Skip to main content
Log in

EEG efficient classification of imagined right and left hand movement using RBF kernel SVM and the joint CWT_PCA

  • Student Forum
  • Published:
AI & SOCIETY Aims and scope Submit manuscript

Abstract

Brain–machine interfaces are systems that allow the control of a device such as a robot arm through a person’s brain activity; such devices can be used by disabled persons to enhance their life and improve their independence. This paper is an extended version of a work that aims at discriminating between left and right imagined hand movements using a support vector machine (SVM) classifier to control a robot arm in order to help a person to find an object in the environment. The main focus here is to search for the best features that describe efficiently the electroencephalogram data during such imagined gestures by comparing two feature extraction methods, namely the continuous wavelet transform (CWT) and the empirical modal decomposition (EMD), combined with the principal component analysis (PCA) that were fed through a linear and radial basis function (RBF) kernel SVM classifier. The experimental results showed high performance achieving an average accuracy across all the subjects of 92.75% with an RBF kernel SVM classifier using CWT and PCA compared to 80.25% accuracy obtained with EMD and PCA. The proposed system has been implemented and tested using data collected from five male subjects and it enabled the control of the robot arm in the right and the left direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alomari HM, Samaha A, AlKamha K (2013) Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning. Int J Adv Comput Sci Appl 4:6

    Google Scholar 

  • Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J Neural Eng 4:R32–R57

    Article  Google Scholar 

  • Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Bousseta R, Tayeb S, El Ouakouak I et al (2016) EEG efficient classification of imagined hand movement using RBF kernel SVM. In: SITA 2016—11th international conference on intelligent systems: theories and applications

  • Cexus J-C (2005) Analyse des signaux non-stationnaires par transformation de Huang, Opérateur deTeager-Kaiser, et Transformation de Huang-Teager (THT)

  • Chang C-C, Lin C-J (2011) LIBSVM. ACM Trans Intell Syst Technol 2:1–27

    Article  Google Scholar 

  • Clynes M, Kline N (1960) Cyborgs and Space. Astronautics 26–27, 74–75

  • Decety J (1996) Do imagined and executed actions share the same neural substrate? Brain Res Cogn Brain Res 3:87–93

    Article  Google Scholar 

  • Dharmasena S, Lalitharathne K, Dissanayake K et al (2013) Online classification of imagined hand movement using a consumer grade EEG device. In: 2013 IEEE 8th international conference on industrial and information systems. IEEE, pp 537–541

  • Flandrin P, Gonçalvès P (2003) Sur la décomposition modale empirique. In: GRETSI. pp 149–152

  • Flórez F, Azorín JM, Iáñez E et al (2011) Development of a low-cost SVM-based spontaneous brain–computer interface. In: Madani K, Kacprzyk J, Filipe J (eds) {NCTA} 2011—proceedings of the international conference on neural computation theory and applications [part of the international joint conference on computational intelligence {IJCCI} 2011], Paris, France, 24–26 October, 2011. SciTePress, pp 415–421

  • Guger C, Harkam W, Hertnaes C, Pfurtscheller G (1999) Prosthetic control by an EEG-based brain- computer interface (BCI). In: AAATE 5th European conference for the advancement of assistive technology, pp 2–7

  • Hortal E, Planelles D, Costa A et al (2015) SVM-based brain–machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 151:116–121

    Article  Google Scholar 

  • Hsu W-Y (2013) Independent component analysis and multiresolution asymmetry ratio for brain–computer interface. Clin EEG Neurosci 44:105–111

    Article  Google Scholar 

  • Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University

  • Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995

    Article  MathSciNet  Google Scholar 

  • Kübler A, Mushahwar VK, Hochberg LR, Donoghue JP (2006) BCI Meeting 2005—workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng 14:131–134

    Article  Google Scholar 

  • Lécuyer A, Lotte F, Reilly RB, et al (2008) Brain-computer interfaces, virtual reality, and videogames. Computer (Long Beach Calif) 41:66–72. doi:10.1109/MC.2008.410

    Article  Google Scholar 

  • Leeb R, Pfurtscheller G (2004) Walking through a virtual city by thought. In: The 26th annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 4503–4506

  • Lotte F, Congedo M, Lécuyer A et al (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13

    Article  Google Scholar 

  • Mason SG, Birch GE (2003) A general framework for brain–computer interface design. IEEE Trans Neural Syst Rehabil Eng 11:70–85

    Article  Google Scholar 

  • Pang CCC, Upton ARM, Shine G, Kamath MV (2003) A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng 50:521–526. doi:10.1109/TBME.2003.809479

    Article  Google Scholar 

  • Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89:1123–1134

    Article  Google Scholar 

  • Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6:316–325

    Article  Google Scholar 

  • Pfurtscheller G, Leeb R, Keinrath C et al (2006) Walking from thought. Brain Res 1071:145–152

    Article  Google Scholar 

  • Tayeb S, Mahmoudi A, Regragui F, Himmi MM (2014) Efficient detection of P300 using kernel PCA and support vector machine. In: 2014 second world conference on complex systems (WCCS). IEEE, pp 17–22

  • Vidal JJ (1973) Toward direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180

    Article  Google Scholar 

  • Wang F, Kim K, Wen S et al (2012) EEG based automatic left-right hand movement classification. In: 2012 24th Chinese control and decision conference (CCDC). IEEE, pp 1469–1472

  • Wolpaw JR, Birbaumer N, Mcfarland DJ et al (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

  • Wolpaw JR, Loeb GE, Allison BZ et al (2006) BCI meeting 2005–workshop on signals and recording methods. IEEE Trans Neural Syst Rehabil Eng 14:138–141

    Article  Google Scholar 

  • Wu J, Wang J, Liu L (2006) Kernel-based method for automated walking patterns recognition using kinematics data. Springer, Berlin, pp 560–569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rihab Bousseta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousseta, R., Tayeb, S., El Ouakouak, I. et al. EEG efficient classification of imagined right and left hand movement using RBF kernel SVM and the joint CWT_PCA. AI & Soc 33, 621–629 (2018). https://doi.org/10.1007/s00146-017-0749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00146-017-0749-9

Keywords

Navigation