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Abstract

If P is a hereditary property then we show that, for the existence of a perfect f-factor,
P is a sufficient condition for countable graphs and yields a sufficient condition for graphs
of size ;. Further we give two examples of a hereditary property which is even necessary
for the existence of a perfect f-factor. We also discuss the No-case.

We consider graphs G = (V, E), where V = V(G) is a nonempty set of vertices and £ =
E(G) C{eCV: |e|] =2} is the set of edges of G. If z is a vertex of G and F C FE, then we
denote by dr(z) the cardinal |{e € F': x € e}|. dp(z) is called the degree of x with respect
to F and dg(x) the degree of x. ON denotes the class of ordinals, CN the class of cardinals.
Greek letters a, 3,7, ... always denote ordinals, whereas the middle letters x, A, u, v, ... are
reserved for infinite cardinals.

Let G = (V, E) be a graph, f: V. — CN be a function and F C E. F is said to be an f-factor
of G if dp(z) < f(z) for all z € V. We call an f-factor F' of G perfect if dp(x) = f(x) for
allz € V. For k € CN we denote f~(k) :={z €V : f(z) = k}.

Let C be the class of all ordered pairs (G, f), such that G = (V, E) is a graph, f: V — CN
is a function, and f(z) < dg(x) for all z € V.

This paper discusses the problem to find a necessary and sufficient condition for the existence
of a perfect f-factor of a graph. In [5], Tutte published a criterion for finite graphs, and in [4]
Niedermeyer solved the problem for countable graphs and functions f : V — w. We present
a solution for graphs of size Ny and functions f : V — wU{Xg}, a solution for graphs of size
N1, and discuss the Ny-case.

If H C E, then denote by G — H the graph (V,E \ H), and if e € E, then let G — e be the
graph G — {e}. If x,y € V, denote by f,,: V — CN the function defined by

_ fw)—=1 ifve{r,ytand 1 < f(v) <Ny
fouv): {f(v) else '

Now let P be a formula with two free variables. P(G, f) means that (G, f) € C and (G, f)
has the property P. P is said to be hereditary if for every (G, f) with P(G, f), for every
vertex x € V(G) with f(z) > 0 there exists a vertex y € V(G) with f(y) > 0, {z,y} € E(G),
and P(G — {z,y}, fzy)-
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Remark Let P be a hereditary property, let (G, f) € C such that P(G, f), and let W C
V(G) be finite. Then there exists a finite f-factor F' of G such that P(G — F, f — dp),
dp(x) = f(x) for every x € W with f(z) < Ng, and dp(x) > 0 for every x € W with

Example 1 Let P(G, f) be the property “G possesses a perfect f-factor”. Obviously Py
is a hereditary property.

Definition Let (G, f) € C. By recursion on a € ON we define the property that (G, f) is
an a-obstruction. Let G = (V, E).

If there is an z € V with f(z) > 0 such that f(y) = 0 for all y € V with {x,y} € E, then
(G, f) is a 0-obstruction.

If there is a vertex x € V such that f(z) > 0 and

(i) for every y € V with {z,y} € E and f(y) > 0 there is an ordinal 3, such that
(G —A{z,y}, fzy) is a By-obstruction and

(ll) o= SUP{ﬁy +1: {ZL‘,y} € Evf(y) > 0}7

then (G, f) is an a-obstruction.

Example 2 Let P»(G, f) be the property “(G, f) is not an a-obstruction for every « € ON”.
Then we can prove the following

Lemma 1
(i) P» is a hereditary property.

(ii) If P is a hereditary property, then P(G, f) is necessary for P(G, f). Therefore P is a
necessary condition for the existence of a perfect f-factor.

Proof

(i) Assume P5(G, f), that means that for all &« € ON, (G, f) is not an a-obstruction.
Let G = (V,E) and = € V with f(x) > 0. To get a contradiction let us assume
that, for each y € V with {z,y} € E and f(y) > 0, there is an ordinal 3, such that
(G — {z,y}, fay) is a By-obstruction. If a = sup{B, + 1: {z,y} € E, f(y) > 0}, then
(G, f) is an a-obstruction which contradicts our assumption.

(ii) By induction on a € ON we prove for any (G, f) € C with P(G, f) that (G, f) is not
an a-obstruction.

Since P is heriditary, (G, f) is obviously not a 0-obstruction.

Now let > 0. Assume that (G, f) is an a-obstruction. Let G = (V| E). By definition,
there is a vertex x € V with f(x) > 0 such that for each y € V with f(y) > 0 and
{z,y} € E there is an ordinal 8, < « such that (G — {z,y}, fz,y) is a f,-obstruction.
On the other hand, since P(G, f), P is hereditary, and f(x) > 0, there is an edge
{z,y} € E such that P(G — {z,y}, fy). By inductive hypothesis (G — {z,y}, fz,y) is
not a fBy-obstruction. This contradiction proves (ii).



For a hereditary property P, it must not be true that P,(G, f) is sufficient for P(G, f). This
is demonstrated by the following example.

Example 3 Let P3(G, f) be the property “G possesses a perfect f-factor without cycles”.

Ps5 also shows that not every hereditary property is a necessary condition for the existence of
a perfect f-factor.

Definition Let (G, f) € C. For 0 < k < w we call a sequence T' = (v;)o<i<k of vertices of
G a trail if {v;_1,v;} € E(G) for 0 < ¢ < k and {v;—1,v;} # {vj_1,v;} for i # j. For any
f-factor F', a trail T' = (v;)o<i<k is called F-augmenting if

(i) k>1

(iii) dp(vo) < f(vo)

)
(ii) {vi—1,v;} € Fiff i > 0 is even
)
(iv) &

or
k < w is even, vy # vk—1 and dp(vg—1) < f(vg—1)

or

k < wiseven, vg = vk_1 and dp(vg—1) + 1 < f(vr—1)

Example 4 Let Py(G, f) be the property “for every f-factor F' of G and every vertex
x € V(G) with dp(xz) < f(x) there exists an F-augmenting trail starting at z”. Further let
Pi(G, f) be the property “Pys(G, f) and ran(f) C w”.

Lemma 2 If (G, f) € C and G possesses a perfect f-factor, then Py(G, f).

Proof For the convenience of the reader, we present the easy proof. Let G = (V, E), let
F be an f-factor of G and H be a perfect f-factor of G. For all x € V with dp(z) < f(z),
we construct by induction an F-augmenting trail starting at z. Let vy = x. Since dp(vg) <
f(vo) = du(vo) there is an edge {vo,y} € H \ F. Let v; = y. Let the trail T = (v;)o<j<; be
defined such that

(1) {vj—1,vj} € F\ H iff j > 0 is even.
(2) {vj_1,vj} € H\ Fiff j is odd.
If 7 is odd, v; # vo, and dp(v;) < f(v;), let k =1+ 1.
If ¢ is odd, v; = v, and dp(v;) + 1 < f(v;), let again k =i+ 1.
If 4 is odd and v; # vy, dp(v;) = f(v;) or v; = vo, dp(v;) + 1 > f(v;), then there is an edge
{vi,y} € F'\ H which is not an edge of T. Let v;4; = y.

Finally, if ¢ is even, there is an edge {v;,y} € H \ F which is not an edge of the trail 7. Let
Vi+1 = Y-

Much more difficult is the proof of Lemma 3 which is Corollary 4 of [4].



Lemma 3 Pj is a hereditary property.

It is not true that every hereditary property P is a sufficient condition for the existence of a
perfect f-factor of a given graph. This demonstrates the property Py, applied to the complete
bipartite graph Ky, x, and the function f = 1. But we have the following

Theorem 1 Let (G, f) € C and |V(G)| = No. If P is a hereditary property and P(G, f)
then G possesses a perfect f-factor.

Proof Let vy, v1,ve,... be an enumeration of the vertices of G such that, for every z € V
with f(x) = N, the set {i < w: = v;} is infinite. Since P(G, f) and P is hereditary, one
can define recursively finite f-factors Fy C Fy C F, C --- such that (G — Fj, f — dp,) fulfills
property P and the following is true: If f(vg) = Ng, then Fo={{x,v9}}, if f(vx) = Ro, k > 0,
then Fj, \ Fr—1 = {{z,vx}} for some z € V, and if f(vy) < No, then dp, (vi) = f(vx). By
construction, F := [J{F}: k < w} is a perfect f-factor.

Corollary 1 Let (G, f) € C and |V(G)| = No.

(1) G has a perfect f-factor iff P (G, f).

(2) If ran(f) C w, then G has a perfect f-factor iff Py(G, f).

Tutte’s condition ([3], [5]) for the existence of a perfect 1-factor for finite graphs is necessary
but not sufficient for countable graphs. Thus Theorem 1 shows that not every necessary
condition for the existence of a perfect f-factor is a hereditary property. The property “G
has a perfect f-factor with cycles” tells us that a sufficient condition for the existence of a
perfect f-factor for G is not necessarily hereditary.

Definition Let (G,f) € C, G = (V,E), and |V| = s for some infinite cardinal x. Let
(Au)acr+ be an increasing continuous sequence of subsets of V' such that |4,| < k™ for all
a<rktand V =J{An: a < kT}. For a < k™ we define

Vo = (V\Aa)uf_l(“+)

E, = {{x,y}EE:xEVa,yEV\Aa}
Go = (Vo,Eq)

Jao = f1Va

For any property P, (Aa)a<x+ is said to be a P-destruction of (G, f) if
S ={a < k": (Gq, fa) does not fulfill P}

is stationary in k™. (G, f) is called P-destructed if there is a P-destruction of (G, f).

Lemma 4 (Transfer Lemma) Let P(G, f) be a necessary condition for the existence of a
perfect f-factor of a graph G. If (G, f) € C, |V(G)| = k™ for an infinite cardinal «, and if G
possesses a perfect f-factor, then (G, f) is not P-destructed.



Proof Let F be a perfect f-factor of G and assume that there is a P-destruction (Aq)a<y+
of (G, f). Define V,, Ey,Gaq, fa, S as above and let a € S. (G, fo) does not fulfill P, and
by the hypothesis of the Lemma, G, has not a perfect f,-factor. In particular F, := F N E,
is not a perfect f,-factor of G,. Therefore there is a vertex x, € V,, such that dr, (z4) <
fa(za) = f(zy). Since F' is a perfect f-factor, there exists, for some vertex y,, an edge
{Za,Ya} € F\ F,. Using the fact |A,| < kT we know that dp, (z) = dp(z) =kt = f(z) for
any z € f7HKT). Sozq € Vo \ fH(kT) and y, € An \ FH(KT). .

If @ € S is a limit ordinal, let #(a) < a be an ordinal with y, € Ag(,). By Fodor’s Theorem
(cf. [1] or [2], Theorem 1.8.8), there is an ordinal v < k™ such that

{a € S: o limit ordinal, B(a) = v} = k.
Since |A,| < k™, there is a vertex y* € A, such that
{a € S: a limit ordinal, y, = y*}| = x™.
If v € Ay, \ fH(xT) for some ag < kT, then = € V,, for all & > o and thus
Ha€S:zq =a} < k™.

It follows that f(y*) = dp(y*) = kT, so y* € f~1(kT). On the other hand y* € A, \ f~1(xkT)
for every ordinal o with y* = y,. This contradiction proves the lemma.

Theorem 2 Let (G,f) € C and |V(G)| = Ry. If P is a hereditary property such that
P(G, f) and if (G, f) is not P-destructed then G possesses a perfect f-factor.

Proof Let (Ay)a<w, be an increasing continuous sequence of countable subsets of V' such
that V = Ua<w1 Ay. Define V,,, E,, G, fo as above. Since (Ay)a<w, is not a P-destruction,
there is a closed unbounded set K C w; such that (G, fu) fulfills P for every a € K. We can
assume w.l.o.g. that K = wj, because otherwise we could consider the sequence (Ay)ack
instead of (Aq)a<w,. Since (G, f) fulfills P we can further assume that Ag = 0.

To obtain a perfect f-factor of G, we now construct an increasing continuous function
i:w) — wp and an increasing sequence (Fy).<,, of f-factors of G with the following proper-
ties:

(1) UF: C A
(ii) Vz € Ajo) (f(z) < Ro = dp.(z) = f(2))
(iil) Vo € Ay (f(x) =R = dp,, \p. () = Ro)

Then F :=J

The function i and the sequence (F;).<,, will be defined by transfinite recursion. Let i(0) := 0
and Fp := (). Now let € > 0 and let us assume that, for each 0 < ¢, i(d) and Fs are already
defined. If ¢ is a limit ordinal, let i(¢) := (J;.. i(0) and F. := (J;s.. Fs.

Now let e = 6+1. By induction on m we define an increasing sequence (H,, )<, of finite fj(5-
factors of Gy, an increasing function ¢: w — w1, and, for any n > m, vertices T, € V()
such that for every m

F obviously is a perfect f-factor of G.

e<wi



a) {zmn:n=mb = Agunin) \ (Agim) \ F7H(R1))

(

)
)
(c) de+1(l’k m) = fz'(é) (Zh,m) for all & < m with f;s)(zrm) < Ro
(d) dg,, \Hp (Thm) > 0 for all k <m with f;s5)(Trm) > No

)

(e) P(Giiy — Hum, fis) — di)-

Then let F, := Fs U J{Hm: m <w} and i(e) := [J{o(m): m < w}. By construction, (i), (ii),
(iii) are fulfilled.

m=0: Let 0(0) :=4(d), Hy := 0.

m=m+1: Now suppose that for m < w the ordinal o(m), the finite f;s)-factor H,, of
Gy, and, for all & < m and n > k, the vertices xy, € Vj4) are already
defined such that (a) - (e) are fulfilled.
The set W, := {x,: £ <n < m} is finite. Since P is hereditary, there exists
a finite fis)-factor Hyp1 2 Hi of Gys) such that P(Gys) — Himet, fis) —
dg,..,) and dg,, ., (z) = fis)(z) whenever x € Wy, and fis)(z) < No, or
dH,, 1 \H,y, (T) > 0 whenever x € Wy, and f;5) () > Ro.
Let o(m + 1) > o(m) be the least ordinal such that |J Hy1 € Apimqr). For
n > m choose Tpmn With {Zmm, Tmmt1, Tmmt2, - -} = Agma1) \ (Agm) \

FHR¥).

Corollary 2 Let (G, f) € C and |V(G)| = ¥;.
(i) G possesses a perfect f-factor if and only if (G, f) is not Py-destructed.

(ii) If ran(f) C w then G possesses a perfect f-factor if and only if (G, f) is not Py-
destructed.

To handle the cases of higher cardinality, we introduce the notion of a k-perfect f-factor.

C and let  be an infinite cardinal. An f-factor F' of G is said to

Definition Let (G, f) €
= f(x) for all vertices z with f(x) < k and dp(x) > 0 for all vertices

be k-perfect if dp(z)
x with f(x) > k.

Theorem 3 Let k be an infinite cardinal, (G, f) € C, and |V(G)| = xT. G possesses a
perfect f-factor if and only if there is an increasing continuous sequence (A, )q<x+ Of subsets
of V(G) such that

(i) Ao =0, V(G) = U{Aa: a <x"},
(i) |Aat1 \ Aa| =k for all @ < kT,

(iii) for all o < k™ there exists an s-perfect g,-factor of
(Ba, {{x,y} €FE:x € By,y € Aqt1 \Aa}), where
Bo = (Aat1\ (A \ (k7)) and go := f | B



Proof Let (Ay)q<r+ be an increasing continuous sequence of subsets of V' and, for a < s,
let F,, be a k-perfect g,-factor with the properties (i), (ii), (iii). Then F,, NFy,, = 0 if a; # as.
Let F := |J{Fa: a < k*}. We will show that F is a perfect f-factor of G. Let z € V and
let a be the smallest ordinal such that © € Aq11. If f(z) < &k then dp(x) = dp, (z) = f(x).
If on the other hand f(x) > , we have dp,(x) > 0 for all 3 > « since Fj is k-perfect. Thus
dp(x) = k™.

To prove the converse, let F be a perfect f-factor of G and Ay := (. Let (Ps: § < k1) be a
partition of V such that |Ps| =  for all § < k™. Now assume that As C V is defined for all
0 < a. If avis a limit ordinal, then let A, = |J{As: 6 < a}. If « = §+1, we define by induction
an increasing sequence (Cp,)p<., of subsets of V. Let Cy C V such that As U Py C Cjy and
|Co \ As| = k. If C), is defined let C),4+1 be a ”k-neighborhood” of C,: If z € C,, and f(z) < k
let N(z) = {y € V: {y,a} € F}, and if f(z) = kT choose y, € V' \ C,, with {y,,z} € F
and let N(x) = {yz}. Then let Cp,11 = C,, UU{N(z): z € Cy,} and A, := U{Cr: n < w}.
By construction, (Ay)a<.+ is an increasing continuous sequence of subsets of V' with the
properties (i), (ii), (iii).

Remark If k¥ =Ny, gy := f | Vo N Agy1 and X, := Agy1 N f71(Ry), then there is an
Nyi-perfect go-factor of (Vo N Ags1, {{z,y} € E: x € Vo N Aat1,y € Ant1 \ An}) if and only
if there exists a function hy: Agt1 N f‘l(Ng) — w U {Rp,N;} such that there is a perfect
(9o \ (9a1Xa)) U ho-factor of (Vo N Agr1, {{z,y} € E: 2 € Vo Aat1,y € Aat1 \ Aal})-

Corollary 3 Let (G, f) € C and |V(G)| = Ny. G possesses a perfect f-factor if and only if
there is an increasing continuous sequence (Ag)a<w, of subsets of V(G), such that

(1) Ap = 07 V(G) = Ua<wz Aq.
(ii) |[Aat1 \ Aa] =N for all o < wo.

(iii) For each a < ws there is a function hq: Agr1 N fF71(N2) — w U {Rg, N1} such that the
graph

(Aa+1 \ (Ao \ f_l(N2))7 Hz,yt € Bz € Apta \ (4o \ f_l(N2))ay € Aat1\ 4a})
together with

(f T Aari \ (Ao \ FTIR2)) N\ f T (Aag1 N T (R2)) ) Uhg

is not Py-destructed.
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