two input values given by
each corrupted party in teamto the trusted party. If the gate is a multiplication gate,
then handA a valuev; determined as follows. If the valug that Pr; handed to its
trusted party is different thas thenv; = ¢;. Otherwise § = ¢), v; is set to a random
number inG F[p].

5. When the simulation of a gate leading to an output wire of the circuitis complete, simulate
an interaction with the trusted party for computiRgCONSg w, whereW C [n] is the
set of parties that are to learn the value of this wire. If no corrupted party\Mé, ithen
no action is needed. Otherwise, invoke the trusted party for the main fundtidret
v be the output value that corresponds to this output wir€T lbée the team that holds
the value of this wire, and let; be the share that each corrupted pa*ty in T hands
the trusted party foRECONS w. Then choose a polynomid as follows. Say that a
corrupted partyPr ; is conformingif the valueg; that Pt ; hands to the trusted party for
RECONS,w equalsPy ;'s output of the gate leading to the output wire. (Note thatan
verify whether a party is conforming.) Theé®is chosen uniformly out of all degree
polynomials such thaB(0) = v andB(ui) = & for eachconformingcorrupted party
Pr.i. Next, hand each corruptd®t ; the vectornB(u1), ..., B(us)). (Note that this can
always be done sincd corrupts at most parties.)

6. OnceA halts, output whateved outputs and halt.

Fig. 3. The simulator for protocat, Byzantine case.

Pr;,j in teamT; receives a share of a valadrom acorruptedparty Py, j in teamTy, it may well be the case
thatPr, j will receive a bad share (or perhaps no share at all). If too many uncorrupted pafiiesrt off the
computation with wrong shares, then the evaluation will be incorrect. This difficulty is answered as follows.
Since there are at mostorrupted parties altogether, and each corrupted party can give a bad share to at most
one party inTj, it follows that at most parties inT; are either corrupted or start off with an erroneous share.

Randomness versus Fault-Tolerance 135

6.2. Proof of Claim6

The protocol for securely evaluatingT-RANDj, is very similar to the protocol for the
passive case (for computimgND,). We designate+ 1 parties (sayPy, .. ., P.11) who,

in addition to their other roles in the protocol, will “double up” as dealers. Each one
of the dealers generatés = O(n - t?> + m - s - t?) values inG F[p] according to the
distribution Z. Let v; j be the vector consisting of all the elementsdifr[p] that are
chosen byP, and are assigned 1. ThenP, sendsy; ; to each partyP;. Each partyP;
locally outputs the coordinatewise sum, modploof thet + 1 vectors received from
the dealers. Lepa denote this protocol for the active case.

Analysis of protocopa. First note that the amount of randomness useghirs larger
by afactor ot 41 than the amount of randomness used to generate a sirgiple from
the above distribution. Sampling from the distribution of Appendix 6.2 téke$log n+
(m/n)t®logt) random bits. Consequently, the protocolst® logn + (m/n)t’ logt)-
random. (Instead we can use @1(m/n)t’)-wise independent distribution and pay
O((m/n)t” logm) random bits.)

We show that the protoctisecurely evaluatescT-RAND,. As in the passive case, the
intuition is that, as long as at least one dealer remains uncorrupted, the random choices
of the uncorrupted dealers make sure that the outputs of the parties, being the sum of the
values received from the dealers, have the desired independence structure. (Still, it should
be noted that in the active case the adversary can somewhat influence the distribution of
the outputs of the uncorrupted parties.)

Also here, a rigorous proof is a bit more involved. Recall that for each active real-
life adversaryA that interacts with the protocol we need to construct an ideal-process
adversaryS.cr-rano that causes the global output of the ideal process to be distributed
identically to the global output of running. In the passive case, this was done by
making sure that the messages generateS:hy, (representing the messages sent by
the uncorrupted parties) “match” the values provided by the trusted paryafa,.

This was possible since the messages generated dgpended only on the random
input of A.

In the active case the messages generated fpgpresenting the messages sent by the
corrupted parties) may depend on the messages generated by, Consequently,
in this case we do not know how to generate a viewddhat is consistent with values
that are chosen by the trusted party. Instead, we use the fact that furctieeaND,,
allows Sxcr-rano t0 influence somewhat the outputs of the parties. Simulg{gtrano iS
presented in Fig. 4.

Analysis of simulatoSaxcr-rano. FiX SOMe input vectok and auxiliary inputs. We
show that

d
IDEAL acT-RAND}, Shcr=rano (2 = EXECpA,A(Z)- (6

The analysis is very similar to the passive case (Claim 3). Assume, without loss of
generality, that4 outputs its entire view of the interaction. This view consists of the
setC, the auxiliary inputz, some random input, and the values received from the

136 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Simulator Sacr-ranp

Initial input: A setC of corrupted parties, auxiliary inpat and random input. In addition,
Sact-ranp has access to a trusted party in the ideal process for evaluatingANDy,.

1. Invoke A on the seCC of corrupted parties, auxiliary inpat and random input. For
each uncorrupted deal® and each corrupted parf, provide.A with a message; j
that consists of uniformly distributed element<3ii[p]. (The number of field elements
in vj j equals the number of field elementsHyis output in the specification of function
ACT-RAND,.)

2. For each corrupted deal@rand uncorrupted partly;, adversaryA generates a message
vj,j tobe sentfron® to Pj. (Eachy j isinterpreted as a vector of elements frG#[p].)
Record those messages.

3. Prepare the input values of the corrupted parties in the ideal process, as follows. (These
values will be handed to the trusted party A@T-RAND.) Recall that the input of each
corrupted partyP, is vj; if Py is a dealer, them; = v/, v/’; otherwisev; = v/. Then:

(a) Eachy] is the coordinatewise sum modyboof the values)j i thatP received from
the uncorrupted dealers. (These values were handddncstep 1 above.)
(b) Letv” be the coordinatewise sum modyboof the valuesy; j that dealerP, sent
to the uncorrupted parties. (These values were generated inystep 2 above.)
Let v/ be the completion of” to anM-tuple, computed by placing the value 0 in
all the missing coordinates. (These locations correspond to the coordinates that are
assigned to corrupted parties.)
Hand these inputs to the trusted party faT-RAND,. (Recall that the inputs of the
uncorrupted parties are) The outputs provided by the trusted party to the corrupted
parties can be ignored; they are equal to the inpts
4. OnceA halts, output whateved outputs and halt.

Fig. 4. Description of the simulator for protocp}.

uncorrupted dealers. Letdenote the number afncorrupted dealers. To see that (6)
holds, we observe that the distributions in both sides of (6) are equal to a distribution
that is generated as follows:

1. Invoke adversaryl with uniformly chosen random input auxiliary inputz, and
setC of corrupted parties.

2. Independently choogeM-tuples from distributiorZ. Hand all. 4 the elements in
G F[p] whose coordinates are assigned to corrupted parties.

3. AdversaryA generates the messages to be sent by the corrupted dealers to the
uncorrupted parties. Lab; = wj 1, ..., wjm denote theM-tuple of elements
in GF[p] that represents the messages sent by each corrupted éeateall
uncorrupted parties. (The elements; such thas is assigned to a corrupted party
are setto a default 0.)

4. LetZ = Z,, ..., Zy denote the coordinatewise sum modplof thet M-tuples
from step 2 and the+ 1 — 7 M-tuplesw; from step 3.

The output of an uncorrupted parB consists of the elements i whose
coordinates are assignedRa The output of the corrupted partieslis The output
of the adversary consists kfr, z, C and the values handed t#in step 2.

This completes the proof of Claim 6. O

Randomness versus Fault-Tolerance 137
Acknowledgments

We thank Oded Goldreich for his insightful comments which greatly improved the pre-
sentation of our paper, as well as for suggesting away to eliminate some more unnecessary
randomness by using [S2] and [KM4]. We also thank Madhu Sudan for discussions re-
garding error-correcting codes. Finally, we would like to thank the anonymous referees
for carefully reading the paper and providing us with very useful comments.

Appendix A. An Extension of [S2] and [KM4]

In this appendix we describe a straightforward extension of results from [S2] and [KM4].
(All arithmetic operations in this section are o¥@F[p].) The goal is as follows: given
setsS;, ..., S C {1,..., n} we wish to construct a multisétD of n-tuples oveliG F[p]

such that if we look at the projection Bfon the coordinates in any of the s&sthen we

get a uniform distribution over all thp!S! possible tuples. We start with the following
definition: given am x £ matrix M we define the following multiset of sizg’:

spacéM) = {M - v|v € (GF[p])‘} € (GF[p)".

For such a matrixM, denote its rows by, ..., M,.

Claim 7. Let{wi}icg be arbitrary elements of G[p]. If

Z wiM; #0,

ie§
then when a vector y is chosen from the probability distribution defined by gpéce
the sumZiea w; - Y, is uniformly distributed over G Fp].

Proof. Recall that a randomly chosen vectoin spacéM) is just the producM - v,
for a randomly chosen € (G F[p])¢; in particular,y; = M; - v. Then

Dowicyi=) (wi-Mi-v)=) (wi-M) - v
ie§ ie§ ie§
SinceZiea wiM; # 0 then the above is a product of a nonzero vector with a uni-

formly distributed vector in(G F[p])¢ which is just a uniformly distributed element
of GF[p]. O

The next claim easily follows from Claim 7:

Claim 8. Iffor every choice ofw; }i s , which are notalD’'s, we haveziea wi M # 0,
then the projection of spackl) on § is uniformly distributed

11 By “multiset” we mean that an element may appear more than onfe e interpret a multiset as a
probability distribution in the natural way: each element is drawn with probability proportional to the number
of times it appears in the multiset.

138 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Proof. By Claim 7, we getthat, for every such choicg af }i5 , the sumZies wi Vi,

for y € spacéM), is uniformly distributed inG F[p]. It is well known that the only
probability distribution that is uniform with respect to all “linear tests” is the uniform
distribution!? O

Algorithm Letd be abound onthe size ofthe s&s. .., S. We describe an algorithm
that runs in timepoly(n, t, p%) and generates a matrM such thaspacgM) satisfies
the property required in Claim 8 with respect to each ofttsets!® We need to make
sure that, for every s&, the corresponding rows & will be linearly independent. We
will constructM in a row-by-row manner. While choosing the rav;, we will make
sure that it satisfies the appropriate linear independence constraints. That is, for every
set§ suchthat € §, we will have to pick a ronM; which is independent of the rows
inT; =§nN{12,...,i —1}. Fix the value of to be logt/ log p+d + 1. This implies
that the size of the space ¥ ~ t - p¢. Therefore, for eacH; we can compute the
p!il < pd vectors in the linear space spannedibyWe do this for each of the (at most
t) sets that contain and so we compute (at most) p® vectors which cannot serve as
M;. Since we have' possible vectors then, by the choicetothere exists a vector that
can serve ap;.

Remark (on the efficiency of the algoritim Since the algorithm runs in time
poly(n, t, p9), if the size of any§ is w(logn), then the running time is superpoly-
nomial. (Clearly, any set that is uniform ov§rmust be of size at leagtS'.) However,

even in this case the size of the matkikis much smaller and ssamplingin the space
remains efficient. Finally, as mentioned in Section 4 (see footnote 6) this construction is
used only for the final saving in randomness and one can stick to the (computationally
more efficient) solution based ghiiwise independent distributions.

Appendix B. A Direct Proof of Claim 1

In this appendix we describe a direct proof for Claim 1; a proof that does not rely on
Theorem 1 but rather shows, specifically for our case, how to compose the subsimulators
for the various components, as guaranteed by [BGW], into a simulator for the entire
protocol. We hope that the reader will get some insight regarding how the composition
technique works, avoiding many of the technical details required for the full composition
theorem. For this purpose, we concentrate on the passive case.

Given areal-life adversaryd, we will construct a simulata$. For this, we define four
adversarieHAgyare: Aaoo» Awmur, aNdAgeconsthat essentially determine the behavior of
A when each of the four subroutin8SARE, ADD, MULT, andRECONS(respectively) are

12 More formally, since the functions of the fom¥™i ¥, wherer is a root of unity of ordemp, are just the
Fourier basis foiG F[p], then the behavior of a distribution with respect to these functions determines the
distribution. Therefore, the uniform distribution is the only distribution which is uniform with respect to every
such function.

13 One can describe mndomizedalgorithm to do so, but since this algorithm will be run by each of
the dealers in our protocol and the entire issue is saving randomness we restrict ourselves to deterministic
algorithms.

Randomness versus Fault-Tolerance 139

executed. We note, however, that the adversaneed not use the same strategy against
all invocations of some subroutine; his decisions may be influenced by the execution
of the protocol so far. To overcome this difficulty, we will provide each of the four
adversaries with the transcript of the protocol up to the point where the execution of
the subroutine starts. This is technically done by includitig view of the execution
of the protocol up to this point in the auxiliary input of the current subadversary. So,
for example, adversarylyyr behaves exactly ad behaves in a certain execution of
MULT when the history is as provided .+ via the auxiliary inputz. As in [C2], we
assume that the subroutines are executed sequentially (and not in parallel to each other).
This makes the above adversaries well defined.

We can now use Theorem 2 to conclude the existence of four simulSiors.,
Sapps Swucrs and Srecons Satisfying the definition of security with respect to the four
protocols and the four adversaries. Next we show how to construct a simSiladoour
protocol using these four simulators. Roughly speaking, we will explicitly describe how
to simulate all messages sent outside of the four subroutines and we use the simulators to
simulate all the communication inside the execution of the subroutines. We first describe
the procedure for running each of these four simulators. When we run a simulator, say
for muLT, we do the following:S runs the corresponding simulatfy,, r asitis. (By the
definition of Ay, this in particular implies thag, . controls the same set of corrupted
parties, and that at the ety outputs the entire simulated view.) On§g, + generates
its output (which is a simulated view of an interaction4yy,,;), simulatorS continues
the simulated run afd on this output. Our choice of the auxiliary inputs§g,.+ and to
the corrupted parties guarantees that the outp&,@f is consistent with the prefix of
A’s run so far.

We now describe how the simulatSrworks, given the above procedure for running
a simulator for a subroutine. As common in such protocols, this relies heavily on the
properties of degreepolynomialst* In detail, messages are simulated as follows:

e For each partyr ;, simulatorS simulates an interaction of the parties in te@nm
the subroutinsHARE; ; wherePr ; shares its inputr ;. Thatis, if Pr; is corrupted,
thenS executes the simulat@s,age With input x; (which is already known to
him), while if Pr; is not corrupted, thes executes the simulat@sage With a
random number i F[p] as the input.

e For each gatg in the circuit,S simulates the “baton hand-off” step. That is, let
T be the team that computes gateand letT; and T, be the teams that hold the
values of the input wires to the gate. Then, for egdh Pr; is corrupted andPr,
(resp.,Pr,.i) is not corrupted, the§ handsA a random number i@ F[p]. If both
Pr; andPr, ;i (resp.,Pr,.i) are corrupted, thes already knows the corresponding
share.

e Once the “baton hand-off” step of a gajés simulatedS simulates an interaction
of teamT in the corresponding subroutine (eithr@Ds or MULT) for computing
the function that corresponds to ggten each case§ uses the subsimulator (either

14 More specifically, it depends on the fact that if we choose such a polynomial at random, or we first choose
somet’ < t random points and then choose a random polynomial out of those polynomials that pass through
the chosent’ points, then in both cases we get the same distribution.

140 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

Sapp OF Syur) With input to the corrupted players as already known to it, and with
(uniformly and independently chosen) random numbefs K p] as the inputs of
noncorrupted parties.

e At some point during the computation (before any of the invocatiom&E0bNg w
is to be simulated)$ hands its trusted party the input values of the corrupted parties,
and receives the output values assigned to them.

e When the simulation of a gate leading to an output wire of the circuit is complete,
S simulates the reconstruction by the subrouteeoNs w, whereW is the set of
parties that are to learn the value of this wire. If no corrupted party\g,ithenS
need do nothing. Otherwis8 jinvokes the corresponding simulat8¥:cons For this,
letv be the value that should correspond to this output wire (the valuges received
from the trusted party), lef be the team that holds the value of this wire, and let
a be the share that each corrupted pdty in T holds. TherS chooses a random
polynomial A of degreet such thatA(0) = v and A(ui) = & for each corrupted
party Pri. The simulatokS usesSSgecons With input values(A(us), ..., Alus)). O

Analysis of simulato§ (sketch). To show that the output of the simulator is distributed
identically to the distribution of the ideal-model adversary, we repeat the analysis made
inthe proof of Claim 1. The only difference is thatin Claim 1 we assume ideal invocations

of the four subroutines whereas here the actual subroutines are called. However, based
on the properties of the four subsimulat®$are, Saoo, Swuir, @NdSgecons (that is, the

fact that the output generated by each such simulator, given the appropriate inputs and
auxiliary inputs, is identical to the distribution of output by the corresponding adversary)
the analysis still goes through.

References

[AGHP] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple Constructions of Akvd&te Indepen-
dent Random Variables, FOCS 90 a@Rdndom Structures Algorithmeol. 3, 1992, pp. 289-304.
(Addendum: Vol. 4, 1993, pp. 119-120).
[B1] D. Beaver, Perfect Privacy for Two-Party Protocols, TR-11-89, Harvard University, 1989.
[B2] D. Beaver, Foundations of Secure Interactive Compufirgc. CRYPTQ 1991, pp. 377-391.
[B3] D. Beaver, Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty
Minority, J. Cryptology Vol. 4, 1991, pp. 75-122.
[BB] J. Bar-llan and D. Beaver, Non-Cryptographic Fault-Tolerant Computing in a Constant Number of
RoundsProc. 8th PODG 1989, pp. 201-209.
[BCG] M. Ben-Or, R. Canetti, and O. Goldreich, Asynchronous Secure Computafimts,25th STOG
1993, pp. 52-61.
[BDPV] C. Blundo, A. De-Santis, G. Persiano, and U. Vaccaro, On the Number of Random Bits in Totally
Private Computation®roc. ICALP, LNCS 944, Springer-Verlag, Berlin, 1995, pp. 171-182.
[BDV] C. Blundo, A. De-Santis, and U. Vaccaro, Randomness in Distribution Protoeads, ICALP,
LNCS 820, Springer-Verlag, Berlin, 1994, pp. 568-579.
[BGG] M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in Interactive FramdsFOCS 1990,
pp. 563-571.
[BGS] C. Blundo, A. Giorgio Gaggia, and D. R. Stinson, On the Dealer's Randomness Required in Secret
Sharing Schemes, EuroCrypt94 abdsigns Codes Cryptographyol. 11, No. 2, 1997, pp. 235—
259.
[BGW] M. Ben-or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed ComputatioRroc. STOGC 1988, pp. 1-10.

Randomness versus Fault-Tolerance 141

[BM] M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo-Random
Bits, FOCS 82 an&IAM J Comput, Vol. 13, 1984, pp. 850-864.

[C1] R. Canetti, Studies in Secure Multi-Party Computation and Applications, Ph.D. Thesis, Department
of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, June 1995.

[C2] R. Canetti, Security and Composition of Multiparty Cryptographic ProtodolSryptology this
issue.

[CCD] D.Chaum, C. Crepeau, and |. Damgard, Multiparty Unconditionally Secure ProtBeotsSTOG
1988, pp. 11-19.

[CD] B. Chor and C. Dwork, Randomization in Byzantine Agreeméwaly Comput Res, Vol. 5, 1989,
pp. 443-497.

[CFGN] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively Secure Multi-Party Computatimmn,
28th STOC 1996, pp. 639-648.
[CG1] B. Chor and O. Goldreich, Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity, FOCS 85 aB4COMPR Vol. 17, 1988, pp. 230-261.
[CG2] R. Canetti and O. Goldreich, Bounds on Tradeoffs between Randomness and Communication
Complexity, FOCS 90 an@omput Complexity Vol. 3, 1993, pp. 141-167.
[CGMA] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faulspc. FOCS 1985, pp. 383-395.
[CK1] B. Chor and E. Kushilevitz, A Zero-One Law for Boolean Privacy, STOC 89&mMA Vol. 4,
1991, pp. 36-47.
[CK2] B. Chor and E. Kushilevitz, A Communication-Privacy Tradeoff for Modular Additibriorm.
ProcessLett, Vol. 45, 1993, pp. 205-210.
[CRS] S. Chari, P. Rohatgi, and A. Srinivasan, Randomness-Optimal Unique Element Isolation, with
Application to Perfect Matching and Related ProbleRwc. STOG 1993, pp. 458-467.
[FKN] U. Feige, J. Kilian, and M. Naor, A Minimal Model for Secure ComputatiBmc. STOG 1994,
pp. 554-563.

[FL] M. Fischer and N. Lynch, A Lower Bound for the Time to Assure Interactive ConsistéRty,
\Vol. 14, No. 4, 1982, pp. 183-186.
[FLP] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of Distributed Consensus with One
Faulty Process]. Assoc Comput Mach, Vol. 32, No. 2, 1985, pp. 374-382.
[FM] P. Feldman and S. Micali, An Optimal Algorithm for Synchronous Byzantine Agreement, STOC
88 andSIAM J Comput, Vol. 26, No. 4, 1997, pp. 873-933.
[FY] M. Franklin, and M. Yung, Communication Complexity of Secure Computaffwac. STOG 1992,
pp. 699-710.
[G] O. GoldreichFoundations of CryptographiFragments of a BogkWeizmann Institute of Science,
1995. (Avaliable at http://philby.ucsd.edu.)
[GMW] O. Goldreich, S. Micali, and A. Wigderson, How to Play Any Mental GafReyc. 1%h STOG
1987, pp. 218-229.

[GL] S. Goldwasser and L. Levin, Fair Computation of General Functions in Presence of Immoral
Majority, Proc. CRYPTQ 1990.
[GMR] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems,
SIAM J Comput, Vol. 18, No. 1, 1989, pp. 186-208.
[GO] O. Goldreich and Y. Oren, On the Cunning Power of Cheating Verifiers: Some Observations about
Zero-Knowledge Proofs, in preparation. Preliminary version by Y. Oréhraa. 28h FOCS 1987.
[GRR] R. Gennaro, T. Rabin, and M. Rabin, Simplified VSS and Fact-Track Multiparty Computations with
Applications to Threshold Cryptograpt®roc. PODC, 1998, pp. 101-111.
[H] J. Hastad, Pseudo-Random Generators under Uniform Assumpfimots STOC90.
[ILL] R.Impagliazzo, R., L. Levin, and M. Luby, Pseudo-Random Generation from One-Way Functions,
Proc. STOC89.

[1Z] R.Impagliazzo and D. Zuckerman, How to Recycle Random Bits¢. 30th FOCS 1989, pp. 248—
253.

[K] E. Kushilevitz, Privacy and Communication Complexity, FOCS 89, &M J Discrete Math,
Vol. 5, No. 2, 1992, pp. 273-284.

[KK] D. Karger and D. Koller, (De)randomized Construction of Small Sample SpacesOnFOCS 94
andJ. Comput System SciVol. 55, No. 3, 1997, pp. 402-413.

142 R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Bos’

[KM1] D. Kollerand N. Megiddo, Constructing Small Sample Spaces Satisfying Given Constraints, STOC
93 andSIAM J Discrete Math, Vol. 7, No. 2, 1994, pp. 260-274.
[KM2] D. Karger and R. Motwani, Derandomization through Approximation:M& Algorithm for Min-
imum Cuts,Proc. 26th STOC 1994, pp. 497-506.
[KM3] H. Karloff and Y. Mansour, On Construction éfwise Independent Random Variables, STOC 94
andCombinatoricaVol. 17, No. 1, 1997, pp. 91-107.
[KM4] E. Kushilevitz and Y. Mansour, Randomness in Private Computations, PODC 19981AMI J
Discrete Math, Vol. 10, No. 4, 1997, pp. 647—661.
[KMQO] E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and Completeness in Multi-Party Private
ComputationsProc. 35th FOCS 1994, pp. 478-489.
[KOR1] E. Kushilevitz, R. Ostrovsky, and A. Res, Characterizing Linear Size Circuits in Terms of Privacy,
STOC 96 andl. Comput System SciVol. 58, 1999, pp. 129-136.
[KOR2] E. Kushilevitz, R. Ostrovsky, and A. Res, Amortizing Randomness in Private Multiparty Com-
putationsProc. 17th PODG 1998, pp. 81-90.
[KPU] D. Krizanc, D. Peleg, and E. Upfal, A Time-Randomness Tradeoff for Oblivious Rou®rag,
STOG 1988, pp. 93-102.
[KR] E. Kushilevitz and A. Rosh, A Randomness-Rounds Tradeoff in Private Computation, CRYPTO
94 andSIAM J Discrete Math, Vol. 11, No. 1, 1998, pp. 61-80.
[KY] D. E. Knuth and A. C. Yao, The Complexity of Non-Uniform Random Number Generation, In
Algorithms and Complexifed. J. Traub, 1976, pp. 357—428.
[MS] F. J. Macwiliams and N. J. A. Sloan&he Theory of Error Correcting Codeslorth-Holland,
Amsterdam, 1977.
[MR] S. Micali and P. Rogaway, Secure Computation, manuscript, 1992 (updated version, 1998). Prelim-
inary version inProc. CRYPTQ01, pp. 392—-404.

[N] N. Nisan, Pseudorandom Generator for Space Bounded ComputBtion,22nd STOC 1990,
pp. 204-212.

[NN] J. Naor and M. Naor, Small-Bias Probability Spaces: Efficient Constructions and Applications,
STOC 90 and51AM J Comput, Vol. 22, No. 4, 1993, pp. 838-856.

[RB] T.Rabin and M. Ben-Or, Verifiable Secret Sharing and Multiparty Protocols with Honest Majority,
Proc. 21st STOC 1989, pp. 73-85.

[RS] P. Raghavan and M. Snir, Memory vs. Randomization in On-Line Algoritkme;, ICALP, 1989,
pp. 687—703.

[S1] A. Shamir, How to Share a Secr€ymm ACM, Vol. 22, 1979, pp. 612-613.

[S2] L. J. Schulman, Sample Spaces Uniform on Neighborhd@s, 24th STOG 1992, pp. 17-25.

[S3] M. Sudan, Algorithmic Issues in Coding Theolroc. 17th Conf on Foundations of Soft-
ware Technology and Theoretical Computer Sciemd®rapur, India, 1997. Available on-line at
theory.lcs.mit.edu/ madhu/

[vLW] J. H. van Lint and R. M. Wilson,A Course in CombinatorigsCambridge University Press,
Cambridge, 1992.

[Y1] A. C. Yao, Theory and Applications of Trapdoor FunctioRsoc. 23d FOCS 1982, pp. 80-91.

[Y2] A. Yao, Protocols for Secure ComputatidProc. 23rd FOCS 1982, pp. 160-164.

[Z] D.Zuckerman, Simulating BPP Using a General Weak Random Source, FOCS Blbarithmica

Vol. 16, 1996, pp. 367-391.

