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Abstract
Maintenance decision errors can result in very costly problems. The 4th industrial revolution has given new opportunities for 
the development of and use of intelligent decision support systems. With these technological advancements, key concerns 
focus on gaining a better understanding of the linkage between the technicians’ knowledge and the intelligent decision support 
systems. The research reported in this study has two primary objectives. (1) To propose a theoretical model that links techni-
cians’ knowledge and intelligent decision support systems, and (2) to present a use case how to apply the theoretical model. 
The foundation of the new model builds upon two main streams of study in the decision support literature: “distribution” of 
knowledge among different agents, and “collaboration” of knowledge for reaching a shared goal. This study resulted in the 
identification of two main gaps: firstly, there must be a greater focus upon the technicians’ knowledge; secondly, technicians 
need assistance to maintain their focus on the big picture. We used the cognitive fit theory, and the theory of distributed 
situation awareness to propose the new theoretical model called “distributed collaborative awareness model.” The model 
considers both explicit and implicit knowledge and accommodates the dynamic challenges involved in operational level 
maintenance. As an application of this model, we identify and recommend some technological developments required in 
augmented reality based maintenance decision support.
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1  Introduction

Erroneous maintenance decisions and their fatal conse-
quences have been an ongoing concern. For example, 
maintenance decision error is a common denominator and 
appears in one form or another in nearly all aviation acci-
dents (Kraus 2009; Marais and Robichaud 2012). The prob-
lem is that maintenance technicians are required to perform 
routine and non-routine complex tasks with different types 
of equipment, processes, and personnel (Raouf et al. 2006) 
under tight schedules often with little or no feedback (Liang 
et al. 2010) so they have difficulty developing adequate men-
tal models about the consequences of their work (Endsley 
and Robertson 2000). Despite the emergence of many new 
technologies, the information flow at the technician level is 
mostly limited to conversation, job task cards, e-mails or 
whiteboards (Lall et al. 2017), and they have to deal with 

poorly designed interfaces, and outdated and confusing 
manuals (Webel et al. 2013). These findings emphasize the 
importance of maintenance decision support (MDS).

Maintenance actions can be seen as a combination of 
information sources, technologies, and physical tools, 
requiring maintenance data to be physically transferred 
between objects and systems (Tretten and Normark 2014). 
The operational level maintenance decisions require “Situ-
ation Awareness” or the knowledge state about dynamics in 
the environment (Endsley 2017) involved in system health, 
workplace safety, supporting resources, and the corporate 
requirements (Endsley and Robertson 2000; Golightly et al. 
2013; Oliveira et al. 2014). The decision-making process 
comprises four phases: intelligence, design, choice, and 
implementation (Simon 1997). Decision support systems 
(DSSs) allow relationships, associations, and connections 
to be found within information and enable better decisions; 
they combine multiple decision-makers, including humans 
and non-humans; they differ from information systems by 
providing an interactive environment between the system 
and the decision-maker (Boukhayma and ElManouar 2015).
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Various types of intelligent decision support systems 
have emerged and variously referred to as active decision 
support, knowledge-based decision-support, and expert sys-
tems (Zhou et al. 2008). With the rise of the 4th industrial 
evolution (Industry 4.0) Artificial Intelligence (AI) based 
MDS increasingly learns from experience, make sense out 
of ambiguous information, deal with perplexing situations, 
recognize the relative importance of different elements 
and autonomously provide failure predictions through data 
acquisition from sensors (Phillips-Wren 2012). Out of the 
four basic AI-based DSS models: symbiotic, expert, adap-
tive, and holistic (Mirchandani and Pakath 1999), the latter 
is the most advanced, as it has holistic problem recogni-
tion and processing capabilities (Alenljung 2008). Progress 
has been made on digitally simulating holistic recognition 
(e.g., Mishra 2018); however, many challenges remain in 
developing truly holistic systems (Persson 2015). Various 
studies make a valuable contribution to the understanding 
of the technical strengths of the emerging MDS. However, 
current studies lack a specific focus on the linkage between 
intelligent decision support systems and the technicians’ 
knowledge. Therefore, this study is set to assess emerging 
MDS for their linkages with the technicians’ knowledge and 
to recommend a new MDS model to bridge the gaps.

2 � Two main streams of decision support 
studies

A review conducted on DSS a decade ago (Durand et al. 
2008) finds only one-third of the systems rely on a theoreti-
cal framework, and most are not explicit about how theory 

has guided the design and evaluation of the system. We have 
concluded through thorough research of the literature that 
two main streams have emerged of late in connection to 
DSS. Below are two research streams and their limitations.

2.1 � Decision support based on “distribution”

The distributed model of cognition (Shaft and Vessey 
2006) (see Fig. 1), which is an extension of the cogni-
tive fit theory (Vessey 1991) has gained attention in DSS 
in variety of domains including online customer behav-
ior (Kamis et al. 2008), military affairs (Godé and Lebrat 
2013), business intelligence (Bacic 2014), financial risk 
assessment (Song and Wright 2017), and maintenance 
(Park 2007). This model uses a systems view of cogni-
tion and focuses on developing an ensemble of distributed 
individuals and artifacts (Salomon 1997). In this model, a 
cognitive task is viewed as a system of distributed repre-
sentations, with internal and external representations two 
indispensable parts (Zhang and Norman 1994). Internal 
representations are the knowledge structures in the prob-
lem solver’s head, that is, those that can be retrieved from 
memory (e.g., a set of symbols to accomplish a particular 
task, the rules that govern the use of those symbols, the 
processes for acting on them, mental images, etc.). Exter-
nal representations are the knowledge and structures in the 
environment (e.g., physical symbols, objects, dimensions, 
constraints, relations embedded in physical configurations, 
etc.). Internal and external representations, the task, and 
the interactions among them contribute to the mental rep-
resentation of a task solution. In the MDS context, the 
task of understanding system behavior is influenced by 

Fig. 1   Extended cognitive fit model: the model of distributed cognition (Shaft and Vessey 2006)
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the technician’s existing knowledge of the system (internal 
representation of the problem domain), guidance from the 
decision support system (external representation of the 
problem domain), and the task to be completed (problem-
solving task). When these three factors are known, a men-
tal representation of the task solution is created. For exam-
ple, the fast growing augmented reality (AR) based MDS 
can be considered as an external problem representation.

2.2 � Decision support based on “collaboration”

Studies stress the opportunities for human and intelligent 
systems to collaborate, allowing humans and intelligent 
systems to learn from each other and work together to 
achieve shared goals (Terveen 1995). For effective collab-
oration, MDS should ensure intelligent activities are expli-
cable to the human (Hall 2017), and be able to understand 
the human cognitive processes. The concept of explainable 
AI is gaining attention for its ability to fulfill the user’s 
requirement to understand what is often seen as a black-
box (Gunning 2017), appropriately trust (Phillips-Wren 
2012), and effectively manage these systems. A cognitive 
interactive training environment can learn and improve 
with a human operator acting as a mentor for the system, 
and the system provides feedback to the human (Crowder 
and Carbone 2014). This process of feedback and interac-
tions increases the efficiency of both the system and the 
human mentor and allows the human operator to develop 
trust in the system over time. A technology called Pi-Mind 
suggests a compromise between total human control and 
total AI control over decisions, bringing a middle layer of 
them (Terziyan et al. 2018).

In the MDS domain, intelligent systems are now capa-
ble of anomaly detection; however, an anomaly detected 
may not necessarily be associated with a fault; it could be 
an anomaly with no-fault or a false alarm. An anomaly 
in one given context is considered acceptable, while in 
another context, even with identical data, is considered 
unacceptable (Galar et  al. 2015). Therefore, to verify 
an anomaly detected by the intelligent system, a manual 
inspection usually follows, and feedback is given to the 
system, of its accuracy (Chandola et al. 2009). Intelli-
gent systems raise queries based upon the technicians’ 
responses (Engelke et al. 2015), combined with physical 
models of degradation, and allow for adaptive levels of 
decision support (Erkoyuncu et al. 2017). The Collabo-
rative Control Theory (CCT) offers a collection of prin-
ciples for supporting effective human-AI collaboration 
(Nof 2007): collaboration requirement planning; e-work 
parallelism; keep it simple system; conflict/error detection 
and prevention; fault tolerance by teaming; association/

dissociation; and dynamic lines of collaboration and best 
matching.

3 � Limitations of current decision support

This section discusses two major limitations we identified in 
the existing MDS and associated models.

3.1 � Limited focus on operational dynamics

Because distributed cognition focuses on information repre-
sentation, transformation, and distribution across individu-
als and representational media, some see it as state-focused 
(Fomin and Vaujany 2008), whereas the alternative can also 
consider dynamics (Endsley 2015). The knowledge elements 
required by operational level maintenance are dynamic 
(Illankoon et al. 2019a), and the decision support model 
must capture and accommodate this. For example, per-
forming a successful diagnosis of an intermittent fault state 
requires capturing its dynamic behavior; in other words, 
the technician should know what has been happening, what 
is happening, and what will happen next. Moreover, work 
routines are constantly changing due to varying business 
demands and resource availability. Various dynamics in the 
working environment can also influence the safety of mainte-
nance work. Already available context-aware MDS consider 
context as “any information that can be used to characterize 
the situation of an entity; a person, place, or object that is 
considered relevant to the interaction between a user and 
an application, including the user and applications them-
selves” (Dey 2001). These systems are able to address the 
information that involves different scenarios based on inher-
ent complexities, prevailing machine conditions, and deci-
sions on what maintenance action is best. However, context 
awareness does not necessarily facilitate the technician to 
be aware of the dynamics involved in maintenance actions, 
and how those dynamics are considered in providing deci-
sion support. Therefore, MDS modeling should incorporate 
a concept that can accommodate not only the state but also 
the dynamics involved in maintenance actions.

3.2 � Limited focus on human perceptual‑cognitive 
tasks

Current MDS models do not enough consider human per-
ceptual-cognitive tasks such as anticipation, pattern recall, 
and judgments. The mechanisms driving the judgments of 
operational level maintenance personnel may be associ-
ated with the knowledge that is complex, diverse, and local. 
Regardless of the generally accepted four phases of decision-
making mentioned previously (Simon 1997) the degree of 
certainty of the problem representation and solution can 
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result in structured, unstructured, or semi-structured deci-
sions (Aronson et al. 2005). Unstructured decisions are 
highly dependent on the preferences or experiences of the 
decision-maker. A significant part of most maintenance 
processes is relatively straightforward to model; however, 
human cognitive involvement with more diverse and com-
plex tasks is almost impossible to model (Knauff and Wolf 
2010), and this affects the determination of how the MDS 
should intervene. Studies strive to minimize the discrepan-
cies between the human’s mental model of what is to be 
accomplished and the intelligent system’s understanding of 
the task (Chakraborti et al. 2017). In addition to all the tech-
nological challenges that have to be overcome with MDS, we 
have the further complication of understanding technicians’ 
perceptual and cognitive drives while making maintenance 
decisions.

4 � A new model: distributed collaborative 
awareness model (DCAM)

Our discovery of the above limitations motivated our 
development of a new model for MDS, a Distributed, Col-
laborative Awareness Model (DCAM), as shown in Fig. 2. 
DCAM also supports the opportunities identified in a 
previous study (Illankoon et al. 2019c) to model the cog-
nition of abnormal machine behavior using a combined 
approach along two dimensions: broad types of knowledge 
(i.e., explicit–implicit) and broad levels of agents (i.e., 

human-intelligent systems). In the next sections, we discuss 
how the DCAM can overcome the two major limitations of 
the present models: limited focus on dynamics, and limited 
focus on perceptual-cognitive tasks. We further discuss a 
potential application of the new model using the fast grow-
ing AR based MDS.

4.1 � From state to dynamic operations

To accommodate the dynamics (Illankoon et al. 2019a), situ-
ation awareness (SA) seems most suitable. SA is the knowl-
edge state about dynamic elements in the environment, helps 
to make sense of barrage of data in dynamic situations to 
maintain users informed about what action is expected to be 
executed, who is collaborating, and their actions (Endsley 
2017). Applications of SA in the maintenance context in 
different domains, such as aviation (Endsley and Robertson 
2000; Truitt and Ahlstrom 2000; Bridges 2013), oil and gas 
pipelines (Nadj et al. 2016), energy distribution (Salmon 
et al. 2017), railway (Walker et al. 2006) and manufacturing 
(Oliveira et al. 2014) have already been studied. Distributed 
situation awareness (DSA) (Salmon et al. 2008) focuses on 
exchanges of situation awareness between agents and con-
siders the activated knowledge for a specific task within 
a system (Stanton 2006). As viewed by some researchers 
(Salmon 2017), in a distributed system, some agents engage 
in perception tasks, while others engage in comprehension 
and projection. Therefore, the system collectively holds the 
SA required for task performance. With the rise of intelligent 

Fig. 2   Distributed collaborative awareness model (DCAM)



821AI & SOCIETY (2021) 36:817–828	

1 3

systems that deal with a huge amount of data, we acknowl-
edge DSA as a more pragmatic approach for modeling the 
human–intelligent systems collaboration required in the 
MDS.

In the DCAM, we elaborate on the problem-solving task 
as comprising four major knowledge elements required 
in operational level maintenance: diagnosis to prognosis, 
corporate environment, team synchrony, and work safety. 
The model recognizes the dynamics of these knowledge 
elements, as the task environment now connects with the 
internal problem representation and the external problem 
representation. These connections appear in both subtle and 
overt means that we discuss further in the next section. At 
implementation, the DCAM can benefit from number of SA 
interventions (Endsley 2016), for example see (Illankoon 
et al. 2019b, d; Illankoon and Phillip 2019).

4.2 � From explicit to implicit collaboration

Previous applications of DSA in maintenance, those trace 
explicit communication between agents (Salmon et al. 2017), 
have been criticized for not accounting for implicit commu-
nication between agents (Endsley 2015). Explicit commu-
nication requires answering questions and explaining situa-
tions that the intelligent system might encounter or codify. 
However, more needs to be recognized by the models (del 
Amo et al. 2018); the ability to include implicit knowledge 
that is not verbalized (Dane and Pratt 2007) and its influence 
on situation awareness. A previous study (Illankoon et al. 
2018) lays the foundation but does not develop the concept.

MDS model should consider both the different levels of 
automation (Parasuraman et al. 2000) offered by a decision 
support system and the wide modes of human cognition 
involved in gaining situation awareness of machine behav-
iors (Illankoon et al. 2019c). Accordingly, in the DCAM, the 
internal problem representation is identified as a continuum 
between two poles: explicit and implicit knowledge. How-
ever, appropriate technological support must be provided 
during implementation. Below, we discuss two central tech-
nological challenges in implicit knowledge collaboration. 
We also identify a way to move forward.

4.2.1 � MDS should not hinder implicit learning 
about machine behavior

Technicians who are physically involved with machines have 
the access to subtle cues (Endsley 2016, 2017; Endsley et al. 
2000) those comprise information gained directly through 
human senses about the machine behavior (Illankoon et al. 
2016). Positive effects of subtle cues for implicit learning 
are empirically evident in many domains, such as medical 
diagnosis (Conci et al. 2013), artificial grammar learning 
(Shanks 2005), social intuition (Norman and Price 2012), 

motor control (Sanchez et al. 2010), and maintenance (Gard-
ner et al. 1996; Amadi-Echendu and Smidt 2015; Ruiz et al. 
2014). For such implicit learning, humans require only a few 
cognitive resources (Evans and Stanovich 2013; Patterson 
2017). However, there is a trade-off between the access to 
explicit cues provided by the MDS, and the access to subtle 
cues (Endsley, 1999, 2016). For example, limited periph-
eral visibility of AR headsets (Novak-Marcincin et al. 2013; 
Fiorentino et al. 2014; Dini and Dalle Mura 2015) hinders 
the awareness of the surroundings, and headphones prevent 
access to subtle changes in noise emission. Design efforts 
are being taken to make subtle cues more explicit (Ends-
ley 2016), thus promoting more explicit awareness about 
machine behavior. However, in attempting to make subtle 
cues explicit, technicians can be overloaded with too much 
information.

The cues used by MDS will mostly deplete visual and 
audible resources and limit the chance to convey aware-
ness through other human senses. Operational level mainte-
nance in Industry 4.0 will go beyond facilitating operations 
to serve real-time operations more directly and closely. For 
example, airbus real-time health monitoring (AiRTHM) is 
an advanced airbus service through which operators receive 
advice on optimized maintenance actions and real-time 
troubleshooting actions (services.airbus.com 2018). With 
the increased use of real-time condition monitoring and 
remote operations, human technicians will have less physi-
cal involvement with the system (for monitoring and inspec-
tion) and will be less exposed to subtle cues about the system 
behavior.

We recommend that emerging MDS technologies should 
preserve access to subtle cues by alternative and novel 
means. Although the previously mentioned Pi-Mind tech-
nology (Terziyan et al. 2018) attempts to capture the human 
creative cognitive capabilities, it does not consider provi-
sions for implicit learning. Only a few studies have focused 
on this possibility. For example, Fountx commercial solu-
tion comprises bone-conducting headphones to remain 
alert to the surroundings (fountx.com 2018). Another study 
(Domova et al. 2017) presents a prototype haptic mouse to 
explore the re-introduction of physical user interfaces into 
industrial control rooms. An extended view of this chal-
lenge is how to give more access to subtle cues with MDS. 
Such an MDS strategy should carefully select a few criti-
cal cues, make them more salient, and replicate or produce 
even more subtle cues (of non-critical information) to get 
the benefit of humans’ implicit learning capability. In fact, 
some studies have already started paying attention to devel-
oping such technologies, for example, Eagleman’s “Sen-
sory Substitution” project (Eagleman 2015), which aims to 
design devices to send any kind of information to the brain 
for sensory processing via atypical sensory modalities. The 
notion of Human Cyber-Physical Systems (Romero et al. 
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2016) suggests keeping human-in-the-loop using variously 
enriched and enhanced technologies to improve physical, 
sensing, and cognitive capabilities.

Contemporary intelligent systems seek more inspira-
tion and try to mathematically model how people make 
successful implicit inferences (Tao and He 2009; Dundas 
2011; Mishra 2018); however, this requires enormous com-
putational power (Guszcza et al. 2017). An alternative is 
to learn directly from technicians’ implicit knowledge and 
how they use that knowledge to be situationally aware dur-
ing maintenance work. Previous studies recognize both 
explicit and implicit interactions for supporting multimodal 
user interfaces (Gallardo et al. 2018); however, their focus 
is not to elicit implicit knowledge from those interactions. 
Contemporary MDS focus heavily on supporting physi-
cal manipulations, only a few studies focus on a potential 
reverse approach; how to capture and learn from human 
implicit involvements. For example, one study (Botelho 
et al. 2014) proposes a maintenance strategy that combines 
and coordinates human physical abilities and computational 
elements. Another study (Vasenev et al. 2013) uses virtual 
reality (VR) to follow machine operators’ physical activities 
(in road construction) and extract their implicit knowledge. 
A major drawback of these studies is the method used, as 
VR is not able to capture real-life scenarios, leaving out a 
wealth of implicit involvements.

4.2.2 � Managing conflicts during collaboration

Previous sections offer a rather optimistic character of 
human implicit knowledge, suggesting ways for it to col-
laborate with intelligent MDS. However, heuristic biases and 
erroneous human judgments related to implicit knowledge 
are common problems (Kahneman 2011; Reason and Hobbs 
2017). Worse yet, humans are not able to identify which 
cognitive mechanism comes into play when they employ 
thinking with less deliberation (Kahneman and Klein 2009). 
We have also discussed the less well-understood algorithms 
used in the fast-growing machine learning field. This raises 
a critical question: how to handle potential conflicts between 
the implicit component of human cognition and the less 
well understood intelligent systems. While collaborative 
control theory (CCT) offers high-level strategies, specific 
techniques are required. One promising step towards col-
laboration would be to provide facilities in the MDS for 
controlled experimentation and simulation (Taylor 2001) to 
give insight into dynamic interactions and to offer feedback 
on decision alternatives. Intelligent features of the MDS may 
facilitate simulation of what is captured from the implicit 
knowledge of human agents, and, as discussed, explainable 
AI helps humans better understand the reasoning used by AI. 
Taken together, these strategies can provide a better under-
standing of which decision alternative is more effective and 

pragmatic. Once such an understanding is obtained, evi-
dence justifying or challenging alternatives will add new 
knowledge to MDS for retrieving in the future.

In sum, our distributed collaborative awareness model 
supports the collaboration of human and intelligent agents 
along two important dimensions. First, it accounts for dif-
ferent types of situation awareness (explicit–implicit) 
held by both human and intelligent systems. The human 
explicit–implicit continuum stretches from verbalized to 
intuitive knowledge; the intelligent system continuum 
stretches from rule-based to holistic approaches. Second, it 
takes into account the awareness distributed among different 
agents between humans and intelligent systems. We illustrate 
this in Fig. 3.

5 � How to use the model: the case 
of augmented reality (AR) in maintenance

This section discusses how to apply and further improve the 
DCAM. Although fast-growing, the successful use of AR 
in maintenance is still in progress (Wang et al. 2016; Mar-
tinetti et al. 2017; Quandt et al. 2017); therefore, AR-based 
MDS is a potential use case. In what follows, we review 
the fast-growing AR-based MDS, assess their strengths and 
weaknesses against the DCAM. We make recommenda-
tions to improve AR-based MDS so that the DCAM can be 
implemented.

Fig. 3   Collaboration illustrated in two dimensions (explicit–implicit, 
human-intelligent systems)
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5.1 � Methods

We conducted a structured literature review using Google 
Scholar, because it was easy to sort influential studies 
(ranked by the number of citations). Google Scholar has cov-
erage to Open Access articles, other citation resources (e.g., 
Scopus, Emerald, Web of Science), and those contained in 
institutional sources such as Universities. We searched the 
string “augmented reality AND maintenance” in the title 
of the articles published from 2008 to 2018. This gave 195 
results. Then we excluded the non-English articles and 
those not cited by others. The remaining 109 articles were 
reviewed and six literature reviews were excluded. Using 
thematic analysis, the decision support features discussed in 
each of the articles were categorized into 10 categories (see 
next section). This resulted in a count of the literature that 
addresses different decision support features. We then criti-
cally assessed those features in comparison to our DCAM.

5.2 � Strengths and limitations of the existing AR 
based MDS

The literature analysis resulted in the identification of 10 
key MDS features. Figure 4 presents the number of articles 
describing those features. Below is a brief review of those 
features.

•	 AR applications are largely limited to operational level 
maintenance actions, providing support for physical 
manipulations and/or providing step-by-step instructions 
(75 articles).

•	 23 Articles discuss providing support for maintenance 
diagnosis. 17 articles mention the use of AI, and 18 arti-
cles recognize the ability to be context-aware.

•	 18 Articles focus on providing remote expert support. 
Those applications are available as experimental proto-
types (e.g., Stricker and Bleser 2012; Martinetti et al. 
2017) and commercial products, such as EASE-R3 
(Zenati-Henda et al. 2014) and XMReality (Karlsson 
2018).

•	 17 Articles discuss ways to capture existing knowledge 
from users, mainly to assess the knowledge levels and 
provide customized solutions.

•	 Five articles support team synchronization through coor-
dination, cooperation, and communication.

•	 Only three articles discuss the need to comprehend the 
environment in which an operator works to avoid acci-
dents (global awareness).

•	 The manufacturing sector attracts the most attention (48 
articles), only 8 articles solely target the aviation indus-
try.

5.3 � Application of the DCAM using AR based 
decision support

Current AR solutions are able to guide the technicians, by 
providing visual and audible instructions, and giving tactile 
feedback (see black arrows in Fig. 5). As per our review, 
the present usage of AR-based MDS is largely limited to 
unidirectional information flow from intelligent systems to 
the technician. To meet one of the recommendations of the 
DCAM, more work should be done to present none critical 
information using subtle cues, for example, projected on the 
peripheral, audible alerts and tactile feedback provided in 
varying frequencies.

Although a significant number of the articles (n = 17) 
discuss ways to capture existing knowledge from tech-
nicians, that is largely limited to verbalized (explicit) 

Fig. 4   Ten key features of 
AR-based MDS and the number 
of articles describing those 
features (n = 103). Some articles 
discuss more than one feature
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knowledge, and the purpose is to assess the knowledge 
levels to provide customized solutions, but not to learn 
from the technician. On the other hand, a successful 
acquisition of knowledge and training an AI-based MDS 
requires a huge amount of data, demanding the acquisi-
tion of knowledge well beyond that can be verbalised. 
In this context, we identify opportunities for AR-based 
MDS for learning from human implicit situation aware-
ness (implicit knowledge state about dynamic elements) 
using multiple strategies. Sensors for collecting data from 
machines are increasingly smaller and less expensive. We 
identify the use of sensors beyond the collection of data 
from machines. It is possible to outfit technicians with 
sensors to elicit the psychomotor and cognitive responses 
that are beyond what technicians can verbalize.

For example, there is a possibility of capturing psycho-
motor behaviors, including implicit moves and gestures 
using GPS devices, accelerometers, and video record-
ing. Gestures can be seen as a reflection of underlying 
cognitive processes (Novack and Goldin-Meadow 2015), 
because gestures often reveal information that cannot be 
found in speech. Although not meant for the same purpose, 
studies discuss how gestures can improve interactions 
with AR (e.g., Zhao et al. 2014). Capturing psychomotor 
behaviors is already used for providing motion and posi-
tion feedback for technicians. For example, some studies 
(e.g., Webel et al. 2013) superimpose the video recorded 
movements of assembly operation using VR; the objec-
tive is to train novice technicians in motor skills. A study 
with Boeing company (Richardson et al. 2014) captured 
technicians’ motions (head position and orientation), 
communication frequency (interface button presses), and 
video recorded movements to assess training effectiveness. 
While these are useful for improving the motor skills of 

novice technicians, the potential of these technologies to 
elicit implicit psychomotor responses of expert technicians 
is what we are most interested in.

The second opportunity lies in capturing implicit atten-
tion behaviors using eye-tracking. Although not mentioned 
as such by the authors, we find similar approaches in other 
domains. For example, a study (Baber et al. 2009) uses 
wearable technology to enhance crime scene examination 
by integrating the tasks of searching for, retrieving, and 
recording evidence. Using eye-tracking and verbal proto-
col from real-time crime scene examination, they show 
how the approach to searching a scene differs with expe-
rience. A fuzzy approach (Ahmadi et al. 2017) suggests 
capturing experts’ knowledge through real-time verbal 
protocols, which can produce greater advantages when 
combined with other methods that capture implicit behav-
iors (Gonzalez 2003).

Another opportunity is linked to implicit cognitive 
responses captured using heart-rate, skin conductance, 
and respiration. Studies demonstrate that the dynamic of 
heart-rate is rich enough to reveal relevant episodes of 
inner thoughts, such as the correctness of a choice (Mealla 
et al. 2011). Another study found initial evidence that 
skin conductance and respiration are sensitive to implicit 
memory (klein Selle et al. 2018). Adding such tracking 
functions to MDS can provide the opportunity to learn 
from humans in real-time. These sensory data can be com-
bined with performance measures to let intelligent systems 
elicit useful implicit knowledge, as well as to learn about 
and warn against potentially improper implicit behavior. 
In sum, recognition of explicit to implicit knowledge can 
aid forming a collaborated awareness, which is distributed 
among human and intelligent systems as we described in 
the DCAM.

Fig. 5   New AR features to 
facilitate collaboration of 
explicit and implicit situation 
awareness
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6 � Conclusions and future work

We presented a new approach to modeling collaboration of 
situation awareness among technicians and intelligent sys-
tems. Almost all research concerning decision support has 
considered and applied collaboration and distribution as two 
important intertwined concepts, we identify that they can 
also be applied as two complementary concepts. Modeling 
decision support relates to but improved from the cognitive 
fit theory, which does not support collaboration in a dynamic 
context. In the application of the maintenance domain, we 
see that a concept that can address the dynamics inherent 
to it is necessary, thus the situation awareness concept is 
considered most relevant. Collaboration and distribution 
are presently limited to the transactions that can only be 
explicitly identified, such as verbalized knowledge, and not 
implicit knowledge. Therefore, we emphasize the impor-
tance of implicit transactions among the agents: human, 
decision support, and machines.

Since the technology of AR uses both distribution and 
collaboration concepts, we studied the relevant literature. 
AR solutions distribute knowledge between the user and 
what is built in the AR system. AR solutions also assist 
the user and help in collaborating with others. However, 
the development of the DCAM led us to identify two main 
gaps: collaboration has not been fully identified since AR 
does not learn from the user and AR does not assist the user 
to develop implicit knowledge, it may actually hinder it. We 
made recommendations on how new technologies, i.e. eye-
tracking, can be added to AR to help overcome these gaps. 
The main implication of the development of AR beyond its 
role as a pedagogical tool is that the bidirectional informa-
tion flow will elevate AR as a knowledge elicitation technol-
ogy from the experts.

We presented the DCAM as a descriptive model and for 
future work, we recommend that it should be applied using 
formal notations, such as ontologies. Although we mention 
a few former studies supporting our arguments, a compre-
hensive study is recommended to validate all propositions 
of the DCAM.
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