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In classical set theory, Zorn’s Lemma is equivalent to the axiom of choice 

and a host of other principles and theorems. But in intuitionistic set 

theory (IZF), in which the law of excluded middle is not assumed, the 

situation is quite different. (A presentation of IZF may be found in 

Chapter VIII of [3].) Here, Zorn’s lemma turns out to be remarkably weak: 

not only does it fail to imply the axiom of choice, but one cannot even 

prove from it, for example, the Boolean prime ideal theorem or the Stone 

representation theorem. (This is because, as shown in [4], Zorn’s lemma 

has no nonconstructive purely logical consequences, while both the 

axiom of choice and the Stone representation theorem imply the law of 

excluded middle, and the Boolean prime ideal theorem implies the 

nonconstructive form of de Morgan’s law: see [5].)  In fact, the vast 

majority of the assertions intuitionistically provable from Zorn’s lemma 

make explicit mention of the notion of maximality: for example, the 

existence of maximal chains in partially ordered sets and the maximal 

ideal theorem for rings. (A conspicuous exception to this is the Sikorski 

extension theorem for complete Boolean algebras which is 

intuitionistically derivable from Zorn’s lemma: see [4].) In this note two 

apparently new results are proved, neither of which make explicit 

reference to maximality—the one a fixpoint theorem for complete lattices, 

the other a result concerning binary relations—and each is shown to be 

intuitionistically equivalent to Zorn’s lemma.  

We begin with some 
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Definitions.  

  

 Let P  be a partially ordered set. An element a of P is maximal if, 

for any x ∈ P, a ≤ x implies a = x. P is inductive if each chain X in P has a 

supremum or join X. By Zorn’s Lemma is meant the assertion that any 

inductive partially ordered set with an element has a maximal element. 

A subset B of P is a base for P if, for any x, y ∈ P, we have 

∀b ∈ B[b ≤ x ⇒ b ≤ y] ⇒ x ≤ y. 

Notice that if P is a complete lattice, B is a base iff 

∀x ∈ L. x =  {b ∈ B: b ≤ x}. 

A map f: P → P is (i) self-adjoint if for any x, y ∈ P  we have  

x ≤ f(y) ⇔ y ≤ f(x), 

and (ii) inflationary on a subset X ⊆ P if x ≤ f(x) for all x ∈ X. 

 

Lemma. Let P be a partially ordered set and f: P → P a self-adjoint 

map. Let X be a subset of P with a supremum X. Then f[X] has  

infimum f[X] = f(X).  

 Proof. We have, for any y ∈ P 

∀x ∈ X. y ≤ f(x) ⇔ ∀x ∈ X. x ≤ f(y) ⇔ X ≤ f(y) ⇔ y ≤ f(X).  

 It follows in particular that any self-adjoint map on a partially 

ordered set is order-inverting. 

We use this to establish what we shall term the  

 

Fixpoint Property (for self-adjoint maps). Assume Zorn’s 

Lemma. Let f: L → L be a self-adjoint map on a complete lattice L 

possessing a base B on which f is inflationary. Then f has a fixpoint. 

Proof.  Let D = {x ∈ L: x ≤ f(x)}. We claim that, with the order 

inherited from L, D is inductive. For consider any chain C in D, and let    

c = C. We claim that c ∈ D. To prove this, we note that f (c) = f(C) = 
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f[C] by the lemma, so it suffices to show that c ≤ f[C], i.e. x ≤ f(y) for all 

x, y ∈ C. Now if x, y ∈ C, then either x ≤ y or y ≤ x. In the first case x ≤ y ≤ 

f(y); in the second f(x) ≤ f(y) so that x ≤ f(x) ≤ f(y).  

Accordingly D is inductive and so by Zorn’s Lemma has a maximal 

element m. We claim that f(m) = m. To prove this it suffices to show that 

f(m) ≤ m; since B is a base, for this it suffices in turn to prove that  

(*)                      ∀b ∈ B[b ≤ f(m) ⇒ b ≤ m]. 

Since m is maximal in D, to prove (*) it clearly suffices to prove                       

                 

                ∀b ∈ B[b ≤ f(m) ⇒ m ∨ b ∈ D], 

i.e.                       

∀b ∈ B[b ≤ f(m) ⇒ m ∨ b ≤ f(m ∨ b)], 

i.e. 

(**)               ∀b ∈ B[b ≤ f(m) ⇒ m ∨ b ≤ f(m) ∧ f(b)]. 

 

So suppose b ∈ B and b ≤ f(m). We already know that m ≤ f(m), and      

m ≤ f(b) follows from b ≤ f(m) and the self-adjointness of f. Thus          

m ≤ f(m) ∧ f(b). Also b ≤ f(m) ∧ f(b) since we are given b ≤ f(m) and f is 

inflationary on B. Hence m ∨ b ≤ f(m) ∧ f(b) as required, and (**) follows. 

 The Fixpoint Theorem is proved.   

 

We next make the  

 

Definition. Let R be a binary relation on a set A. An R-clique in A is 

a subset U of A such that  

∀x ∈ A[x ∈ U ⇔ ∀y ∈ U. xRy] 

The Clique Property is the assertion that, for any reflexive 

symmetric binary relation R, an R-clique exists. 
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Finally we prove the  

 

Theorem. The following are equivalent in intuitionistic set theory: 

1. Zorn’s Lemma (ZL) 

2. The Fixpoint Property (FP) 

3. The Clique Property (CP). 

 Proof.  

ZL ⇒ FP has been established above.  

FP ⇒ CP. Let R be a symmetric reflexive binary relation on a set A. 

Define the function F on the power set Pow(A) of A to itself by 

F(X) = {y ∈ A: ∀x ∈ X.xRy}. 

The symmetry of R is tantamount to the self-adjointness of F and the 

reflexivity of R to the assertion that F is inflationary on the base           

{{a}: a ∈ A} for Pow(A). Accordingly FP yields a fixpoint U ∈ PA for F, that 

is, an R-clique in A.  

 CP ⇒ ZL. Let (P, ≤) be an inductive partially ordered set, and define 

R to be the symmetric reflexive relation x ≤ y ∨ y ≤ x on P. CP yields an R-

clique U in P, which is evidently a chain in P, and so, by the inductivity of 

P, has an upper bound u. We claim that u is a maximal element of P. For 

suppose u ≤ x. Then clearly ∀y ∈ U. xRy, whence x ∈ U, and so x ≤ u. 

Therefore x = u, and u is maximal.   

 
Remarks. 1. The equivalence between FP and CP may be further 

explicated by the following observation. Let f be a self-adjoint map on a 

complete lattice L which is inflationary on a set B of generators, and let R 

be the symmetric reflexive relation x ≤ f(y) on B. Then there are mutually 

inverse correspondences ϕ, ψ between the set F of fixpoints of f (which is 

easily shown to coincide with the set of maximal elements of            

{x ∈ L: x ≤ f(x)}) and the set C of R-cliques. These correspondences are 
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given, respectively, by ϕ(m) = {x ∈ B: x ≤ m} for m ∈ F and ψ(X) = X for X 

∈ C.  

 

2. The relationship just described can be generalized to an adjunction 

between categories. Let Rel be the category whose objects are pairs (A, R) 

with R a reflexive symmetric reflexive relation on a set A, and with 

relation-preserving maps as arrows. Let Lat be the category whose 

objects are triples (L, B, f) with L a complete lattice, B a subset of L, and f 

a self-adjoint map on L which is inflationary on B; an arrow p: (L, B, f) → 

(L′, B′, f′) in Lat  is a -preserving map L → L′ sending B into B′ such 

that p(f(x)) ≤ f′ (p(x)) for all x ∈ L. We define the functors F: Rel  → Lat 

and G:  Lat  → Rel  as follows. Given A = (A, R) and h: A → (A′, R′ ) = 

A′ in Rel, we define FA = ( ( ), {{ } : }, )Pow A a a A R∈ with 

( ) { : . }R X y A x X xRy= ∈ ∀ ∈  ; and Fh:  FA → FA′ by (Fh)(X) = {h(x): x ∈ X}. 

Given L = (L, B, f)  and p: L →(L′, B′, f′) in Lat  we define GL = (B, f*), 

where f* is defined by x f* y iff x ≤ f(y) and Gp is the restriction of p to B. 

 Then F is left adjoint to G, and the unit of the adjunction is iso. So 

F is full and faithful, and thus Rel is, up to isomorphism, a full 

coreflective subcategory of Lat. The objects L = (L, B, f) of Lat  for which 

the counit arrow FGL → L is epi are precisely those in which B is a base 

for L: call such objects based. The adjunction F  G then restricts to one 

between Rel and Lat ’s full subcategory Lat* of based objects. So Rel is 

also, up to isomorphism, a full coreflective subcategory of Lat*. 

 

3.  Our discussion has been conducted within IZF, in which, although 

no use of the law of excluded middle is made, the power set axiom is 

assumed. The question arises as to what extent the arguments 
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formulated here can be carried over to constructive set theory CZF, the 

“predicative” version of intuitionistic set theory in which the power set 

axiom is not assumed. (A presentation of CZF may be found in [1].) In [2], 

Peter Aczel has shown that, in CZF, Zorn’s Lemma (suitably formulated) 

continues to imply FP and CP, and that these latter remain equivalent 

there. But, in contrast with the situation in IZF, they do not appear to 

yield Zorn’s Lemma in CZF. The claims in Remarks 1 and 2, however, 

carry over to CZF. 
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