
Vol.:(0123456789)1 3

AI & SOCIETY (2023) 38:963–965 
https://doi.org/10.1007/s00146-022-01463-6

CURMUDGEON CORNER

Toward trustworthy programming for autonomous concurrent 
systems

Lavindra de Silva1 · Alan Mycroft2

Received: 14 July 2021 / Accepted: 13 April 2022 / Published online: 8 June 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

A key focus in AI is building machines and software capable 
of being autonomous, especially in complex and dynamic 
environments where, e.g., self-driving cars, trading systems, 
and social care robots operate. Such autonomous systems 
are able to independently make decisions and act on them 
with limited human intervention, balancing the pursuit of 
long-term goals (proactiveness) with rapid response to 
environmental changes (reactiveness) (Fisher et al. 2021). 
The notion of an autonomous system is synonymous with 
the notion of an ‘autonomous software agent’ (Fisher et al. 
2021), and a class of domain-specific language called an 
Agent-Oriented Programming Language (AOPL) has proved 
to be one of the most successful approaches to building such 
systems. AOPLs provide abstractions over Object-Oriented 
Programming, by modelling complex systems through the 
‘intentional stance’—human-like mental attitudes, such as 
beliefs, goals, and intentions, enabling users understand, 
explain, predict, and program behaviour by abstracting from 
the detail (objects, attributes, etc.). Indeed, giving people 
this ability helps build trustworthy AI systems, particularly 
those that people can trust to have been designed and pro-
grammed to be lawful, ethical, and robust,1 ensuring adher-
ence to applicable laws, regulations, and ethical principles, 
and operating in a safe, secure and reliable manner.

AOPLs have been studied and developed for over 
30  years, with their first implementations proceeding 
alongside philosophical, conceptual, and early theoretical 
underpinnings (see, e.g., Bordini et al. 2020). A subfield 
called Formal Semantics for AOPLs emerged out of a need 

to describe practical and implementable systems, and bridge 
the gap between the early theoretical work and successful 
AOPL implementations. A formal semantics includes both 
an execution model and a programming language syntax, 
and they now exist for many of the implemented AOPLs, 
both for describing their ‘decision-making engines’, and 
specifying their input in the form of ‘Standard Operating 
Procedures’ (SOPs), comprising the layered steps needed 
to accomplish high-level operations (‘tasks’), such as user 
requests (Fig. 1), and to respond to environmental changes. 
Such semantics have enabled rigorously modelling AOPLs 
and reasoning about their behaviour and decisions, and the 
ability for programmers and operators to understand con-
cretely how an AOPL-based autonomous system will exe-
cute the given SOPs, explain (e.g., to a regulator) why the 
system did what it did, or automatically verify that a layer(s) 
in the system is compliant or safe. In contrast especially 
to systems built using Machine Learning, AOPLs facili-
tate a layered approach to explanation, with the option to 
probe deeper layers until the desired level of understanding 
is reached, e.g., a user could debug an issue by asking the 
system which top-level goals (adopted tasks) it had, what 
intention it had for a goal (i.e., which SOP instance it had 
committed to executing), and if necessary, why that intention 
rather than another, and why the system held a certain belief 
(Bordini et al. 2020).

Formal (semantics for) AOPLs have had various extensions 
over the years, either describing existing implementations or 
laying the groundwork for new or improved implementations. A 
key extension has been the ability to execute goals concurrently; 
this can be achieved either by multi-core execution or simulated 
by multi-tasking on a single-core processor (Fig. 1 illustrates 
various forms of concurrency). While there has been progress 
on the work on multi-tasking, it is now critical for formal 
AOPLs to support notions of concurrency that suit multi-core/
multi-processor systems, especially in this era as such systems 

 *	 Lavindra de Silva 
	 Lavindra.deSilva@eng.cam.ac.uk

	 Alan Mycroft 
	 Alan.Mycroft@cl.cam.ac.uk

1	 Department of Engineering, University of Cambridge, 
Cambridge, UK

2	 Department of Computer Science and Technology, 
University of Cambridge, Cambridge, UK

1  As per the European Commission’s Ethics Guidelines for Trustwor-
thy AI.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-022-01463-6&domain=pdf


964	 AI & SOCIETY (2023) 38:963–965

1 3

have become ubiquitous—being present in devices including 
phones and low-cost computers—and autonomous systems are 
becoming prevalent, and even affordable in new sectors (e.g., 
smart personal transporters and sophisticated personal drones). 
Formal AOPLs for contemporary autonomous systems must, 
therefore, cater for the opportunity to run goals, intentions, and 
their threads (e.g., subgoals) on separate cores, while balancing 
this against the need to verify such behaviour, which may well 
be harder due to the many ways intentions/threads can overlap.

We believe that the development of a formal AOPL that sup-
ports suitable notions of concurrency can take much inspiration 
from the body of work in the general computer science (CS) 
literature on modeling concurrency in general-purpose program-
ming languages and distributed processes. However, it is quite 
likely that developing such an AOPL will be a distinct and major 
strand of work, like the existing strands on concurrency models 
for C and Java. For example, the CS literature does not seem to, 
as argued elsewhere, cater for aspects that are fundamental in 
AI, such as modelling the ‘beliefs’ of an autonomous system 
(i.e., information about itself and the environment); modelling 
the ‘preconditions’ of operations (specifying when the operation 
is applicable) and their ‘effects’; and a mechanism for inferring 
the system state that results from executing an operation in the 
current state (the ‘frame problem’). In AI itself, there is some 
work that takes a step toward supporting concurrency in formal 
AOPLs, but with the limitation wherein only ‘synchronised con-
currency’ is allowed, i.e., each segment that is executed concur-
rently [with another segment(s)] must be a single operation, each 
of which is performed ‘in sync’ (Fig. 1). While this approach 
has been used to mimic an AOPL operation that stretches over 
multiple operations by splitting the former into ‘start’ and ‘end’ 
parts (Fig. 1), splitting may not capture concurrency fully (van 
Glabbeek 2015).

A more natural approach to modelling such overlaps between 
AOPL operations (see ‘E4’ in Fig. 1) has been proposed by the 
first author in recent work, but this has nonetheless left open 
many challenging and interesting questions for a concurrency 
theory for AOPLs. In particular, since many AOPLs take the 
intentional stance, what are suitable models for concurrently 
executing intentions, and how do they relate to models for exe-
cuting threads within an intention (given that threads are pre-
programmed, whereas intentions are influenced by people and 
the environment)? Core to this question is how to model inten-
tions/threads that interact through a (central) belief base that is 
shared, and the environment being sensed during concurrent 
execution. The AOPL’s theoretical properties would also need 
to be understood, especially its consistency with concurrency 
semantics in CS, and the ‘fragment’ of the AOPL that is ame-
nable to verification would need to be ascertained, as well as 
how to maximise the fragment to achieve increased reliability.

Curmudgeon Corner  Curmudgeon Corner is a short opinionated col-
umn on trends in technology, arts, science and society, commenting on 
issues of concern to the research community and wider society. Whilst 
the drive for super-human intelligence promotes potential benefits to 
wider society, it also raises deep concerns of existential risk, thereby 
highlighting the need for an ongoing conversation between technology 
and society. At the core of Curmudgeon concern is the question: What 
is it to be human in the age of the AI machine? -Editor.

References

Bordini RH, Seghrouchni AEF, Hindriks K, Logan B, Ricci A (2020) 
Agent programming in the cognitive era. Auton Agents Multi-Agent 
Syst 34:37

Fig. 1   A and B are tasks achieved by SOPs (triangles) comprising 
sequences of four operations. The graph shows one possible execu-
tion of operations over time for some AOPL execution models, as A 
and B run as top level tasks or as subtasks within task C. E0–E4 on 

the Y axis correspond to an execution that is: sequential (E0); inter-
leaved (E1); interleaved, synchronous, and with operations taking unit 
time (E2); as before, and with operations split (shown as repeating 
numbers) into ‘start’ and ‘end’ parts (E3); and asynchronous (E4)



965AI & SOCIETY (2023) 38:963–965	

1 3

Fisher M, Mascardi V, Rozier KY, Schlingloff B-H, Winikoff M, Yorke-
Smith N (2021) Towards a framework for certification of reliable 
autonomous systems. Auton Agents Multi-Agent Syst 35:8

van Glabbeek RJ (2015) Structure preserving bisimilarity, supporting an 
operational Petri Net semantics of CCSP. In: Proceedings of correct 
system design, pp 99–130

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Toward trustworthy programming for autonomous concurrent systems
	Curmudgeon Corner 
	References




