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SUCCESSORS OF SINGULAR CARDINALS AND

COLORING THEOREMS I

TODD EISWORTH AND SAHARON SHELAH

Abstract. We investigate the existence of strong colorings on
successors of singular cardinals. This work continues Section 2 of
[1], but now our emphasis is on finding colorings of pairs of ordinals,
rather than colorings of finite sets of ordinals.

1. Introduction

The theme of this paper is that strong coloring theorems hold at suc-
cessors of singular cardinals of uncountable cofinality, except possibly
in the case where the singular cardinal is a limit of regular cardinals
that are Jonsson in a strong sense.
Our general framework is that λ = µ+, where µ is singular of un-

countable cofinality. We will be searching for colorings of pairs of or-
dinals < λ that exhibit quite complicated behaviour. The following
definition (taken from [2]) explains what “complicated” means in the
previous sentence.

Definition 1.1. Let λ be an infinite cardinal, and suppose κ+θ ≤ µ ≤
λ. Pr1(λ, µ, κ, θ) means that there is a symmetric two–place function
c from λ to κ such that if ξ < θ and for i < µ, 〈αi,ζ : ζ < ξ〉 is a
strictly increasing sequence of ordinals < λ with all αi,ζ ’s distinct, then
for every γ < κ there are i < j < µ such that

ζ1 < ξ and ζ2 < ξ =⇒ c(αi,ζ1, αi,ζ2) = γ.(1.1)

Just as in [1], one of our main tools is a game that measures how
“Jonsson” a given cardinal is.
Recall that a cardinal λ is a Jonsson cardinal if for every c : [λ]<ω →

λ, we can find a subset I ⊆ λ of cardinality λ such that the range of
c ↾ I is a proper subset of λ. A reader seeking more background should
investigate [4] and [3] in [5].
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Definition 1.2. Assume µ ≤ λ are cardinals, γ is an ordinal, n ≤ ω,
and J is an ideal on λ. We define the game Gmn

J [λ, µ, γ] as follows:

A play lasts γ moves.

In the αth move, the first player chooses a function Fα : [λ]<n → µ, and
the second player responds by choosing (if possible) a subset Aα ⊆ λ
such that

• Aα ⊆
⋂

β<αAβ

• Aα ∈ J+

• ran(Fα ↾ [Aα]
<n) is a proper subset of µ.

The second player loses if he has no legal move for some α < γ, and he
wins otherwise.

In the previous definition, if J = Jbd
λ then we may omit it. Note

that it causes no harm if we use a set E of cardinality λ instead of λ
itself; in this case, we write Gmn

J [E, µ, γ].
Note that λ is a Jonsson cardinal if and only if Player I does not

have a winning strategy in the game Gmω[λ, λ, 1]. One may view the
lack of a winning strategy for Player I in games of longer length as a
strong version of Jonsson-ness or a weak version of measurability — if
λ is measurable, then Player II can make sure her moves are elements
of some λ–complete ultrafilter.
The following claim investigates how the existence of winning strate-

gies is affected by modifications to the game; the proof is left to the
reader.

Claim 1.3.

1. If µ′ ≤ µ and the first player has a winning strategy in Gmn
J [λ, µ, γ],

then she has a winning strategy in Gmn
J [λ, µ

′, γ].

2. Suppose we weaken the demand on the second player to

“(∃ζ < λ)[ran(Fα ↾ [Aα \ ζ ]<n) is a proper subset of µ].”(1.2)

If cf(λ) ≥ γ and J ⊇ Jbd
λ , then the first player has a winning

strategy in the revised game if and only if she has a winning
strategy in the original game.

3. If J is γ–complete, then the same applies to the case where we
weaken the demand on the second player to

“(∃Y ∈ J)[ran(Fα ↾ [Aα \ Y ]<n) is a proper subset of µ].”(1.3)

4. We can allow the second player to pass, i.e., to let Aα =
⋂

β<αAβ

(even if this is not a legal move) as long as we declare that the
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second player loses if the order–type of the set of moves where he
did not pass is < γ.

5. If Player I has a winning strategy in Gmn
J [λ, µ, γ] for every µ <

µ∗ where µ∗ is singular and γ > cf(µ∗) is regular, then Player
I has a winning strategy in Gmn

J [λ, µ
∗, γ]. We can weaken the

requirement that γ is regular and instead require that cf(γ) >
cf(µ∗) and ωγ = γ.

In Section 2 of [1], the existence of winning strategies for Player I
in variants of the game is investigated. We will prove one such result
here; the reader should look in [1] for others.

Claim 1.4. If 2χ < λ < i(2χ)+(χ) then Player I has a winning strategy
in Gmω[λ, χ, (2χ)+].

Proof. At a stage i, Player I will select a function Fi : [λ]
<ω → χ coding

the Skolem functions of some model Mi.
For the initial move, we let the model M0 have universe λ, and

include in our language all relations on λ and all functions from λ
to λ of any finite arity that are first order definable in the structure
〈H(λ+),∈, <∗

λ+〉 with the parameters χ and λ.
For subsequent moves,Mi is an expansion ofM0 with universe λ that

has all relations on λ and all functions from λ to λ of any finite arity
that are first order definable in the structure 〈H(λ+),∈, <∗

λ+〉 from the
parameters χ, λ, M0, and 〈Aj : j < i〉.
To obtain the function Fi, we let 〈F i

n : n < ω〉 list the Skolem
functions of Mi in such a way that F i

n has mi(n) ≤ n places. Let
h : ω → ω be such that for all n, h(n) ≤ n and h−1({n}) is infinite.
We then define

Fi(u) =

{

F i
h(|u|)({α ∈ u : |u ∩ α| < mi(n)}) if this is < χ

0 otherwise
(1.4)

The point of doing this is that whenever Player II chooses Ai, we know
that ran(Fi ↾ [Ai]

<ω) will look like the result of intersecting an elemen-
tary submodel of Mi with χ; in particular, this range will be closed
under the functions from Mi.
Note that M0 (and all expansions of it) has definable Skolem func-

tions and so for any i and A ⊆ λ, the Skolem hull of A in Mi (denoted
by SkMi

(A)) is well–defined.
Let 〈(Fi, Ai) : i < (2χ)+〉 be a play of the game in which Player I

uses this strategy (with Mi the model corresponding to Fi). For each
i, define

αi = min{α : |SkM0(Ai) ∩ iα(χ)| > χ}.(1.5)
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By the choice of M0 and Mi, clearly α(i) is a successor ordinal or a
limit ordinal of cofinality χ+, and

| SkM0(Ai) ∩ iαi
(χ)| ≤ 2χ.(1.6)

Since Ai ⊆ Aj for i > j, we know the sequence 〈αi : i < (2χ)+〉 is
non–decreasing. Furthermore, for each i we know

αi < min{β : λ ≤ iβ(χ)} < (2χ)+.(1.7)

This means that the sequence 〈αi : i < (2χ)+〉 is eventually constant,
say with value α∗. Let i∗ be the least ordinal < (2χ)+ such that αi = α∗

for i ≥ i∗.

Proposition 1.5. If i∗ ≤ i < (2χ)+, then SkM0(Ai+1) ∩ iα∗(χ) is a
proper subset of SkM0(Ai) ∩ iα∗(χ).

Proof. Note that i∗, α∗, and iα∗(χ) are all elements ofMi+1 as they are
definable in 〈H(λ+),∈, <λ+〉 from the parameters M0 and 〈Aj : j ≤ i〉.
Furthermore,

γ∗ := min{γ < λ : | SkM0(Ai) ∩ γ| = χ}(1.8)

is also definable in Mi+1 (and < (2χ)+). Thus the language of Mi+1

includes a bijection between SkM0(Ai) ∩ γ
∗ and χ.

If Player I has not won the game at this stage, after Player I selects
Ai+1 we will be able to find an ordinal β < χ such that β /∈ ran(Fi+1 ↾

[Ai+1]
<ω). By definition of h, we know β ′ := h−1(β) is an element

of SkM0(Ai) ∩ iα∗(χ). However, β ′ is not an element of SkMi+1
(Ai+1)

– since Fi+1 codes the Skolem functions of Mi+1, the range of Fi+1 ↾

[Ai+1]
<ω is SkMi+1

(Ai+1)∩χ. Since SkMi+1
(Ai+1) is closed under h, this

contradicts our choice of β. Since SkM0(Ai+1) ⊆ SkMi+1
(Ai+1), we have

established the proposition.

Note that the preceding proposition finishes the proof of the claim
— if play of the game continues for all (2χ)+ steps, then 〈SkM0(Ai) ∩
iα∗(χ) : i < (2χ)+〉 is a strictly decreasing family of subsets of SkM0(Ai∗),
contradicting (1.6).

2. Club–guessing technology

In this section, we prove that if λ = µ+, where µ is singular, then
under certain circumstances we can find a complicated “library” of
colorings of smaller cardinals. In the next section, we will use this
library of colorings to get a complicated coloring of λ.
The basics of club–guessing are explained in [4], but we will take a

few minutes to recall some of the definitions.
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Let us recall that if S is a stationary subset of λ, then an S–club
system is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that for (limit) δ ∈ S, Cδ

is closed unbounded in δ.
In this section, we will be concerned with the case where λ is the

successor of a singular cardinal, i.e., λ = µ+ where cf(µ) < µ. In this
context, if C̄ is an S–club system, then for δ ∈ S we define an ideal

J
b[µ]
δ on Cδ by A ∈ J

b[µ]
δ if and only if A ⊆ Cδ, and for some θ < µ and

γ < δ,

β ∈ A ∩ nacc(Cδ) ⇒ [β < γ or cf(β) < θ] .

Note that it is a bit easier to understand the definition of J
b[µ]
δ by

looking at the contrapositive — a subset A of Cδ is “large”, i.e., not in

J
b[µ]
δ , if and only if A ∩ nacc(Cδ) is cofinal in δ, and the cofinalities of

members of any end segment of A ∩ nacc(Cδ) are unbounded below µ.

Claim 2.1. Let λ = µ+, where µ is a singular cardinal of cofinality
κ < µ. Let S ⊆ λ be stationary, and assume that sup{cf(δ) : δ ∈ S} =
µ∗ < µ. Let C̄ be an S–club system, and for each δ ∈ S, let Jδ be the

ideal J
b[µ]
δ . Let 〈κi : i < κ〉 be a non–decreasing sequence of cardinals

such that

κ∗ =
∑

i<κ

κi ≤ µ,(2.1)

and let γ∗ < µ.
Assume we are given a λ–club system ē and a sequence of ideals

Ī = 〈Iα : α < λ〉 such that

1. Iα is an ideal on eα extending Jbd
eα

2. if δ ∈ S, then for each i < κ,

{α ∈ nacc(Cδ) : Player I wins Gmω
Iα
[eα, κi, γ

∗]} = nacc(Cδ) mod Jδ

3. for any club E ⊆ λ, for stationarily many δ ∈ S,

{α ∈ nacc(Cδ) : B0[E, eα] /∈ Iα} /∈ Jδ,

where

B0[E, e
∗
α] = {β ∈ nacc(eα) : E meets the interval (sup(β ∩ eα), β)}.

Then there is a function h : λ→ (κ+ 1) and a sequence

F̄ = 〈Fδ : δ < λ, δ a limit 〉

such that
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⊛1 Fδ : [eδ]
<ω −→ κh(δ) (where κ

∗ := κκ )

and

⊛2 for every club E ⊆ λ, for each i < κ there are sta-
tionarily many δ ∈ S such that the set of β ∈ nacc(Cδ)
satisfying the following
• h(β) ≥ i

• B0[E, eβ ] /∈ Iβ

• for all γ < β, κh(β) ⊆ ran(Fβ ↾
[

B0[E, eβ] \ γ
]<ω

)
is not in Jδ.

Now admittedly the previous claim is quite a lot to digest, so we will
take a little time to illuminate the basic situation we have in mind.

Claim 2.2. The assumptions of Claim 2.1 are satisfied if

1. λ = µ+ where κ = cf(µ) < µ

2. S ⊆ {δ < λ : cf(δ) = κ}

3. δ ∈ S → |δ| = µ (i.e., S ⊆ λ \ µ)

4. C̄ is an S–club system

5. J̄ = 〈Jδ : δ ∈ S〉 where Jδ = J
b[µ]
Cδ

6. idp(C̄, J̄) is a proper ideal

7. 〈κi : i < κ〉 is a non–decreasing sequence of cardinals with supre-
mum κ∗ ≤ µ

8. γ∗ < µ, and for each i < κ, Player I wins the game Gmω[θ, κi, γ
∗]

for all large enough regular θ < µ

9. ē is a λ–club system such that |eβ| < µ

10. for α < λ, Iα = Jbd
eα

Proof of Claim 2.2. We need only check items (2) and (3) in the state-
ment of Claim 2.1 — everything else is trivially satisfied. Concerning
(2), given δ ∈ S and i < κ, we need to show

{α ∈ nacc(Cδ) : Player I wins Gmω[eα, κi, γ
∗]} = nacc(Cδ) mod Jδ.

Let A consist of those α ∈ nacc(Cδ) for which Player I does not win
the game Gmω[eα, κi, γ

∗]. By our assumptions, there is a θ < µ such

that |eα| < θ for all α ∈ A, and therefore A is in the ideal J
b[µ]
Cδ

= Jδ
and we have what we need.
Concerning (3), given E ⊆ λ club, we must find stationarily many

δ ∈ S such that

{α ∈ nacc(Cδ) : B0[E, eα] /∈ Iα} /∈ Jδ.
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Let E ′ = {ξ ∈ E : otp(E ∩ ξ) = ξand µ divides ξ}. Clearly E ′ is a
closed unbounded subset of E, and since idp(C̄, J̄) is a proper ideal,
the set

S∗ := {δ ∈ S ∩ E ′ : E ′ ∩ nacc(Cδ) /∈ Jδ}

is stationary.
Fix δ ∈ S∗, and suppose we are given θ < µ and ξ < δ. Since

E ′ ∩ nacc(Cδ) /∈ Jδ, we can find α ∈ E ′ ∩ nacc(Cδ) such that α >
max{ξ, µ} and cf(α) > θ. Since the order–type of E∩α is α ≥ µ > |eα|,
we know that B0[E, eα] is unbounded in eα hence a member of Iα. This
shows that the set of such α is in J+

δ , as required.

Now we return to the proof of Claim 2.1.

Proof of Claim 2.1. Let σ = cf(σ) be a regular cardinal < µ that is
greater than µ∗ and γ∗. For each limit β < λ, if there is an i ≤ κ
such that Player I wins the version of Gmω

Iβ
[eβ, κi, σ

+] where we allow

Player II to pass, then we let h(β) be the maximal such i — note that
i exists by (5) of Claim 1.3 — and let Strβ be a strategy that witnesses
this.
Note that since γ∗ < σ+ and Jδ = J

b[µ]
δ for δ ∈ S, we have that for

δ ∈ S and i < κ that

{β ∈ nacc(Cδ) : Strβ is defined and i ≤ h(β)} = nacc(Cδ) mod Jδ.

We will make σ+ attempts to build F̄ witnessing the conclusion.
In stage ζ < σ+, we assume that our prior work has furnished us
with a decreasing sequence 〈Eξ : ξ < ζ〉 of clubs in λ, and, for each

β < λ where Strβ is defined, an initial segment 〈F ξ
β , A

ξ
β : ξ < ζ〉 of a

play of Gmω
Iβ
[eβ, κ

∗
h(β), σ

+] in which Player I uses Strβ. (Note that our

convention is that if Player II chooses to pass at a stage, we let Aξ
β be

undefined.)

For each such β, let F ζ
β : [eβ]

<ω → κh(β) be given by Strβ, and for

those β for which Strβ is undefined, we let F β
ζ be any such function.

Now if 〈F ζ
β : β < λ〉 := F̄ ζ is as required then we are done. Otherwise,

there is a club E ′ ⊆ λ and iζ < κ exemplifying the failure of F̄ ζ , and
without loss of generality,

(∀δ ∈ S)
[

Biζ [E
′
ζ , Cδ, Ī , ē, F̄

ζ]
]

∈ Jδ.(2.2)

Now let Eζ = acc(E ′
ζ ∩

⋂

ξ<ζ Eξ). For each β where Strβ is defined,

we let Player II respond to F ζ
β by playing the set B0[Eζ , eβ] if it is a

legal move, otherwise we let him pass. We then proceed to stage ζ +1.
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Assuming that this construction continues for all σ+ stages, we will
arrive at a contradiction. Let E =

⋂

ζ<σ+ Eζ . By assumption (3) there

is a δ(∗) ∈ S for which

A1 := {β ∈ nacc(Cδ(∗)) : B0[E, eβ] /∈ Iβ} /∈ Jδ(∗).

By assumption (2), we have

A2 := {β ∈ A1 : Strβ is defined } /∈ Jδ(∗).

For β ∈ A2, look at the play 〈F ζ
β , A

ζ
β : ζ < σ+〉. Since Player I wins,

there is a ζβ < σ+ such that Player II passed at stage ζ for all ζ ≥ ζβ.
Since σ > µ∗ and Jδ(∗) is µ

∗–based, for some ζ∗ < σ+,

A3 = {β ∈ A1 : Strβ is defined and ζβ ≤ ζ∗} /∈ Jδ(∗).

Now Eζ∗ was defined so that for some iζ∗ , for all δ ∈ S,

Biζ∗ [Eζ∗ , Cδ, Ī , ē, F̄
ζ∗] ∈ Jδ,(2.3)

but (again by assumption (2))

A4 = {β ∈ A1 : Strβ is defined, ζβ ≤ ζ∗, and iζ∗ ≤ h(β)} /∈ Jδ(∗).

For β ∈ A4, we know that at stage ζ∗ of our play of Gmω
Iβ
[eβ , κh(β), σ

+]

the set B0[Eζ∗ , eβ] was not a legal move. Since our sequence of clubs
is decreasing, we know that B0[Eζ∗ , eβ] is a subset of B0[Eξ, eβ] for all
ξ < ζ∗], so we have

B0[Eζ∗ , eβ] ⊆
⋂

ξ<ζ∗

Aξ
β.

Since β ∈ A1, we know that B0[Eζ∗ , eβ] /∈ Iβ. Thus the reason for
B0[Eζ∗ , eβ] being an illegal move must be that for all γ < β,

κ∗h(β) ⊆ ran(F ζ∗

β ↾ [B0[Eζ∗ , eβ] \ γ]
<ω).

All of these facts combine to tells us that β ∈ Biζ∗ [Eζ∗ , Cδ, Ī, ē, F̄
ζ∗],

and thus

A4 ⊆ Biζ∗ [Eζ∗ , Cδ, Ī , ē
∗, F̄ ζ∗] /∈ Jδ(∗),

contradicting (2.3).

The proofs in this section (and the next) can be considerably sim-
plified if we are willing to restrict ourselves to the case κ∗ < µ, as we
can dispense with the sequence 〈κi : i < κ〉.
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3. Building the Coloring

We now come to the main point of this paper; we dedicate this section
and the next to proving the following theorem.

Theorem 1. Assume λ = µ+, where µ is a singular cardinal of un-

countable cofinality, say ℵ0 < κ = cf(µ) < µ. Assume 〈κi : i < κ〉 is

non–decreasing with supremum κ∗ ≤ µ, and there is a γ∗ < µ such that

for each i, for every large enough regular θ < µ, Player I has a winning

strategy in the game Gmω[θ, κi, γ
∗]. Then Pr1(λ, λ, κ

∗, κ) holds.

Let 〈Si : i < κ〉 be a sequence of pairwise disjoint stationary subsets
of {δ < λ : cf(δ) = κ}. For i < κ, let C̄ i be an Si–club system such
that

• λ /∈ idp(C̄
i, J̄ i), where J̄ i = 〈J

b[µ]

Ci
δ

: δ ∈ Si〉

• for δ ∈ Si, otp(C
i
δ) = cf(δ) = κ = cf(µ)

Such ladder systems can be found by Claim 2.6 (and Remark 2.6A
(6)) of [2] — for the second statement to hold, we need that µ has
uncountable cofinality.

Claim 3.1. There is a λ–club system ē such that |eβ| ≤ cf(β)+ cf(µ),
and ē “swallows” each C̄ i, i.e., if δ ∈ Si ∩ (eβ ∪ {β}), then C i

δ ⊆ eβ .

Proof. Let S = ∪i<κSi, and let β < λ be a limit ordinal. Let e0β be a
closed cofinal subset of β of order–type cf(β). We will construct the
required ladder eβ in ω–stages, with enβ denoting the result of the first
n stages of our procedure. The construction is straightforward, but it
is worthwhile to note that we need to use the fact that each member
of S has uncountable cofinality.
Given enβ, let us define

Bn = S ∩ (enβ ∪ {β}).(3.1)

Now we let en+1
β be the closure in β of

enβ ∪
⋃

{Cδ : δ ∈ Bn}.(3.2)

Note that |en+1| ≤ cf(µ) + cf(β) as |Cδ| = cf(µ) = κ for each δ ∈ S.
Finally, we let eβ be the closure of ∪n<ωe

n
β in β.

Clearly |eβ| ≤ cf(µ) + cf(β). Also, since each element of S has
uncountable cofinality, if δ ∈ S ∩ eβ , then there is an n such that
δ ∈ enβ , and therefore

Cδ ⊆ en+1
β ⊆ eβ,(3.3)

as required.



10 TODD EISWORTH AND SAHARON SHELAH

For each i < κ, there are hi and F̄
i = 〈F i

δ : δ < λ, δ limit 〉 as in the
conclusion of Claim 2.1 applied to C̄ i and ē; note that we satisfy the
assumptions of Claim 2.1 by way of Claim 2.2.
Let 〈λi : i < κ〉 be a strictly increasing sequence of regular cardinals

> κ and cofinal in µ such that

λ = tcf
(

∏

i<κ

λi/J
bd
κ

)

,(3.4)

and let 〈fα : α < λ〉 exemplify this. Finally, let h∗0 : κ → ω and
h∗1 : κ→ κ be such that

(∀n)(∀i < κ)(∃κj < κ)[h∗0(j) = n and h∗1(j) = i].(3.5)

Before we can define our coloring, we must recall some of the termi-
nology of [2].

Definition 3.2. Let 0 < α < β < λ, and define

γ(α, β) = min{γ ∈ eβ : γ ≥ α}.

We also define (by induction on ℓ)

γ0(α, β) = β,

γℓ+1(α, β) = γ(α, γℓ(α, β)) (if defined).

We let k(α, β) be the first ℓ for which γℓ(α, β) = α. The sequence
〈γi(α, β) : i ≤ k(α, β)〉 will be referred to as the walk from β to α along

the ladder system ē.

We now define the coloring c that will witness Pr1(λ, λ, κ
∗, κ). Recall

that c must be a symmetric two–place function from λ to κ∗.
Given α < β, we let i = i(α, β) be the maximal j < κ such that

fβ(j) < fα(j) (if such an j exists). Next, we walk from β down to α
along ē until we reach an ordinal ν(α, β) such that

fα(i) < fν(α,β)(i),

(again, if such an ordinal exists.) After this, we walk along ē from α
toward the ordinal max(α ∩ eν(α,β)) until we reach an ordinal η(α, β)
for which

fν(α,β)(i) < fη(α,β)(i).

The idea now is to look at how the ladders eν(α,β) and eη(α,β) in-
tertwine. Let us make a temporary definition by calling an ordinal
ξ ∈ eν(α,β) relevant if eη(α,β) meets the interval (sup(ξ ∩ eν(α,β)), ξ).
If it makes sense, we let w(α, β) ⊆ eν(α,β) be the last h∗0(i(α, β))

relevant ordinals in eν(α,β) (so we need that the relevant ordinals have
order–type γ + h∗0(i(α, β)) for some γ).
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Finally, we define our coloring by

c(α, β) = F
h∗
1(i(α,β))

ν(α,β) (w(α, β)).(3.6)

If the attempt to define c(α, β) breaks down at some point for some
specific α < β, then we set c(α, β) = 0.
We now prove that this coloring works, so suppose 〈tα : α < λ〉 are

pairwise disjoint subsets of λ such that |tα| = θ1 < κ and j∗ < κ∗, and
without loss of generality α < min tα and θ1 ≥ ω. We need to find δ0
and δ1 such that

α ∈ tδ0 and β ∈ tδ1 ⇒ α < β and c(α, β) = j∗.(3.7)

Let j1 be the least j such that j∗ < κj , and let S, C̄, and F̄ denote
Sj1, C̄

j1 , and F̄ j1 respectively.
Given δ < λ, we define the envelope of tδ (denoted env(tδ)) by the

formula

env(tδ) =
⋃

ζ∈tδ

{γℓ(δ, ζ) : ℓ ≤ k(δ, ζ)}.(3.8)

The envelope of tδ is the set of all ordinals obtained by walking down
to δ from some ζ ∈ tδ using the ladder system ē. This makes sense as
we have arranged that δ < min tδ. Note also that | env(tδ)| ≤ |tδ| = θ1.
Next we define functions gmin

δ and gmax
δ in

∏

i<κ λi by

gmin
δ (i) = min{fγ(i) : γ ∈ env(tδ)},(3.9)

and

gmax
δ (i) = sup{fγ(i) + 1 : γ ∈ env(tδ)}.(3.10)

Note that gmax
δ is well–defined as we assume that κ < min{λi : i < κ}.

The following claim is quite easy, and the proof is left to the reader.

Claim 3.3.

1. fδ =Jbd
κ
gmin
δ

2. gmin
δ (i) ≤ gmax

δ (i) for all i < κ

3. There is a δ′ > δ such that gmax
δ ≤Jbd

κ
gmin
δ′ .

Now let χ∗ = (2λ)+, and let 〈Mα : α < λ〉 be a sequence of elemen-
tary submodels of 〈H(χ∗),∈, <∗

χ∗〉 that is increasing and continuous in
α and such that each Mα ∩ λ is an ordinal, 〈Mβ : β ≤ α〉 ∈Mα+1, and
〈fα : α < λ〉, g, c, ē, S, C̄, 〈tα : α < λ〉 all belong to M0. Note that
µ+ 1 ⊆M0.
The set E = {α < λ : Mα ∩ λ = α} is closed unbounded in λ, and

furthermore,

α < δ ∈ E ⇒ sup tα < δ.(3.11)
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By the choice of C̄ and F̄ , for some δ ∈ S ∩ E we have the set

A = {β ∈ nacc(Cδ) : (∀γ < β) ran(Fβ ↾
[

B0[E, eβ] \ γ
]<ω

) ⊇ κj1}

(3.12)

is not in J
b[µ]
Cδ

.
Note that A ⊆ acc(E), as B0[E, eβ] is unbounded in β for β ∈ A.

For β ∈ tδ, if ℓ < k(δ, β) then eγℓ(δ,β) ∩ δ is bounded in δ, and since it
is closed it has a well–defined maximum. Since |tδ| < κ = cf(δ), this
means the ordinal

γ⊗ := sup{max[eγℓ(δ,β) ∩ δ] : β ∈ tδ and ℓ < k(δ, β)}

is strictly less than δ.
For β ∈ tδ, let us define

Aβ := {β ′ ∈ A : (∃ℓ ≤ k(β, δ))[cf(β ′) ≤ |eγℓ(δ,β)|]}.(3.13)

Since the cardinality of each ladder in ē is less than µ, each set Aβ is an

element of J
b[µ]
Cδ

. The ideal J
b[µ]
Cδ

is κ–complete, so the fact that |tδ| < κ
and k(β, δ) is finite for each β ∈ tδ together imply that

⋃

β∈tδ

Aβ ∈ J
b[µ]
Cδ
.(3.14)

By the definition of A and our choice of δ, this means it is possible to
choose β∗ ∈ A \ (γ⊗ + 1) that is not in any Aβ , i.e.,

β ∈ tδ and ℓ < k(δ, β) =⇒ cf(β∗) > |eγℓ(δ,β)|.(3.15)

Claim 3.4.

1. If ǫ ∈ tδ, and ℓ = k(δ, ǫ)− 1, then β∗ ∈ nacc(eγℓ(δ,ǫ)).

2. If ǫ ∈ tδ and γ⊗ < γ′ ≤ β∗, then

• γℓ(δ, ǫ) = γℓ(γ
′, ǫ) for ℓ < k(δ, ǫ), and

• γk(δ,ǫ)(γ
′, ǫ) = β∗

Proof. For the first clause, note that δ is an element of eγℓ(δ,ǫ) and
hence by our choice of ē, Cδ ⊆ eγℓ(δ,ǫ). Thus β∗ ∈ eγℓ(δ,ǫ), and since
cf(β∗) > |eγℓ(δ,ǫ)|, we know that β∗ cannot be an accumulation point of
eγℓ(δ,ǫ).
The first part of the second statement follows because of the defini-

tion of γ⊗. As far as the second part of the second statement goes, it
is best visualized as follows:
We walk down the ladder system ē from ǫ to γ′, we eventually hit a

ladder that contains δ — this happens at stage k(δ, ǫ)− 1. Since Cδ is
a subset of this ladder, the next step in our walk from ǫ to γ′ must be
down to β∗ because γ⊗ < γ′ < β∗.
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We can visualize the preceding claim in the following manner: β∗ is
chosen so that for all sufficiently large γ′ < β∗, all the walks from some
element of tδ to γ

′ are funnelled through β∗ — β∗ acts as a bottleneck.
This will be key when want to prove that our coloring works.
Since β∗ ∈ A, we can choose a finite increasing sequence ξ0 <

ξ1 < · · · < ξn of ordinals in acc(E) ∩ nacc(eβ∗) \ (γ⊗ + 1) such that

F j1
β∗({ξ0, . . . , ξn}) = j∗, the color we are aiming for.

For each ℓ ≤ n, we can find ζℓ ∈ E \ (γ⊗ + 1) such that

sup(eβ∗ ∩ ξℓ) < ζℓ < ξℓ.

Now we let φ(x0, y0, x1, y1, . . . , xn, yn, z0, z1) be the formula (with pa-
rameters γ⊗, f̄ , 〈λi : i < κ〉, C̄, ē, 〈tα : α < λ〉, h, h0, j

∗) that describes
our current situation with xℓ, yℓ standing for ζℓ, ξℓ, and z0, z1 standing
for β∗, δ , i.e., φ states

• γ⊗ < x0 < y0 < · · · < xn < yn < z0 < z1 are ordinals < λ

• z1 ∈ S and z0 ∈ nacc(Cz1)

• γ⊗ = sup{max[eγℓ(z1,ζ) ∩ z1] : ℓ < k(z1, ζ) and ζ ∈ tz1}

• z0 ∈ nacc(eγk(z1,ǫ)(z1,ǫ)) for all ǫ ∈ tz1

• F j1
z0
({y0, . . . , yn}) = j∗

Now clearly we have

H(χ) |= φ[ζ0, ξ0, . . . , ζn, ξn, β
∗, δ].(3.16)

Recall that all the parameters needed in φ are in M0, except possibly
for γ⊗, so the model Mγ⊗+1 contains all the parameters we need. Also,
{ζ0, ξ0, . . . , ζn, ξn} ∈ Mβ∗ , β∗ ∈ Mδ \Mβ∗ , and since δ ∈ λ \Mδ, we
have (recalling that ∃∗z < λ means “for unboundedly many z < λ)

Mδ |= (∃∗z1 < λ)φ(ζ0, ξ0, . . . , ζn, ξn, β
∗, z1).(3.17)

Therefore, this formula is true in H(χ) because of elementarity. Simi-
larly, we have

H(χ) |= (∃∗z0 < λ)(∃∗z1 < λ)φ(ζ0, ξ0, . . . , ζn, ξn, z0, z1).

Now each of the intervals [γ⊗ + 1, ζ0), [ζ0, ξ0), . . . , contains a member
of E, so (by the definition of E) similar considerations give us

H(χ) |= (∃∗x0 < λ) . . . (∃∗yn < λ)(∃∗z0 < λ)(∃∗z1 < λ)φ(x0, y0, . . . , z0, z1).

Now we can choose (in order)

ζa0 < ζb0 < ξa0 < ζa1 < ξb0 < ζb1 < · · · < ζan < ξbn−1 < ζbn < ξan(3.18)
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such that

(∃∗z0 < λ)(∃∗z1 < λ)[φ(ζa0 , . . . , ξ
a
n−1, ζ

a
n, ξ

a
n, z0, z1)],(3.19)

and

(∃∗yn < λ)(∃∗z0 < λ)(∃∗z1 < λ)[φ(ζb0, . . . , ξ
b
n−1, ζ

b
n, yn, z0, z1)],(3.20)

Our goal is to show that for all sufficiently large i < κ, it is possible
to choose objects βa, δa, ξbn, β

b, and δb such that

(1) ζbn < βa < δa < min(tδa) ≤ max(tδa) < ξbn < βb < δb

(2) φ(ζa0 , . . . , ξ
a
n, β

a, δa)

(3) φ(ζb0, . . . , ξ
b
n, β

b, δb)

(4) for all ǫ ∈ env(tδa), g
min
δa ↾ [i, κ) ≤ fǫ ↾ [i, κ) ≤ gmax

δa ↾ [i, κ)

(5) for all ǫ ∈ env(tδb), g
min
δb

↾ [i, κ) ≤ fǫ ↾ [i, κ) ≤ gmax
δb

↾ [i, κ)

(6) gmax
δb

(i) < gmin
δa (i) ≤ gmax

δa (i) < fβb(i) < fβa(i)

(7) gmax
δa ↾ [i+ 1, κ) < gmin

δb
↾ [i+ 1, κ)

Table 1

Claim 3.5. If for all sufficiently large i < κ it is possible to find objects
satisfying the requirements of Table 1, then we can find δa < δb such
that c(ǫa, ǫb) = j∗ for all ǫa ∈ tδa and ǫb ∈ tδb .

Proof. Let us choose i∗ < κ such that

• suitable objects (as above) can be found, and

• h∗1(i
∗) = j1 and h∗0(i

∗) = n

Choose ǫa ∈ tδa and ǫb ∈ tδb ; we verify that c(ǫa, ǫb) = j∗.

Subclaim 1. i(ǫa, ǫb) = i∗.

Proof. Immediate by (4)-(7) in the table.

Subclaim 2. ν(ǫa, ǫb) = βb.
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Proof. Note that γ⊗ < ǫa < βb. Clause (3) of the table implies that
the assumptions of Claim 3.4 hold. Thus by Claim 3.4, for ℓ < k(δb, ǫb)
we have

γℓ(ǫ
a, ǫb) = γℓ(δ

b, ǫb),

hence γℓ(ǫ
a, ǫb) ∈ env(tδb) and (by (6) of the table and the definitions

involved)

fγℓ(ǫa,ǫb)(i
∗) ≤ gmax

δb (i∗) < gmin
δa (i∗) ≤ fǫa(i

∗).(3.21)

For ℓ = k(δb, ǫb), Claim 3.4 tells us

γℓ(ǫ
a, ǫb) = βb,

and we have arranged that

fǫa(i
∗) ≤ gmax

δa (i∗) < fβb(i∗).(3.22)

This establishes βb = ν(ǫa, ǫb).

Subclaim 3. η(ǫa, ǫb) = βa.

Proof. Let α = max(eβb ∩ ǫa). We have arranged that

ζbn < βa < δa < ǫa < ξbn

and γ⊗ < max(eβb ∩ δa), hence γ⊗ < α < βa. For ℓ < k(δa, ǫa), Claim
3.4 implies

γℓ(α, ǫ
a) = γℓ(δ

a, ǫa) ∈ env(tδa).

By our choice of i∗, we have

fγℓ(α,ǫa)(i
∗) ≤ gmax

δa (i∗) < fβb(i∗).(3.23)

For ℓ = k(δa, ǫa), Claim 3.4 implies γℓ(α, ǫ
a) = βa, and we have

ensured

fβb(i∗) < fβa(i∗).(3.24)

Thus βa is the first ordinal η in the walk from ǫa to max(eβb ∩ ǫa) for
which fη(i

∗) > fβb(i∗), and therefore η(ǫa, ǫb) = βa.

Subclaim 4. w(ǫa, ǫb) = {ξb0, . . . ξ
b
n}.

Proof. Our previous subclaims imply that an ordinal ξ ∈ eβb is relevant
if and only if the ladder eβa meets the interval (sup(eβb ∩ ξ), ξ). Since
h∗0(i

∗) = n+1, we know that w(ǫa, ǫb) consists of the last n+1 relevant
ordinals in eβb .
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For i ≤ n, clearly ξbi ∈ eβb and sup(ξbi ∩eβb) ≤ ζbn. We have made sure
that eβa∩(ζbi , ξ

b
i ) 6= ∅ (for example, ξai is an element in this intersection)

and so each ξbi is relevant.
Since βa < ξbn, it is clear that there are no relevant ordinals larger

than ξbn.
Given i < n, if ξ ∈ eβb ∩ (ξbi , ξ

b
i+1), then

ξbi ≤ sup(ξ ∩ eβb) ≤ ξ ≤ ζbi+1.

Since ζai+1 < ξbi < ζbi+1 < ξai+1, it follows that

[sup(ξ ∩ eβb), ξ) ⊆ [ζai+1, ξ
a
i+1),

and so ξ is not relevant. Thus {ξb0, . . . , ξ
b
n} are the last n + 1 relevant

elements of eβb, as was required.

To finish the proof of Claim 3.5, we note that as h∗1(i
∗) = j∗, we have

c(ǫa, ǫb) = F j1
βb({ξ

b
0, . . . , ξ

b
n}) = j∗.(3.25)

4. Finding the required ordinals

The whole of this section will be occupied with showing that for
all sufficiently large i < κ, it is possible to find objects satisfying the
requirements of Table 1.
We begin with some notation intended to simplify the presentation.

• φa(z0, z1) abbreviates the formula φ(ζa0 , . . . , ξ
a
n, z0, z1)

• φb(yn, z0, z1) abbreviates the formula φ(ζb0, ζ
n
b , yn, z0, z1)

• For i < κ, ψ(i, z1) abbreviates the formula

(∀ǫ ∈ env(tz1))[g
min
z1

↾ [i, κ) ≤ fǫ ↾ [i, κ) ≤ gmax
z1

↾ [i, κ)](4.1)

We have arranged things so that the sentence

(4.2) (∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)(∃∗zb1 < λ)[φa(za0 , z
a
1) ∧ φ

b(ybn, z
b
0, z

b
1)]

holds.
There are far too many alternations of quantifiers in the above for-

mula for most people to deal with comfortably; the best way to view
them is as a single quantifier that asserts the existence of a tree of
5–tuples with the property that every node of the tree has λ succes-
sors, and every branch through the tree gives us five objects satisfying
φa ∧ φb.
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Let Φ(i, za0 , . . . , z
b
1) abbreviate the formula

φa(za0 , z
a
1) ∧ φ

b(ybn, z
b
0, z

b
1) ∧ ψ(i, z

a
1) ∧ ψ(i, z

b
1)

∧
(

gmax
za1

↾ [i+ 1, κ) < gmin
zb1

↾ [i+ 1, κ)
)

.

By pruning the tree so that every branch through it is a strictly in-
creasing 5–tuple, we get

(4.3) (∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)(∃∗zb1 < λ)(∀∗i < κ)[Φ(i, za0 , . . . , z
b
1)].

We now make a rather ad hoc definition of another quantifier in an
attempt to make the arguments that follow a little bit clearer. Given
i < κ, let the quantifier ∃∗,izb0 < λ mean that not only are there un-
boundedly many zb0’s below λ satisfying whatever property, but also
that for each α < λi, we can find unboundedly many suitable zb0’s for
which fzb0(i) is greater than α.

Claim 4.1. If we choose βa < δa < ξbn such that

(∃∗zb0 < λ)(∃∗zb1 < λ)(∀∗i < κ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)],(4.4)

then

(∀∗i < κ)(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)].(4.5)

Proof. Suppose that we have βa < δa < ξbn such that (4.4) holds but
(4.5) fails. Then there is an unbounded I ⊆ κ such that for each i ∈ I,

¬(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)].(4.6)

In (4.4), we can move the quantifier “∀∗i < κ′′ past the quantifiers to
its left, i.e.,

(∀∗i < κ)(∃∗zb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)],(4.7)

so without loss of generality, for all i ∈ I,

(∃∗zb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)].(4.8)

Since (4.6) holds for all i ∈ I, it must be the case that for each i ∈ I,
there is a value g(i) < λi such that for all sufficiently large β < λ, if

(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, β, z
b
1)],(4.9)

then

fβ(i) ≤ g(i).(4.10)
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Since {fα : α < λ} witnesses that the true cofinality of
∏

i<κ λi is λ,
we know

(∀∗x < λ)(∀∗i ∈ I)[g(i) < fx(i)].(4.11)

When we combine this with (4.4), we see that it is possible to choose
βb < λ such that

(∀∗i ∈ I)[g(i) < fβb(i)],(4.12)

and

(∃∗zb1 < λ)(∀∗j < κ)[Φ(j, βa, δa, ξbn, β
b, zb1)].(4.13)

(Note that we have quietly used the fact that |I| < λ = cf(λ) to get a
βb that is “large enough” so that (4.9) implies (4.10) for all i ∈ I for
this particular βb.) This last equation implies

(∀∗j < κ)(∃∗zb1 < λ)[Φ(j, βa, δa, ξbn, β
b, zb1)],

so it is possible to choose i ∈ I large enough so that

g(i) < fβb(i)

and

(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, β
b, zb1)].

This is a contradiction, as (4.9) holds for our choice of i and β = βb,
yet (4.10) fails.

Notice that an immediate corollary of the preceding claim is

(4.14) (∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)(∀∗i < κ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)].

Claim 4.2. If βa < λ is chosen so that

(4.15) (∃∗za1 < λ)(∃∗ybn < λ)(∀∗i < κ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)],

then

(∀∗i < κ)(∃v < λi)(∃
∗za1 < λ)[ψ′ ∧ ψ′′]

where

ψ′ := gmax
za1

(i) < v,

and

ψ′′ := (∃∗ybn < λ)(∃∗zb0 < λ)
[

v < fzb0(i) and (∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

.
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Proof. In (4.15), we can move the quantifier “(∀∗i < κ)” past the other
quantifiers to its left, so

(4.16) (∀∗i < κ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

holds. The claim will be established if we show that for each i < κ for
which

(4.17) (∃∗za1 < λ)(∃∗ybn < λ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

holds, it is possible to find v < λi such that

(4.18) (∃∗za1 < λ)

[

gmax
za1

(i) < v and

(∃∗ybn < λ)(∃∗zb0 < λ)
[

v < fzb0(i) and (∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

]

.

Despite the lengths of the formulas involved, this is not that hard to
accomplish. Since λi < λ = cf(λ), we can find v < λi such that

(∃∗za1 < λ)
[

gmax
za1

(i) < v and

(∃∗ybn < λ)(∃∗,izb0 < λ)(∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

,

and now the result follows from of the definition of “∃∗,izb1 < λ”.

Thus there are unboundedly many za0 < λ for which there is a func-
tion g ∈

∏

i<κ λi such that for all sufficiently large i < κ,

(4.19) (∃∗za1 < λ)

[

gmax
za1

(i) ≤ g(i) and

(∃∗ybn < λ)(∃∗zb0 < λ)
[

g(i) < fzb0(i)

and (∃∗zb1 < λ)[Φ(i, za0 , z
a
1 , y

b
n, z

b
0, z

b
1)]

]

]

.

Now this is logically equivalent to the statement

(4.20) (∃∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)
[

gmax
za1

(i) ≤ g(i) < fzb0(i) and (∃∗zb1 < λ)[Φ(i, za0 , z
a
1 , y

b
n, z

b
0, z

b
1)]

]

.

Suppose we are given a particular za0 < λ for which a function g as
above can be found, and let us fix i < κ “large enough” so that (4.19)
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holds. Also fix ordinals δa < λ and ξbn < λ that serve as suitable za1
and ybn. Just to be clear, this means that for these choices we have

(∃∗zb0 < λ)
[

gmax
δa (i) ≤ g(i) < fzb0(i) and (∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z

b
0, z

b
1)]

]

.

Since λi < λ = cf(λ), there must be some value w satisfying

(∃∗zb0 < λ)
[

g(i) < fzb0(i) < w and (∃∗zb1 < λ)[Φ(i, βa, δa, ξbn, z
b
0, z

b
1)]

]

.

This implies for our particular βa, g, i, δa, and ξbn that

(4.21) (∀∗w < λi)(∃
∗zb0 < λ)

[

gmax
δa (i) ≤ g(i) < fzb1(i) < w and

(∃∗zb1 < λ)[Φ(i, βa, δa, ybn, z
b
0, z

b
1)]

]

.

Since λi < λ = cf(λ), the quantifier (∀∗w < λi) can move to the left
past the quantifiers (∃∗za1 < λ)(∃∗ybn < λ). This tells us that for our βa

and g,

(4.22) (∀∗i < κ)(∀∗w < λi)(∃
∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)

[

gmax
za1

(i) ≤ g(i) < fzb0(i) < w and

(∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

.

When we put all this together, we end up with the statement

(4.23) (∃∗za0 < λ)(∀∗i < κ)(∃v < λi)(∀
∗w < λi)(∃

∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[

gmax
za1

(i) ≤ v < fzb0(i) < w

and (∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

.

Since both κ and λi are less than λ = cf(λ), we can move some quan-
tifiers around and achieve

(4.24) (∀∗i < κ)(∀∗w < λi)(∃
∗za0 < λ)(∃v < λi)(∃

∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[

gmax
za1

(i) ≤ v < fzb0(i) < w

and (∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

.

Thus there is a function h ∈
∏

i<κ λi such that

(4.25) (∀∗i < κ)(∃∗za0 < λ)(∃v < λi)(∃
∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[

gmax
za1

(i) ≤ v < fzb0(i) < h(i)

and (∃∗zb1 < λ)[Φ(i, βa, za1 , y
b
n, z

b
0, z

b
1)]

]

.

After all this work, it is finally time to prove that we can select
objects βa < δa < ξbn < βb < δb that satisfy all of our requirements.
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Clearly, for every unbounded Λ ⊆ λ,

(∃i < κ)(∃∗x ∈ Λ)(h ↾ [i, κ) < fx ↾ [i, κ).

Thus we can choose i∗ < κ such that h∗1(i
∗) = j1 and h∗0(i

∗) = n, and

(∃∗za0 < λ)

[

h ↾ [i∗, κ) < f za0 ↾ [i∗, κ) and (∃v < λi)(∃
∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)
[

gmax
za1

(i∗) ≤ v < fzb0(i
∗) < h(i∗) and

(∃∗zb1 < λ)[Φ(i∗, za0 , . . . , z
b
1)]

]

]

.

So now we choose βa such that h(i∗) < fβa(i∗) and for some α < λi∗ ,

(∃∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)
[

gmax
za1

(i∗) ≤ α < fzb0(i
∗) < h(i∗) and

(∃∗zb1 < λ)[Φ(i∗, za0 , . . . , z
b
1)]

]

.

Now we choose δa, ξbn, β
b, and δb such that

• βa < δa < ξbn < βb

• gmax
δa (i∗) ≤ α < fβb(i∗) < h(i∗) < fβa(i∗)

• Φ(i∗, βa, δa, ξbn, β
b, δb)

It is straightforward to check that these objects satisfy all the require-
ments listed in Table 1, so by Claim 3.5, we are done.

5. Conclusions

In this final section, we will deduce some conclusions in a few concrete
cases.

Theorem 2. If µ is a singular cardinal of uncountable cofinality that

is not a limit of regular Jonsson cardinals, then Pr1(µ
+, µ+, µ+, cf(µ))

holds.

Proof. The proof of this theorem occurs in two stages—we first show
that Pr1(µ

+, µ+, µ, cf(µ)) holds, and then we show that this result can
be upgraded to obtain Pr1(µ

+, µ+, µ+, cf(µ).
Let µ be as hypothesized, and let us define λ = µ+ and κ = cf(µ).

Claim 5.1. Pr1(λ, λ, µ, κ) holds.

Proof. Let 〈κi : i < κ〉 be a strictly increasing continuous sequence
cofinal in µ. Let S ⊆ {δ ∈ [µ, λ) : cf(δ) = κ} be stationary. Standard
club–guessing results tell us that there is an S–club system C̄ such

that idp(C̄, J̄) is a proper ideal, where Jδ is the ideal J
b[µ]
Cδ

for δ ∈ S,
and furthermore, satisfying |Cδ| = κ. (Note that this last requires that
κ = cf(µ) is uncountable.)
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At this point, we have satisfied all of the assumptions of Claim 2.2
except possibly for clause (8). It suffices to show that for each i < κ,
for all sufficiently large regular θ < µ, Player I has a winning strategy
in the game Gmω[θ, κi, 1]. Since µ is not a limit of regular Jonsson
cardinals, it follows that for all sufficiently large regular θ < µ, Player I
has a winning strategy in Gmω[θ, θ, 1]. This implies, by Lemma 1.3 (1),
that for all sufficiently large regular θ, Player I has a winning strategy
in Gmω[θ, κi, 1], and so clause (8) of Claim 2.2 is satisfied.

To finish the proof of Theorem 2, it remains to show that we can in-
crease the number of colors from µ to λ = µ+ — we need Pr1(λ, λ, λ, κ)
instead of Pr1(λ, λ, µ, κ).

Lemma 5.2. There is a coloring c1 : [λ]
2 → λ such that whenever we

are given

• θ < κ,

• 〈tα : α < λ〉 a sequence of pairwise disjoint elements of [λ]θ,

• ζα ∈ tα for α < λ, and

• Υ < λ,

we can find α < β such that tα ⊆ min(tβ) and

(∀ζ ∈ tα)[c1(ζ, ζβ) = Υ].(5.1)

Proof. Let c : [λ]2 → µ be a coloring that witnesses Pr1(λ, λ, µ, κ). For
each α < λ, let gα be a one–to–one function from α into µ. We define

c1(α, β) = g−1
β (c(α, β)).(5.2)

Suppose now that we are given objects θ, 〈tα : α < λ〉, 〈ζα : α < λ〉,
and Υ as in the statement of the lemma. Clearly we may assume that
min(tα) > α.
For i < µ, we define Xi := {α ∈ [γ, λ) : gζα(Υ) = i}. Since λ is a

regular cardinal, it is clear that there is i∗ < µ for which |Xi∗| = λ.
Since c exemplifies Pr1(λ, λ, µ, κ), for some α < β in Xi∗ we have
tα ⊆ min(tβ) and

(∀ζ ∈ tα)[c(ζ, ζβ) = i∗].(5.3)

By definition, this means

(∀ζ ∈ tα)[c1(ζ, ζβ) = g−1(c(α, β)) = g−1(i∗) = Υ],(5.4)

hence α and β are as required.
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To continue the proof of Theorem 2, we define a coloring c2 : [λ]
2 → λ

by

c2(α, β) = c1(α, ν(α, β)),(5.5)

where ν(α, β) is as in the proof of Theorem 1.
It remains to check that c2 witnesses Pr1(λ, λ, λ, κ). Toward this

end, suppose we are given θ < κ, 〈tα : α < λ〉 a sequence of pairwise
disjoint members of [λ]θ, and Υ < λ. We need to find δa and δb less
than λ such that

ǫa ∈ tδa ∧ ǫ
b ∈ tδb =⇒ c2(ǫ

a, ǫb) = Υ.(5.6)

Lemma 5.3. There is a stationary set of γ1 < λ such that for some
γ0 < γ1 and β ∈ [γ1, λ), if γ0 ≤ α < γ1, then the function ν is constant
on tα × tβ.

Proof. Let E be an arbitrary closed unbounded subset of λ, and let W
be the set of ordinals < λ satisfying the properties of γ1. In the proof
of Theorem 1, without loss of generality we can have E ∈ M0. This
means that the ordinal β∗ found in the course of that proof will be in
E, so we finish by observing that β∗ ∈ W .

An application of Fodor’s Lemma gives us a single ordinal γ0 and a
stationaryW ′ ⊆W such that for all γ ∈ W ′, there is a βγ ∈ [γ, λ) such
that for all α ∈ [γ0, γ), ν ↾ (tα × tβ) is constant.
Using properties of the coloring c1, we can find α and γ such that

• γ0 ≤ α < λ

• γ ∈ W ′ \ (sup(tα) + 1), and

• ζ ∈ tα =⇒ c1(ζ, γ) = Υ.

Now given ǫa ∈ tα and ǫb ∈ tβγ , we find

c2(ǫ
a, ǫb) = c1(ǫ

a, γ) = Υ,(5.7)

and therefore c2 exemplifies Pr(λ, λ, λ, κ).

Theorem 2 strengthens results in [1] as clearly Pr1(µ
+, µ+, µ+, cf(µ))

implies that µ+ has a Jonsson algebra (i.e., µ+ is not a Jonsson cardi-
nal). The question of whether the successor of a singular cardinal can
be a Jonsson cardinal is a well–known open question.
We note that many of the results from Section 2 of [1] dealing with

the existence of winning strategies for Player I in Gmω[λ, µ, γ] can be
combined with Theorem 1 to give new results. For example, we have
the following result from [1].
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Proposition 5.4. If τ ≤ 2κ but (∀θ < κ)[2θ < τ ], then Player I has a
winning strategy in the game Gmω(τ, κ, κ+).

Proof. See Claim 2.3(1) and Claim 2.4(1) of [1].

Armed with this, the following claim is straightforward.

Claim 5.5. Let µ be a singular cardinal of uncountable cofinality. Fur-
ther assume that χ is a cardinal such that 2<χ ≤ µ < 2χ. Then
Pr1(µ

+, µ+, χ, cf(µ)) holds.

Proof. If 2<χ < µ, then Claims 2.3(1) and 2.4(1) of [1] imply that for
every sufficiently large θ < µ, Player I has a winning strategy in the
game Gmω(θ, χ, χ+).
If µ = 2<χ, then cf(µ) = cf(χ). Let 〈κi : i < cf(µ)〉 be a strictly

increasing continuous sequence of cardinals cofinal in χ. Given i <
cf(µ), we claim that for all sufficiently large regular τ < µ, Player I has
a winning strategy in Gmω(τ, κi, χ). Once we have established this,
Pr1(µ

+, µ+, χ, cf(µ)) follows by Theorem 1.
Given τ = cf(τ) satisfying 2κi < τ < µ, let η be the least cardinal

such that τ ≤ 2η. Clearly κi < η < χ. By Proposition 5.4, Player I
wins the game Gmω(τ, η, η+). This implies (since η+ < χ and κi < η)
that Player I wins the game Gmω(τ, κi, χ) as required.

We can also use Claim 1.4 to prove similar results. For example we
have the following.

Claim 5.6. Let µ be a singular cardinal of uncountable cofinality.
Further assume that χ < µ satisfies 2χ < µ < i(2χ)+(χ). Then
Pr1(µ

+, µ+, χ, cf(µ)) holds.

Proof. Again, the main point is that for all sufficiently large regular
θ < µ, Player I has a winning strategy in the game Gmω[θ, χ, (2χ)+].
This follows immediately from Claim 1.4. Since (2χ)+ < µ, Theorem 1
is applicable.

In a sequel to this paper, we will address the situation where λ is the
successor of a singular cardinal of countable cofinality. Similar results
hold, but the combinatorics involved are trickier.
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