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Abstract. We present general definitions of security for multiparty cryptographic pro-
tocols, with focus on the task of evaluating a probabilistic function of the parties’ inputs.
We show that, with respect to these definitions, security is preserved under a natural
composition operation.

The definitions follow the general paradigm of known definitions; yet some substan-
tial modifications and simplifications are introduced. The composition operation is the
natural “subroutine substitution” operation, formalized by Micali and Rogaway.

We consider several standard settings for multiparty protocols, including the cases
of eavesdroppingByzanting nonadaptiveand adaptiveadversaries, as well as the
information-theoreticand thecomputationalmodels. In particular, in the computa-
tional model we provide the first definition of security of protocols that is shown to be
preserved under composition.

Key words. Multiparty cryptographic protocols, Security of protocols, Secure func-
tion evaluation, Composition of protocols.

1. Introduction

Designingsecure protocolss one of the central tasks of cryptography. Here security is
generally understood as guaranteeing, in the presence of adversarial behavior of some
parts of the system, a set of correctness properties of the output values of the parties
together with a set of secrecy requirements regarding the local data of the parties.

A general study of secure protocols started with the pioneering works of Yao [Y3]
and Goldreich et al. [GMW2]. On top of introducing this fundamental notion, these
works suggest a general methodology for solving “any cryptographic protocol problem”
in a secure way. They were followed by a large body of work that describe general
constructions for solving protocol problems in various settings (most notably, [BGW],
[CCD], [RB], [GL], and [QY]), as well as protocols for more specific tasks (e.qg., [DF],
[GIKR], and [R]).
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In contrast to the great advances in constructing secure protocols, our understanding
of the notion of security of protocols progresses more slowly. The first works in this field
(and in particular [Y1], [Y3], and [GMW?2]) contain only an intuitive exposition of this
notion. Several general definitions of security of protocols were subsequently formulated,
most notably by Goldwasser and Levin [GL], Micali and Rogaway [MR], and Beaver
[B1], where the work of Micali and Rogaway is considerably more comprehensive than
others. More recently, a definition based on [GL], [MR], and [B1] was presented in [C].
(The definition of [C] is closest in its approach to [B1].) While the general approach of
these definitions is roughly the same, the definitions differ from each other in several
substantial ways. See more details below.

Indeed, while the notion of secure protocols seems intuitively obvious, capturing the
security requirements of a “cryptographic protocol problem” in a way that is both precise
and workable is not an easy task. In particular, a large number of constructions of secure
protocols that appear in the literature, including most of the constructions mentioned
above, have never been rigorously proven secure. (An exception is the detailed exposition
and analysis of [GMW?2] that was recently made available in [G3].)

This paper aims at improving our understanding of the nature of secure computation
and our ability to prove cryptographic security of protocols. As a first step, we present
definitions of security for protocols, with emphasissimplicityandminimality. (Here
minimality means that the definition is aimed at making minimal requirements from
secure protocols, while not losing in rigor and in relevance to our intuitive notion of
security.) We build on the formalization of [C] that seems convenient and flexible. In
particular, the approach underlying that formalization has been used in a number of quite
varied settings, e.g., [BCG], [CFGN], [CG1], [HM], [BCK], [CHH], and [CKOR].

Next, we considecompositiorof protocols. An important (almost obligatory) prop-
erty of a definition of secure protocols is a guarantee that a protocol obtained by “prop-
erly” composing together secure protocols is secure. This is needed both for designing
cryptographic protocols in a modular way, and for proving their security in a clear and
understandable manner. In particular, such a property would greatly simplify the proofs
of security of known constructions.

We show that our definition of security provides this guarantee, in several standard
settings and with respect to a natural composition operation suggested in [MR]. (Previ-
ously only the definition of [MR] was known to preserve security under this composition
operation, in some of these settings.) We hope that the results and techniques presented
here will contribute to the writing of easy to follow proofs of security of known protocols,
such as [GMW?2], [BGW], [CFGN], and others.

As in [GL], [MR], [B1], and [C], this work concentrates on the very general task of
evaluating a probabilistic function of the parties’ inputs. (This task is often known as
secure function evaluation.) In addition, the definitional approach presented here can be
readily applied to capturing the security requirements of a variety of other tasks.

1.1. Previous Definitional Efforts

A common paradigm underlying all efforts to define secure protocols is to guarantee that
running a secure protocol is “just as good” as carrying out an idealized computational
process where security is guaranteed. In the context of secure function evaluation this
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ideal process consists of having all parties hand their inputssted party, who locally
evaluates the function and hands the appropriate portion of the function value to each
party. The definitional efforts differ in the method by which this basic paradigm is fleshed
out. We sketch the approaches of [GL], [MR], and [B1]. See further elaboration in the
Appendix.

The definition of Goldwasser and Levin [GL] does not make explicit comparison with
the ideal process. Yet, this definition can be viewed as making a comparison with the
ideal process as follows. They start with definlegal behaviorof an adversary; this
behavior captures the adversary’s limited capabilities in the ideal process. Next they
define a notion ofobustnes®f protocols that essentially means that any adversary can
be “emulated” by a legal one. A protocol securely evaluates some function if it is robust
and in addition it correctly evaluates the function whenever the adversary is limited to
legal behavior.

The comparison with the ideal process serves as strong motivation behind the formula-
tion of the Micali and Rogaway definition [MR]. Yet also there it is not explicitly used in
the actual definition, which contains some additional technicalities. These technicalities
make the definition of [MR] more restrictive. Micali and Rogaway also define a general
and natural composition operation of protocols and state that their definition is preserved
under this composition operation. The composition operation discussed in this work is
essentially taken from there. It was previously believed that the extra restrictiveness of
their definition isnecessaryor proving that composition preserves security. Here we
show that this is not the case. (They consider only protocols that evaletgeministic
functions, inthe secure channels settinthe secure channels setting is defined below.)
Micali and Rogaway’s manuscript is quite comprehensive and contains many enlight-
ening observations, discussions, and examples regarding secure multiparty protocols.
We have benefited a lot from reading this work, as well as from attending the class at
MIT [M].

Beaver makes the comparison of a protocol with the ideal process more explicit [B1].
That is, first a general notion of comparing security of protocols is formulated. Next, a
protocol for evaluating a given function is considered secure if it is at least as secure as the
ideal process for evaluating that function. This approach is very similar to the one taken
here, with some technical differences that are explained below. In addition, it is stated
that security according to this definition is preserved under “sequential composition.”
That is, if secure protocols are invoked one after the other, the inputs for each are
the local outputs from the previous one, then the resulting protocol securely evaluates
the composed function, as long as all intermediate results are part of the output. This
composition operation is a special case of the one considered here.

1.2. The Definitional Approach Taken Here

We firstformalize the “ideal process” mentioned above. This process is aimed at capturing
the desiredunctionality of the task at hand, and in particular rules out any unwanted
behavior. For the task of secure function evaluation, the ideal process is formulated as
follows. There is no communication among the parties; instead, all parties hand their
inputs to an incorruptible “trusted party,” who locally computes the desired outputs and
hands them back to the parties. Thus in the ideal process the adversary, controlling a set
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of corruptedparties, is very limited: essentially, it only learns and perhaps modifies the
inputs and outputs of the corrupted parties.

Next, we say that a protocol securely performs the task at hand if executing the
protocol (in a given model of distributed computation) amounts to “emulating” the
ideal process for that task. Emulating the ideal process is interpreted as follows. First
we formalize the “output of running a protocol with a given adversary,” in the given
distributed model, as well as the “output of running the ideal process with a given
adversary.” This formalization is a key ingredient of the definition. Now, running the
protocol emulates the ideal process if, oty adversary attacking the protocol in the
given distributed model, theexistsan “ideal process adversary” that manages to induce
essentially the same output distribution in the ideal process. This way, we are assured
that the only adversarial effects that can occur when running the protocol in the given
distributed model are those that are explicitly allowed in the ideal process.

In a way, this approach is a generalization of the “simulation approach” used in [G1]
(rephrasing [GM]) to define security of encryption functions and in [GMR] to define
zero-knowledge protocols. Yet, the formulation here is more complex, as it applies to
the more complex domain of many parties.

This approach can, of course, be applied to a large variety of “adversary models.”
We concentrate on several salient models, characterized via the following parameters.
Throughout, the network is assumed to be synchronous, and the communication channels
are ideally authenticated. Next, we make the following distinctions.

Afirst distinction is betweepassive andactive adversaries. Passive adversaries (often
called “eavesdropping” adversaries) only gather information and do not modify the
behavior of the parties. Such adversaries often model attacks that take place only after the
execution of the protocol has completed. Active adversaries (often called “Byzantine”)
cause the corrupted parties to execute some arbitrary, malicious code.

Another distinction is betweetionadaptive andadaptive adversaries. A nonadaptive
(or “static”) adversary controls an arbitrary but fixed set of corrupted parties. An adaptive
(or “dynamic”) adversary chooses the identities of the parties to be corrupted during the
computation, based on the information gathered so far. Nonadaptive adversaries allow
for simpler formalization and protocols. Yet, considering adaptive adversaries forces
protocols to address security concerns that are important in many real-world situations
and not addressed in the nonadaptive formalization. (See more discussion at the preamble
to Section 5.)

Yet another distinction is between ttramputational setting where the adversary learns
all the communication among the parties and is restricted to probabilistic polynomial
time, and thesecure channels setting where channels are absolutely secure and the
adversary has unlimited computational power. Obtaining protocols that are secure in the
secure channels setting is often regarded as a “stepping stone” on the way to obtaining
secure protocols in the (more realistic) computational setting.

Other variations of these settings may of course be interesting. For instance, many
works assume aauthenticated broadcast channelhere it is guaranteed that any mes-
sage that is received by one party is received by all parties. Also, the setting where the
adversary is probabilistic polynomial tingand learns only messages sent to corrupted
parties is often convenient for designing protocols (e.g., [F], [CH], [GJKR], [G3], and
[R]). The definitions can be easily adapted to these settings.
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In all the above models, we concentrate on the caserafst majority, where strictly
less than half of the parties are corrupted at any time. When half or more of the parties
are corrupted the definition has to be weakened somewhat. (Essentially, now an active
adversary cannot be prevented from interrupting the computation at any time. Yet, the
general definitional approach will remain largely unchanged.) See [Y3], [GMW?2], [BG],
[GL], and [G3] for definitions and protocols for the caselshonest majority.

Differences from previous definitionsWhile being inspired by Micali and Rogaway
[MR], and following the approach of [B1] and [C] quite closely, the formalization here
differs in several aspects. We highlight two points of difference from [B1] and [C]. One

is the (no longer necessary) requirement that the “ideal process adversary” operates via
one-passblack-boxsimulation of the “real-life” adversary. That is, the “ideal process
adversary” was restricted to having only oracle access to the “real-life” adversary. More
importantly, it was required that the simulated adversary is run only once and is not
“rewound.” This requirement is quite restrictive; in particular, in the case of computa-
tionally bounded adversaries it essentially prohibits the use of zero-knowledge proofs
within secure protocols. Removing this requirement seems essential for good treatment
of the computational model. (The definition of [MR] uses a similar notion of simulation
as [B1] and [C]. In fact, it is a bit more restrictive.)

Another modification, relevant to the case of adaptive adversaries, is the treatment of
the “information flow” between a single protocol execution and the external environment.
Good modeling of this “information flow” is essential for successful treatment of secure
protocol composition. In the definition here this is modeled by introducing an additional
algorithmic entity, representing the external environment, to the model. This seems to
represent the effect of the external environment on a single execution better; in particular,
it allows us to deal with composition of protocols even for the case of computationally
bounded adversaries. See more details in Sections 2.1 and 5.

1.3. Modular Composition

When designing a protocol for some task, we want to be able to break the task into several
partial (presumably simpler) subtasks, design secure protocols for these subtasks, and
then use the already designed protocols as subroutines in the solution for the given task.
In other words, we want to support the following design methodology for secure
protocols:

(1) Design a “high-level” protocol for the given task assuming that other, simpler,
subtasks can be carried out securely.

(2) Design protocols that securely carry out these simpler subtasks.

(3) Construct a full-fledged protocol for the given task by plugging the simpler pro-
tocols as subroutines in the “high-level” protocol.

We call this technique of combining protocai®dular composition. (Modular composi-

tion was first formalized in this context by Micali and Rogaway [MR]. There it is called
reducibility of protocols.) We want the security of protocols to be preserved under modu-
lar composition. That is, the security of the full-fledged protocol should follow from the
security of the high-level design and the security of the subroutine protocols for their
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specified subtasks. In other words, we would like to have:

General Goal. Suppose that protoco}s - - - om Securely evaluate functiong -f- - fp,
respectivelyand that a protocofr securely evaluates a function g while using subroutine
calls for ideal evaluation of 1f- - - fp,. Then the protocaok ”+#m, derived from protocol

7 by replacing every subroutine call for ideal evaluation @fwith an invocation of
protocol pj, securely evaluates.g

Several other composition operations on protocols are considered in the literature.
For instance, “sequential composition” usually means simply running several (secure)
protocols one after the other, and “parallel composition” means running them in parallel
at the same time. We note that these composition operations can be regarded as special
cases of modular composition with the appropriate “high-level” protocol. Consequently
we consider modular composition as the main general tool for modular protocol design.

We achieve this goal, with respect to the definitions in this paper, indi@ncurrent
case where only a single subroutine invocation is in execution at any given time. We con-
sider the settings described above (i.e., nonadaptive, adaptive, passive, active adversaries
in the secure channels and computational settings). In particular, in the computational
setting this is the first time a composition theorem is stated with respanyttefinition.

(In fact, we demonstrate a slightly more general resut protocolr that uses ideal
evaluation calls td; - - - fp, maintains its “functionality” when the ideal evaluation calls
are replaced by invocations pf - - - pn, respectively.)

1.4. Other Related Work

Goldreich [G3] presents a detailed exposition and proof of the general construction of
[GMW?2], for both the two-party and the multiparty cases. He treats the computational
setting, but only with nonadaptive adversaries. The definitions used there are essentially
the same as the ones here for the nonadaptive case. Also, that work does not present
general purpose composition theorems, but rather composes the constructed protocols
in an ad hoc manner.

A notion of security for the case of deterministic functions, nonadaptive, passive
adversaries in the secure channels setting is studied by Chor and Kushilevitz [CK], [K].
(This notion of security is somewhat weaker than the one here, as argued in Remark 1 of
Section 4.2.) Reducibility of protocols with respect to the notion of security of [CK] and
[K] is discussed in [KKMO]. The notion of reducibility of [KKMOY] is different than the
one here in that there no communication is allowed in the high-level protocol except for
invocations of the specified subroutines.

Finally, our proofs of the composition theorem in the various settings follow and
adopt the general structure of the sequential composition theorems for zero-knowledge
as proven by Goldreich and Oren [GO], adapting their techniques to our setting.

Organization In Section 2 we motivate and informally present the general approach
taken by our definitions. Section 3 reviews some basic notions used to formalize the
definitions. Section 4 concentrates on the caseoédaptive adversaries in the secure
channels setting. This includes a definition of security, statement of the composition
theorem, and a full proof.
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Section 5 generalizes the treatment of Section 4 to the casapifve adversaries (still
in the secure channels setting). An attempt is made to keep this section as self-contained
as possible, at the expense of some repetition.

Section 6 deals with adaptive adversaries in ¢benputationalsetting. Since the
treatment is very similar to that of Section 5, this sectiomas self-contained, and
should be read in conjunction with Section 5. The caseofadaptiveadversaries in the
computational setting can be inferred quite easily.

Throughout Sections 4—-6, we develop the cases of passive and active adversaries
“side by side” (with emphasis on the more involved case of active adversaries). Although
constructions for the two cases are quite different in nature, the corresponding definitions
are similar and are best considered together.

In the Appendix we briefly discuss the definitional efforts of [MR], [GL], [B1], [C],
and [CFGN].

We remark that the text contains a number of long footnotes. These are used to discuss
issues that are not vital to the main thrust of the paper and would make the main text less
fluent. In particular, the footnotes can be skipped at first reading.

2. Defining Secure Protocols: The General Paradigm

This section motivates and sketches the general definitional approach pursued in this

work. The approach is common to the various adversary models (passive, active, non-

adaptive, adaptive adversaries, in the secure-channels and computational settings). Also,
while this paper concentrates on the task of secure function evaluation, the approach

carries to other tasks as well. Section 2.1 presents the approach for the task of secure
function evaluation. This case captures much of the essence of the problem. Other tasks
are briefly mentioned in Section 2.2.

2.1. Secure Function Evaluation

Secure function evaluation is a general task where the parties are given inputs and should
produce outputs according to a given specification, cast as a function of their inputs.
(This function can be probabilistic; that is, for each input it specifidgis@ibutionon the
corresponding outputs.) We focus on the case where only a minority of the parties are
corrupted. Still, the general approach presented here can be used to capture the security
requirements for the case dishonest majorityand in particular the two-party case).

Firstattempts Two basic requirements come to mind when trying to capture the notion
of secure function evaluation. The firstisrrectnessthe “good” parties (i.e., the parties

that are not corrupted by the adversary) should output “a correct” value of the function
evaluated at the inputs of all parties. This requirement is somewhat complicated by the
fact that the function may be probabilistic (thus the output should obey some predefined
distribution), and more importantly by the fact that if the adversary is active, then the
corrupted parties cannot, in general, be prevented from arbitrarily changing their inputs
to the computation.

The second requirementsscrecymeaning that the adversary should not learn (from
interacting with the parties) anything other than the (original) inputs of the corrupted
parties, and the “correct” function values that the corrupted parties are to obtain. This
requirement seems to call for a definition based on some notion of “simulation” of the
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adversary’s view (as in the case of probabilistic encryption or zero-knowledge [GM],
[G1], and [GMRY]), but it is not clear at this point in what setting the “simulator” should
operate and what should be required of it.

A naive approach toward defining security may proceed by separately requiring cor-
rectness and secrecy. Yet, as observed in [MR], this decomposition is problematic since
the two requirements are “intertwined”: On the one hand, the secrecy requirement de-
pends on our definition of a “correct” function value. On the other hand, the correctness
requirement must make sure that the input values that the corrupted parties “contribute”
to the computation be chosen without knowledge of the inputs of the uncorrupted parties.

We sketch a simple example that demonstrates this issue. Assume that two parties
wish to compute the exclusive-or of their one-bit inputs, and use the following protocol:
first party A sends its input to part; then B announces the result. Intuitively, this
protocol is insecure since a corruptBccan influence the output o% by choosing the
value it contributes to the computation basedAisinput. Yet, this protocol maintains
secrecy (which holds vacuously for this problem since each party can infer the input of
the other party from its own input and the function value), and is certainly “correct” in
the sense that the output fits the input tBdtcontributes” to the computation.

This example highlights the problems associated aittiveadversaries. Other, more
subtle, examples for definitions that allow an active adversary to influence the outputs
of the uncorrupted parties “illegally” are described in [MR]. Additional problems arise
when dealing witlprobabilisticfunctions. Interestingly, these problems arise even when
the adversary ipassive Remark 2 in Section 4.2 contains an example that highlights
these problems.

One may be tempted to try to augment the “correctness” and “secrecy” requirements
so as to handle the problems exposed above. However, following this approach may
be difficult and error-prone (if at all possible). Consequently, our definition follows
a different approach, that blends together “correctness” and “secrecy” into a single
security requirement. We first envision an “ideal process” for secure multiparty function
evaluation. This process captures all that we want from a secure computation (and,
in particular, the above requirements). Then we say that a computation is secure if it
“emulates” the ideal process, in some well-defined manner.

Our approach The definition proceeds in three steps. First we formalize the “real-
life” computation, in a straightforward way. Here the parties interact according to their
protocol, in some specific model of distributed computation (e.qg., either synchronous or
asynchronous), and in the presence afalife adversary that controls a set of corrupted
parties and behaves according to some adversarial model (e.g., either passive or active,
nonadaptive or adaptive, etc.). At the end of the computation the uncorrupted parties
output whatever is specified in their protocol. The corrupted parties output a special
symbol specifying that they are corrupted. The adversary, controlling the corrupted
parties, outputs some arbitrary value; this value may include any information gathered
by the adversary during the computation.

1n an equivalent and somewhat more natural formalization the corrupted parties output whatever is in-
structed by the adversary, and the adversary has no output. The formalization here will be more convenient in
what follows.
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Next the followingideal process for multiparty function evaluation is formulated,
in order to capture our requirements from a secure function evaluation. (The specifics
of the ideal process correspond to the type of adversary in consideration, e.g., passive
or active.) First andeal-process adversary gets to control a set of corrupted parties
(which is either fixed beforehand or chosen adaptively), and learns the inputs of the
corrupted parties. If active adversaries are modeled, then the ideal-process adversary
can alsamodifythese inputs based on the information gathered so far. Next, all parties
hand their (possibly modified) inputs to an incorruptitlated party. The trusted party
evaluates the given function at the given inputs and hands each party its designated
output. The evaluated function can be probabilistic, in which case the trusted party
tosses the necessary coins and uses the outcome to determine the function value. Finally,
the uncorrupted parties output whatever they receive from the trusted party, the corrupted
parties output some special symbol, and the adversary outputs some arbitrary value. (Also
here, the adversary’s output may contain any information gathered by the adversary in
the ideal process. However, here this information is very limited: it consists only of the
adversary’s random input, the identities of the corrupted parties, their inputs, and the
values they received from the trusted party.)

We say that a protocot for evaluating a function is secure if é@mulateghe ideal
evaluation process of the function, in the sense that any effect on the real-life computation
achieved by a real-life adversary (from some class of real-life adversaries) can also be
achieved in the ideal process bgmeideal-process adversary (from the corresponding
class of ideal-process adversaries). This requirement is formulated as follows. We first
define, in both the ideal and real-life models, tilebal outputof a computation on a
given input. This is a random variable that consists of the concatenation of the outputs
of all the parties and the adversary. Next we require thaafiyrreal-life adversary4d
(from some class) attacking a secure protactiiereexistsan ideal-process adversasy
(from the corresponding class) such that,any inputthe global output of the real-life
computation in the presence dfis distributed similarly to the global output of the ideal
process computation in the presenceSof(By defining similarity to be either “equal
distribution” or “statistical closeness” or “computational indistinguishability” we obtain
different notions of security.)

Requiring that the outputs of tleerruptedparties be distributed similarly in the ideal
process and in the real-life computation forces the ideal-process adversary to generate
an output that “looks like” the output of the real-life adversary, in spite of the fact that
it only sees the information available in the ideal process. This guarasg¢eescy in
the sense that the information gathered by the real-life adversary is computable even
in the ideal process. Requiring that the output of eineorruptedparties be similarly
distributed in the ideal process and in the real-life computation guaracteestness
in the sense that the real-life adversary cannot influence the outputs of the corrupted
parties more than is possible in the ideal process. Furthermore, combining the outputs
of the corrupted and the uncorrupted parties into a single random variable guarantees
that the “intertwined” secrecy and correctness requirement, discussed above, is satisfied.
(See also Remark 2 in Section 4.2.)

We remark that the above notion of a protocol in some adversary nevdelat-
ing an ideal process can be naturally extended to having the protocol enamate
other protocolin some other adversary model. This extended notion of emulation is
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quite useful. In particular, it plays a key role in our presentation of the composition
theorems.

Enabling secure composition The definitional approach sketched above is aimed at
capturing the security requirements from a protocol, in a simplified setting where a single
protocol execution is considered in vitro. In order to guarantee security in a setting where
several protocol executions may coexist, and in particular in order to be closed under
composition of protocols, a definition of security must guarantee the following property:
even adversaries that have already gathered some information on the current execution
(say, via other protocol executions) will be unable to gatdditionalinformation on

the current execution, or otherwise gain some unwanted advantage.

In the case of nonadaptive adversaries this property is guaranteed by letting the adver-
sary have some arbitraayxiliary input at the onset of the interaction. The auxiliary input
represents the information gathered by the adversary during other protocol executions
occurring before the current execution. The notion of emulation, sketched above, is ex-
tended to hold foanyauxiliary input. See more details in Section 4. (Auxiliary inputs
were firstintroduced in [GQ], in the context of sequential composition of zero-knowledge
proofs. Further discussion appears there, as well as in [G2].)

In the case of adaptive adversaries the “information flow” between a single protocol
execution and other executions cannot be fully captured by a piece of information given
at the onset of the execution. In a nutshell, the problem is that whenever a party gets
corrupted by the adversary, either during the protocol execution or after the execution
is completed, the adversary sees internal data of this party both from that execution
and from other protocol executions run by the party. We model this information flow
by introducing an additional algorithmic entity, representing the external environment,
both to the real-life and to the ideal models. This entity interacts with the adversary and
the parties at several points throughout the execution. At these pointsjvirement
provides the adversary with additional information, and receives information from the
adversary. The notion of emulation is adapted as follows: a protoeatulates the ideal
process for evaluating (namely,z securely evaluate$) if for any real-life adversary
A (from some class of real-life adversarieahd for any environmeng, there exist
an ideal-model adversaty (from the corresponding class of ideal-process adversaries)
such that the effect ofl with environmentZ on parties runningr can be emulated by
S in the ideal model for evaluatin§ with the same environmeg. See more details in
Section 5.

2.2. Beyond Secure Function Evaluation

Although secure function evaluation is a very general task, it does not capture all the
interesting functionalities of cryptographic protocols. We elaborate a bit. First, some
cryptographic tasks aneactive, in the sense that they have several phases, where the
output of one phase may be part of the input of the next phase, and where the security of the
task imposes requirements on the outputs of all phases taken together. (Examples include
commitment, secret-sharing, and more complex tasks such as encryption or signature
schemes where the same key is used for processing many messages.) In addition, the
requirement that a secure protocol evaluates a predefined function of the inputs may be
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too restrictive: many cryptographic tasks can be securely carried out by protocols that do
not evaluatenypredefined function of the inputs. (Such protocols would still guarantee
that some input—output relation is satisfied.)

Nonetheless, the definitional approach described in Section 2.1 can be adapted to cap-
ture the security requirements of other tasks. In fact, some definitions used in the literature
to capture the security requirements of other tasks can be regarded as examples of such
an adaptation. Examples include the tasks of distributed proactive signature schemes
[CHH], key-exchange and authentication [BCK], and distributed public-key encryption
[CG2]. This subsection sketches the general paradigm that underlies these definitions
and can possibly be used to capture the security requirements of other cryptographic
tasks. The idea is to proceed in three steps, as follows:

1. Formulate an ideal model for executing the task at hand. Typically, this ideal model
involves a trusted party whose functionality captures the security requirements
from the task. This functionality will typically involveepeated interactionvith
the parties. An important ingredient in this step is defining the global output of an
execution in the ideal model.

2. Formalize the global output of an execution of a protocol in the “real-life” model
under consideration.

3. Saythataprotocal securely performs the task athand ifit “emulates” an execution
in the ideal model, in the usual way: For any real-life adverséarthere should
exist an ideal-model adversasysuch that the global output of running with
A in the real-life model is distributed similarly to the global output of runnihg
in the ideal model. In the case of adaptive adversaries the notion of emulation is
extended to include the environment machine, as sketched above.

3. Preliminaries

In this section we review some basic notions that underlie our formalization of the
definitions. Adistribution ensemble X = {X(K, @)}keN.acp IS a@n infinite sequence of
probability distributions, where a distribution(k, a) is associated with each value of
k € N anda € D for some domairD. (Typically, D = {0, 1}*.)

The distribution ensembles we consider are outputs of computations (either in anideal
or in a “real-life” model), where the parametecorresponds to various types of inputs,
and the parametdris taken to be theecurity parameter. All complexity characteristics
of our constructs are measured in terms of the security parameter. In particular, we
are interested in the behavior of our constructs when the security parameter tends to
infinity.

Definition 1 (Equal Distribution). We say that two distribution ensemeandY are
equally distributed (and write X = Y) if for all k and alla we have that distributions
X(k, a) andY (k, a) are identical.

Slightly abusing notations, we also uXék, a) 2 Y(k, a) to denote that distributions
X(k, a) andY(k, a) are identical.

Say that a functiod: N — [0, 1] is negligible if for all ¢ > 0 and for all large enough
k € Nwe haves(k) < k¢.
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Definition 2 (Statistical Indistinguishability). Les: N — [0, 1]. Two distribution
ensemblesX andY havestatistical distance § if for all sufficiently largek and alla
we have that

SD(X(k, a), Y(k, a)) < 5(k),

where SD denotes statistical distance, or total variation distance (that(Z; SIy) =
£ . |Prol(Z, = a) — Prol(Z, = a)|).

If § is a negligible function, then we say thétandY arestatistically indistinguishable
(and writeX ~ Y).

Definition 3 (Computational Indistinguishability [GM], [Y2]). L&t N — [0, 1]. We
say that two distribution ensemblésandY havecomputational distance at most § if
for every algorithmD that is probabilistic polynomial-time in its first input, for all
sufficiently largek, all a, and all auxiliary informatiorw € {0, 1}* we have

IProbD(1¥, a, w, x) = 1) — ProbD(1¥, a, w, y) = 1)| < §(K),

wherex is chosen from distributioX (k, a), y is chosen from distributiolY (k, a), and
the probabilities are taken over the choicex of, and the random choices .
If ensemblesX andY have computational distance at mist for all ¢ > 0 then we

say thatX andY arecomputationally indistinguishable and write X ~Y.

Note that Definition 3 gives the distinguishBraccess to an arbitrary auxiliary infor-
mation stringw (thus making the definition a nonuniform complexity one). It is stressed
thatw is fixed before the random choicesXfandY are made.

Multiparty functions The functions to be evaluated by the parties are formalized as fol-
lows. Ann-party function (for somen € N) is a probabilistic functiorf: N x ({0, 1}*)" x
{0, 1}* — ({0, 1}*)", where the first input is the security parameter and the last input
is taken to be the random input. We are interested in functions that are computable in
time that is polynomial in the security parameter. In particular, the lengths of the inputs
and outputs are assumed to be bounded by a polynomial in the security parameter. See
[G3] for a more complete discussion of conventions regarding such functions. (Extend-
ing the treatment to a more complex multiparty function requires some small technical
modifications.)

Intuitively, n-party functions are interpreted as follows. eef- D mean that element
e is drawn uniformly at random from domaib, and let f (k, X, r¢); denote theth
component off (k, X, r¢). Each partyP, (outof Py, ..., Py) has input; € {0, 1}*, and
wishes to evaluatd (k, X, r¢); wherer; < {0, 1}' andt is a value determined by the
security parameter. For concreteness we concentrate on inputs and random inputs in
{0, 1}*. Other domains (either finite or infinite) can be encodedlirl}* in standard
ways.
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4. Nonadaptive Adversaries

As discussed in the preamble of Section 5, nonadaptive security (i.e., security against
nonadaptive adversaries) is considerably weaker than adaptive security. Still, we first
present the nonadaptive case in full. This is done for two reasons. First, the definition
and (especially) the proof of the composition theorem are considerably simpler in the
nonadaptive case. Thus, it is a good “warm-up” for the adaptive case. Second, some
important protocols in the literature (e.g., [GMW?2] and [F]) are known to be secure only
against nonadaptive adversaries (see [G3]). Thus, treatment of this case is of independent
interest.

Throughout this section we restrict ourselves to ¢beure channels setting, where
the adversary may be computationally unbounded and learns only messages sent to
corrupted parties. In Section 6 we show how the treatment is adapted to settings where
no secure channels exist, and security is provided only against probabilistic polynomial-
time adversaries.

Section 4.1 contains the definition of secure protocols. Further discussion on the
definition is presented in Section 4.2. Section 4.3 presents the composition theorem, to
be proven in Section 4.4.

4.1. Definition of SecurityThe Nonadaptive Case

We define secure protocols in the nonadaptive case. The definitiopaddgve and
active adversaries are developed side by side, noting the differences throughout the
presentation.

Following the outline presented in Section 2, we first formalize the real-life model;
next we describe the ideal process; finally the notion of emulation of the ideal process
by a computation in the real-life model is presented.

The real-life model An n-party protocol 7 is a collection of interactive, probabilistic
algorithms. Formally, each algorithm is an interactive Turing machine, as defined in
[GMR]. We use the termarty B, to refer to the th algorithm. (Figuratively, party, is

a computer that executes tith algorithm.) Each party?, starts with input; € {0, 1}*,
randominput; € {0, 1}*, and the security parameterinformally, we envision each two
parties as connected vigévate communication channel. A more complete description

of the communication among parties is presented bélow.

A (nonadaptive) real-life adversary, A, is another interactive (computationally un-
bounded) Turing machine describing the behavior of the corrupted parties. Advdrsary
starts off with input that contains the identities of the corrupted parties and their inputs.
In addition,.4 receives additionaluxiliary input and a valué for the security parameter.

We let z denote the input ofd. (The auxiliary input is a standard tool that allows us

2 We viewn, the number of parties, as independent from the security pararketis allows us to discuss
cases whera is small with respect to the security parameter (e.g., a constant), as well as cases tehese
to infinity and has some some fixed relation witH-urthermore, note that the parties do not necessarily know
nin advance.
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to prove the composition theorem. See Section 2.1 for discussion.) In additibas
random inpuf

Say that an adversarytigimited if it controls at most parties. (Formally, &limited ad-
versary halts whenever its input contains the identities of morettbamupted parties?)

In what follows we often use a slightly less formal language for describing the partici-
pating entities and the computation. A formal description (in terms of interactive Turing
machines) can be easily extracted from the one here.

The computation proceeds in rounds, where each round proceeds as follows. (The de-
scription below captures a fully connected, ideally authenticated, synchronous network
with rushing The termrushingrefers to allowing the corrupted parties to learn the mes-
sages sent by the uncorrupted parties in each round, before sending their own messages
for this round.) First the uncorrupted parties generate their messages of this round, as
described in the protocol. (That is, these messages appear on the outgoing communica-
tion tapes of the uncorrupted parties.) The messages addressed to the corrupted parties
become known to the adversary (i.e., they appear on the adversary’s incoming commu-
nication tape). Next the adversary generates the messages to be sent by the corrupted
parties in this round. If the adversary is passive, then these messages are determined
by the protocol. An active adversary determines the messages sent by the corrupted
parties in an arbitrary way. Finally each uncorrupted party receives all the messages
addressed to it in this round (i.e., the messages addressedppear or,'s incoming
communication tape).

At the end of the computation all parties locally generate their outputs. The uncor-
rupted parties output whatever is specified in the protocol. The corrupted parties output a
special symbol,L, specifying that they are corrupted. (Figuratively, these parties did not
participate in the computation at all.) In addition, the adversary outputs some arbitrary
function of itsview of the computation. The adversary view consists of its auxiliary input
and random input, followed by the corrupted parties’ inputs, random inputs, and all the
messages sent and received by the corrupted parties during the computation. Without
loss of generality, we can imagine that the adversary’s output consists of its entire view.
Figure 1 summarizes the real-life computational process.

We use the following notation. Lebvr, 4(k, X, z, ') denote the output of real-life
adversary4 with auxiliary inputz and when interacting with parties running protocol
7 0N iNputX = Xy - - - X, and random inpuf = rq - - - r, and with security parametér

3 We remark that the adversary, being computationally unbounded, need not be probabilistic. In fact, our
formalization of the security requirement will be a nonuniform complexity one. In such a setting deterministic
adversaries are as powerful as probabilistic adversaiiegomparable complexityet, we find it conceptually
appealing to formulate the definition in terms of probabilistic adversaries.

4 This paper concentrates o#imited adversaries, wheteis some threshold value. That is, it is assumed
that the adversary can corrupt any subset of up parties. This type of corruption structure was chosen
for simplicity of exposition. The same definitional methodology holds with respect to other, more general
corruption structures (e.g., [HM] and [CDM)]), both in the nonadaptive and the adaptive cases.

5 Different models, representing different real-life communication settings and network topologies, are of
course possible. In particular, if one is concerned only with feasibility results and is not concerned with
efficiency, then it may be simpler to let the parties talk in a “round robin,” where in each communication round
only a single party sends messages. For the sake of generality we do not restrict ourselves to this simpler
model.
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Execution of ann-party protocol by parties P, - - - P, with adversary A

1.(a) Each partyP starts with the security parameterinput x;, and random
inputr;.

(b) The adversary starts withk, random input, inputz that includes a set
C c [n] of corrupted parties and their inputg;|i € C}, and additional
auxiliary input.

2. Initialize the round number to< 0.

3. Aslong as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted party, i ¢ C, generategm; ;|j € [n]}, where each
m; ;1 € {0, 1}* is a (possibly empty) message intended for p&tyt this
round.

(b) The adversaryd learns{m; j,li € [n], j € C}, and generatefm; j,|i €
C,j¢C}.

(c) Each uncorrupted party, i ¢ C, receives the messaggsg;;|j € [n]}.

(d) I <1 +1.

4. Each uncorrupted partl, i ¢ C, as well asA4, generates an output. The
output of the corrupted parties is setto

Fig. 1. A summary of the nonadaptive real-life computation.

as described abovey(for A, x; andr; for party P). Letexec, 4(k, X, z,F); denote the
output of partyP, from this execution. Recall that B is uncorrupted, then this is the
output specified by the protocol; B is corrupted, theexec, 4(k, X, z,F); =L. Let

EXECr A(K, X, 2,T) = ADVR, (K, X, Z,7), EXEC; a(K, X, Z, 1)1,
oo EXECr A (K, X, Z, P)p.

Let EXEC, 4(k, X, z) denote the probability distribution @&xec, 4(k, X, z, ) where
I is uniformly chosen. Letxec, 4 denote the distribution ensemblexec, 4(k, X,
2)}ken,x.2<(0.1)- (Here(X, z) denotes some natural encodingiof as a single string.)

The ideal process The ideal process is parameterized by the function to be evaluated.
This is ann-party functionf: N x ({0, 1}*)" x {0, 1}* — ({0, 1}*)", as defined in
Section 3. Each part, has inputx; € {0, 1}* and the security parameterno random
input is needed. Recall that the parties wish to evalddte X, r¢)1, ..., f(k, X, r¢)n,

wherer; < {0, 1}% ands is a value determined by the security parameter,Rridarns

f (k, X, r¢);. A (nonadaptive) ideal-process adversary S is an interactive (computationally
unbounded) Turing machine describing the behavior of the corrupted parties. Adversary
S starts off with input that includes the identities and inputs of the corrupted parties,
random input, auxiliary input, and the security paramétérin addition, there is an

6 In contrast with the real-life adversary, it is essential that the ideal-process adversary be probabilistic.
This holds even in our nonuniform complexity setting. Also, there is no need to limit explicitly the number of
corrupted parties in the ideal process. The definition will guarantee that the identities of the corrupted parties
in the ideal process are identical to the identities of the corrupted parties in the real-life model.
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(incorruptible)trusted party, T, that knowsk. The ideal process proceeds as follows:

Input substitution: The ideal-process adversa$ysees the inputs of the corrupted
parties. IfS is active, then it may also alter these inputs based on the information
known to it so far. Leb be the|C|-vector of the altered inputs of the corrupted
parties, and le§ be then-vector constructed from the inpﬁtby substituting the
entries of the corrupted parties by the corresponding entribslfnS is passive,
then no substitution is made afid= X.

Computation: Each partyP, hands its (possibly modified) input valug, to the

trusted partyl . Next, T chooses; £R¢,and hands eadd the valuef (k, YA

Output: Each uncorrupted parti outputs f (k, ¥, r¢)i, and the corrupted parties
output_L. In addition, the adversary outputs some arbitrary function of the in-
formation gathered during the computation in the ideal process. This information
consists of the adversary’s random input, the corrupted parties’ inputs, and the
resulting function value$f (k, ¥, r¢)i: P is corruptedl.

Let ADVR¢ s(K, X, z,T), wheref = (r¢, r), denote the output of ideal-process adver-
saryS on security parametds; random input , and auxiliary inputz, when interacting
with parties having inpuk = Xx; - - - Xn, and with a trusted party for evaluatirfgwith
random input. Let the(n + 1)-vector

IDEAL¢ s (K, X, Z, ) =ADVR¢ s(K, X, Z,T), IDEAL¢ s (K, X, Z,);- - -IDEAL¢ s(K, X, Z,T)n

denote the outputs of the parties on inpitsadversaryS, and random inputs as

described aboveR outputsiDEAL¢ s (K, X, Z, T);). LetIDEAL¢ s(K, X, 2) denote the dis-
tribution of IDEAL¢ s (K, X, z, F') whenr is uniformly distributed. LeiDEAL ¢ s denote the
distribution ensembl@DEAL ¢ s(K, X, Z)}keN, (%.2)¢(0,1}*-

Comparing computations in the two models-inally we require that protocet emu-
lates the ideal process for evaluatifgin the following sense. For any-{imited) real-
life adversaryA there should exist an ideal-process adversgrguch thatDEAL ¢ s =
EXEC, 4. Spelled out, this requirement means that for any value of the security parameter
k, for any input vectok, and any auxiliary input, the global output®EeAL ¢ s(k, X, 2)
andexec, 4 (k, X, ) should be identically distribute?.

We require that the complexity of the ideal-process adverSayg comparable with
(i.e., polynomial in) the computational complexity of the real-life adversaryntro-
ducing complexity issues in this seemingly “information-theoretic” model may appear
awkward and out of place at a first glance. However, a second inspection will verify that
this requirement is very desirable. See Remark 1 in Sectioh 4.2.

7 This formalization means that, the “internal random choices df,” remains unknown to the parties
except for the information provided by the value faf

8 In the case where the inputs are taken from a finite domain and equal distribution is required, a simpler
formalization that does not introduce ensembles is sufficient. (Basically, the simpler formalization fixes the
security parameter to an arbitrary value.) We use the current formalization in order to accommodate infinite
input domains, indistinguishability of ensembles, and computationally bounded adversaries.

9 Here we implicitly assume that the complexity of the protocolin by the uncorrupted parties is bounded
by a polynomial in the complexity of the adversary. If this is not the case,$hisrallowed to be polynomial
in the complexity ofr.
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Definition 4 (Nonadaptive Security in the Secure Channels Setting). fL&e ann-
party function and letr be a protocol fom parties. We say that nonadaptively t-
securely evaluates f if for any (nonadaptive)-limited real-life adversaryd there exists
a (nonadaptive) ideal-process adversaryvhose running time is polynomial in the
running time ofA, and such that

IDEAL .5 = EXEC;. 4. (1)

If AandS are passive adversaries, then we saythanhadaptively t-privately evaluates g.

Relaxed variants of Definition 4 are obtained by requiring that the two sides of (1) be
only statistically indistinguishable, or even only computationally indistinguishable. (The
last relaxation is aimed at the case where the adversary is assumed to be probabilistic
polynomial time.) Furthermore, if Definition 4 is satisfied with the exception that the
two sides of (1) have statistical (resgomputational) distance at mos, then we say that
protocolr achieves statistical (resp.,computational) distance §.

4.2. Discussion

This section contains further discussion on Definition 4.

Remarkl: On the complexity of the ideal-process adversarye motivate our require-
ment that the running time of the ideal-process adversary be polynomial in that of the
real-life adversary, even in this seemingly “information-theoretic” setting. The ideal-
process adversary is an imaginary concept whose purpose is to formalize the following
requirement: “Whatever gain the adversary obtains from interacting with parties run-
ning i, could have also been obtained in an ideal setting where a trusted party is used.”
Arguably, this requirement also means that interacting witthould not allow the ad-
versary to obtain some gain “for free,” where obtaining the same gain in the ideal process
requires considerable computational resources. This aspect of the security requirement
is captured by appropriately limiting the computational power of the ideal process adver-
sary. As seen below, failing to do so results in a considerably weaker notion of security.
(We remark that this weaker notion may still be of some interest for studying purely
information-theoretic aspects of secure computation.)

We illustrate this distinction via an example. Lietx, y) = g(X® y) whereg is a one-
way permutation ané) denotes bitwise exclusive-or. Assume that parfiesdB have
inputsx andy respectively, and consider the following protocol for evaluatingarty A
announceg, partyB announcey, and both parties evaluaféx, y). Our intuition is that
this protocol is insecure against adversaries that may corrupt one partg)saygives
away for free” bothx andy, whereas computinggiven onlyy and f (x, y) may take the
adversary a large amount of time. Indeed, if the real-life and ideal-process adversaries
are limited to probabilistic polynomial time (and one-way permutations exist), then this
protocol isnotsecure against adversaries that corrupt one party. Howegds #llowed
unlimited computational power regardless4i$ complexity, this protocol is considered
secure sincé can invertg.

Another distinction between the two notions has to do with constructing protocols
in the computationaketting. A convenient design paradigm for secure protocols in this
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setting proceeds as follows: First design a secure protecol the secure channels
setting. Then construct a protocel from 7 by encrypting each message. Indeed, it
can be readily seen thatf is secure in the secure channels setting according to the
definition here (and an appropriate encryption scheme is used)zthisisecure in the
computational setting However, if the above, weaker notion of security is used, then
this transformation does not necessarily work.

Finally, we remark that other definitions of secure protocols do not make this distinc-
tion. (Examples include the [B1] definition, as well as the definition of private protocols
in [CK], [K], and [KKMO].) Nonetheless, the protocols described in these works seem
to be secure even according to the definition here. (In fact, we are not aware of protocols
in the literature that were proven secure according to the above weaker definition, but
are insecure according to the definition here.)

Remark: Combining correctness and secrecyl he requirement, made in Definition 4,
that the global outputs of the two computations be equally distributed imposes several
requirements on the ideal-process adversary. In particular, it implies:

(a) secrecy. The output of the real-life adversary is distributed equally to the output
of the ideal-process adversary.

(b) Correctness. The outputs of the uncorrupted parties are equally distributed in the
two models.

Can the definition be weakened to require only that the global output of the ideal process
satisfies (a) and (b)?

It was argued in Section 2 that separately requiring secrecy and correctness does not
restrict the “influence” of the adversary on the outputs of the uncorrupted parties, thereby
resulting in unsatisfactory definitions. Yet, the weakened definition proposed here does
combine correctness and secrecy to some extent (since the same ideal-process adversary
has to satisfy both requirements). Indeed, the example protocol given in Section 2 (and
also the examples in [MRY]) is insecure even under this weakened definition.

Nonetheless, we argue that the terdire (n+ 1)-vectors describing the global outputs
of the two computations must be identically distributed, and it does not suffice to require
(a) and (b) separately (i.e., that the two relevant projections of the global outputs are
identically distributed). This point is demonstrated via an example: Consider two parties
AandB that wish to evaluate the following two-party function. Both parties have empty
input; A should output a random bit, arigishould have empty output. Of courgecan
simply output a random bit without any interaction; yet, consider the protocol where
also send$3 the value of its outputB is instructed to ignoré\’s message and output
nothing. This protocol is clearly insecure; yet it satisfies the above weakened defthition.

10 For instance, semantically secure encryption (as in [GM]) is sufficient in the nonadaptive model, provided
that a different pair of public and private keys are used for each pair of parties. We omit further details.

11 We sketch a proof. The case whekds corrupted is straightforward. B is corrupted, then, for each
real-life adversary3 (that controlsB), construct the following ideal-process advers&tyrun a copy off3,
giving it a random bib’ for the output of4, and output whateves outputs. The bib” will be different (with
probability one-half) from the output ok in this execution, thus (1) will not be satisfied. Yet, as long as the
outputs of partie#\ and B are considered separately the simulation is valid.
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Put in other words, the above example highlights an additional weakness of separating
the correctness and secrecy requirements, on top of the weakness discussed in Section 2.
While the discussion in Section 2 concentrates on problems related to active adversaries,
the example here highlights problems related to probabilistic functions. In particular,
the insecure protocol suggested here satisfies the weakened definition even if the adver-
sary is passive. This means that, when dealing with probabilistic functions, secrecy and
correctness cannot be separately requénezh for passive adversaries

Remark3: On one pass black-box simulationin [MR], [B1], and [C] the notion of
emulation is more restrictive in two respects. First, it is required that the ideal-process
adversary be restricted to having only black-box access to the real-life adversary. More
substantially, the adversary can be run only once and is never “rewound.” We call this type
of simulationone pass black-box. The second restriction is quite limiting. In particular, in

the computational setting it prohibits usage of zero-knowledge protocols within secure
protocols. (This is so since demonstrating the zero-knowledge property via black-box
simulation requires rewinding the adversary.)

It was speculated in [C] and [CFGN] (and, implicitly, also in [MR] and [B1]) that
restricting the ideal-process adversary to one pass black-box simulation is needed in
order to prove a general composition theorem. In this work we show that the modular
composition theorem holds in the nonconcurrent case even if the ideal-process adversary
is not restricted to black-box simulation.

Recall that in the context of zero-knowledge, existence of a black-box simulator
implies existence of a simulator even for adversaries that have arbitrary auxiliary input
[GQ]. Using the same technique, it can be seen that a similar result holds with respect
to Definition 4.

Remark4: On universal adversaries The introduction of the auxiliary input (and the
quantification over all auxiliary inputs) makes the quantification over all real-life ad-
versaries unnecessary: It suffices to considsingle real-life adversary, namely, the
“universal adversaryl{. Adversarylf will receive in its auxiliary input a description
of an arbitrary adversary maching and will run A. (Note that the complexity dff
running A is only slightly more than the complexity of.) Consequently, in order to
show security of a protocol it suffices to show a single ideal-process adversary: the one
that satisfies Definition 4 with respectib

Another consequence of this observation follows. One may wish to strengthen Defi-
nition 4 to require that there exists afficient transformatiofrom real-life adversaries
to the corresponding ideal-process adversaries. The above argument shows that such
strengthening is unnecessary.

Remarlb: On “initially adaptive” adversaries Consider the following variant of Def-
inition 4. Instead of having the set of corrupted parties given to the adversary as part of
its input, let the adversary (both in the real-life and ideal models) choose the identities
of the corrupted parties, one by one in an adaptive way, but under the restriction that
all corruptions must be made before any communication takes place among the parties.
Call this modeinitially adaptive.

We observe that security in the initially adaptive model is equivalent to security in



162 R. Canetti

the nonadaptive model (as in Definition 4). Intuitively, this follows from the fact that,
until the point where the first message is sent, the real-life and ideal models are identical.
Therefore, any advantage (over nonadaptive adversaries) gained in the real-life model by
the ability to corrupt parties adaptively before the interaction starts, can also be gained
in the initially adaptive ideal model.

A sketch of the proof follows. Clearly initially adaptive security implies nonadaptive
security. (The argument is similar to that of Remark 1 in Section 5.2.) Assume that a
protocolr is secure according to Definition 4, and Jébe an initially adaptive real-life
adversary. We construct an initially adaptive ideal-model adveiSadimat emulatesd.

Let .4’ be the adversary in the (standard) nonadaptive real-life model that gets in its
auxiliary input an internal state of at the point whered is done corrupting parties, and
runs.A from that state on. Le$’ be the ideal-model adversary, guaranteed by Definition
4, that emulates!’. Construct the ideal-model adversahas follows. FirstS follows,
in the ideal model, the corruption instructions.4f Let o be the state ofd once it is
ready to start interacting with the parties. NeXtunsS’ with states given as auxiliary
input. It can be seen thatis a valid initially adaptive ideal-model adversary, and that
emulatesA.

Remark6: On related inputs Definition 4 requires the protocol to “behave properly”
onanyset of inputs to the parties. However, in many real-world situations the participants
expect to have inputs that are correlated in some way (say, the parties have some common
input, or inputs that are taken from a certain distribution), and no requirements are
made from the protocol in the case that the inputs are not of the expected form. The
definition can be relaxed to accommodate such weakened security properties by placing
appropriate restrictions on the domain of the inputs of the parties. (Alternatively, the
evaluated function could be redefined to return some error value in cases where the
inputs are not in the appropriate domain.)

4.3. Modular CompositionThe Nonadaptive Case

Recall that we want to break a given task (i.e., a protocol problem) into several partial
subtasks, design protocols for these partial subtasks, and then use these protocols as
subroutines in a solution for the given task. For this purpose, we want to formalize and
prove the informal goal stated in the Introduction. We do this fontimeoncurrent case,

where at most one subroutine call is made at any communication round. This section
concentrates on nonadaptive adversaries in the secure channels setting.

Formalization and derivation of the composition theorem is done in two steps. We
first state a more general theorem, that holdsfgrprotocolsr (not only protocols that
securely evaluate functions): replacing ideal evaluation calls made kyth subpro-
tocols that securely evaluate the corresponding functions, results in a protocol that has
essentially the same input—output functionalityra3 he composition theorem from the
Introduction follows as an easy corollary.

The hybrid model We start by specifying the model for evaluatingaparty functiong
with the assistance of a trusted party for evaluatifgarty functionsf,, ..., fy, and
define secure protocols in that model. The model, callebyri model with ideal access
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to f1, ..., fm(orinshorttheg fq, ..., fim)-hybrid model), is obtained as follows. We start
with the real-life model of Section 4.1. This model is augmented with an incorruptible
trusted partyl’ for evaluatingfy, ..., fm. The trusted party is invoked at special rounds,

determined by the protocol. (For simplicity of exposition we assume that the number of
ideal evaluation calls, the rounds in which the ideal calls take place, and the functions to
be evaluated depend only on the security parameter. In addition we assumr that
number of different ideally evaluated functions, is fiXéplln each such round a function

f (outof fy, ..., fy)isspecified. The computation at each special round mimics the ideal
process. That s, all parties hand thétinputs toT (party P, handsxif). As in the ideal
process, an active adversary decides on the input values that the corrupted parties hand
the trusted party. If the adversary is passive, then even corrupted partie¥ vahtes
according to the Protocol. Next the parties are handed back their respective o&fputs:
gets f (K, xlf -+ Xn, )i, wherer; is the random input td . Fresh randomness is used

in each ideal evaluation call.

Let EXECE’A" fm(k, X, z) denote the random variable describing the output of the com-
putation in the(fq, ..., fy)-hybrid model with protocolr, adversaryA, security pa-
rametelk, inputsX and auxiliary inputz for the adversary, analogously to the definition
of EXEC, _4(k, X, 2) in Section 4.1. (We stress that herds a hybrid of a real-life pro-

Replacing an ideal evaluation call with a subroutine calNext we describe the “me-
chanics” of replacing an ideal evaluation call of protoeat round with an invocation

of ann-party protocolp. This is done in a straightforward way. That is, the description
of = for roundl is modified as follows. (Other rounds remain unaffected.)

1. At the onset of rountl each partyP, saves its internal state (relevant to protocol
) on a special tape. Let denote this state.

2. Thecalltothe trusted parlyis replaced with aninvocation &'s code for protocol
p. PartyP’s input and random input fqs are determined as follows. The input
is set to the value th&® was to hand the trusted partyat roundl, according to
protocolr. The random input” is uniformly chosen in the appropriate domain.

3. OnceP, completes the execution of protogoWith local outputv!’, it resumes the
execution of protocak for roundl, starting from state;, with the exception that
the value to be received frofis set tov/.

Let w~r#m denote protocok (originally designed for the f; - - - fi,)-hybrid model)
where each ideal evaluation call fpis replaced by a subroutine call to protoggl

12\We remark that these restrictions can be “circumvented” in a number of ways. For instance, we can
imagine that at each other round the parties make an ideal evaluation call to a “universal fuhktibefihed
as follows. Each party? hands the trusted party a description ofraparty functionf and an inpuk;. If a
majority of the parties agree oin thenP; is handedf (X); ; otherwise a null value is returned. This convention
allows us to apply the composition theorems to protocols where the parties decide in an adaptive way (say,
using some agreement protocol) on the number of ideal evaluation calls and on the function to be evaluated at
different calls.
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It is stressed that no uncorrupted party resumes execution of protooefore the
current execution of protocqd is completed. Furthermore, we assume that all the
uncorrupted parties terminate each executiop; @t the same round. Otherwise, some
parties may resume executing the calling protocol while others still execute the subroutine
protocol, and the nonconcurrency condition is violated.

Theorem 5, stated below, takes a somewhat different approach to the composition
operation than the informal theorem made in the Introduction. It does not require any
security properties from protocal. Instead, it essentially states that the “input—output
functionality” of any protocol 7 in the hybrid model is successfully “emulated” by
PP in the real-life model. On top of being somewhat more straightforward, this
more general statement is relevant even in cases whererforms a task other than
secure function evaluation.

Theorem 5(Nonadaptive Modular Composition: General Statementet t < n, let

m € N, and let 1, ..., f, be n-party functionsLet = be an n-party protocol in the
(fy, ..., fm)-hybrid model where no more than one ideal evaluation call is made at each
round let p1, ..., pm be n-party protocols wherg, nonadaptively t-securelfresp, t-
privately) evaluates ;f and letz »-#m be the composed protocol described abdve=n

for any nonadaptive t-limited activ@esp, passivé real-life adversaryA, there exists

a nonadaptive activéresp, passive adversaryA, in the (fy, ..., fn)-hybrid mode|
whose running time is polynomial in the running timeffand such that

fr,e, fm d
EXEC,' A" = EXECgerom A. 2

For completeness, we also rigorously state the informal goal stated in the Introduction.
For that, we first define protocols for securely evaluating a fungtiorthe (fy, ..., fn)-
hybrid model. This is done via the usual comparison to the ideal procegs for

Definition 6. Let fy, ..., fn, gben-party functions and let be a protocol fon parties
in the (f1, ..., fn)-hybrid model. We say that nonadaptively t-securely evaluates g
in the (fq,..., fm)-hybrid model if for any nonadaptive-limited adversaryA4 (in the
(f1, ..., fm)-hybrid model) there exists a nonadaptive ideal-process advessanpse

running time is polynomial in the running time gf, and such that

d fr,.... 1
IDEALg.s = EXEC.';" ™. (©))

13 Consider, for instance, the following example. Par#les8, C wish to evaluate the following function,
g: C should output the input 0B; B should output the input of\; A should have empty output. Assume a
hybrid model with ideal access to a functiérwhereC outputs the input oB. A protocolsn for evaluatingg
in this hybrid model instructs partie%, B, andC ideally to evaluatef first. Next partyA is instructed to send
B its input. It is easy to see thatsecurely evaluategin the f -hybrid model. Lefo be a protocol that securely
evaluatesf . Protocolp takes several rounds to complete, but patyompleteso after the first round.

Now, assume thaf\ sends its input t@ as soon as it is done with the executiongofand, in particular,
beforeB andC have completed the execution @f. In this case, a corruptel may be able to influence the
output ofC in ways that depend oA’s input. This would make protocal” insecure, although both andp
are secure.
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If AandS are passive adversaries, then we saysthainadaptively t-privately evaluates
ginthe (fy, ..., fm)-hybrid model.

Corollary 7 (Nonadaptive Modular Composition: Secure Function Evaluatiohjpt

t <n,letme N,andlet f, ..., fn,, g be n-party functiondet = be an n-party pro-
tocol that nonadaptively t-securefsesp, t-privately) evaluates g in théfy, ..., fy)-
hybrid model where no more than one ideal evaluation call is made at each ,round
and letp, ..., pm be n-party protocols such tha nonadaptively t-securelgresp,
t-privately) evaluates f Then the protocok - nonadaptively t-securelfresp,
t-privately) evaluates g

Proof. Let A be a (nonadaptivel}limited real-life adversary that interacts with par-

the two equalities. O

4.4. Proof of Theorend

We prove the theorem only for the case of active adversariest{security). The case
of passive adversaries (i.eprivacy) can be obtained by appropriately degenerating the
current proof.

In addition, we first treat only the case whane= 1 and the trusted parfy is called
only once. The case of multiple functions and multiple (but nonconcurrent) callssto
a straightforward extension, and is treated at the end of the proof.

Section 4.4.1 contains an outline of the proof. The body of the proofisin Section 4.4.2.
Section 4.4.3 contains some extensions of the proof (and of the theorem).

4.4.1. Proof Outline

Let f be ann-party function, letr be ann-party protocol in thef -hybrid model, leto
be a protocol that-securely evaluate$, and letz” be the composed protocol. Lét
be a (nonadaptive) real-life adversary that interacts with parties rumrfing/e wish to
construct an adversary,, in the f-hybrid model that “simulates” the behavior &
That is,.A,; should satisfy

EXECyr 4 = EXEC; A 4

Our plan for carrying out this proof proceeds as follows:

1. We construct out of4 a real-life adversary, denoted,, that operates against
protocol p as a stand-alone protocol. The securitypajuarantees thatl, has a
simulator (i.e., an ideal-process adversafy), such thaEXec, 4, = IDEALf,s, .

2. OutofA andS, we construct an adversaty,,, that operates against protoaos
a stand-alone protocol in thie-hybrid model. We then show that, satisfies (4).
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We sketch the above steps. In a waly, represents the “segment” gf that interacts
with protocolp. That is, A, starts with a seC of corrupted parties, the inputs of the
parties inC, and an auxiliary input. It expects its auxiliary input to describe an internal
state ofA, controlling the parties i€, and after interacting with parties running protocol
7” up to the roundl,, wherep is invoked. (If the auxiliary input is improper, the4,
halts.) Next, 4, interacts with its network by simulating a run gf from the given
state, and followingA’s instructions. At the end of its interaction with parties running
p, adversaryA, outputs the current state of the simulatéd

Adversary A, represents the “segment” of that interacts with protocot, where
the interaction of4 with p is replaced with an interaction witl,. That is, A, starts
by invoking a copy of4 and following.A’s instructions, up to rounl,. At this point,.4
expects to interact with parties runnipgwhereasA,, interacts with parties that invoke
a trusted party for ideal evaluation éf To continue the execution of, adversaryA,
runssS,. For this purposes$, is given auxiliary input that describes tberrentstate ot4
atround ,. The information fromsS,’s trusted party is emulated by, , using.4,’s own
trusted party forf . Recall that the output &, is a (simulated) internal state &f at the
completion of protocop. Once protocop completes its execution and the parties return
to runningr, adversary4, returns to runningd (starting from the state i§,'s output)
and follows the instructions ofl. When.A terminates,A,, outputs whateverl outputs.

We address one detail regarding the construction (among the many details that were
left out in this sketch). When adversa#y, runssS,, the latter expects to see the inputs
of the corrupted parties to protoce] however,4,, does not know these values. In fact,
these values may not even be defined in the executioA wfith 7#. The answer to
this apparent difficulty is simple: it does not matter which valugshandsS, as the
inputs of the corrupted parties. The simulation is valid even if these inputs are set to
some arbitrary values (say, the value 0). Intuitively, the reason is that we condjruct
in such a way that it does not “look at” these input values at all. Thus the outpdf of
(and consequently also the output%)) is independent of these arbitrary input values.

4.4.2. A Detailed Proof

Let A be an adversary (interacting with parties running). First we present the con-
structions of adversaried, and.A,. Next we analyzed,, showing (4).

Some inevitable terminology An execution of a protocol (either in the real-life or in

the f-hybrid model) is the process of running the protocol with a given adversary on
given inputs, random inputs, and auxiliary input for the adversary. (Infttbrid

model an execution is determined also by the random choices of the trusted party for
f.) Theinternal state (or, configuration) of an uncorrupted party at some round of an
execution consists of the contents of all tapes of this party, the head position and the
control state, taken at the end of this round. In particular, the internal state includes all
the messages sent to this party at this round. We assume that the internal state includes
theentirerandom input of the party for the computation, including the yet-unused parts.
The internal state of the adversary is defined similarly. dibieal state of the system at

some round of an execution is the concatenation of the internal states of the parties and
the adversary at this round.
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Letis, a(l, k, X, z, )o denote the internal state at rouraf adversaryd with auxiliary
input z and when interacting with parties running proto@obn inputX = X - - X,
random input” = rq---r,, and with security parametét as described abovey(for
A, x; andr; for party B). Letis, 4(, k, X, z,I'); denote the internal state of pafdy at
roundl of this execution. (If?, is corrupted, thers, 4(l, k, X, z,F); =L.) Let

GST,.A(I ’ k? )_{7 Z’ I7) = IST[,.A(' ’ ka )_(>’ Zv F)Ov ISJIA(I ’ k» )?3 Z’ F)l’ T ISJI.A(I ’ k9 )?1 Z’ F)n

LetGs, 4(l, k, X, z) denote the probability distribution @fs, 4(, k, X, z, /) wherer is
uniformly chosen.

Note that the global state of the system at some round of an execution uniquely
determines the continuation of the execution from this round until the completion of the
protocol. In particular, the global output of the system is uniquely determined given the
global state (at any round).

We assume an encoding convention of internal states into strings. A star{g, 1}*
is said to be arnternal state of party P at round! if z encodes some internal state of
P at round . (Without loss of generality we can assume that any sziagcodesome
internal state.) In what follows we often do not distinguish between internal states and
their encodings.

“Running adversary .4 from internal state z° means simulating a run aofl starting at
the internal state describedinRecall thatz contains all the information needed for the
simulation; in particular, it contains all the necessary randomness.

Constructionofd,. The construction follows the outline described above. More specif-
ically, adversary4, proceeds as described in Fig. 2, given advershry
It now follows from the security of protocgb that there exists an ideal-process

Adversary A,

Adversary A, interacting with partie$, ..., P, running protocol, starts with a
valuek for the security parameter, a setof corrupted parties, inputs and random
inputs for the parties i€, and auxiliary inputz”. Next, do:

1. Ignore the input values of the corrupted parties.

2. Letl, be the round where protocal’ starts running protocgd (i.e., this is
the round wherer calls the trusted party). Verify that the auxiliary inpmzt,
is a valid internal state ofl, controlling the parties i€, at round, — 1. If z°
is not valid, then halt with no output. Else:

(a) RunA from internal state”. Let P; - - - P; denote the (imaginary) set of
parties with whichA interacts.

(b) Whenever some uncorrupted paRy(running p) sends a message to
a corrupted party?,, A, lets the simulatedd see messaga sent from
party P’ (runningz*) to party P/.

(c) Whenevetd instructs some corrupted parfy to send a messageto an
uncorrupted party?/, adversaryA,, instructs partyP; to send messaga
to party R,

3. OnceA halts,.A, outputs the current internal state.dfand halts.

Fig. 2. Description of adversaryl, in the nonadaptive model.
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adversaryS, such thatibEALy s, = EXEC, 4,. Note thatA, is deterministic, since

all of the randomness used byis provided in the auxiliary input”. Yet, the simulator

S, is (inherently) probabilistic, since it should generate a distribution ensemble that is
equaltceXxEC, 4, . In particular, it should mimic the randomness used by the uncorrupted
parties runningp.

We observe that the special structuredyfimplies thatS, has an additional property,
described as follows. Recall thatt, ignores the inputs of the corrupted parties, in the
sense that its actions and output do not not depend on these input values. In particular,
the copy ofA run by A4, is not affected by these values. Therefore, the distribution of
the output ofA,, as well as the global output of the system after runningith A,,
remains unchanged if we set the input values of the corrupted parties to 0. Consequently,
the distribution of the global output of the ideal process for evaluatigth S, has
the same property. We formalize this discussion as follows. Given an input weclet
X”|o denote the vector obtained by replacing all the inputs of the corrupted parties with
0. Then we have:

Claim 8. For any value of the security parameterdny input vectok”, and auxiliary
input 2 we have

IDEAL¢s, (K, X*, ) = IDEAL+ s, (K, X”|0, Z°).

Proof. We have argued above tlexeC, 4, (K, X*, z°) = EXEC,, 4, (K, X|o, 2°). How-

ever, IDEALy s, (k, X”,2°) = EXEC, 4,(k,X*, "), and IDEALys, (K, X’|o, 2") =
EXEC,, 4, (K, X’|o, 2°). The claim follows.

mll

Construction of4,,. Adversary.A, follows the outline described in Section 4.4.1.
More specifically, it proceeds as described in Fig. 3.

Analysis of4,,. Itis evident that the running time of,, is linear in the running time

of A, plus the running time of,, plus the running time of”. Fix an input vectok,

and auxiliary input for the parties and adversary, as well as some value of the security
parametek. (In particular, the set of corrupted parties is now fixed.) Steps I-l1l below
demonstrate that

EXECys a(k, X, 2) = EXECJZ,Aﬂ(k, X, 2), (5)

which establishes the theorem for the case of a single ideal evaluation call. (In (5) and
for the rest of the proof the symbét is used to denote equality distributions not
ensembles.)

We first set some additional notation. Recall thad the round where protocelmakes
the ideal evaluation call, and protocot invokesp. Given vectors™ =rj, ..., r7 and
r* =r{,...,rh (wheref™ is interpreted as the random input for the executiom of
except for the execution @f, andr” is interpreted as the random input for the execution
of p), letr™ =rg"”,...,ra” denote the combination @f andr” to a full random-
input vector for the execution af*. (That s, partyP, uses for the execution op and
r for the execution ofr, and the adversary usesduring the execution g andr at
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Adversary A,

Adversary A,, interacting with partied, ..., P, running protocolr and given
access to a trusted parly for evaluating f, starts with a valué for the security
parameter, a s& of corrupted parties, inpuig and random inputg for the parties
in C, and auxiliary inputz. Next, do:

1. InvokeA onC, Xc, fc, zand follow the instructions afl up to round, — 1.
(Recall that, so farr ands” are identical.) In addition, keep another piece of
the random input “on the side.” This piece, denatédis used below.

2. At the onset of round,, A expects to start interacting with parties running
protocol p (as subroutine), whereas partifs, ..., P, call a trusted party

for ideal evaluation of functiorf. In order to continue the run o4, invoke

simulatorS, as follows:

(a) S, is given the se€ of corrupted parties. The inputs of these parties are
set to 0, and their random input are set fo (Recall that the inputs of
the corrupted parties do not affect the distribution of the global output of
evaluatingf with S,.) The auxiliary inputz” for S, is set to the current
internal state ofA.

(b) WhensS, hands its trusted party the inputs of the corrupted parties and
asks for the evaluated values 6f invoke the trusted party[, with the
same input values for the corrupted parties, and hand the value provided
by the trusted party back t§),.

3. Recall that the output &, is an internal state ofl at the end of the execution
of p. Once this output, denotad is generated, ruml from internal state,
and return to followingA’s instructions until the completion of protocel

4. Once protocak is completed, output whatevet outputs and halt.

Fig. 3. Description of adversaryl,; in the nonadaptive model.

other rounds.) Similarly, giver”™ =rg, ..., rX andf ', wheref™ is as above and' is
interpreted as a random vector for roupdn the f-hybrid model (that isf ' = rof, rlf
whererof is the random input for the adversary for this round afuds the random
input for the trusted party fof ), letf™ f denote the combination &f andr ' to a full
random-input vector for the execution ofin the f -hybrid model.

Stepl. Until roundl, — 1, protocolst andz” “behave the same.” That is, fix some
valuer™ as the random input for the system. We have

GSroall, — 1L,k X, 2,7") =GS; 4, (1, — Lk, X, 2, 7). (6)

Stepll. We show that the global state in the hybrid model at the end of rdyiis!
distributed identically to the global state in the real-life model at the round where protocol
p returns. This is done in three substeps, as follows. (Recall that aivaluas fixed in

Step I.)

1. We first assert that the parameters set in the hybrid model for the ideal evaluation
of f are identical to the parameters set in the real-life model for the invocation
of p. That is, letX” = x{, ..., xh, wherex’ is determined as follows. IR, is
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uncorrupted, thex{ is the input value ofP for protocol p, as determined in
GSw.all, — 1,k X, z, ™). If P is corrupted, thex” = 0. Let Letz” denote the
internal state of4 at roundl, — 1 in this execution. Similarly, Iexif denote the
value that party?, hands the trusted party fdr, as determined i®s, 4, (1, —
1k X,z F7), let X" = x;,...,xs, and letz" denote the internal state of
(within A;’s code) at roundl, — 1 of this execution. Then it follows from (6) that
xr =Xf|lgandz’ = z'.

. Next we assert that the global output of the executiop,dhat is implicit in the

run of 7# with adversaryA, is distributed identically to the global output of the
ideal evaluation off that is implicit in round, of a run ofz in the hybrid model.
That is, from the security g, from Step 1.1, and from Claim 8, we have that

EXEC, 4, (K, X", 2")

IDEALts, (K, X7, 27)

IDEAL¢s, (K, X o, 2) = IDEALt s, (K, X", 2"). (7)

. Finally we show that the global state in the hybrid model at the end of rund

is distributed identically to the global state in the real-life model when protecol

returns. That s, ldt, denote the round where the call to protopakturns (within

protocols ). Then it follows from the definition ofr” and the constructions of

A, and A, that:

(@) Letr” be some random-input vector for protogolThenGs,, 4(:, K, X, z,
r™°) is obtained fromGs;» 4(l, — 1.k, X,z,T™) and EXEC, 4, (K, X, 2",
r?) via a (simple, deterministic) process, denotedEssentially, process

combines and updates the internal states of the adversary and the parties.

More precisely, this process first modifies each internal ssates4 (1, — 1,
k,X,z ™) by adding EXEC, 4, (k, X", z",F"); in the appropriate place.
Next it outputs the internal state ol as it appears ind,’'s output in
EXEC, 4,(k, X?, 2%, 7”), and appends to it the modified internal states of the
uncorrupted parties.)

(b) Given some random input vectdf for the ideal process for evaluating
f, the global statess, 4.(,,k. X, z, 7™ ") is obtained fromas, 4. (a,-1,
k,X,z ™) and IDEAL; s, (k, X', ', ") via the same proces€, as in the
real-life model.

It follows that for any value of”, and for vectors” and ' that are uni-

formly chosen in their respective domains, we hag, 4(,,Kk, X, z, Friry =

GSr.4, (12, k, X, z,7™"). Now, letr™ be randomly chosen in its domain. It follows

that:

GST/’,.A(ITH k9 )?1 Z) é GST,.A,—[ (lps kv iv Z) (8)

Steplll.  We assert (5). From the resumption of protoeoluntil its conclusion, ad-
versaryA, returns to following the instructions od. Consequently, the distributions
EXEC,» 4 (K, X, Z) and EXEC;AY (k, X, z) are obtained by applying the same process to
the corresponding sides of (8).

This completes the proof for the case of a single ideal evaluation call.
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On multiple ideal evaluation calls The case of multiple ideal evaluation calls is a
straightforward generalization of the case of a single call. We sketch the main points of
difference:

1. Anadversaryd,, is constructed for each protocal. All the A,,’s are identical to
adversaryA, described above, with the exception that protqed replaced by
i (If pi = pj for somei, j, thenA, = A,.)

2. Construct an adversap@n that is identical ta4, described above, with the ex-
ception that at each round wheteinstructs the parties to evaluafe ideally,
adversaryA, runs a copy ofS, in the same way asgl, runsS,. The auxiliary
input of S, is set to the current internal state of the simulatedithin A, . (Note
that there may be several invocations of the same simutatpwhere each invo-
cation corresponds to a different ideal evaluation cal ta'hese invocations will
have different auxiliary inputs. Also, a separate piecd gk random input is used
for each invocation of soms,, .)

3. As in the case of a single ideal evaluation call, it is evident that the running time
of A, is linear in the running time of{, plus the sum of the running times of all
the invocations of5,, ..., S,,, plus the running time of*#m. Showing that

EXECyr1.om A (K, X, 2) = EXEc:;i"fm(k, X, z) is done in several steps, as follows.

Let1) denote the round in which protocel makes thejth ideal evaluation call

in the hybrid model. The argument of Step | above demonstrates that the global

states at rountf!) — 1 are identical in the two executions. Now, for egck 1,

proceed in two steps:

(@) Apply the argument of Step Il to establish that the global state in the hybrid
model at the end of round? is distributed identically to the global state in
the real-life model at the round where tlith subroutine call (to somg;)
returns.

(b) Apply the argument of Step Il to establish that the global state in the hybrid
model at roundi*Y — 1 is distributed identically to the global state in the
real-life model at the round where thg + 1)th subroutine call is made.

If the execution is completed without making thg+ 1)th subroutine call,
then we have established tHtEC, ri..m 4 (K, X, 2) = EXECJ:l """ fmk, X, 2),

as required.

4.4.3. Extensions

On the propagation of statistical distanceSomewhat relaxed versions of Definitions 4
and 6 allows the two sides of (1) and (3) to be statistically indistinguishable, rather than
equally distributed. We note that the composition theorem holds in this case as well.
That is:

1. Theorem 5 holds with the exception that the two sides of (2) are statistically in-
distinguishable. More specifically, in the case of a single ideal evaluation call, if
protocolp achieves statistical distanég then the statistical distance between the
two sides of (2) is at most;. (The construction and analysis gf, remain un-
changed, with the exception that the two leftmost distributions in (7) have statistical
distances;.)
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Inthe case of multiple ideal evaluation calls the total statistical distance between
the two sides of (2) is at most the sum of the statistical distances achieved by all
the individual protocol invocations made by the composed protocol. That is, if
protocol p; achieves statistical distandg and is invoked; times, then the total
statistical distance between the two sides of (2) is at rﬁdgztl v - 6.

2. Corollary 7 holds with the exception that the two sides of (1) are statistically
indistinguishable. More specifically, in the case of a single ideal evaluation call,
if protocol p achieves statistical distanée and protocolr achieves statistical
distances,, then protocolr” achieves statistical distanége+ 5.

In the case of multiple ideal evaluation calls the statistical distance achieved
by mr:-fm is at most the sum of the statistical distances achieved by all the
individual protocol invocations, plus the statistical distances achievedihythe
(f1, ..., fm)-hybrid model. That is, assume that proto@olachieves statistical
distances in the hybrid model, and that protocp] achieves statistical distance
i, and is invoked; times. Then protocat *-#m achieves statistical distance at
mosts + > vi - &

On computational indistinguishability The composition theorem holds also for the
case where the two sides of (1), and also of (2), are only computationally indistinguish-
able. We defer the treatment of this case to Section 6.

On black-box simulation A straightforward extension of the proof of Corollary 7
shows the following additional result. Assume that the security of protecinl the
hybrid model is proven vialack-box simulation (see Remark 3 in Section 4.2). Then the
security of protocok ” can also be proven via black-box simulation. Furthermore, if the
simulator associated with does not rewind the adversary, then the simulator associated
with 7# does not rewind as well. Note that no additional requirements are made from
protocol p. In particular, the security of protocgl need not be proven via black-box
simulation.

Remark The reader may notice that the fact that the communication links are ideally
secure does not play a central role in the proof of Theorem 5. Indeed, the same proof
technique (with trivial modifications) is valid in a setting where the adversary sees all
the communication among the parties. See more details in Section 6.

5. Adaptive Adversaries

This section defines secure protocols, and presents and proves the composition theorem
for the case of adaptive adversaries. Both the definition of adaptive security of protocols
and the proof of the composition theorem in this case are considerably more complex
than for the nonadaptive case. Furthermore, proving adaptive security of protocols is
typically harder. We thus start with some motivation for this more complex model.

While adaptive security looks like a natural extension of nonadaptive security, a sec-
ond look reveals some important differences between the two models and the security
concerns they capture. Informally, the nonadaptive model captures scenarios where the
parties do not trust each other, but believe that parties that are “good” remain so through-
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out. There the adversary is amaginary concepthat represents a collection of “bad
parties.” In contrast, the adaptive model captures scenarios where parties may become
corrupted during the course of the computation—either on their own accord, or, more
realistically, via an external “break-in.” Here the adversary modesciumal entitythat

takes an active part in the computation. Indeed, external attackers who have the ability
to “break-into” parties in an adaptive manner impose a viable security threat on existing
systems and networks.

Nonadaptive security is implied by adaptive security (see Remark 1 in Section 5.2).
However, the converse does not hold. In particular, while the nonadaptive model cap-
tures many security concerns regarding cryptographic protocols, it fails to capture some
important concerns that are addressed in the adaptive model. One such concern is the
need to deal with the fact that an adversary may use the communication to decide which
parties are worth corrupting. (See Remark 2 there.) Another such concern relates to the
fact that the adversary may gain considerable advantage from seeing the internal data
of parties upon corruption (or a “break-in"), after some computational steps have taken
place. This means that data kept by the uncorrupted parties should never be regarded
as safe, and the threat of this data being exposed should play an important part in the
security analysis of a protocol. See Remark 3 in Sectiorts.2.

This section attempts to be as self-contained as possible, at the price of some repetition.
Still, in cases where the text is very similar to the nonadaptive case with immediate
modifications we only note the changes from the corresponding parts of Section 4.

Throughout this section we restrict the presentation to the secure channels setting.
The computational setting is dealt with in Section 6. Section 5.1 contains the definition
of secure protocols. All the remarks made in Section 4.2 and in footnotes throughout
Section 4 are relevant here as well, but are not repeated. In addition, Section 5.2 holds
remarks specific to the adaptive case. Section 5.3 presents the composition theorem, to
be proven in Section 5.4.

5.1. Definition of SecurityThe Adaptive Case

As in the nonadaptive case, we develop the definitions for the caaetvefandpassive
adversaries side by side, noting the differences throughout the presentation. We first
describe the real-life model; next we describe the ideal process; finally the definition is
presented, using essentially the same notion of emulation as in the nonadaptive case.

One obvious difference from the definition of nonadaptive security is that here the
adversary chooses the identities of the corrupted parties in an adaptive way; upon cor-
ruption, it sees the internal data of the corrupted party. (See more discussion on this point
below.)

An additional, more “technical” difference is the way in which the interaction between
the outside environment and a single protocol execution is captured. In the nonadaptive
case this interaction is captured by the parties’ inputs and outputs, plus an auxiliary input

14 Limiting the advantage gained by the adversary from exposing the secret data of parties is sometimes
calledforward secrecy in the literature. In the context of key exchange, for instance, forward secrecy refers to
preventing an adversary from learning, upon corrupting a party, keys that are no longer in use [DOW]. Indeed,
the adaptive setting provides a framework for analyzing forward secrecy of protocols.
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z given to the adversary before the computation starts. There this representation sufficed
for proving the composition theorem. In the adaptive case there is an additional way in
which the external environment interacts with a given protocol execution: whenever the
adversary corrupts a party it sees the party’s entire internal state, including the state for
all the protocol executions which involve this party. This fact has two manifestations.
Consider a protocol executighthat is part of a larger protocol, involving other protocol
executions. First, when a party is corrupted during execufitine adversary sees the
party’s internal state also from other protocol executions, both completed and uncom-
pleted ones. (Here information floviisto execution€ from the outside environment.)
Second, when a party is corrupted in another protocol execution, the adversary sees the
party’s internal state relevant to executi®n(Here information flow$rom executionf

to the outside environment.) A particularly problematic case is that of corruptions that
occurafter executionf is completed.

To model this information flow, we introduce an additional entity, representing the
external environment, to both the real-life model and the ideal process. This entity, called
theenvironment and denoted, is an interactive Turing machine that interacts with the
adversary and the parties in a way described below. The notion of emulation is extended
to include the environment.

The real-life model Multiparty protocols are defined as in the nonadaptive case. That
is, ann-party protocol 7 is a collection ofn interactive, probabilistic algorithms, where
theith algorithm is run by théth party, P,. (Formally, each algorithm is an interactive
Turing machine, as defined in [GMR].) Ea¢h has inputy; € {0, 1}*, random input

ri € {0, 1}*, and the security parametkr Informally, we envision each two parties
as connected via grivate communication channel. A more complete description of the
communication among parties is presented below.

An adaptive real-life adversary .4 is a computationally unbounded interactive Turing
machine that starts off with some random input. Bheironment is another computa-
tionally unbounded interactive Turing machine, denafdhat starts off with input
and random input. At certain points during the computation the environment interacts
with the parties and the adversary. These points and the type of interaction are specified
below. An adversary ilimited if it never corrupts more thanparties.

At the onset of the computatiad receives some initial information frorg. (This
information corresponds to the auxiliary information seepdiy the nonadaptive case.)
Next, the computation proceeds according to some given computational model. For con-
creteness, we specify the following (synchronous, with rushing) model of computation.
The computation proceeds in rounds; each round proceedsidounds, as follows.

Each mini-round starts by allowing to corrupt parties one by one in an adaptive way,

as long as at mostparties are corrupted altogether. (The behavior of the system upon

corruption of a party is described below.) Nettchooses an uncorrupted par,,

that was not yet activated in this round aautivates it. Upon activation,P, receives the

messages sent to it in the previous round, generates its messages for this round, and the

next mini-round begins4 learns the messages sentByto already corrupted parties.

Once all the uncorrupted parties are activatddyenerates the messages to be sent by

the corrupted parties that were not yet activated in this round, and the next round begins.
Once a party is corrupted the party’s input, random input, and the entire history of
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the messages sent and received by the party become knowin {Bhe amount of
information seen by the adversary upon corrupting a party is an important parameter
of the definition. See discussion in Remark 4 in Section 5.2.) In addidearns the
identity of the corrupted party, and hands some additional auxiliary informatioth to
(Intuitively, this information represents the party’s internal data from other protocols run
by the newly corrupted party) From this point onA learns all the messages received

by the party. IfA is passive, then the corrupted parties continue running protacdf

A is active (Byzantine), then once a party becomes corrupted it follows the instructions
of A, regardless of protocat.

At the end of the computation (say, at some predetermined round) all parties locally
generate their outputs. The uncorrupted parties output whatever is specified in the pro-
tocol. The corrupted parties outplit In addition, adversaryl outputs some arbitrary
function of itsinternal state. (Without loss of generality, we can imagine that the ad-
versary’s output consists of all the information seen in the execution. This includes the
random input, the information received from the environment, the corrupted parties’
internal data, and all the messages sent and received by the corrupted parties during the
computation.)

Next, a “postexecution corruption process” begins. (This process models the informa-
tion on the current execution, gathered by the environment by corrupting parties after the
execution is completed.) FirsE, learns the outputs of all the parties and of the adversary.
Next, Z and.A interact in rounds, where in each rougdfirst generates acorrupt
P,” request (for somd>), and hands this request # Upon receipt of this request
handsZ some arbitrary information. (Intuitively, this information is interpretedPds
internal data.) It is stressed that at mogtarties are corrupted throughout, evergif
requests to corrupt more parties; in this casgnores the requests &f. The interaction
continues untilZ halts, with some output. Without loss of generality, this output can be
Z’s entire view of its interaction with4 and the parties. Finally, the global output is
defined to be the output &f (which, as said above, may include the outputs of all parties
as well as of the adversary). See further discussion on the role of the envirognrent
Remark 5 of Section 5.2. The computational process in the real-life model is summarized
in Fig. 4.

We use the following notation. Let thglobal output EXEC, 4 z(k, X, z, ) denote
Z’s output on inputz, random input z, and security parametésr;, and after interact-
ing with adversaryA and parties running protocat on inputsX = Xj - -- X, ran-
dom inputf = rz,ro---ry, and security parametér as described above(for A,

X andr; for party P). Let EXEC, 4 z (K, X, 2) denote the random variable describing
EXEC, 4.z (K, X, z, ) wherer is uniformly chosen. LeEXEC, 4, z denote the distribu-

tion ensembIEXEC, 4 z (K, X, ) }keN, x.27¢(0.1)+- (The formalization of the global output
EXEC, 4z is differentthan in the nonadaptive case, in that here the global output contains
only the output of the environment. We remark that the more complex formalization,
where the global output contains the concatenation of the outputs of all parties and

15 For the sake of simplicity, we do not restrict the way in whihcomputes the data provided to the
adversary upon corruption of a party. However, we note that a somewhat weaker definition where this data
is fixed before the computation starts (but remains unknown to the adversary until the party is corrupted) is
sufficient, both for capturing security and for the proof of the composition theorems.
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Execution of ann-party protocol by parties P; ... P,
with adversary .4 and environment 2

1. (a) Each party? starts with the security parameterinputx;, and random
inputr;.
(b) The adversary starts withk and random inputy. The environment2
starts with inputz and random input;.

2. Initialize the round number fo<« 0. A receives an initial message frafh

3. Aslong as there exists an uncorrupted party that did not halt, do:
(@) Aslong as there exists an uncorrupted party that was not activated in this
round, do:
i. Aslong asA decides to corrupt more parties, do:
A. A chooses a partf, to corrupt.Z learns the identity of
P.
B. Areceives? s input, random input, and all the messages
thatP, received in this interaction. In additiod, receives
a message fronx.
ii. A activates an uncorrupted par®. If | > 1, thenP, receives
the messagefn; i ;_1|j € [n]} sent to it in the previous round.
Next, P, generatesm; j|j € [n]}, where eaclm; j; € {0, 1}* is
a (possibly empty) message intended for patfyat this round.
The adversaryd learns{m; j,|P; is corrupted.
(b) A generates the messades ;| P, is corrupted ang e [n]}.
I «—1+1
4. Each uncorrupted partl,, as well asA, generates an outpug learns all
outputs.
5. Aslong asZ did not halt, do:
(a) Z sendsA a message, interpreted as “corriipt for some uncorrupted
party P,.
(b) A may corrupt more parties, as in Step 3(a)i above.
(c) A sendsZ a message, interpreted Bss internal data.
6. Z halts with some output.

Fig. 4. A summary of the adaptive real-life computation.

adversary, would yield an equivalent definition; this is so since the environfeaes
the outputs of all the parties and the adversary. We choose the current formalization for
its simplicity.)

The ideal process The ideal process is parameterized by the function to be evaluated.
This is ann-party functionf: N x ({0, 1}*)" x {0, 1}* — ({0, 1}*)", as defined in
Section 3. Each part? has inputx; € {0, 1}*; no random input is needed. Recall that
the parties wish to evaluatik, X, ), ..., f(k, X, r¢)n, wherers il {0, 1}° ands is

a value determined by the security parameter,Rndarnsf (k, X, r¢);. The model also
involves anadaptive ideal-process adversary S, which is an interactive Turing machine
that has random input and security parametdr, and an environmeng which is a
computationally unbounded interactive Turing machine that starts with mypabhdom
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inputrz and the security parametérn addition, there is an (incorruptibleysted party,
T. The ideal process proceeds as follows:

First corruption stage: First, as in the real-life mode§ receives auxiliary informa-
tion from Z. Next,S proceeds in iterations, where in each iterattomay decide
to corrupt some party, based 6fs random input and the information gathered so
far. Once a party is corrupted its input becomes know#i.tm addition,Z learns
the identity of the corrupted party and hands some extra auxiliary information to
S. Let B denote the set of corrupted parties at the end of this stage.

Computation stage:OnceS completes the previous stage, the parties hand the fol-
lowing values to the trusted parily. The uncorrupted parties hand their inputs
to the computation. The corrupted parties hand values chosénligsed on the
information gathered so far. (§ is passive, then even the corrupted parties hand
their inputs toT .)

Let b be the|B|-vector of the inputs contributed by the corrupted parties, and
lety = vy, ..., Yn be then-vector constructed from the input vectoby substi-
tuting the entries of the corrupted parties by the corresponding entiegren
T receivesy; from P. (If S is passive, thely = X). Next, T chooses <Ry,
and hands each, the valuef (k, ¥, r¢);.

Second corruption stagelpon learning the corrupted parties’ outputs of the compu-
tation,S proceeds in another sequence of iterations, where in each itefatiaty
decide to corrupt some additional party, and based on the information gathered so
far. Upon corruptionZ learns the identity of the corrupted party, afidees the
corrupted party’s inpuand outpuf plus some additional information fro as
before.

Output: Each uncorrupted part; outputs f (k, ¥, r¢);, and the corrupted parties
output_L. In addition, the adversary outputs some arbitrary function of the infor-
mation gathered during the computation in the ideal process. All outputs become
known to Z.

Postexecution corruption: Once the outputs are generatScgngages in an interac-
tion with Z, similar to the interaction afl with Z in the real-life model. That is,

Z andS proceed in rounds where in each rouidgenerates somectrrupt

P.” request, and> generates some arbitrary answer based on its view of the com-
putation so far. For this purpos§&,may corrupt more parties as described in the
second corruption stage. The interaction continues @nkiblts with an arbitrary
output.

Let IDEAL¢ s z(K, X, 2, T), wheref =rz, 1o, rt, denote the output of environmest
on inputz, random inputrz, and security parametds, after interacting as described
above with an ideal-process advers&and with parties having inp& = X3 - - - X,
and with a trusted party for evaluatinfgwith random input¢. Let IDEAL¢ s z (K, X, 2)

18 There is no need explicitly to restrict the number of parties corruptefl. fhe definition of security (in
particular, the fact that the identities of the corrupted parties appear in the global output) will guarantee that
an ideal-model adversay (emulating some real-life adversa) corrupts no more parties tha# does.
Moreover, it will be guaranteed that the distribution ensembles describing the parties corruptezhbyby
S are identical.
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denote the distribution obeAL¢ s z(K, X, z, ') whenT is uniformly distributed. Let
IDEAL¢ s z denote the distribution ensemlleEAL¢ s z (K, X, 2)}keN. (%.2)€(0.1}+ -

Comparing computations in the two modelsAs in the nonadaptive case, we require that
protocolr emulates the ideal process for evaluatingret here the notion of emulation

is slightly different. We require that for any real-life adversatyand any environment

Z there should exist an ideal-process adversgirguch thatbDEAL¢ s =z = EXECy A 2-

Note that the environment is the same in the real-life model and the ideal process. This
may be interpreted as saying that “for any environment and real-life advedsdngre
should exist an ideal-process adversary that successfully simularethe presence of

this specific environmerfurthermore, we requiré to be polynomial in the complexity

of A, regardless of the complexity & (see Remark 1 in Section 4.2).

Definition 9 (Adaptive Security in the Secure Channels Setting). Lée ann-party
function and letr be a protocol fon parties. We say that adaptively t-securely evaluates

f if for any adaptive -limited real-life adversaryl, and any environmelf, there exists
an adaptive ideal-process adversarywhose running time is polynomial in the running
time of A, such that

IDEALf.s. z = EXECy A z. 9)

If AandsS are passive adversaries, then we say thadaptively t-privately evaluates g.

Spelled out, (9) means that for any value of the security paramdtg@any input vectok,
and any auxiliary input, the global output®EAL ¢ s = (k, X, Z) andEXEC, 4 z(K, X, 2)
should be identically distributed.

5.2. Discussion

Remarkl: Adaptive security implies nonadaptive securityntuitively, nonadaptive
security appears as a restricted version of adaptive security. We affirm this intuition
by observing that Definition 9 (adaptive security) implies Definition 4 (nonadaptive
security).

We sketch a proof: Letr be a protocol that adaptivelysecurely evaluates some
function, and let4d be a nonadaptive-limited adversary. We construct a nonadaptive
ideal-model adversar§ that emulatesA.

Let A" be the following adaptive-limited real-life adversaryA’ receives from its
environment a value that is interpreted as a sétof parties to corrupt, and a valge
Next, A’ corrupts the parties i€ and runs4 on the seC of corrupted parties, and with
auxiliary input¢. Let Z be the environment that, on inprtprovides the adversary (at
the beginning of the interaction) with the vala@nd remains inactive from this point
on. LetS’ be the (adaptive) ideal-model adversary that emuldtas the presence of
Z. Note thatS’ must eventually corrupt exactly the parties in the set provided by

The nonadaptive ideal-model adversatyproceeds as follows. Given a s€t of
corrupted parties together with their inputs, plus auxiliary inpudeal-model adversary
S will proceed by runningS’; in addition,S plays the environment fa$’ and provides
it with a valuez that consists of the s& of parties to be corrupted plus the valgie
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WheneverS’ corrupts a party irC, S providesS’ with the input of that party. Finally§
outputs whateve$’ outputs. It is evident thaf emulatesA.

Remark2: Additional concerns captured by adaptive secu(lly We highlight one
aspect of the additional security offered by the adaptive-adversary model, namely, the
need to account for the fact that the adversary may learn from the communication which
parties are worth corrupting more than others. This is demonstrated via an example,
taken from [CFGN]. Consider the following secret sharing protocol, run in the presence
of an adversary that may corrupt= O(n) out of then parties:A dealer D chooses at
random a small set S ofay m = /t parties (In fact, any valuew(logn) < m <t

will do.) Next D shares its secret among the parties in S using an m-out-of-m sharing
schemeln addition D publicizes the set. §or concreteness, assume that the protocol
evaluates the null function.) Intuitively, this scheme lacks in security sBisepublic
and|S| < t. Indeed, an adaptive adversary can easily Brglsecret, without corrupting

D, by corrupting the parties i%. However, any nonadaptive adversary that does not
corrupt D learnsD’s secret only ifS happens to be identical to the predefined set of
corrupted parties. This happens only with probability that is exponentially small (in
m). Consequently, this protocol is secure in the presence of nonadaptive adversaries, if a
small error probability is allowed. (In particular/ifis polynomial ink, then Definition 4

is satisfied with the exception that the two sides of (1) are statistically indistinguishable.)

Remark3: Additional concerns captured by adaptive secuflty. Another security
concern that is addressed in the adaptive model, and remains unaddressed in the non-
adaptive model, is the need to limit the information gathered by the adversary when it
corrupts (or breaks into) parties and sees their internal data. This means that even the
internal memory contents of “honest” parties cannot be regarded as “safe” and could
compromise the security.

The definition of adaptive security addresses this concern by requiring, essentially,
that the internal state seen by the adversary upon corrupting a party is generatable (by
the ideal-process adversary) given only the input of this party and the adversary’s view
so far. We demonstrate how this requirement affects the definition, via the following
example. Consider a protocol where each party is instructed to publicaemitment
to its input, and then halt with null output. For concreteness, assume that each party has
binary input and the commitment is realized via a claw-free permutationfpafy that
is known in advance. That is, each party chooses a random elenretite common
domain of fp, f; and broadcast$,(r), whereb is the party’s input. It is easy to see that
in the nonadaptive model this protocol securely evaluates the null function. However, we
do not know how to prove adaptive security of this protocol. In faet, the number of
parties, is polynomial in the security parameter and claw-free permutations exist, then
this protocol doesot t-securely evaluate the null function in the adaptive model, for
t > w(logn). (A proof appears in a slightly different form in [CQ].)

The above discussion may bring the reader to wonder whether it is justifiable to assert
that the above protocol is insecure. Indeed, at first glance this protocol appears to be
“harmless,” in the sense that it has no apparent security weakness. This appearance may
be strengthened by the fact that the commitment s perfectly secure, i.e., the messages sent
by the parties are statistically independent from the inputs. Nonetheless, we argue that this
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appearanceis false, and the above protocol has a serious security flaw. Indeed, the protocol
provides the adversary with a (computationally binding) commitment to the inputs of
the parties; this commitment may be useful in conjunction with additional information
that may become available to the adversary (say, via other protocol executions). Such a
commitment could not have been obtained without interacting with the parties.

Remarkd: Erasing local data A natural method for limiting the information seen by

the adversary upon corrupting a party is to include spem@ureinstructions in the
protocol, thereby enabling the parties to remove sensitive data from their local state when
this data is no longer necessary.

Indeed, timely erasures of sensitive data can greatly simplify the design and analysis
of protocols. (The case of encryption is an instructive example [BH], [CFGN].) However,
basing the security of a protocol on such erasures is often problematic. One reason is
that in real-world systems erasures do not always work: system backups are often hard to
prevent (they are even made without a protocol’s knowledge), and retrieving data that was
stored on magnetic media and later erased is often feasible. An even more severe reason
not to trust erasure instructions is that they cannot be verified by an outside observer.
Thus, in settings where the parties are mutually distrustful it is inadvisable to base the
security of one party on the “good will” and competencetifer parties to erase data
as instructed effectively. Consequently, a protocol that offers security without using data
erasures is in general preferable to one that bases its security on data erasures.

We highlight an important scenario where putting trust in internal erasures is more
reasonable. This is the casetlaeshold cryptography (see, e.g., [DF]) where the parties
are typically special-purpose servers controlled by a single administrative authority,
and use erasures to maintain the overall security of the system in the face of break-
ins by outsiders. In particular, in the casepodactive security [OY], [CGHN] trust in
erasures is unavoidable since there the attacker may breailiptarties at one time or
another.

The distinction between trusting or distrusting data erasures is manifested in the
definition via the amount of information seen by the real-life adversary upon corrupting
a party. Trusting erasure instructions to be fulfilled and successful is modeled by letting
the adversary see only tleeirrentinternal state of the party. Distrusting the success of
suchinstructionsis modeled by allowing the adversary to see the entire pastinternal states
of the party. (This amounts to allowing the adversary to see the party’s input, random
input, and all the messages ever received by the party.) In this work we concentrate on
the case where erasures are not trusted. Nonetheless, the composition theorem holds in
both cases.

Finally, we remark that there exist additional, potentially harmful, ways for parties to
deviate from the specified protocolin a manner thatis undetectable by an outside observer.
For instance, a party can use its random input in a different way than specified in the
protocol. Proving security of protocols in a model where all parties, even uncorrupted
ones, may carry out such deviations is much harder (in fact, it is impossible in some
settings). Consequently, we do not consider such models; they are mentioned in [CFGN]
and studied in more depth in [CO]. (The motivation there is to deal with situations where
all partiesmay deviate from the protocol, as long as the deviation remains undetected
by other parties.)
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Remarks: On the modeling of the environmentRecall that the environment machine
is a generalization of the notion of auxiliary input. Indeed, the environment can be used
to provide the adversary with auxiliary input at the onset of the interaction. In addition,
it can disclose more information to the adversary in an adaptive way throughout the
computation. Furthermore, the environment obtains information from the adversary,
again in an adaptive way, even after the execution of the protocol is completed.
Informally, in the adaptive model the auxiliary information can be thought of as
consisting of two components: a “nonuniform” component, represented by the input
z of the environment machine; and an “algorithmic” component, represented by the
environment machine itself, that adaptively decides on the way in which information is
“released” to the adversary and obtained from it throughout the computation.
We address two additional points regarding the modeling of the environment:

ON THE NEED FOR THE ENVIRONMENT AS A SEPARATE ENTITY A natural question

is whether it is possible to simplify the definition of adaptive security by merging the
adversary4 and the environmeng into a single adversarial entity. We argue that the
separation is essential. In particular, the roles played by the two entities in the definition
are quite different. We stress two main technical differences. Firstly, the environment
remains the same in the real-life computation and in the ideal process, whereas the
adversary does not. Secondly, the environment sees much more information than the
adversariesd andS. In particular, the input of may contain the inputs @l parties at

the onset of the computation. (Indeed, the proof of the composition theorem below uses
an environment machine that sees all this information.) Furthernfosegs the outputs

of all parties from the computation.

Nonetheless, one can do without the environment machine in some simplified cases.
More specifically, the definition of security can be simplified as follows, in the case
where local data erasures by parties are allowed. (This is the case discussed in Remark 4,
where the adversary sees only the current internal state of a newly corrupted party.) First
adopt the convention that whenever a party completes executing a protecasesall
the internal data relevant to this protocol execution, except for the local output. Next, the
definition is simplified in two steps:

First, note that the postexecution corruption phase is no longer necessary. This is so,
since corrupting a party after the execution of the protocol is completed reveals only the
party’s local output. However, the environment anyhow learns the local outputs of all
parties as soon as these are generated. Consequently, the postexecution corruption phase
does not provide the environment with any new information.

Second, notice that now the role of the environment is restricted to providing the
adversary with initial auxiliary input and with an additional auxiliary input whenever a
party is corrupted. However, these auxiliary inputs represent information that was fixed
before the current protocol began. (These are the internal states of the corrupted parties
from other protocol executions.) Thus, the environment machine can be replaced by a
setzy, ..., z, of auxiliary inputs, where the adversary obtaisipon the corruption of
party P;.

ON THE ORDER OF QUANTIFIERS An alternative formulation to Definition 9 requires
that a single ideal-process adversarwill satisfy (9) with respect to any environment
Z. We note that this seemingly stronger formulation is in fact implied by (and thus
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equivalent to) Definition 87 We choose the current formulation because it appears a bit
more natural. It also makes the proof of the composition theorem somewhat clearer.

5.3. Modular CompositionThe Adaptive Case

We formalize the composition theorem for the nonconcurrent case, with adaptive ad-
versaries, in the secure channels setting. As in the nonadaptive case, we first define the
hybrid model and describe how an ideal evaluation call is replaced by a subroutine pro-
tocol. Next we state the composition theorem in its more general form. The theorem
from the Introduction follows as an easy corollary.

The hybrid model The (adaptive) hybrid model with ideal accessto.. ., fy (orin
shortthe( fq, ..., fn)-hybrid model) is defined analogously to the nonadaptive case. We
start with theeal-life model of Section 5.1. This model is augmented with an incorruptible
trusted partyT for evaluatingfy, ..., f,. The trusted party is invoked at special rounds,
determined by the protocol run by the uncorrupted parties. In each such round a function
f (outof fy, ..., fy)isspecified. The computation at each special round mimics the ideal
process. That is, first the adversary adaptively corrupts parties, and learns the internal
data of corrupted parties. In addition, for each corrupted party the adversary receives
information from the environmeng. Next the parties hand theif-inputs toT. The

values handed by the uncorrupted parties are determined by the protocol. The values
handed by the corrupted parties are determined by the adversary. (If the adversary is
passive, then even corrupted parties h@nealues according to the protocol.) Onte
receives the values from the parties (vakifefrom party R,), it hands the respective

outputs back to the partie®(receivesf (K, xlf B xnf, r)i). Finally the adversary can
again adaptivelp/ corrupt parties as beféte.

Let EXECE;;{;’Zm(k, X, z) denote the random variable describing the global output of
the computation (i.e., the output of the environm&hin the(fy, ..., fy,)-hybrid model
with protocolr, adversary4, security parametek, inputsX for the parties and for
Z, analogously to the definition &XeC; 4 z(k, X, 2) in Section 5.1. (We stress that

herer is not a real-life protocol and uses ideal callsTt) Let EXEc:rl;(’me denote the

Replacing anideal evaluation call with a subroutine callThe “mechanics” of replacing
an ideal-evaluation call of protocal with a call to a subroutine real-life protocal, are
identical to the nonadaptive case (Section 4.3). Recallstfat’™ denotes protocot
where each ideal evaluation éf is replaced by a call tp;.

17 The argument is similar to that of Remark 4 in Section 4.2: Assume that a protocol is secure according
to Definition 9 and letA be a real-life adversary. Lefy be the “universal environment” that takes as input a
description of an environmet and a value and runsZ on inputz. Definition 9 guarantees that there exists
an ideal-model adversagy that emulates4 in the presence oZy . It follows thatSy emulatesA in the
presence ofnyenvironment. That isSy satisfies the above stronger formulation.

18 As in the nonadaptive case, we assume that the rounds in which ideal evaluations take place, as well as
the functions to be evaluated, are fixed and known beforehand. This restriction can be circumvented as there.
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Theorem 10(Adaptive Modular Composition: General Statement)ett < n,letm e
N,andlet f, ..., f, be n-party functiond. et be an n-party protocolinthefy, .. ., fy)-
hybrid model where no more than one ideal evaluation call is made at each,randd
let o1, ..., pm be n-party protocols wherg; adaptively t-securelyresp, t-privately)
evaluates ;f Then for any adaptive t-limited activeesp, passive real-life adversary

A and for any environment machir there exists an adaptive activeesp, passive
adversaryS in the (fy, ..., fi)-hybrid model whose running time is polynomial in the
running time ofA4, and such that

fi,..., fn d
EXEC,'¢'s" = EXECyerm 4 Z. (10

As in the nonadaptive case, Theorem 10 does not assume any security properties from
protocol . Instead, it essentially states that the “input—output functionality&rmf
protocolsx in the hybrid model is successfully “emulated” by #m in the real-life
model. Before rigorously stating the informal composition theorem from the Introduction
in the adaptive setting, we define protocols for securely evaluating a furgiiothe
(fq, ..., fm)-hybrid model:

Definition 11. Let fy, ..., fy, g be n-party functions and let be a protocol fom
parties in the( fq, ..., fy)-hybrid model. We say that adaptively t-securely evaluates

g in the (fy, ..., fm)-hybrid model if for any adaptivet-limited adversaryA (in the
(f1, ..., fm)-hybrid model) and any environment machifiethere exists an adaptive
ideal-process adversasy whose running time is polynomial in the running time4f
and such that

d fro. f
IDEALg s z = EXEC 1 "2". 1y

If AandS are passive adversaries, then we say thadlaptively t-privately evaluates g
inthe (f1, ..., fm)-hybrid model.

Corollary 12 (Adaptive Modular Composition: Secure Function Evaluatiorett <
n,letme N,andlet f, ..., f, be n-party functiond etz be an n-party protocol that
adaptively t-securelyresp, t-privately) evaluates g in théfy, ..., fy)-hybrid model
and assume that no more than one ideal evaluation call is made at each. roeihd
o1, .- -, pm be n-party protocols that adaptively t-securghgsp, t-privately) evalu-
ate fi, ..., fn, respectivelyThen the protocolr”v-m adaptively t-securelyresp,
t-privately) evaluates g

Proof. Let A be an adaptive-limited real-life adversary that interacts with parties

runningz”-+fmand letZ be an environment machine. Theorem 10 guarantees that

there exists an adversady, inthe(fy, ..., fy)-hybrid model such thaIXEC:;i; fg 2

EXEC,n..m 4 z. The security ofr in the (f1, ..., fm)-hybrid model guarantees that

there exists an ideal model adversary (a “simulat&t’3uch thatEXeC, ry..om 4 = =

IDEALg s, z, Satisfying Definition 9. O
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5.4. Proof of Theorenl0

As in the nonadaptive case, we only prove the theorem for the case of active adversaries
(i.e.,t-security). In addition, we only treat the case where the trusted paitycalled

only once. The extension to the case of multiple functions and multiple callsddhe

same as in the nonadaptive case. Section 5.4.1 contains an outline of the changes from
the nonadaptive case. The body of the proof is in Section 5.4.2. All the extensions from
Section 4.4.3 are relevant here as well.

5.4.1. Additional Difficulties

The proof outline is similar to that of the nonadaptive case. We sketch the additional
difficulties arising from the adaptiveness of the adversaries and simulators. Full details
appear in Section 5.4.2. Recall thais a protocol in thef -hybrid modelo is a protocol

for evaluatingf, andr” is the composed protocol is a given adversary that interacts
with 7#. In addition, we now have an environmeftthat interacts with4. A, is a
constructed adversary that interacts withfollowing the relevant instructions ofl.
AdversaryA, follows the instructions ofd relevant to the interaction with protocot

the interaction of4 with p is simulated using,, the simulator fotA,,.

1. Recall that4, operates by running a copy of adversatyIn the adaptive case
A, has to accommodate corruption requests madd Hyroughout the execution
of =”. For this purposed, is given access to an arbitrary environment machine
and proceeds as follows. Corruption requests that occur befgenvoked are
answered using the initial data received from the environment machine. Whenever
the simulated4 requests to corrupt party during the execution gf, adversary
A, corruptsP in its real-life interaction and handg’s internal data toA. P’'s
internal data from the (suspended) execution of protacd obtained from the
environment. Once is completed and4, generates its output, a postexecution
corruption phase starts whe#g receives corruption requests fromits environment,
corrupts the relevant parties, and provides the environment with the internal data
of the corrupted parties.

2. Inthe adaptive case specifying an environment is necessary for obtaining a simula-
torS, for A,. For this purpose, an environment machine, dengigds constructed
as follows. (Note thatZ, is in general different than the given environmeh)
The input of Z, will describe a global state of an executionsof with A and
Z atround ®® — 1. Z, will orchestrate a run of” from the given global state,
with the following exceptionZ, will ignore the random inputs of the uncorrupted
parties for the execution protocel Instead Z,, will provide A, with the necessary
information for interacting with parties running and will extract the necessary
information from the resulting interaction. More specificalfy, first providesA,
with the internal state ofl whenp is invoked; next, for each party corrupted during
the execution op, Z, providesA, with the internal state of that party from the
suspended execution af, finally, it extracts fromA,, the internal state from the
execution ofp of the parties that are corrupted lyafter p is completed.

3. Recall that4, operates by simulating copies gf and S,. Here this is done
as follows. LetPy, ..., P, denote the set of (simulated) parties with whiSh
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interacts, and leP/, ..., P/ denote the set of (simulated) parties with whigh

interacts.

(a) When adversaryl, runs the simulatos,, it has to accommodatg,’s cor-
ruption requests made in the ideal process. This is done as follows: whenever
S, requests to corrupt a parg/ in the ideal model, adversard, corruptsP,
in its hybrid model, and learns the valughat P, is about to hand its trusted
party. Next,A, “plays the environment far,” and hands) back toS, as the
input of B. If P/ is corruptedafter the ideal call to the trusted party is made,
then the output of is also given taS,.

(b) AdversaryA, has to accommodatd’s corruption requests madster the
(simulated) execution g is completed. This is done as follows: Whenexer
requests to corrupt a parly’, adversaryA, corruptsP; in its hybrid model,
and obtains the internal data Bf from protocolr. In addition,.4, plays the
role of the environment faf,,, and asksS, to corruptP’. Then.A, combines
the internal data of; from protocolzr andS,’s answer, obtains simulated
internal data forP”, and hands this value to the simulatdd

An important point in the analysis is that the way in whidh “plays the role of

the environment fos,,” is identical to an interaction betweeh, and Z,,.

5.4.2. A Detailed Proof

Let.A be an adversary and I€tbe an environment (interacting with parties runnirfg.
First we present the constructions4f, Z,, and.A, . Next we show thatXEC,» 4 = <
EXEc; Az

Terminology We use the same notions of executions, internal states, and running an
adversary from an internal state as in the nonadaptive case (Section 4.4.2). Yet here
these notions refer of course to the adaptive model. In addition, the notion of global
state is modified as follows. (Recall that in the nonadaptive case the global state was the
concatenation of the local states of the uncorrupted parties and the adversary.)

1. The global state is augmented to include all the information that the uncorrupted
parties have ever seen in the past. That is, letirtteenal history of party P, at
roundl be the concatenation of all the internal states from the beginning of the
execution through rounid The global state at rourds now the concatenation of
the internahistoriesof the uncorrupted parties, together with the internal state of
the adversary.

This convention is needed to maintain the property that the global state of an
execution at any round uniguely determines the continuation of the execution until
its completion. (Recall that upon corrupting a party the adversary gets access to
all the information that the party knew in the past; see Remark 4 in Section 5.2 for
more discussion on this definitional decision.)

2. The global state is augmented to include also the local state of the environment.

3. The global state is extended to rounds after the execution of the protocol has been
completed, until the the environment halts.
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Adversary A,

Let Z, denote the environment, 1%, ..., P, denote the parties running protocol
p, and letk be a value for the security parameter. (Note thatuses the code ofl.)

1. Letl, be the round where protocal starts running protocgd. (This is the
round wherer calls T.) First receive a valueg’ from the environment, and
verify that¢/ is a valid internal state ofl at round!, — 1. If £ is not valid,
then halt with empty output.

2. Corrupt the parties that are corruptedzfh and ignore their inputs and the
corresponding values received from the environment. (Call these parties the
a priori corrupted parties.)

3. Continue the above run of from roundl, on, follow A’s instructions, and
hand the gathered information More precisely, le®], ..., P, denote the
simulated parties with whichl interacts. Then:

(@) Whenever a message is sent from an uncorrupted Pattya corrupted
party, hand this messagebas coming fromP/.

(b) WheneverA instructs some corrupted parB/ to send a message to an
uncorrupted party/, instructP, to send the same message?jo

(c) When A corrupts a new partyP’, during the execution of protocal,
proceed as follows. First corru in its real-life model and obtaiR,’s
internal history for protocop. In addition,.4 needs to be provided with
the internal history o/ from the execution of protocet, and with the
information thatA receives from its own environment at this point. This
information is assumed to be provided by the environmgpt,upon the
corruption of B. That is, treat the valug” received fromZ, upon the
corruption of P, as a concatenation of two valugs = (a, b). The value
a is treated as the internal history Bf at roundl, — 1; it is combined
with the internal history ofP, (pertaining to protocop) and handed to
A as the internal data o/ (pertaining to protocolkz”). The valueb
is handed taA as the value received fromd’s environment upon the
corruption ofP/.

4. Once protocop is completed, output the current internal state of the simulated
A. Next, interact with the environmet,, as follows: When the environment
asks for corruption of;, if less thant parties are corrupted, corrupt and
handP,’s internal history to the environment.tiparties are already corrupted,
then ignore the corruption request.

Fig. 5. Description of adversary, in the adaptive model.

Let GSy» 4. z(l, k, X, z,) denote the global state at rouhdof an execution of
protocol 7# in the real-life model with adversary, environmentZ, security para-
meterk, inputsX for the parties and to the environment, and random inputsLet
Gs' a,.z0K, X, z,T) be similarly defined with respect to protocel and adversary

T

A, in the f-hybrid model.

Constructionof4,. Given adversaryl, adversaryd, proceeds as in the above outline.
A more complete description appears in Fig. 5.
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The environment 2,

EnvironmentZ, proceeds as follows, given a vallefor the security parameter
and inputz, and interacting with partieBy, ..., P, running protocol and with an
adversary4,. (Note thatZ, uses the code of and of.A.)

1. Theinput is assumed to describe a global state at rdyrdl of an execution
of =# with adversary4 and environmeng. Let ¢y denote the internal state of
A, let¢z denote the internal state &, and let;” denote the internal history
of theith party, as described in If the input¢ is not in the right format, then
halt with no output.

2. (Thisinstruction is carried out throughout the executiop.pProvideA, with
the valuezy. Furthermore, whenevet, corrupts partyP,, provide.4, with
g

3. (This instruction is carried out at the completion of the executign et u;
denote the output of partly;, and letu, denote the output ofl,. Recall that
Z, obtains these values when they are generated.

Upon obtainingug - - - Uy, run a simulated interaction between adverséry
environmentzZ, and (simulated) partieB;, ..., P; runningz”, starting from
the round,; in which protocobr resumes. Adversagyt is run from the internal
state described iny. Environmentz is run from state . PartyP/ is run from
a statez; that is obtained frong; and the outputy; of p. (Note thatz; andy;
may not be sufficient for obtaining a complete internal state/adt round ,,
since the internal data d? from the execution op is not given. However,
as long asP’ remains uncorrupted the internal data frpns not needed for
the simulated interaction. Figuratively, the internal data fgois zeroed out.)
When the simulated! corrupts partyP/, proceed as follows:

(a) Issue atorrupt  P”request tad,. The response, denoted is inter-
preted as the internal history &f from the execution opf.

(b) Obtain, by continuing the simulation &f, the value thagZ handsA upon
the corruption ofP’, and hand this value td.

(c) Combined; with the current (and incomplete) internal historyR$f obtain
P,’s complete internal history far”, and hand this data td.

4. Halt whenZ does, with an output value that is structured as follows. First,
w holds the input, followed by u,, ..., u,, the local outputs of all the un-
corrupted parties and the adversary at the completion of progodééxt, w
holds the internal data of all the uncorrupted parties, obtained in Step 3(a).

Fig. 6. Description of the environmerf,.

Construction ofZ,. The environmeng, proceeds as described in the above outline.
A detailed description appears in Fig. 6.

It follows from the security of protocgb that there exists an ideal-process adversary
S, such thatbEALt s, 5, = EXEC, 4, z,.

The special structure ofl, implies thatS, has an additional property, described as
follows.1° Note that4, completely ignores the internal history of theriori corrupted

19 This property and the related discussion are very similar to the nonadaptive case. Nonetheless, we repeat
the presentation in full, with the appropriate modifications to the adaptive case. A reader that is familiar with
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parties. (These are the parties that are already corrupted when prptscoivoked.)
Therefore, the distribution of the outputdf,, as well as the global output of the system
after runningp with A4,, remains unchanged if we set the input value of the a priori
corrupted parties to 0, and their internal history to null. Consequently, the distribution
of the global output of the ideal process for evaluatingith S, has the same property.

We formalize this discussion as follows. Lé&t|o denote the vector obtained fraxi by
replacing all the entries that correspond to the a priori corrupted parties with 0. Then we
have:

Claim 13. For any input vectox” for the parties and input“zfor Z, we have

IDEALts, z, (K, X°, 2°) = IDEALys, z, (K, X”|o, Z°).

Proof. We have argued above theXeC, 4, z, (K.X”,z°) < EXEC,. 4,.z, (K, X"[0,2").
HoweverjDEAL¢ s, z, (K,X",2°) < EXEC, 4,.z,(K,X”,2°), andiDEAL ¢ s, z, (K,X"|0,2”)
= EXEC,, 4, z, (K,X”|0,2”). The claim follows. O

Construction of4,. Adversary A, proceeds as described in the above outline. A
detailed description appears in Fig. 7.

Analysis of4,,. Itis evident that the running time of,, is linear in the running time
of A, plus the running time aof,, plus the running time of . Fix an input vectok, an
environmentZ with input z, and some value of the security parameter. We show that

EXECy, 4. z(K, X, 2) = EXEc;Aﬂ.Z(k, X, 2), (12)

where the symbof: denotes equality dfistributions not ensembles. This is shown in
three steps, as follows. (The steps are analogous to the nonadaptive case.)

We first set some notation. (This notation is analogous to the nonadaptive case, see
Section 4.4.2.) Recall thaj is the round where protocat makes the ideal evalua-

tion call, and protocolz” invokes p. Given vectors™ = rZ,ry,...,.r7 andr” =

rg, rg’, ..., Iy (wheref™ is interpreted as random input for the executionréfexcept
for the execution ofp, andr” is interpreted as random input for the executiornppf
letr™” =rl”, ..., ra” denote the combination @ andr” to a full random-input

vector for the execution of”. (That is, partyP: usesr! for the execution op andr”

for the execution ofr, the adversary useg during the execution of andrj at other
rounds, and the environment usésduring the execution of andrZ at other rounds.)
Similarly, givenr™ =rZ,r7, ..., rX andi' ', wheref™ is as above and' is interpreted
as a random vector for rourig in the f-hybrid model (that isf ' = rzf, rof, rlf where
rzf, rOf is the random inputs for the adversary and the environment for this rouanand
is the random input for the trusted party o}, let7™ ' denote the combination @f
andr ' to a full random-input vector for the executionsfin the f-hybrid model.

the nonadaptive case can safely skip to the construction of advedsary



Adversary A,

Adversary A,., given valuek for the security parameter, and interacting with an
environment machine, with partiesPy, ..., P, running protocolr, and with a
trusted partyT for evaluatingf, proceeds as follows. (Note thdt, uses the code
of Z and of A.)

1. As in the nonadaptive case, involkeon its own input, auxiliary input, and
random input, and follow the instructions dfup to round,, — 1. (Recall that,
so far, both inr and inz” the parties rurmr.) In addition, keep another piece
of the random input “on the side.” This piece, denatédis used below.

2. At the onset of round,, A expects to start interacting with parties running
protocolp (as subroutine), whereas parties . . ., P, call a trusted party for
ideal evaluation of functiorf . Thus, in order to continue the run 4f, invoke
simulatorS, as follows. LetP;, ..., P; denote the set of simulated parties
with whichS,, interacts, and le®;’, .. ., P/ denote the set of simulated parties
with which A interacts.

(a) The random input of, is set tor”. The initial value thatS, expects to
receive from its environment is set to the current internal staté. of

(b) Whens, asks to corrupt (in its ideal process) a paRysuch thatP, is
already corrupteds, is given input values 0 foP/. (Recall that these
are the a priori corrupted parties, thus their inputs and the data from the
environment do not affect the distribution of the outputSgf)

(c) WhenS, asks to corrupt a part’ that is not yet corrupted, corrufs
in the f-hybrid model; Ietxif be the value thaP: is about to hand’, the
trusted party forf . Then informS,, that the input ofP/ is xif. In addition,
set¢/ to contain the internal history o, and hand;” to A, as the
information from the environment.

(d) WhenS, hands the inputs of the corrupted parties to its trusted party, and
asks for the values of , invoke the trusted partyf;, for f with the same
input values for the corrupted parties, and hand the value provided by the
trusted party back ts,,.

(e) If S, corruptsP/ after Step 2(d), thers, is also given the value thd®,
received from the trusted party.

3. Letwv denote the output of,, before it starts the postexecution corruption

phase. Recall thatis an internal state ofl at the round,,,, where the execution

of = resumes. Continue the current run.4ffrom internal state until the

completion of protocolr, and follow A’s instructions. WhenA corrupts a

party P” at this stage, proceed as follows:

(@) CorruptP, in its f-hybrid model and obtain the internal history Bf
pertaining to protocatk .

(b) Play the role of the environment {6}, and request corruption &'. Then
obtain the (simulated) internal history &f pertaining to protocop. (In
the processS, may corruptP; in its ideal process. In this case hafg
the input forP/ and the value from the environment as described in Step
2(c).)

(c) Combine the data from the previous two steps to obtain the internal his-
tory of P pertaining to protocok”, add the value received fromd,’s
environment, and hand all this datato

4. Once protocok terminates, output whatevet outputs, and continue to sim-
ulate A as in Step 3 throughout the postexecution corruption phase.

Fig. 7. Description of adversaryl,; in the adaptive model.
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Until roundl, — 1 protocolsr andx* behave the same. That is, fix some value

r™ for the random-input of the system. We have

Stepll.

-

GST”,.A,Z(Ip - 11 kv )_(: Zs Fﬂ) = GST,.A,-(.Z(lp - 17 ks Xa 27 Fﬂ)'

We show that the global state in the hybrid model at the end of rdpinsl

distributed identically to the global state in the real-life model at the round where protocol
o returns. This is done in three substeps:

1. We first show that the parameters set in the hybrid model for the ideal evaluation
of f are identical to the parameters set in the real-life model for the invocation of

0.

Let C be the set of a priori corrupted parties, determined’hy(That is,C is

the set of corrupted parties at the onset of rohnpfThe sefC is identical in the
two executions. Ler”, an input value for environmerf,, consist of the global
statez” = GS;» 4. z(1, — 1k, X, 2, T7).

Let x” denote the input value of uncorrupted paRyfor protocol p, as de-

termined inGs,» 4 z(, — 1k, X, z, ™). If B is corrupted, therx” = 0. Let
XP = xf, ..., Xh. Similarly, Ietxif denote the value that parB hands the trusted
party for f,asdeterminedias, 4, z(1,—1,k, X, z,f"),and letkf = xlf, e an_

It follows thatX? = Xf|o.

2. Next we assert that the global output of the executiop,dhat is implicit in the
run of 7# with adversaryA, is distributed identically to the global output of the
ideal evaluation off that is implicit in round , of the run ofr in the hybrid model.
That is, from the validity ofS,, from Step 1.1, and from Claim 13 we have

EXEC, 4, z, (K, X?,Z") < IDEALf_Sp,Zp(k,)_{p,Zp)=IDEALf’3mzﬂ(k,)ﬁ(f l0,Z°)

= IDEALt s, 2, (K.X",2). (13)

(Note that (13) also applies to the interaction between the environgeand
the respective adversaries, afteis completed. This fact plays a central role in
Step Ill.)

3. We showthat the global state in the hybrid model at the end of igusdistributed
identically to the global state in the real-life model when protgcotturns. That
is, letl,, denote the round where the call to protopakturns (within protocak ).
Then it follows from the definition ot # and the constructions o, Z,, and.A,
that:

(@) Letr” be a random-input vector for protocpl LetGs;» 4 z(l, k, X, z, F™*)

be the vectoGs,, 4. z(, k, X, z, F™*) after removing, for each uncorrupted
party, all the internal states pertaining to protopokxcept for the output
from p. ThenGs,, 4 z(., k, X, z, F™*) can be obtained fromes,, 4 z(, —
1,k X, z,7™) andEXEC, 4, z, (K, X?, 2, T*) via a deterministic, simple pro-
cess, denoted. (Proces< essentially updates the internal histories of the

parties and the internal state of the adversary. More precisely, recall that

w & EXEC) 4,2, (K, Xr,z°,r*) is the output ofZ, from that execution.

Procesg first modifies the internal history of each uncorrupted p&itypy
adding the appropriate portion @f t0 GS;» 4 z(I, — 1, k, X, z, F™) in the
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appropriate place. Next outputs the internal state of as it appears itd,'s
output inw, together with the modified internal histories of the uncorrupted
parties.)

(b) Let7f be a random input vector for the ideal evaluation process.dfhen
GSra,.z(,,k X, 2, 7™ ") is obtained fromss, 4, z(I, — 1,k, X, z,7™) and
IDEALf s, z,(k, X', z",F'") via the same proces§, as in the real-life execu-
tion.

It follows that for any value of 7, and for vectors” andr f that are uniformly

chosen in their respective domains, we have

GSeraz(,K X, 2,F™") = GSy 4, z(1,, K X, 2, 7™ 7).

Steplll. We assert (12). We have:

1. For each rountl > |, the vectorés,, 4 z(l, k, X, z, i) can be obtained from
GSwoaz(—1,k X,z ™) andw def EXEC,, 4, z, (K, X*, 2, F*) via the following
process(’: Continue the execution for one round from the global state described
in 6s,0. 4. z( — 1k, X,z ™). If no new corruption occurs in this round, then
GSw.a.z(,k, X, z, ™) is obtained. In case that corrupts a new party?,, take
the internal history of, pertaining to protocob from w. (It is guaranteed tha®
is corrupted irw.)

A’s interaction with the environmeti at the completion of the executionof
is determined bgs,» 4 z (., k, X, z, ™) andw via a similar process. In particular,
the global oUtpuexec;,,» 4 z(k, X, z, ™) is uniquely determined.

2. Foreachrounid> |, vectorGs; 4. z(,k, X, z, F'™ fyis determined frones; 4, .z,
(I-1k % ,zr™" andiDEALt s, z, (K, X?, z°, T*) via the same process,, as in
the the real-life execution. The interaction with environmgrdt the completion
of the execution ofr is also determined in the same way as there. In particular, the
global outpuiEXEc;Amz(k, X,z 7™ ") is determined in the same way as there.

It follows that for any value of 7, and for vectors” andr f that are uniformly chosen
in their respective domains, we have

EXECy 4.z (K, X, Z, F™?) < ExEC! a, 2K X,z 0.

Equation (12) follows by letting™ be randomly chosen in its domain.

This completes the proof for the case of a single ideal evaluation call. The case of
multiple ideal evaluation calls is treated in the same way as in the nonadaptive case. We
omit further details.

6. The Computational Setting

This section defines secure protocols and proves the composition theorem in the compu-
tational setting, where the adversary sees all the communication among the parties and
is restricted to probabilistic polynomial time. We concentrate on the case of adaptive
adversaries. The simpler case of nonadaptive adversaries can be easily inferred.
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The treatment is quite similar to that of the secure channels setting (Section 5). There-
fore, this section imot self-contained; we assume familiarity with Section 5 and only
highlight the differences. Section 6.1 contains definitions of secure protocols. All the
remarks from Sections 4.2 and 5.2 are relevant here. Additional remarks specific to
the computational setting appear in Section 6.2. Section 6.3 presents and proves the
composition theorem.

6.1. Definition of SecurityThe Computational Case

We define adaptively secure multiparty computation indiveputational setting. Exe-
cuting a protocolr in the real-life scenario, as well as the notatexec, 4 z, are the
same as in the adaptive secure channels setting, with the following exceptions:

1. The real-life adversary4, and the environmeng are probabilistic polynomial
time (PPT). Note that this is aveakeningof the security offered by this model,
relative to that of Section 5. (The running time of the adversary, as well as that
of all other entities involved, is measured as a function of the security parame-
ter, k. To accommodate the convention that the running time is measured against
the length of the input we envision that the stringi¢ given as an additional
input.)

2. Aseesallthe communication between the uncorrupted parties. Consequently, when
a party gets corrupted tmewdata learned by the adversary is only the party’s input
and random input. Note that this isaengtheningf the security offered by this
model, relative to that of Section®3.

The ideal process is the same as in the secure channels setting. (Since the real-life
adversary is alwaysPT, so is the ideal-process adversary.) The notati@aL ¢ s z
remains unchanged.

We define emulation of the ideal process by a real-life computation in the same way,
with the exception that here we only require that the global outputscamgutationally
indistinguishablgas defined in Section 3):

Definition 14 (Adaptive Security in the Computational Setting). Lfebe ann-party
function, and letr be a protocol fon parties. We say that adaptively t-securely evaluates
f in the computational setting, if for any PPTt-limited real-life adversaryl and anyPPT
environmentZ there exists @pTideal-process adversasy, such that

[
IDEAL¢t s,z ® EXECy 4,2 19

If A andS are passive, then adaptively t-privately evaluates f in the computational
setting.

20 We assume that the links ddeally authenticateghamely, the adversary canraditer the communication.
This assumption is used in many works on cryptographic protocols, and makes the analysis of protocols much
easier. Removing this assumption can be done in a “modular” way that concentrates on the task of message
authentication. See, for instance, [BCK].
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6.2. Discussion

Remarkl: On the complexity of. We stress that Definition 14 quantifies only over

all environmentsZ that arePpT. This is so since in the computational setting we assume
that all involved entities (including the environment, represented ogreppPT. Indeed,

a definition that allowsZ more computational power will be hard to satisfy, since an
overpowerfulZ may be able to break cryptographic primitives used by the parties, and
thus distinguish between the real-life computation and the ideal process. (Recall that our
model allowsZ access to the communication among the partiesdidaview.)

Remark2: On “absolute” versus “computational” correctness (This remark is par-
tially motivated by observations made by Silvio Micali.) Definition 14 only requires
the two sides of (14) to be computationally indistinguishable. That is, it is required that
for any PPTdistinguishing algorithnD, and for any values df, X, z, algorithmD dis-
tinguishes betweetk, X, z, IDEAL s z (K, X, 2)) and (k, X, z, EXEC, 4. z(K, X, 2)) only

with probability that is negligible in the security parametein particular, this means
that the ensemble describing the outputs ofutheorruptedparties in the real-life model

is only required to be computationally indistinguishable from the ensemble describing
these outputs in the ideal process.

We first discuss the consequences of this requirement in the qaassifeadversaries.

The case of active adversaries is somewhat more involved and is addressed below. In the
case of passive adversaries Definition 14 imposes different requirements depending on
whether the evaluated function is deterministic or probabilistic. Whedeterministic

the output of each uncorrupted party in a protocol that securely evalfiatdtbe the
(uniquely determined) value df on the corresponding set of inputs. In this case we say
that the definition guarantees “absolute correctness.” Whisprobabilistic, a protocol

that securely evaluates only guarantees that the distribution of the outputs of the
uncorrupted parties is computationally indistinguishable from the specified distribution.

It is not guaranteed that the distribution of the outputs of the uncorrupted parties will
be equal to the specified distribution. In this case we say that the definition guarantees
“computational correctness.”

We demonstrate this point via an example. Assume that the function to be evaluated is
fi(Xe, ..., Xn) = g(EBi”:1 xi) whereg is some pseudorandom number generator@@nd
denotes bitwise exclusive or. In this case, only protocols where the uncorrupted parties
output the value ofj(@d!_, xi) on anyinput sequence, ..., X, will be considered
secure. In contrast, assume that the evaluated functift)is= r, wherer is a random
value of the same length @g-) above. (That isf; is a probabilistic function and is
chosen using the “intrinsic randomness” ©f) In this caseany protocol in which the
parties output @seudorandom valuef the appropriate length is secure.

In the case of active adversaries the distinction between the cases where the definition
guarantees “absolute correctness” and the cases where the definition guarantees only
“computational correctness” is more drastic. The reason is that here the corrupted parties
(both in the real-life and in the ideal model) may contribute to the computation values
chosen irrespectively of the given input values; in particular the contributed values can be
choserrandomlyaccording to some distribution. Consequently, the definition guarantees
“absolute correctness” only for functions where the output value is uniquely determined
by the inputs of theincorruptedparties alone.
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We demonstrate this point via another example. Consider the funétidascribed
above. This function is deterministic; however, the vadand, consequently, the output
ofthe parties) is not well-defined given the inputs of the uncorrupted parties. In particular,
when the corrupted parties contribute randomly chosen values, the function value is in
effectg(r) wherer is random and independent from the inputs of the parties. Therefore
it is possible to construct protocols that securely evaldateccording to Definition 14,
but where the parties output a random value, independently of the inputs of the parties.

In contrast, consider the functiofa(xy, ..., Xn) = g(X1) if Xy =X, = -+ = Xu, and
fa(xq, ..., Xn) =L otherwise. Here the output of the parties is uniquely defined (up to
an error value) given the inputs of the uncorrupted parties. Consequently, in a protocol
that securely evaluatefg the uncorrupted parties output the (uniquely defined) output
value on each input.

The above discussion brings us to the more general issue of how formally to cast
an “intuitive task” as a function to be evaluated. We have seen that seemingly similar
formalizations result in very different security requirements on protocols. Thus, care
must be taken to formalize a given task in a way that correctly captures the desired
security requirements.

6.3. Modular CompositionThe Computational Case

We state and prove the composition theorem and its corollary for the case of adaptive
adversaries in the computational setting.

The computational hybrid model The (computational, adaptivéfy, ..., fm)-hybrid

model is defined identically to the secure channels, adaptive case (Section 5.3), with
the exception that we start from the computational real-life model, rather than from the
secure-channels real-life model. The notauizxmc,f[f;;";gm remains unchanged (here it
applies to the computational setting). The “mechanics” of replacing an ideal-evaluation
call of protocolzr with a call to a subroutine real-life protocaql, are also identical to

the case of secure channels.

Theorem 15(Adaptive Computational Modular Composition: General Stateméset).

t < n,andlet f,..., f, be n-party functionsLet = be an n-party protocol in the
computational fy, ..., fn)-hybrid model where no more than one ideal evaluation call
is made at each roundnd letp, ..., om be n-party protocols wherg; adaptively

t-securely(resp, t-privately) evaluates ifin the computational setting’hen for any
PPT adaptive t-limited activgresp, passive real-life adversary.4 and for PPT any
environment maching there exists @pPTadaptive activaresp, passive adversaryS
inthe(fy, ..., fn)-hybrid model such that

frofm O
EXEC, 5 =" A EXECyo1.m A Z. (15

Protocols for securely evaluating a functignin the computationa( fy, ..., fyn)-
hybrid model are defined in the usual way:

Definition 16. Let fq,..., fyn, g be n-party functions and let be a protocol fom
parties in the computationdlfy, ..., fy)-hybrid model. We say that adaptively t-
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securely evaluates g in the computational (fy, ..., fm)-hybrid model if for any PPTadaptive
t-limited adversary4 (inthe(fy, ..., fy)-hybrid model) and evemypTenvironmentz,
there exists @pTadaptive ideal-process adversahguch that

..... fm
IDEALg s, = ~ EXECn Az (16)

If AandS are passive adversaries, then we say thadlaptively t-privately evaluates g
in the computational ( fy, ..., fy)-hybrid model.

Corollary 17 (Adaptive Computational Modular Composition: Secure Function Eval-
uation). Lett < n,and let f,..., fn, g be n-party functiond_et = be an n-party
protocol that adaptively t-securelyesp, t-privately) evaluates g in the computational
(fy, ..., fm)-hybrid model and assume that no more than one ideal evaluation call
is made at each round.et oy, . .., pm be n-party protocols that adaptively t-securely
(resp, t-privately) evaluate f, ..., fn, respectivelyin the computational settinghen
protocol z#+-#m adaptively t-securelyresp, t-privately) evaluates g in the computa-
tional setting

The proof of Corollary 17 is identical to that of Corollary 12.

Proof of Theorem 15. Again, we only prove the theorem for the case of active adver-
saries. The simpler case of passive adversaries can be easily inferred. As in the case of
adaptive security with secure channels, we first restrict the presentation to active adver-
saries and to protocols where the trusted party is called only once. The case of multiple
ideal evaluation calls is treated at the end of the proof.

The constructions ofl,,, Z,, andA, are identical to those of Section 5.4 (the adaptive,
secure channels case), with the obvious exception that the simulated adveisatgo
being given the messages sentamong the uncorrupted parties. The complexifies of
are linear in the complexity ofl, and the complexity afd,; is linear in the complexities
of AandsS,. We show

EXECyr 4.2 &~ EXEC Az an

Essentially, the only difference from the proof in the secure channels case is in Step 11.2,
namely, thaEXEC, 4, z, andIDEAL¢ s, =z, are only guaranteed to be computationally
indistinguishable; but th|s suffices to show 7).

More precisely, given a distinguish@r betweerexec,, 4.z and EXEC A,z CONn-
struct a distinguisheP’ betweerexec, 4, z, andiDEAL¢ s, =,. On mputk and a value

w (which is the output ofZ,), dlstlngwsherD/ orchestrates an execution of with
adversaryA and corruptorZ, on the inputs and random inputs appearingvinand
using the data imw for the parties’ outputs from. Once the global output’ from this
execution is generate®’ runsD on (k, w’) and outputs whatevéP outputs.

Using the same arguments as in the secure channels case, it is seeruthetsif
the distribution ofEXEC, 4, z, (K, X, z) for someX, z, thenw’ has the distribution of
EXECyr, 4,z (K, X, 2). Similarly, if w has the distribution abeAL¢ s, =, (K, X, 2), thenw’

has the distribution OEXECL,AUYZ(k, X, z). Consequently, ifD distinguishes between
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EXECys 4.z (K, X, 2) andEXEc;AmZ(k, X, z) with probability that is not negligible, then
D distinguishes betweeXeC, 4, z, (K, X, 2) andIDEAL¢ s, =, (K, X, z) with probability
that is not negligible.

Onmultiple ideal evaluation calls Asinthe secure channels model, the case of multiple
ideal evaluation calls is a straightforward generalization of the case of a single call.
The construction of the generalized adversary is the same as in the secure channels
model; however, the analysis uses a “hybrids argument.” We sketch the main points of
difference from the single call, computational case. (These points are analogous to the
ones discussed in the nonadaptive, secure channels case, see Section 4.4.2.)

1. Anadversaryd,, is constructed for each protocal. All the A,,’s are identical to
adversaryA, described above, with the exception that protqed replaced by
pi-If pi = pj for somei, j, thenA, = A, .

2. Similarly, an environment machirg, is constructed for each protocal. All the
Z,’s are identical toZ, described above, with the exception that protoecas
replaced byp;. (If pi = p; for somei, j, thenz, = 2,.)

3. Construct an adversa.ri/,, that is identical to4,, described above, with the excep-
tion that at each round whereinstructs the parties to evaluateideally, adversary
A runs a copy ofS, in the same way thatl, runsS,. The initial value given to
S, is set to the current internal state of the simulatedithin A,. (Recall that
there may be many invocations of the same simul&tprwhere each invocation
corresponds to a different ideal evaluation callffoThese invocations will have
different initial values.)

4. As in the case of a single ideal evaluation call, it is evident that the running time
of A, is linear in the running time ofd, plus the sum of the running times of all
the invocations ofS,,, ... pm, plus the running time of -, We sketch a
proof thatEXEC,e1...m 4.z & EXEC ;{'fzm, Let ¢ denote the total number of ideal
evaluation calls made by in the f1, ..., fm-hybrid model. First define + 1
hybrid protocolsry, ..., 7g, all in the fl, ..., fm-hybrid model, wherer; follows
7 until the end of thejth ideal evaluation call, and follows#n for the rest
of the interaction. Similarly, define + 1 adversariesd?, ..., A°, where Al is
the adversary that follows the instructions.4f until the end of thejth ideal
evaluation call, and follows the mstructionsAffor the rest of the interaction. Let
H; denote the ensembE<Ec """

It can be seen thatly = EXECHm ..... m Az andH; = ExeC A ; Furthermore,
using a similar argument to the one used for the single caII case, it can be seen that
if there exists a distinguisher betweefy and H; ., for somej > 0, then there
exists a distinguisher betWGGBXECpi,Api_zﬂi andIDEALf, s, z, , Where fj is the
function evaluated in th¢th call. (The distinguishing probability is reduced by a
factor ofc.) O

Nonadaptive security in the computational settingh definition of nonadaptive security
inthe computational setting can be easily derived from Definitions 4 and 14. Furthermore,
composition theorems similar to the ones here hold in that case as well.
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We remark, however, that in the computational nonadaptive case the distingisher
described above does not work. This is so since there, in contrast to the adaptive case, the
global output of the execution of protocpeldoes not include sufficient information for
orchestrating an execution sf with A. ConsequentlyD’ will receive this information,
namely, the inputs and random inputs of the parties for protecol its auxiliary input
(see Definition 3f! See more details on the nonadaptive computational case in [G3].
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Appendix. Other Definitions

We briefly review some definitions of secure multiparty computation. More specifically,
we review the definitions of Micali and Rogaway [MR], Goldwasser and Levin [GL],
Beaver [B2], [B1], and Canetti et al. [C], [CFGN]. These definitions vary in their level

of restrictiveness. In addition, the works vary in the level of detail and rigor in which
the definitions are presented. The most comprehensively and rigorously presented set of
definitions appears in [MR].

The definition of Micali and Rogaway Micali and Rogaway envision an ideal process,
similar to the one here, for secure function evaluation. However, the ideal process remains
as a motivating intuition and is not explicitly used in the actual definition, sketched below.
(This definition deals only with the secure channels setting, and only with protocols that
evaluate deterministic functions.)

First the input that each party contributes to the computation, as well as its output,
should be determined exclusively from the communication of that party with the other
parties. The functions that determine the input and output, calpedawareness and
output awareness functions, should be computable in polynomial time. (The adversary
cannot evaluate these functions since in the secure channels setting it does not have
access to the entire communication of an uncorrupted party with the other parties.)

Correctness is guaranteed by requiring that, in any execution of the protocol, the

21 |ndeed, in the case of adaptive adversaries a weaker version of Definition 3 that does not provide the
distinguisher with auxiliary input would be sufficient for the composition theorem to hold. We formulate the
stronger notion in order to be compatible with the nonadaptive computational case.
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outputs of the uncorrupted parties (determined by applying the output awareness func-
tion to the communication) should equal the value of the evaluated function applied to the
contributed inputs (determined by applying the input awareness function to the commu-
nication). Security is guaranteed by requiring that there exists a “black-box simulator”
that generates, in probabilistic polynomial time, a simulated conversation between the
(real-life) adversary and the uncorrupted parties. The simulator is restricoee tpass
simulation (i.e., it cannot rewind the adversary), and receives external information re-
garding the inputs of the corrupted parties and their outputs. This external information is
related to the values of the input and output awareness functions applied to the simulated
conversation. Furthermore, it is received in a timely fashion: the simulator receives the
designated outputs of the corrupted parties (i.e., the appropriate function values) only
at a certain prespecified round (this is the round where the inputs become determined
by the input-awareness function applied to the comunication); in addition, only when a
party is corrupted by the adversary can the simulator receive the input value of that party.

This definition of security seems to imply ours (in the settings where it applies). In
fact, it seems considerably more restrictive. We highlight three aspects of this extra
restrictiveness. First, the requirement that the input and output awareness functions be
computable from the communication alone implies that protocols where parts of the
computation are done locally without interaction (e.g., the trivial protocol where no
communication takes place and each party computes its output locally) are considered
insecure. Second, limiting the simulatordae pasdlack-box simulation excludes a
proof technique that seems essential for proving security of a wide range of protocols
(e.g., zero-knowledge proofs [GMR], [GMW1]). Third, requiring that the simulator
receives the outputs of the corrupted parties only after the inputs are determined by the
communication excludes an additional set of protoédls.

The definition of Goldwasser and LevinGoldwasser and Levin take a different ap-
proach. First they formalize the “inevitable advantages” of the adversary in the ideal
process (we briefly sketch these “inevitable advantages” below). Next they say that a
protocol isrobust if for any adversary there exists an “equivalent” adversary that is lim-
ited to these “inevitable privileges,” and that has the same effect on the computation.
Their notion of robustness of protocols has the advantage that it is independent of the
specific function to be evaluated (except for some technical subtleties ignored here).
The “inevitable privileges” of the adversary, extracted from the ideal process, can be
sketched as follows. First, the adversary may choose to corrupt parties (either adaptively
or nonadaptively.) Next, if the adversary is active, then the inputs of the corrupted
parties may be modified. (However, this is done without knowledge of the inputs of the
uncorrupted parties.) Next, the adversary may learn the specified outputs of the corrupted
parties. This may inevitably reveal some information on the inputs of the uncorrupted

22 For instance, let the “bit transmission” function be such that the output of PAthe receiver) equals the
input of partyS(the sender). Consider the protocol wh8s&mply sends its input t& over the private channel.
This protocol is rejected by the definition of [MR] since the simulator is required to provide a corrupted receiver
with the value of the transmitted Hieforethis value becomes known. (This protocol securely evaluates the
bit transmission function according to the definition here.)
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parties. Furthermore, if the adversary is adaptive, then it can corrupt parties, after the
computation is completed, based on the output of the computtion.

The difference between the [GL] approach and ours may be viewed as follows. Instead
of directly comparing (as we do) executions of the protocol in real-life with an ideal pro-
cess where a specific function is evaluated, they first compare real-life executions of the
protocol with executions of theame protocoin an idealized model where the adversary
is limited as described above. So far one does not need to specify what functionality
the protocol is fulfilling. In a second step (which is implicit in [GL]), one claims that
executing the protocol in the idealized model is equivalent to an ideal evaluation process
of a specific function.

The definition of Beaver Beaver’s definition [B1], [B2] takes a similar approach to the
one here. We sketch this approach using the terminology of [B1]. First a general notion of
comparing security of protocols is formulated, as follows. Consider two protacatsl
B for evaluating the same function. Protoeois at least as secure as protogdf there
exists arinterface that turns any adversar§ attackingo into an adversaryl’ attacking
B, such that for any inputs the global output of the two computations are identically
distributed. The global output is defined similarly to here. The interaction between the
interface andA is apparently a black-box, and rewinding the adversary is not allowed.
(The definition does not fully specify the details of the interaction between the interface
and.A.) A protocol for evaluating a function is secure if it is at least as secure as the trivial
protocol for evaluating the function in an ideal model similar to the one here. To allow for
secure sequential composition, the definition allows the adversary to receive additional
auxiliary information upon corrupting a party. In addition it requires the protocol to be
postprotocol corruptible. That is, the adversary should be able to respond to “any sequence
of postexecution corruption requests” with the internal data of the relevant parties.
Disallowing rewinding is a considerable limitation, especially in the computational
setting. (See Remark 3 in Section 4.2.) An additional weakness of this definition is that,
unlike here, A’ is not required to be as efficient ak (See Remark 1 in Section 4.2.)
Compared with our notion of an environment machine, the requirement of postprotocol
corruptibility has two main drawbacks. First, it does not take into account the fact that
the postexecution corruption requests can be adaptive and depend on the execution of the
protocol itself and on the data learned from previous corruptions (rather than being fixed
in advance). Second, this formalization does not generalize to the computational setting,
where the corruption requests must be generated #granachine (see Remark 1 in
Section 6.2).

The definition of Canetti et al The definitions of [C] and [CFGN] differs from the

one here in the following aspects. First, as in [B1], these definitions require the ideal-
process adversary to operate via black-box simulation with no rewinds. Next, they do not
incorporate auxiliary input in the definition, and do not include an environment machine.

Finally, these definitions have an additional structure whose purpose is to formalize the

23 |f a majority of the parties are corrupted then, in addition to the privileges described above, the adversary
cannot be prevented from “quitting early,” i.e., disrupting the computation at any time. However, this is done
without knowing the output with more certainty than the uncorrupted parties.
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amount of internal deviation from the protocol allowedittcorruptedparties. That is,
first they define what it means for a protoed|to be asemihonest protocol for a known
protocolr . (Essentiallyz’ allows even uncorrupted parties to deviate fronmternally,
as long as this deviation is undetectable by the other parties.) Next they say ithat
secure only if any semihonest protocol foiis secure.
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