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Abstract

We show that a strong form of the so called Lindström’s Theo-
rem [4] fails to generalize to extensions of Lκω and Lκκ: For weakly
compact κ there is no strongest extension of Lκω with the (κ, κ)-
compactness property and the Löwenheim-Skolem theorem down to κ.
With an additional set-theoretic assumption, there is no strongest ex-
tension of Lκκ with the (κ, κ)-compactness property and the Löwenheim-
Skolem theorem down to < κ.

By a well-known theorem of Lindström [4], first order logic Lωω is the
strongest logic which satisifies the compactness theorem and the downward
Löwenheim-Skolem theorem. For weakly compact κ, the infinitary logic Lκω

satisfies both the (κ, κ)-compactness property and the Löwenheim-Skolem
theorem down to κ. In [1] Jon Barwise pointed out that Lκω is not maximal
with respect to these properties, and asked what is the strongest logic based
on a weakly compact cardinal κ which still satisfies the (κ, κ)-compactness
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property and some other natural conditions suggested by κ. We prove (Corol-
lary 5) that for weakly compact κ there is no strongest extension of Lκω with
the (κ, κ)-compactness property and the Löwenheim-Skolem theorem down
to κ. This shows that there is no extension of Lκω which would satisify
the most obvious generalization of Lindström’s Theorem. A stronger result
(Theorem 11) is proved under an additional assumption.

We use the notation and terminology of [2, Chapter II] as much as possi-
ble. We will work with concrete logics such as first order logic Lωω, infinitary
logic Lκλ and their extensions Lωω({Qi : i ∈ I}) and Lκλ({Qi : i ∈ I}) by
generalized quantifiers. Therefore it is not at all critical which definition of
a logic one uses as long as these logics are included and some basic closure
properties are respected. We use L ≤ L′ to denote the sublogic relation. Let
P be a property of logics. A logic L∗ is strongest extension of L with P, if

1. L ≤ L∗,

2. L∗ has property P,

and whenever a logic L′ has the properties 1 and 2, then L′ ≤ L∗.
Let L be a logic. For infinite cardinals κ and λ, L is (κ, λ)-compact if for

all Φ ⊆ L of power κ, if each subset of Φ of cardinality < λ has a model, then
Φ has a model. L is κ-compact if it is (κ, ω)-compact. κ is weakly compact
for L if L is (κ, κ)-compact. L is fully compact if it is κ-compact for all κ.
L has the Löwenheim-Skolem property down to κ, denoted by LS(κ) if every
φ ∈ L which has a model, has a model of cardinality ≤ κ. If every sentence
φ ∈ L which has a model, has a model of cardinality < κ, we say that L
satisfies LS(< κ). otp(R) denotes the order-type of the well-ordering R.

Theorem 1 [4] The logic Lωω is the strongest extension of Lωω with ℵ0-
compactness and LS(ℵ0).

Let C be a non-trivial class of regular cardinals. Let

Qcf

Cxyφ(x, y, ~z) ⇐⇒ φ(·, ·, ~z) is a linear order with cofinality in C.

By [9], Lωω(Qcf

C) is always fully compact. For C an interval we use the
notation Qcf

[κ,λ) and Qcf

[κ,λ].

Proposition 2 There is no strongest κ-compact extension of Lωω. In fact:
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1. there are fully compact logics Ln, n < ω, such that Ln ≤ Ln+1 for all
n < ω, but no ℵ0-compact logic can extend each Ln.

2. There is an ℵ0-compact logic L1 and a fully compact logic L2 such that
no ℵ0-compact logic can extend both L1 and L2.

Proof. Let Ln = Lωω({Qcf

[ℵω,∞]} ∪ {Qcf

ℵl
: l < n}). By [9], each Ln is fully

compact. Clearly, no ℵ0-compact logic can extend each Ln.
For the second claim, let L1 be the logic Lωω(Q1), where Q1 is the quanti-

fier “there exists uncountable many” introduced by Mostowski [8]. This logic
is ℵ0-compact [3], see [2, Chapter IV] for more recent results. Let L2 be the
logic Lωω(QB), where QB is the quantifier “there is a branch” introduced by
Shelah [10]. More exactly,

QBxytuM(x)T (y)(t ≤ u)

if and only if ≤T is a partial order of T ⊆ M and there are D,≤D, f and B

such that:

1. ≤D is a total order of D ⊆ M

2. f : 〈T,≤T 〉 → 〈D,≤D〉 is strictly increasing

3. ∀s ∈ D∃p ∈ T (f(p) = s)

4. B ⊆ T is totally ordered by ≤T

5. ∀b ∈ B((p ∈ T&p ≤T b) → p ∈ B)

6. ∀s ∈ D∃b ∈ B(s ≤D f(b)).

The reader is referred to [10] for a proof of the full compactness of L2.
Suppose there were an ℵ0-compact logic L containing both L1 and L2

as a sublogic. It is easy to see that the class of countable well-orders can
be expressed as a relativized pseudoelementary class in L. This contradicts
ℵ0-compactness of L. ✷

Lauri Hella pointed out that by elaborating the proof of claim (2) of the
above proposition, we can make L1 fully compact. It was proved in [11] that,
assuming GCH, there is no strongest extension of Lωω which is ℵ0-compact.
Our proof of (2) of the above proposition is essentially the same as a note,
based on a suggestion of Paolo Lipparini, added after Theorem 8 of [11].
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Proposition 3 Suppose κ > ℵ0. There is no strongest extension of Lκ+ω

with LS(κ)

Proof. Let L1 = Lκ+ω(Qcf

ℵ0
) and L2 = Lκ+ω(Qcf

[ℵ1,κ]). By using standard
arguments with elementary chains of submodels, it is easy to see that both
L1 and L2 have LS(κ), but the consistent sentence

R is a linear order with no last element ∧

¬Qcf

ℵ0
xyR(x, y) ∧ ¬Qcf

[ℵ1,κ]xyR(x, y)

has no models of size ≤ κ. ✷

It was proved in [11] that there is no strongest extension of Lωω with
LS(ω).

Lemma 4 Suppose κ is weakly compact. Then κ is weakly compact for
Lκω(Qcf

{ℵ0}
) and for Lκω(Qcf

[ℵ1,κ]
). Moreover, if κ > ω, these logics satisfy

LS(κ).

Proof. The claim concerning LS(κ) is proved with a standard elementary
chain argument. We prove the weak compactness of Lκω(Qcf

[ℵ1,κ]
). The case

of Lκω(Qcf

{ℵ0}) is similar, but easier. For this end, suppose T is a set of
sentences of Lκω(Qcf

[ℵ1,κ]
) and |T | = κ. We may assume T ⊆ κ. If α < κ, then

we assume that there is a model Mα |= T ∩ α. In view of LS(κ), it is not a
loss of generality to assume that Mα = 〈H(κ), Rα〉, where Rα ⊆ κ × κ. Let
R(α, β, γ) ⇐⇒ Rα(β, γ). By weak compactness there is a transitive M of
cardinality κ such that

〈H(κ), ǫ, T, R〉 ≺Lκκ
〈M, ǫ, T ∗, R∗〉

and κ ∈ M . Let M = 〈M,S〉, where S(x, y) ⇐⇒ R∗(κ, x, y). We claim
that M |= T . We need only worry about the cofinality-quantifier. Cofinalities
< κ can be expressed in Lκκ, so they are preserved both ways. Therefore also
cofinality κ is preserved, and no other cofinalities can occur as the models
have cardinality κ. ✷

Since the logics Lκω(Qcf

ℵ0
)) and Lκω(Qcf

[ℵ1,κ]
) cannot both be a sublogic of

a logic with LS(κ), we get from the above lemma:

Corollary 5 Suppose κ > ω is weakly compact. Then there is no strongest
extension of Lκω for which κ is weakly compact and which has LS(κ).

4



The logic Lκω actually satisfies the property LS(< κ) which is stronger
than LS(κ). To prove a result like the above corollary for the property
LS(< κ) we have to work a little harder. At the same time we extend the
proof to extensions of Lκκ. Here the cofinality quantifiers Qcf

C will not help as
Qcf

{λ} is definable in Lκκ for λ < κ. Therefore we use more refined order-type
quantifiers.

Definition 6 Let Lκλ(Q) denote the formal extension of Lκλ by the gener-
alized quantifier symbol Qxyφ(x, y, ~z). If Y is a class of ordinals, we get a
logic Lκλ(Q,Y) from Lκλ(Q) by defining the semantics by

A |= Qxyφ(x, y,~c) ⇐⇒ otp({〈a, b〉 : A |= φ(a, b,~c)}) ∈ Y .

If φ ∈ Lκλ(Q,Y) and A |= φ, we say that A |= φ holds in the Y-interpretation.

If A is a model, then
o(A,Y , κ, λ)

is the supremum of all otp({〈a, b〉 : A |= φ(a, b,~c)}) where φ ∈ Lκλ(Y),
~c ∈ A<λ and {〈a, b〉 : A |= φ(a, b,~c)} is well-ordered.

Lemma 7 Suppose κ ≥ λ, φ ∈ Lκλ(Q), A is a model, ~a ∈ A<λ, and Y ′ ∩
o(A,Y , κ, λ) = Y. Then A |= φ(~a) in the Y-interpretation if and only if
A |= φ(~a) in the Y ′-interpretation.

Proof. This is a straightforward induction of the length of the formula φ.✷

Lemma 8 1. Suppose κ > ω, φ ∈ Lκκ(Q), and φ has a model A in the Y-
interpretation. Then there is a submodel B of A of cardinality ≤ 2κ and
Y ′ ⊆ (2κ)+ such that Y ′ ∩ κ = Y and B |= φ in the Y ′-interpretation.

2. Suppose κ = κ<κ, T ⊆ Lκκ(Q), |T | ≤ κ and T has a model A in the
Y-interpretation. Then for all ξ < κ+ there is a submodel B of A of
cardinality ≤ κ and Y ′ ⊆ κ+ such that Y ∩ ξ = Y ′ ∩ ξ and B |= T in
the Y ′-interpretation.

Proof. We may assume |A| ≥ 2κ. Let us expand A by

1. A well-ordering ≺ the order-type of which exceed all the order-types of
well-orderings definable by subformulas of φ with parameters in A.
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2. A new predicate P which contains those elements d of A for which
otp({〈a, b〉 : a ≺ b ≺ d}) ∈ Y

3. A prediacte F which codes an isomorphism from each well-ordering,
definable by a subformula of φ with parameters in A, onto an initial
segment of ≺.

Let 〈A,≺, P, F 〉 be the expanded structure and 〈B,≺∗, P ∗, F ∗〉 an Lκκ-elementary
substructure of it of cardinality ≤ 2κ. Let

Y ′ = {otp({〈a, b〉 ∈ B2 : a ≺∗ b ≺∗ d} : d ∈ P ∗}

It is easy to see that B |= φ in the Y ′-interpretation. ✷

Let π be the canonical well-ordering of ordered triples of ordinals. We
say that a pair (δ1, Z1), where Z1 ⊆ δ1 codes a pair (δ2, Z2), where Z2 ⊆ δ2,
if there is a bijection f : δ2 → δ1 such that

1. δ1 is closed under π

2. π(0, α, β) ∈ Z1 ⇐⇒ f(α) < f(β)

3. π(1, 0, α) ∈ Z1 ⇐⇒ f(α) ∈ Z2.

Definition 9 A cardinal κ satisfies ♦(WC) if it is weakly compact and there
is a sequence 〈Aα : α < κ〉 such that

1. Aα ⊆ α for α < κ.

2. (∀A ⊆ κ)({λ < κ : Aλ = A ∩ λ} ∈ I+), where I is the weakly compact
ideal on κ.

Proposition 10 1. If κ is measurable > ω, then κ satisfies ♦(WC).

2. If κ is weakly compact > ω, then there is a generic extension which
preserves all cardinals and in which κ satisfies ♦(WC).

3. If V=L, then every weakly compact cardinal > ω satisfies ♦(WC).
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Theorem 11 Suppose κ > ω satisfies ♦(WC) and 2κ = κ+. Then there is
no strongest extension of Lκκ for which κ is weakly compact and which has
LS(< κ).

Proof. We shall construct two sets Y1,Y2 ⊆ κ+ such that κ is weakly
compact for the logics Lκκ(Q,Y i) and these logics satisfy LS(< κ), but no
logic containing both Lκκ(Q,Y1) and Lκκ(Q,Y2) satisfies LS(< κ). The sets
Y i are constructed by induction together with ordinals ξiα < κ+ such that:

Y i =
⋃

α<κ+ Y i
α

Y i
0 = ∅ ξi0 = 0

Y i
α = Y i

β ∩ ξiα for α < β

ξiα ≤ ξiβ for α < β

Y i
ν =

⋃
α<ν Y

i
α, ξiν =

⋃
α<ν ξ

i
α, for ν = ∪ν

Y1
α ∩ Y2

α = ∅ for α < κ

Y i
α ⊆ ξiα for α < κ+

First we define Y i
α for α < κ in such a way that Lκκ(Y i) will in the end

have the property LS(< κ).
Let S1, S2 be a partition of cardinals < κ into two stationary sets. Let

{φi
ν : ν ∈ Si} list all Lκκ(Q)-sentences so that each sentence is listed as φi

ν

for stationary many ν ∈ Si.
Suppose α = λ + 1 and ξiλ = λ. Suppose λ ∈ Si.

Case 1. Suppose that (λ,Aλ) codes some pair (ξ, Z). In this case we let

Y i
α = Y i

λ ∪ (Z \ λ), ξiα = ξ

Y3−i
α = Y3−i

λ .

Case 2. Otherwise we let ξiα = λ, Y i
α = Y i

λ, Y3−1
α = Y3−i

λ .

Suppose then α = λ+ 2, ξiλ = λ ∈ Si and we have defined ξiλ+1 and Y i
λ+1.

Case 3. The sentence φi
λ has a model in the Y-interpretation for some

Y ⊆ κ+ with Y ∩ ξiλ+1 = Y i
λ+1. By Lemma 8 part 2, φi

λ has a model A

of cardinality < κ in the Y-interpretation for some Y ⊆ κ of cardinality
< κ with Y ∩ ξiλ+1 = Y i

λ+1. Let µ be minimal such that φi
λ ∈ Lµµ(Y). Let

ξiλ+2 = o(A,Y , µ, µ) and Y i
λ+2 = Y . Let Y3−i

λ+2 = Y3−i
λ+1.

Case 4. Otherwise ξiλ+1 = ξiλ, Y i
α = Y i

λ+1, Y
3−1
α = Y3−i

λ+1.
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Finally for all other α ≤ κ we let ξiα and Y i
α be defined canonically.

This ends the construction of Y i
α for α ≤ κ. Note that Y1

κ ∩ Y2
κ = ∅.

Moreover, if φi
ν has a model in the Y-interpretation for some Y ⊇ Y i

κ, then,
by construction, φi

ν has a model of cardinality < κ in the Y i
κ-interpretation.

Let Y i
κ+1 = Y i

κ ∪ {κ} and ξiκ+1 = κ + 2. Next we shall define Y i
α and

ξiα for κ + 1 < α < κ+. For this, let 〈Tα : κ < α < κ+〉 enumerate all
Lκκ(Q)-theories of cardinality ≤ κ in a language of cardinality ≤ κ which
satisfy the condition that every subset of cardinality < κ has a model in the
Y i

κ-interpretation. Here we use the assumption 2κ = κ+. We may assume
Tα ⊆ H(κ) for all α.

Suppose Y i
β and ξiβ have been defined for β < α. If α = ∪α, Y i

α and
ξiα are defined canonically. So assume α = β + 1. Let T : H(κ) → H(κ)
be the function T (a) = Tβ ∩ a. If a ∈ H(κ), then T (a) has a model Ba in
the Y i

κ-interpretation. By construction, we may assume Ba ∈ H(κ). Let
B : H(κ) → H(κ) be the function B(a) = Ba. Let Z ⊆ κ code (ξiβ,Y

i
β). By

♦(WC), W = {λ < κ : Aλ = Z ∩ λ} ∈ I+, where I is the weakly compact
ideal on κ. Let A : κ → H(κ) be the function A(α) = Aα. By the definition
of I, there are a transitive set M and A∗,W ∗, Y ∗, R∗ such that

〈H(κ), ǫ, A,W,Y i
κ, B, T 〉 ≺κκ 〈M, ǫ, A∗,W ∗, Y ∗, B∗, T ∗〉

and κ ∈ W ∗. Now A∗(κ) = Z and, by construction, Y ∗ ∩ ξiβ = Y i
β

It is clear now that B(κ) is a model of Tα in the Y ∗-interpretation. By
Lemma 8 there is a model B of cardinality ≤ κ of Tβ in the Y ∗∗-interpretation
for some Y ∗∗ with Y ∗∗∩ξiβ = Y i

β. Let ξiα = o(B, Y ∗∗, κ, κ) and Y i
α = Y ∗∗∩ξiα.

Finally, let Y i =
⋃

α<κ+ Y i
α.

Claim 1. Lκκ(Y i) satisfies the LS(< κ)-property.

Suppose φ is a sentence of Lκκ(Y i) with a model. Let λ ∈ Si such that
ξiλ = λ and φi

λ = φ. By the construction of Y i
λ+2 there is a model of φ of

cardinality < κ.

Claim 2. Lκκ(Y i) is weakly κ-compact.

Suppose T ⊆ Lκκ(Y i) is given and every subset of T of cardinality < κ has
a model in the Y i-interpretation. Then T = Tα for some α. By construction,
every subset of Tα of cardinality < κ has a model in the Y i∩κ-interpretation.
Thus the definition of Y i

α is made so that Tα has a model B in the Y-
interpretation for some Y such that Y ∩ o(B,Y , κ, κ) = Y i ∩ o(B,Y , κ, κ).
Thus by Lemma 7, B |= Tα in the Y i-interpretation. The Claim is proved.
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We can now finish the proof of the theorem. In a logic in which both the
quantifier QY1 and QY2 are definable, we can say that the order-type of a
well-ordering is in Y1 ∩ Y2. Thus such a logic cannot satisfy LS(< κ). ✷

It is interesting to note that a proof like above would not be possible
for the following stronger Löwenheim-Skolem property: A filter-family is a
family F = (F(A))A 6=∅, where F(A) is always a filter on the set A. Luosto
[6] defines the concept of a (κ+, ω)-neat filter family. We will not repeat
the definition here, its elements are invariance under bijections, fineness,
κ+-completeness, normality and upward relativizability (all defined in [6]).

Suppose L is a logic of the form Lκλ( ~Q) for some sequence ~Q of generalized
quantifiers. We say that L has the F , κ-persistency property, if for all models
A and B ∈ F(A), we have A ↾ B ≺ A. Luosto proves that if L1 and L2 both
satisfy the F , κ-persistency property, then there is L3 such that L1 ≤ L3,
L2 ≤ L3 and L3 satisfies the F , κ-persistency property. Lipparini [5] proves a
similar result for families of limit ultrafilters related closely to compactness.

Tapani Hyttinen pointed out that the assumption 2κ = κ+ is not needed
in Theorem 11, if κ is assumed to be measurable.
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