RADIN FORCING AND ITS ITERATIONS

JOHN KRUEGER

ABSTRACT. We provide an exposition of supercompact Radin forcing and
present several methods for iterating Radin forcing.

In this paper we give an exposition of supercompact Radin forcing using coherent
sequences of ultrafilters. This version of Radin forcing includes as special cases
the Prikry forcing and Magidor forcing, both the measurable and supercompact
versions. We also introduce some methods for iterating Radin forcing. First we
show how to iterate Radin forcing over the same cardinal infinitely many times.
Secondly we show that Magidor’s method of iterating Prikry forcing over different
cardinals can be extended to iterate Radin forcing.

Radin forcing was introduced in [8]. Mitchell [7] presented a version of Radin
forcing which uses coherent sequences of ultrafilters in place of a measure sequence.
Foreman and Woodin [5] developed a supercompact version of Radin forcing using
measure sequences in the context of a proof that GCH can fail for every cardinal.
See [2] for a more recent exposition of Radin forcing on a measurable cardinal.

In Section 1 we review notation and prove some technical lemmas we need in
the paper. Part I, consisting of Sections 2 to 7, is an exposition of supercompact
Radin forcing using coherent sequences. Part II, consisting of Sections 8 and 9,
presents two methods for iterating Radin forcing. Section 8 covers iterations of
Radin forcing over the same cardinal. Section 9 extends Magidor’s method of
iterating Prikry forcing over different cardinals to Radin forcing.

1. NOTATION AND BACKGROUND

We assume that the reader is familiar with forcing, Prikry forcing, and super-
compact cardinals; see [3] or [4].

For cardinals k < X with s regular, let P,\ denote the set of a in [A\]<" such
that a Nk is an ordinal. Then P, is a club subset of [A]<*. For a,b in P\, let
aCbifaChband |a] <bNk.

In this paper, normal ultrafilter means a normal, fine, non-principal ultrafilter
on some P.\. By fineness we mean that for all i < A, the set {a € P\ : i € a}
is in the ultrafilter. Normality is the property that for any function F' : P;A — A
such that F(a) € a for all a, there is § < A such that the set {a : F'(a) = 8} is in
the ultrafilter. If U is an ultrafilter on P.A and A C k, we say that U concentrates
on A if the set {a € P\ : ank € A} is in U; equivalently, x € j(A) where
j:V=U(V,U).

Date: January 2007.
This work was partially supported by FWF project number P16790-N04.

1
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If Uy and U; are normal ultrafilters on P\, let Uy < Uy if Uy is in Ult(V, Uq)
(i.e. Up is less than U in the Mitchell ordering). This relation is transitive and
well-founded.

The following lemma is straightforward.

Lemma 1.1. Suppose U is a normal ultrafilter on P.A and j:V — UW(V,U). If
D is a subset of P\, then j(D) N Pyj“\ = j“D.

Suppose £ < A\g < A and U is an ultrafilter on P, \. Let U | Ag be the ultrafilter
on P\ defined by letting X bein U [ \g iff X C PyAo and {a € P, A :aNXg € X}
isin U. If U is normal and j : V — Ult(V,U), then X € U | Ay iff j“\g € j(X).

Suppose that x is Ad-supercompact. Then by a theorem of Solovay, A<* is equal
to AT if ¢f(\) < k and is equal to \ if cf(\) > k. See [3] for a proof.

If M is an inner model, we say that M is a-closed if “*M C M.

If P is a forcing poset and p is in P, let P/p denote the poset consisting of
conditions ¢ < p, ordered the same as in P.

We will often use the following style of proof. Suppose P is a forcing poset, G is
generic for P over V, and ¢ is a statement in the forcing language. Then V|G| = ¢
iff for all p in G, there is ¢ < p such that g forces .

A Prikry type forcing poset is a triple (P, <, <*) such that (P, <) and (P,<*)
are both forcing posets, ¢ <* p implies ¢ < p, and the triple satisfies the Prikry
property: if ¢ is a statement in the forcing language for (P, <) and p is in P, then
there is ¢ <* p such that ¢ decides ¢.

If ¢ is a statement in the forcing language for some forcing poset, let ¢ denote
¢ and ' denote —¢.

We will use the following theorem of Cummings and Shelah [1]. Suppose that A is
a cardinal in V and P is a A™-c.c. forcing poset. Then P forces that cf(\) = cf(|A]).

The following lemma generalizes a well-known characterization of the Mitchell
ordering on a measurable cardinal.

Lemma 1.2. Let Uy and Uy be normal ultrafilters on P.A. For each a in P\ let
o ¢ a — o.t.(a) be the unique order preserving bijection. Then Uy < Uy iff there
exists a function f: P — V. such that:

(1) {a € P.X: f(a) is a normal ultrafilter on Pgnyy o.t.(a)} is in U,

(2) For every X C P\, X € Uy iff the set of a in Py such that

X, ={m“c:c€ X N Pgnpya} € f(a)
is in Uq.

Proof. Write j: V. — M =UW(V,U;). In M, [a+— a] = j“\, [a— aNK] =k, and
[a — o.t.(a)] = A. Let X be a subset of P,A. We show that j(a — X,)(7“\) = X.
Note that mj«y = j71 | j“A and j§(X) N Pej“A = j“X. So j(a — Xo)([F“\) =
Xjon={j"'4c:cej“X} = X. Therefore [a — X,] = X in M.

Suppose that Uy <t Uy. Let [f] = Up in M. Clearly (1) holds. For (2), X is in
Uy iff [a — X,] is in [f]. On the other hand suppose (1) and (2) are true. Then (2)

implies that [f] = Uy in M, so Uy < Uy. O

Suppose that M is a transitive inner model of set theory which is A<*-closed.
Then by Lemma 1.2, if Uy and U; are normal ultrafilters on P;A which are in M,
then Uy <« Uy iff M }: Uy < Us.

The next lemma is a standard result about supercompact cardinals.
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Lemma 1.3. Suppose that k < X are cardinals. Assume j : 'V — M is an ele-
mentary embedding such that M is a 20" _closed inner model, crit(j) = k, and
j(k) > A. Let U* be the normal ultrafilter on P.)\ defined by letting X be in U*
if X C P and j4\ € j(X). Writei : V — N = Ult(V,U*). Then there is an
elementary embedding k : N — M such that j = k oi and crit(k) = (20")) N,

Proof. Define k as follows. Let a be in N and let f: P,A — V be a function such
that [f]y = a. Define k(a) = j(f)(7“N\). It is straightforward to check that k is a
well-defined elementary embedding and j = k o i.

If B < A, then § is represented by the function a — o.t.(a N B) in N. By the
definition of k, k(5) = o.t.(j“ANj(8)) = 0.t.(“B) = B in M. So crit(k) > .

Since N and M are A<"-closed and crit(k) > A, k(P.\) = P.A and k(P(P:A)) =
P(P.A). If a is in P, then k(a) is in k(P.A) = P, and « € k(a) iff k(a) € k(a)
iff & € a. Therefore k | P, is the identity. By this fact and a similar argument,
k | P(PA) is the identity.

We prove by induction that for all § less than (2(>‘<K))+N, k(B) = 6. Fix 8 and
suppose k() = « for all a less than (. Since § is less than (22~ )™V there is a
surjective function s : P(P.A) — [ in N. By elementarity, k(s) is a surjection of
E(P(PyA)) = P(P.) onto k(B). If A is in P(P.A), then k(s)(A) = k(s)(k(A)) =
k(s(A)) = s(A), so k(s) = s. Therefore k(3) = 5.

Now (20NN < i(k) < 2ATNF = (2O NTM " and k maps (20N to
(2T NFTM Qo crit(k) = (2AT) N, 0

Lemma 1.4. Suppose that k < X are cardinals, M is a X<"-closed inner model,
and U is a normal ultrafilter on P\ in M. Let jy : V — Ny = Ult(V,U) and
gt M — My = Ult(M,U).

(1) If f is in PxN M, then [fIny = [flam, - Therefore My € Ny

(2) ju I M = .

Proof. We prove (1) by induction on the rank of [f]y;,. Suppose that f is in
(PN M and (1) holds for all functions g such that [g]as, has rank less than the
rank of [f]ar,. By the closure of M, f is in M so [f]n, is defined. We show
[flary = [f]ny- Suppose that z is in [f]n,. Then there is g in ("»» M such that
l[9ln, = « and g(a) € f(a) for almost all a. Clearly [g]ar, is in [f]ay, and by
induction [g]a, = . The other direction is similar.
To prove (2), let « be in M. Then jy(z) = [f]n,, where f(a) = z for all a in P\
Since f is in "M M, by (1) we have [f]n, = [f]ary, and clearly [f]ar, = i (z).
]

Suppose that k is a supercompact cardinal. Then there exists a function f :
k — Vi, known as a Laver function, such that whenever x is a set and A > &
is a cardinal such that A > |tr(x)|, there is a normal ultrafilter U on P,A with
elementary embedding j : V' — Ult(V, U) such that j(f)(x) = . We will also need
the following variant of this fact.

Lemma 1.5. Suppose that k < X\ are cardinals, X is a subset of k, and there is a

<K
normal ultrafilter on PNQQ(A " which concentrates on X. Then there is a function

[k — Kk and an ultrafilter on P.2A") which concentrates on X with elementary
embedding j : V — M such that j(f)(k) = A.
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Proof. Define f : kK — & by recursion. Suppose that f [ « is defined. Assume there
is a cardinal 8 with @ < 8 < k such that for every normal ultrafilter on Pa2(5<a)
concentrating on X N« with elementary embedding j : V' — M, j(f | a)(«) is not
equal to 3. Let f(«) be the least such 8. Otherwise let f(a) = 0.

Suppose for a contradiction that the statement of the lemma fails for f. Let A, be
the least cardinal such that for every normal ultrafilter on P20%") concentrating
on X with elementary embedding i : V' — M, i(f)(k) is not equal to \,. By
assumption, A, exists and A, < A.

Let U be a normal ultrafilter on Pﬁ22(k<n) concentrating on X and write j :
V — M = Ult(V,U). By the closure of M, the definition of f, and Lemma 1.4(2),
F()(K) = Ae. Let U* = U | 237 and write i : V — N = Ult(V,U*). Note that
U* concentrates on X. Apply Lemma 1.3 to obtain k : N — M such that j = ko
and crit(k) = (222N, Then k(i(f)(x)) = 5(f)(k) = Ae, 50 i(f)(x) must be
equal to A\,;. This contradicts the definition of A,. ([

PART I: SUPERCOMPACT RADIN FORCING

2. COHERENT SEQUENCES OF SUPERCOMPACT ULTRAFILTERS

Let k < X be cardinals. A coherent sequence of ultrafilters on P\ is a sequence

U= (U(a,i) :a <k, i < oﬁ(a)>,

for some partial function oV : k + 1 — On satisfying the following properties. Let
g:k— V be the map g(a) = (U(w, i) 17 < oﬁ(a)>.

(1) There is a map  — Ag defined on the domain of 0¥ such that Ax = A, each
Ag > (3 is a cardinal, and whenever oﬁ(
Moreover, for o in the domain of 0¥ and i < 00(04)7 the set {a € P,y : 0.t.(a) =
Aana ) is in U(a, ).

(2) Each g(a) = (U, i) i < oﬁ(oz)> is a sequence of normal ultrafilters on
Py g

(3) Each U(«, ) concentrates on o N dom(o
is strongly inaccessible.

(4) Fix 8 < oY(a) and let Jg V. = Ult(V,U(e, 3)). Then j§(g | a)(a) =
(U(ayi) 11 < B).

In Part IT of the paper we will need to know that coherent sequences exist under
certain conditions. The next two lemmas provide this information.

«) is defined, « is closed under this map.

ﬁ), and every « in the domain of oV

Proposition 2.1. Suppose that (U; : i < ) is a sequence of normal ultrafilters on
P for some 8 < Kk such that:

(1) U; 1k #U; Ik fori<j<p,

(2) For all ag < oy < f3 there exists a function fS! : k — V. such that, letting
Jay 2V = UV, Ua, ), Ja, (f&5)(K) = Uy

(8) There is a function hg : k — Kk such that jo(ho)(k) = .
Then there is a coherent sequence U = (U(a,i) : a < k, i < oﬁ(a» of ultrafilters
on P\ such that 0(7(/4) =0 and U(k,i) =U; fori< .
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Moreover, suppose X is a subset of k such that each U; concentrates on X. Then

we can choose U so that each U(a, i) concentrates on X Na, and the domain of oV
is a subset of X.

Proof. For ag < a1 < 3 define a partial function hg!l : K — & as follows. The
domain of hgl is the set of v in X such that fg1(v) is a normal ultrafilter on P,
for some cardinal v < p < k. If 7 is such an ordinal then let h3!(y) = p.

We construct a sequence (X; : i < () of subsets of x such that for i < j < 3,
X;NX; =0and X; isin U; | k. By (1), for distinct ¢ and j below 3 we can choose
Xi(j) in (U; [ &)\ (U | k). Let X;(i) = k. Define X = A{X;(j) : j < B}. Finally
let X; = X\ U{X] :j <i}.

Now define a sequence (A; : i < ) of disjoint subsets of x using the following
recursive definition: « is in A; if

(a) aisin X; N X, o > i, and « is strongly inaccessible,

(b) if £ < min({e, 8}), then a is closed under the mapping h$ | o,

(c) for all By < B < i, hj (a) = hj (a), and if i = 0 then ho(a) > a'is a
cardinal,

(d) for & < 1, fg(a) is a normal ultrafilter on Pahé (a) which concentrates on the
sets A¢ N and X Na,

(e) for Bo < By < i, letting k : V — ULt(V, f5, (), k(f5! | a)(e) = fi, ().

By recursion it is straightforward to check that each A; is in U; | k; in particular,
(e) follows from Lemma 1.4(2).

Now define U as follows. For o < & let o?(a) = iff v isin A;, and let olj(ﬁs) = 0.
For o < k and £ < oﬁ(a), let U(a, &) = ng(a)(a), and let U(k,&) = Ug. For a <k

let g(o) = (U(ayi) : i < oY(a)). Define A, = th(a)(a) if oﬁ(a) > 0 and let
Ao = ho(a) if 0¥ (a)) = 0.

Fix a < k and £ < oﬁ(a). Let k : V — Ult(V,U(e,€)). By (d), o is in
k(Ag), so k(oﬁ)(a) = k(€) = €. By the definition of U and (e), k(g | a)(a) =
k(@) i< &) = (7@ (a) i< & = (U(a,i) i < €. Similarly, if € < 3 and
Jj:V = Ul(V,U(k,§)), then j(g)(k) = (U; 1 i < &). O

In particular, if there is a <-increasing sequence (U; : ¢ < () of normal ultrafilters
on a cardinal x, where 8 < k, then there is a coherent sequence U on k with
oﬁ(n) = 3. We do not know whether, for example, the existence of a <-increasing
sequence of ultrafilters on x with length k' implies the existence of a coherent
sequence U with o7 (k) = k.

IfU = (U(a,i): o<k, i< olj(a)> is a coherent sequence, then let U | (8 + 1)
denote the coherent sequence (U(a,i) :a < 8, i < o(j(a». The next result gives a
sufficient condition for a coherent sequence with the maximum possible length.

Proposition 2.2. Suppose that kK < X\ are cardinals. Assume that there is an
elementary embedding j : V — M, where M 1is a 2\ closed inner model, such
that the critical point of j is k, j(k) > A, and there is a function f : kK — K such
that j(f)(k) = X. Then there is a coherent sequence U of ultrafilters on P\ such

that oY (k) = (2()‘“))+ andj(U') [ (k+1)= U.
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Assume moreover that X is a subset of k such that k is in j(X). Then we can
choose U = (U(,i) : a < ki < oY () so that each U(a,i) concentrates on X N
and the domain of oV is a subset of X.

Proof. Without loss of generality assume that for all o, @ < f(«) and f(«a) is a
cardinal. Write f(a) = \,.
Define g : K — V,; by induction. Suppose that o < k and g [ « is defined. If « is

not a strongly inaccessible cardinal in X closed under f, then o[j(a) and g(«) are
not defined. Otherwise let X, denote the set of increasing sequences (U; : ¢ < )
of normal ultrafilters on P,\,, with each U; concentrating on X N «, such that for
all B < v, letting jg : V — Ul(V,Up), js(g | &)(a) = (U; : i < ). Note that X,
is closed under unions of chains and contains the empty set. By Zorn’s Lemma, let
g() be a maximal element of X,. Write g(a) = (U(a,i) : i < oY (a)).

Now define oﬁ(m) = j(ol7 [ k)(k). Write

J(9)(r) = (U(k,i) = i < 0" ().
Note that each U(k,¢) concentrates on X. By the closure of M and Lemma 1.4(2),
U= (Ul(a,i): <k, i< oﬁ(a)> is a coherent sequence of ultrafilters on P, A.

We show that Oﬁ(lﬁl) = (20""))*+. For each i < oﬁ(m), any ultrafilter on P, in
Ult(V, U(k,4)) is represented by a function P.A — V,. So there are at most 202~
many ultrafilters less than U(k,4) in the Mitchell ordering. Therefore OU(K) <
(20")+,

Suppose for a contradiction that oﬁ(m) < (20""N)* ) and we will show that
J(9) (k) = (U(k,d) 1 i < 0[7(/»4;)> is not maximal in M. So we will find a normal ultra-
filter U* on P\ in M concentrating on X such that, letting j* : M — Ult(M,U*),
7*G(g) T k)(Kk) = 7% (9)(k) = (U(k,i) : i < Olj(li». Define U* by letting Y be in
U*iff Y C P\ and j“\ € j(Y). Then U* is a normal ultrafilter on P, A which
concentrates on X. By the closure of M, U* isin M. Let i : V — N = Ult(V,U*).
By Lemma 1.3 there is an elementary embedding k£ : N — M with critical point
(2N guch that j = ko .

Write i(g)(x) = (UZ : @ < 7). Note that k(U2) = UZ for each a. Now k maps
i(g)(r) to (U(k,1) : i < 0[7<I€)>, which by assumption has length less than (2(*~"))+,
So i(g)(x) has length less than (2~))*N = crit(k). It follows that i(g)(x) has
length oﬁ(n). Therefore i(g)(k) = (U(k, o) : a < oﬁ(n». If j* : M — Ult(M,U™),
then by Lemma 1.4(2), j*(g) = i(g), so j*(g)(k) = (U(k,a) : a < oﬁ(n)>. O

3. SUPERCOMPACT RADIN FORCING

Let k < X be cardinals and suppose that we have a coherent sequence
U= (U(xi):a<k, i<o(a)

of ultrafilters on P, A. Let o — A, be the map such that each U(q, %) is a normal
ultrafilter on P,Aq. We define a Radin forcing R(U) = R.

For each a in PyA let m, : @ — o.t.(a) denote the unique order preserving
bijection. Define A as the set of a in P;A such that oﬁ(a N k) is defined and

o.t.(a) = Aank- Note that if a C b and a and b are in A, then A\gny, < bN k.
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A condition in R is a pair
(d,A) = ((dy, ... dy), A

such that: B
(1) 4 is in ({U(k,4):i < o(k)} and A C Ag,
(2) d is a finite sequence, possibly empty,
(3) For each 0 < i < n, either d; is a set a; in Az with o%(a; N k) =0, or d; is

a pair (a;, A;) where a; is in Ag, oY(a;NK) >0, A; C A N Pla,nr)@i, and the set

{mg;“c:c€ A;}isin ({U(a; Nk, B) : B < OU(ai Nk)},
(4) For0<i<j<m,a Caj, and if d; = (a;, A;), then for all a in A;, a; Ca

also, for all a in A, a, C a.

We will abbreviate a condition (), A) as (A) and ({d1,...,d,), A) as (dy,...,dyn, A).
Note that in the definition of R, n is the size of d. We will sometimes write a con-
dition <cf, A) = {(d1,...,dn, A) even when cfmight be empty, in which case n = 0.

Now we define the ordering on R. Suppose that

p= <d1,...,dn,A>
and
q= <617"'7em,7B>

are conditions in R. Let ¢ < p if:
(1) m > n,
(2) BC A,
(3) if n > 0, then there are i1 < ... < i, < m such that for each 0 < k < n,
(a) if di is a set in P, A, then e;, = dy,
(b) if dk = <ak,Ak>, then € = <ak,Bk>, where Bk g Ak,
(4) for each 0 < I < m not equal to any i,

(a) if n =0 or if I > i,, then either e; is in A, or ¢, = (b;, B;) where b; is in A
and B; is a subset of A,

(b) if n > 0 and k is least such that I < iy, then dj, is of the form (ay, Ax),
and either ¢; is in Ay, or ¢, = (b, B;) where b; is in Ay and By is a subset of Ag.
If ¢ < p and n = m, then we let ¢ <* p and say that q is a direct extension of p.

We will prove in Section 5 that (R, <, <*) is a Prikry type forcing poset.

Note that (A;) is the maximum element of R, which we will denote by 1g. If
p <* 1g then p = (B) for some B.

The following lemma is immediate from the completeness of the ultrafilters.

Lemma 3.1. Let p = (dy,...d,, A) be a condition in R. Suppose that & < k is an
ordinal such that every d,, of the form {(am,, An) satisfies that £ < a,, N k. Then
for any collection {p; : i < £} of direct extensions of p, there is q such that ¢ <* p;
fori < &.

Similarly, if p and ¢ are two conditions with the same finite sequence of ele-
ments from P, A, then p and ¢ are compatible. The next lemma follows from this
observation.

Proposition 3.2. The poset R is (A<F)T-c.c.
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The following lemma says in effect that if p is a condition in which A appears as
a measure one set, then there are many ways to extend p to include elements from

A.

Lemma 3.3. Suppose that A is in (U (k,1) : i < oﬁ(ﬂ)}. Let X be the set of a
in A such that the set

{ma“c:c€ AN Pynpyal

is in ({U(aNk,i) i <ol (ank)}y. Then X is in (U (k,1) i < 0¥ (k)}
Suppose that (b, B) appears in p for some p in R. LetY be the set of a in Ppny)b
such that the set {m,“c : ¢ € BN Pngyat is in ({U(a Nk, i) 1 i < oY (ank)}.

Then the set {my“c:c €Y} isin ({UbNK,3) i < Oﬁ(bﬂ K)}-

Proof. Suppose that 8 < OU(H) and write jg : V — Ult(V,U(k, 8)). We prove that
Jg“\ € jp(X). Note that m;,«\ = jgl [ jg“A. By Lemma 1.1, j3(A) N P.(jg“\) =
Jp“A, and for all j5(b) in this set, (mj«\)“jg(b) = jgl“(j,g “b) = b. Therefore

{T‘—(js“h) “c:ce€ ]ﬁ(A) N Pﬁ(jg “)\)} =A,
which is in {U(k,4) 1 i < B} = ({UGs“N N js(k), 1) i < 0¥ (js“A N js(k))}. So
Jg“Nisin jg(X).

Fix (b, B) as in the second statement. Let 8 < oﬁ(b N k) and write jg : V —
Ult(V,U(b N &, 3)). We show that jg“(Apnk)) is in the set jg({m“c : ¢ € Y}).
Let d = jg“b. We claim that js(m)“d = jg“(Awnw)). For & is in jg(m)“d iff
there is v in b such that § = jz(m)(is(7)) = Ja(me(vy)) iff € is in jg“(Apnx))-
So it suffices to show that d is in jg(Y). Note that mq = (m o jgl) [ jg“b and
jﬁ(B) N P(dﬁjﬁ(n))d = jﬁ “B. So

{7rd“c iceE j[-}(B) N P(dﬁjg(n))d} = {(7Tb Ojgl)“c cE jQ“B} = {ﬂ'b“e ee B},

which is in ([{U(bNk,1) 13 < B} ={U(dNjg(k),i) i < jg(oﬁ)(dﬁjg(n))}. O

4. FACTORIZATION

Let p = (di,...,dn, A) be a condition in R. Fix 0 < m < n and suppose
dpm, = (@, Ar) (so in particular, oﬁ(aml’m) > 0). Define p”™ = (dm41,- - -, dn, A).
Clearly p>™ is in R. Define p=™ = (ey,...,em_1, B) as follows. Let B = {m,, “c:
¢ € Ay}, which is in ({U(amNk, i) : i < oY (amNk)}. Fix0 < i < m. Ifd; is in P,
then o (d;Nk) = 0and d; is in P, Ax)@m. In this case let e; = m,,, “d;. Otherwise
d; = (ai, A;). Then a; is in P, Aw)@m. Let e; = (b;, B;), where b; = 74, “a; and
B; = {7, “c: c € A;}. The reader can check that p=™ is a condition in the Radin
forcing R(U | ((am N &) + 1)). We will abbreviate R(U | ((am N &) + 1))/p=™ as
R/p=".

Lemma 4.1 (Factorization Lemma I). Suppose that p = (dy,...,dn, A) is a con-
dition in R, 0 <m < n, and dp, = (am, Am). Then there is

i R/p — R/pS™ xR/p>™.

which is an isomorphism with respect to both < and <*.
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Suppose that ¢ = (€1, ..., em, B) is a condition in R such that for all 0 < i < m,
e; 18 in P.A. Then there is

i+ R/g — R/(B)
which is an isomorphism with respect to both < and <*.

Proof. Define i as follows. Let uw = (f1,..., fi,C) be a condition in R below p. Fix
j <l with f; = (am, C;). Define i(u) = (u=7,u>7).

Now we define j. Suppose that s = (g1, ..., gk, D) is below g. Then the sequence
J1s-- -5 9m is exactly e1,...,en. Let 5(s) = (gm+1,- - - 9k, D). O

5. THE PRIKRY PROPERTY

Now we turn to proving that R satisfies the Prikry property. First we show that
it suffices to consider only direct extensions of 1.

Lemma 5.1. Suppose that for any coherent sequence Tj, if v is a statement in the
forcing language for R(U) and p <* 1R(l7)’ then there ezists ¢ <* p which decides

@. Then for any coherent sequence U', R(U') satisfies the Prikry property.
Proof. We prove the lemma by induction. Suppose that for all u < &, if U is

a coherent sequence on P, A for some A, then R(U) satisfies the Prikry property.
Let U be a coherent sequence on P, for some A and let R = R([j ). Consider a
condition p = (dy,...,dn, A) in R with n > 0.

Suppose first that each d; is in P;A. Then by Lemma 4.1 there is an isomorphism
j:R/p =2 R/{A). Note that j(p) = (A), which is a direct extension of 1g. By
assumption (A) can be directly extended to decide any particular forcing statement,
so p can as well.

Otherwise fix m < n maximal such that d,, = (am, An). Combining the maps ¢
and j in Lemma 4.1, there is an isomorphism k : R/p = R/p=™ x R/(A). Let ¢
be a statement in the forcing language for R.

Sublemma 5.2. There is a dense set D of r in R/p=" for which there exists
t <* (A) such that (r,t) decides .

Proof. Let q in R/pS™ be given. Reverse the order of the product to R/{A) x
R/p<™. Let § be an R/{A)-name for a condition below ¢ which decides ¢ over
the generic extension by R/(A). For each r < ¢ let {A(r)) be a direct extension of
(A) which decides whether § = r. Since |R/p=™| < &, t = ({A(r) : r < q}) is
a condition. Clearly there must exist r < g such that ¢ forces s = r. Fix ¢/ <* ¢
which decides for some [ < 2 that r forces ‘. Then (t',7) forces 'p, and therefore
{r,t") forces l¢p. O

For each r in the dense set D described in the sublemma, choose (B(r)) directly
below (A) such that (r, (B(r))) decides ¢. Let B = (\{B(r) : r € D}. Then
R/p=<™ forces that B decides ¢. By induction the poset R/p<" satisfies the Prikry
property. So find ¢ <* p=™ which decides which way that B decides ¢. Then
{q,(B)) decides ¢. It follows that k=1({g,(B))) is a direct extension of p which
decides . O

We will need the next two lemmas to prove the Prikry property. For the remain-
der of this section let I denote the set of sequences d = (dy,...,d,) such that for
some B, (dy,...,d,,B) is in R.
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Lemma 5.3. Suppose that U is a normal ultrafilter on P;\. Let F': P\ — I be a
function such that, letting a1, ..., a, denote the finite sequence from P, )\ appearing
in F(a), an C a. Then there is X in U such that F is constant on X.

Proof. Write j : V. — M = UW(V,U) and let j(F)(“\) = (di,...,d,). For
0 < m < n write dp, = am, or dp, = {(Am, A ). Then each a,, is in Pj“\ and each
A,, is a subset of P j“)\ with size less than x. Let b,, = 7! “a,,, and if A,,, is defined
let B, = {j~'“b: b€ A,}. Define (ey,...,e,) by letting e,, = (b, By) if B,
is defined, otherwise e, = b,,. Then j({e1,...,e,)) = {(d1,...,dn) = J(F)(G*N),
and by elementarity (e1,...,e,) is in I. Let X be the set of a such that F(a) =
(e1y...,en). O

Lemma 5.4. Suppose that U is a normal ultrafilter on PoX. Let (X(d): d € I) be
a sequence such that each X (d) is in U. Define the diagonal intersection N{X (d) :
d e I} by letting a be in A{X(d):d € I} iff a is in X(d) for any d in I such that
every b in P, )\ appearing in Jsatisﬁes that b C a. Then A{X(cf) :dellisinU.

Proof. Suppose for a contradiction that the diagonal intersection is not in U, and
let Y be its complement. Define F' : Y — I by letting F'(a) be some member of I
below a such that a is not in X (F(a)). By Lemma 5.3 there is a set X C Y in U
and d in I such that F(a) = d for all @ in X. But then X N X (d) is empty, which
is impossible. O

Proposition 5.5. The poset R satisfies the Prikry Property.

Proof. Let p = (A) be a condition in R which is a direct extension of 1g and let ¢
be a statement in the forcing language. We prove that there is a direct extension
of p which decides ¢. The proof will follow closely the same argument from [2].

Associate to each d in I and a in A an integer I(d,a) < 2 if there exists a
condition below (A) which forces 1da)y whose finite sequence is either d~ (a,C)
for some C, or d " a if oﬁ(a N k) = 0. Otherwise let I(d,a) = 2. For each d in
I and i < oﬁ(n), let A(d,i) C A be a set in U(x,i) such that for all a and b in
A(d,i), I(d,a) = I(d,b). Define A(i)* = A{A(d,i) : d € I}, which is in U(k, i)
by Lemma 5.4. Define A(0) = A(0)* N {a € P : oﬁ(a Nk) = 0}. For i > 0 let
A(t) = A@)* N{a € P oﬁ(a N k) > 0}. Finally, let B = J{A®%) : i < Oﬁ(lﬁ)}.
Then B is in ({U(k,i) : i < o¥ (k)}.

Suppose for a contradiction that (B) does not have a direct extension which
decides ¢. Let ¢ = (dy,...,dn,C) be an extension of (B) which decides ¢ such
that n is minimal. By assumption, n > 0. Fix [ < 2 such that g forces ‘p. We
will define a set D C C such that (di,...,d,_1, D) forces '@, which contradicts the
minimality of n. Let aq,...,a, be the finite sequence from P;\ which appears in
di,....dy. Let d= (dy,...,dn—1). Fix some ¢ such that a, is in A(7).

Since ¢ forces ‘o, I(d, a,) = I, and so for all a in A(i) N C, I(d,a) = I. So for
cach a in A(i) N C fix a condition r = (d, f,, Ba) below (A) which forces ‘o whose
finite sequence from P\ is a1,...,ap_1,0.

First suppose that i = 0. Define D = CNA{B, : a € C N A(#)}. Suppose
for a contradiction that ¢ = (di,...,d,_1, D) does not force ‘p. Then there is a
condition r = {ey,...,em, E) below ¢’ which forces —('¢). If n > 1 then fix k <m
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such that e, and d,,_; have the same element from P.\; if n = 1 then let £k = 0

and e, = (). If the least element a of r above e, satisfies that oV (a N k) = 0, then
a is in C' N A(0). Then r, and r are compatible, which is impossible. Otherwise
oY(an k) > 0, so we can extend 7 to 7’ by adding an element a from A(0) N C
immediately above e,. Then r, and 7’ are compatible, which is a contradiction.

Now assume that ¢ > 0. For each a in A(7) N C, write f, = (a,b,), so rq =
<OZ: (a,ba), Ba).

We define three sets D(< 1), D(i), and D(> ). Let D(< ) be the set represented
by the function a — {m,“c : ¢ € by} in Ult(V,U(k,1)). For all a in A(i) N C,
{mac:ec€by}isin {U(aNk,B): B <oY(ank)}. Since A(i) N C is in U(k, i),
D(< i) isin ({U(k,B) : B < i}. Also note that if j : V — Ult(V,U(k,1)), a — bg
represents j“D(< 7).

Let D(i) be the set of a in A(7) N C such that D(< i) N Pyneya = bq.

Claim 5.6. The set D(i) is in U(k,1).

Proof. Write j : V. — Ult(V,U(k,4)). Then by Lemma 1.1, j(D(< i)) N P,j“\ =
j“D(< i). But j“D(< 1) is represented by the function a — b, and P.j“\ is
represented by the function a — P,ny)a. O

Finally, if i is not the maximum ordinal below oY (), then let D(> i) be the set
of a in [J{A(j) : i < j < 0Y(k)} for which there exists 3 < oV (a N k) such that the
set {mq “c: c € D(i) N Pungya} is in U(a Nk, 3). If i is the maximum ordinal below

7 (

oY (k) then let D(> i) be the empty set.

Claim 5.7. The set D(> i) is in ({U(k,1) 1 i <1< oﬁ(m)}.

Proof. Fix l and let j: V — Ult(V,U(k,1)). The set D(7) is in U(k,4). But D(i) is
equal to the set {mj«\“c:c € j(D(i)) N Pej“A}. O

Let D(< i)* be the set of a in D(< i) such that {m,“c: c € D(< i) N Pynp)a}t
is in ({U(aNk,1):1<0Y(ank)}. Note that D(< i)* is in (U (k,1) : 1 < i}.
Now define

D=CnNnA{B,:aeCNA@{}N(D(<#)*UD(i)JD(>1)).

Suppose for a contradiction that ¢’ = (dy,...,d,_1, D) does not force ‘. Then
there is a condition r = {(ey, ..., e, E) below ¢’ which forces =('p). If n > 1 then
fix k < m such that e and d,,_1 have the same element from P,\; if n = 1 then let
k =0 and e, = (0. Recall that for each a in A(i)NC, r, = (d1,...,dn_1,{a,bs), Ba)
is a condition which forces ‘¢. We will get a contradiction by showing that there is
a such that r and r, are compatible. First note that we can extend each r, to r/,
whose finite sequence below (a,b,) has length & and has the same finite sequence
from P, as does eq,...,e¢eg.

We consider three cases. First suppose k = m. Extend r tor’ = {e1,...,em, e, E')
such that the element a of e from P, ) is in A(¢). Then r’ and 7/, have the same
finite sequence of elements from P, A and so are compatible.

Now assume k < m. Suppose that for all k& < j < m, the element of e; in P, A
is in D(< 4)*. Fix a in D(i) such that ' = (e1,...,em, (a, by N E), F) < r. By the
definition of D(i), by = D(< i) N P4nx)a. So the elements of P from exi1,...,em



12 JOHN KRUEGER

can be added to r/, to obtain a condition with the same finite sequence as r’. Then
r! and 1’ are compatible.

Finally, suppose there is a minimum j with k < j < m such that e; = (a;, B;)
where a; is in D(i) U D(> 4). First assume that a; is in D(i). For k < < j, define
e; by intersecting the measure one set appearing in e; (if it exists) with D(< 7).
Then

(€1, ks €hp1s e -5 €515, Bi Nba;)s €415y €m, BN Byy)
is below 7 and r. Otherwise the element a; of ¢; is in D(> 4). By the definition of
D(> i), we can extend r by adding an element of D(¢) immediately below e;. This
condition satisfies that the least member a of the finite sequence above e which is
in D(i) UD(> i) is actually in D(¢), and we just proved that any such condition is
compatible with r/,. O

Now we can strengthen Sublemma 5.2.

Lemma 5.8. Suppose that p = (d1,...,dn, A) is a condition in R and m < n with
dm = (@, A). Let G be generic for R/pS™. Then in V[G]:

(1) for any ¢ in the forcing language for R and any condition s in R/p>™, there
is t <* s which decides .

(2) Suppose that £ < k is an ordinal such that for all I with m < 1 < n, if

d; = {a;, A;) where oY(a; N k) > 0 then & < a; N k. Then for any collection
{p; : i < &} of direct extensions of p~™, there is q such that ¢ <* p; fori <¢.

(3) Suppose that £ < k is an ordinal such that any a in P, with oY (aN k) > 0
which appears either in the finite sequence of p™™ or in a measure one set of p~™
satisfies that a Nk > &. Then p~™ forces that no new subsets of & are added over

VIG].

Proof. The proof of (1) is similar to the proof of Sublemma 5.2, using Lemma 3.1
and the Prikry property for R in place of the assumption of Lemma 5.1. The proof
of (2) is similar, using Lemma 3.1.

For (3), every r < p~™ satisfies the assumptions of (2). Suppose ¢ < p~™ and
q forces f: € — 2. For each i < & let ¢; <* q decides the value of f(z) Apply (2)
and obtain 7 such that r <* ¢; for each i. Then r forces that f is in the ground
model. O

6. THE RADIN CLUB

Suppose that p is a condition in R and a is in P;A. We say that a appears in p
if either a is in the finite sequence of p, or there is d in the finite sequence of p such
that d = {a, A) for some A.

Suppose that G is generic for R over V. Define the Radin club

Cg ={a€ (PN :3pc G (aappears in p)}.
By the compatibility of conditions in G, if a and b are in Cg, then either a C b or

b C a. Therefore either a Nk < bN K or vice versa. So Cg is a well ordering and

0.t.(Cq) < k.

Proposition 6.1. The set Cg is a closed and unbounded subset of (P\)Y. Fur-
thermore, for all a in Cg:
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(1) a is a successor point of Cq iff oﬁ(aﬂ k) =0 and a is not equal to min(Cg).
(2) a is a limit point of Cg iff oY (aN k) > 0.

Proof. Suppose a is in Cg and oﬁ(a Nk) > 0. Fix p in G such that a appears in p.
Let ¢ be in P4nx)a. Then there is a dense set of r below p in which there appears
some b with ¢ C b C a. For if ¢ < p, then (a, A) is in ¢ for some A, and it is possible

to add elements b from A to ¢ with ¢ C b Ca. So a is a limit point of Cg.

Suppose that a is in Cg, oﬁ(a N k) =0, and a is not equal to min(Cg). Fix p
in G such that a appears in p. It is easy to show that since a is not minimal and
oY(anNk) =0, there is b C a appearing in p. Let b be the maximal b C a appearing

in p. Then by the definition of the ordering, whenever ¢ Caisin Cg, c Cb. So a

is the successor of b in Cg.

The other directions of (1) and (2) now follow immediately.

An easy density argument shows that Cg is unbounded in (P,\)". Suppose for
a contradiction that there is an initial segment C' of C¢ such that | JC = A is not in
Cg. Let a be the least element of C¢ such that A C a. Then Cg is not unbounded
in Pynk)a, S0 a is not a limit point of Ce. By (2) it follows that oV (aNk) = 0. By
(1) there is b in C¢ such that a is the successor of b. But then every element of C
is a subset of b, so A C b. This contradicts the minimality of a. (]

The generic filter G can be recovered from Cg. Let p = (dy,...,d,,A) be a
condition in R and let aq, ..., a, be its finite sequence from P;A. Then p is in G iff

(1) each a; is in Cg,

(2) for each a in C¢ with a, C a, a is in A and the set {7, “c: ¢ € AN Panwyat

isin ({U(anNk,i):i< oﬁ(a Nk)}, and
(3) write ag = (); then for each ¢ < n, if d; = (a;, 4;), then for all a in Cg with
ai-1 CacCa;aisin Aj; and the set {7, “c: ¢ € A; N Pynpyal isin ({U(aNk,i) :

i <oV (ank)}.
For any condition p in G satisfies these properties, and any condition which satisfies
these conditions is compatible with each member of G, and so is in G.

We will abuse terminology and say that Cg itself is generic for R.

Lemma 6.2 (Factorization Lemma II). Suppose that p = (di,...,d,, A) is a con-
dition in R, 0 <m < n, and d,, = (am, Am)-
Let G be generic for R containing p. Define C=™ = {m, “c:c € Cg,c Cam}

and C>™ = {c € Cg : am C c}. Then C=™ is generic for R/p=<" over V and C>™

is generic for R/p>™ over V[C=™].

On the other hand, if Cy is generic for R/p<™ over V and C is generic for
R/p>™ over V[Cy], then C = {r ' “c: c e Co}U{am}UCy is generic for R/p over
V.

Proof. Let i : R/p — R/pS™ x p>™ be the isomorphism described in the proof of
Lemma 4.1. Write i“G = G¢ x G1. Then Cg, = C=™ and Cg, = C>™.
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For the second statement, let G =i~1“(G¢, x G¢,). Then Cg = C. O

Lemma 6.3. Suppose that p = {(d,...,d,, A) is a condition in R, 0 < m < n, and
dyy, = (am, Am). Let G be generic for R containing p and factor Cg as C=™ and
C>™. Then every subset of Aa,,nx) in VI[G] is in V[C=™].

>m

Proof. The condition p satisfies the property that for any a in P,;\ appearing
either in the finite sequence of p~™ or in a measure one set of p™™, aNK > Aa,, (k-
Now apply Lemma 5.8(3). O

Ifo < Oﬁ(li) < k then R is very similar to Magidor forcing, as we see next.

Lemma 6.4. (1) If the set {a € Cg : oﬁ(a NkK) > Oﬁ(li)} is non-empty, then it
has a mazimal element. - ~
(2) For any b in Cg, if the set {a € Cg : a C b, oY(ank) > oY (bNk)} is

non-empty, then it has a maximal element.

Proof. Let C = {a € Cg : oY(aN k) > oY(k)}. If C is empty then we are done.
Suppose that C' is non-empty. Fix p = (di,...,d,, A) in G such that there is
0 < m <n with d,, = {(am, Anm) and a,, is the largest element of C' appearing in p.
Define ¢ < p by replacing A with A’ = {a € A: 0" (aNk) < oY(x)}. Then ¢ forces
that any ¢ in Cg with oﬁ(cﬁ K) > oﬁ(n) is a subset of b. Therefore ¢ forces that a
is the maximal element of C'.

Statement (2) follows from the first statement applied to the Radin forcing R(U' I
(bNk)+1)). O

Theorem 6.5. Suppose that 0 < O[j(fi) < k. If there is a in Cq such that oﬁ(a N

K) > oﬁ(n), then let a' be the mazimal such set. Otherwise let o' = (. Then the
set {b € Cg : a' C b} is a closed and unbounded subset of (P.A\)Y with order type

wo (k)

Proof. We prove the theorem by induction on oV (k). Let Cf, = {a € Cg : d’ Ca}.

Suppose that OU(H> = 1. Then for all b in Cf, oﬁ(b N k) = 0. By Proposition
6.1(2), Cf has no limits points. So the order type of C; is w.

Suppose that oﬁ(/@) = £ 4+ 1 and the statement holds for ordinals less than
€ + 1. Then for all b in Cf, oﬁ(b N k) < £ By a density argument the set

Ce = {a € Cl :0Y(ank) = ¢} is unbounded in CJ;. By Proposition 6.4(2), C¢ has
no limit points in Cf, and so has order type w. Let (a,, : 0 < n < w) enumerate the
elements of C¢ in increasing order and let ag = a’. By the the induction hypothesis
and Lemma 6.2, for each n > 1 the set C,, = {b € C : a1 cbc an} has order

type wt. Thus C/, has order type w® - w = Wit

Now suppose that ol (k) is a limit ordinal and the statement holds for all § <
Oﬁ(ﬁ). Fix § < o[j(n). By a density argument, there is a set b in Cf, with OU(bﬂm) =
0. So by the induction hypothesis and Lemma 6.2, C, has order type at least W,
Therefore CL, has order type at least sup{w’ : § < oﬁ(/@)} — o), Suppose

for a contradiction that the order type of Cf, is larger than w? (). Let b be the
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w‘)ﬁ(”)—th element of Cf,. By the induction hypothesis and Lemma 6.2, there is a
tail of Cf; N Ppnyyb with order type we” (6% Byt every tail of Cf; N Pyn,b has

“(

order type w® (), which is a contradiction. (I

Corollary 6.6. Suppose that 0 < oﬁ(n) < k. Then there is p <* 1 which forces
that the order type of Cg is wo” (%)

Proof. Let p = (A), where A is the set of a in Ay with oﬁ(a Nk) < oﬁ(n). O
Note that if oﬁ(a) < Oﬁ(li) < k for all @ < k, then the order type of Cg is
g

we (k)

7. PRESERVATION OF CARDINALS

When A = k then R preserves all cardinals. When A > & the situation is a bit
more complicated, but we have a description of which cardinals are collapsed.

For each a in P )\ write k, = a N k. Let G be generic for R over V and let Cq
be the Radin club described in the last section.

Recall that since  is A-supercompact, A<" is equal to \ if ¢f()\) > & and is equal
to AT if cf()\) < k.

Proposition 7.1. Let y > k be a cardinal.
(1) All cardinals greater than A<* are preserved.
(2) If u < X and cf(u) > K, then in V[G], cf(u) = cf(0.t.(Cg)).
(8) If k < u < A" then u is collapsed in V[G].

Proof. Statement (1) follows from the fact that R is (A<*)*-c.c. Suppose that
k < p < Aandcf(p) > kin V. By a density argument the set {sup(anu) : a € Cg}
is closed and unbounded in g with order type o.t.(Cq). So cf(u) = cf(0.t.(Cq)).
Since 0.t.(Cg) < K, every successor cardinal in the interval (k, A] is collapsed. It
follows that every cardinal in this interval is collapsed.

If ¢f(A\) > K, then A<" = X and the proof is complete. If c¢f(A) < & then
A<® = A*. Every member of (P,A\)" is a subset of some a in Cg, and for any a
in Cg there are fewer than x many subsets of a in V. It follows that in V]G] the
ordinal (A<%)V has size no larger than |Cg| -k = k. O

Proposition 7.2. Let p < K be a cardinal.

(1) The cardinal p is collapsed iff there is a in Cq with oﬁ(na) > 0 such that
Ka < pt < Aghe.

(2) Suppose there is a in Cg with Oﬁ(ﬁa) > 0 such that ko < p < A, and
cf(pu) > Kq. Then in V]G], cf(p) = cf(o.t.(Ce N Py, a)).

(8) If p is regular and p changes its cofinality, then there is a in Cg with
O[j(,‘{a) > 0 such that kg < p < ASFe.

Proof. Suppose that a is in Cg with oﬁ(na) > 0 and K, < p < AgFe. Then we

—

can factor Cg as Cy and C such that Cy is generic for R(U | (kq + 1)) over V.
By Proposition 7.1(3), p is collapsed in V[Cy] and so also in V[G]. By Proposition
7.1(2), if p < Ay, and cf(p) > Kq, then in V[Co], cf (1) = cf(0.t.(Cp)) = cf(0.t.(CaN
P, a)). By Lemma 6.3, the same is true in V[G]. This proves (2) and the “if”
direction of (1).



16 JOHN KRUEGER

(3) Suppose that p is regular, 8 < u, p = {(d1,...,d,,A) is in G, and p forces
that f : 8 — p is cofinal. Assume for a contradiction that there is no ¢ < p which
forces the conclusion of (3). Then in particular, if 0 < ¢ < n and d; = {(a;, 4;),
then g is not in the interval [kq,, Aa; ]
a largest m < n such that oﬁ(mam) > 0 and p > Kg,,, let V3 be V[G=™], where
G=™ is the generic for R/p<™ given by G, and let p* = p>™; otherwise let V; =V
agd p* = p. In either case, p is regular in V7, and for any a appearing in p* with

. Define V; and p* as follows. If there is

oY (kq) > 0, 1 < Kq. For each pair (i,a) in 3 x p, choose q(i,a) <* p* which
decides the statement f(i) = a. By Lemmas 3.1 and 5.8(2), there is ¢ such that
q <* q(i, «) for each i and a. Define g : 8 — p in V} by letting g(¢) be such that ¢
forces f(i) = g(i). Then g is cofinal in x and therefore y is singular in V;, which is
a contradiction.

“Only if” direction of (1): First we show that if u is collapsed, then there is a
in Cg with 0 (kq) > 0 such that ko < p < A", If 1 is regular then this follows
from (3). Suppose p is singular. Then there is a sequence (v : i < cf(u)) of regular
cardinals unbounded in g in V' which are all collapsed in V[G]. For each ¢ fix a; in
Cg¢ such that kq, < o < /\,ffi“i. If the map i — a; is not eventually constant, then
& is a limit point of the club set {a Nk : a € Cg}, and so is in this set. This is a
contradiction since p is singular in V', and if @ is a limit point of Cg then a Nk is
measurable in V. If a is in C¢g such that a; = a for a tail of i’s, then k, < p < )\,ffa.

Now suppose that pu = k, for some a in Cg with oﬁ(fia) > 0. We show that p is

not collapsed. In V[G] the cardinal 4 is a limit of point of {s; : b € Cg, oV (bNk) =
0}, and by the last paragraph every ordinal in this set is a cardinal in V[G]. O

By Proposition 7.2(1), the set {k, : a € Cg} is a club subset of k consisting of
cardinals. So k remains a cardinal in V[G].

By the theorem of Cummings and Shelah about changes of cofinality (see Section
1) and the fact that R is (A<")T-c.c., the cofinality of A<* in V[G] is equal to
cf(|(A<F)Y]) = cf(k) = cf(0.t.(Cg)). Similarly, if a is in Cg then in V]G] the
cofinality of A$" is equal to cf(0.t.(Ca N Punw)a)).

PART II: ITERATED RADIN FORCING

8. ITERATING RADIN FORCING OVER THE SAME CARDINAL

In this section we show how to iterate Radin forcing infinitely many times over
the same cardinal. Suppose that x is a supercompact cardinal. Let (k, : n < w) be
a sequence of cardinals such that either (1) each x,, is equal to &, or (2) kg > k and
fn < (K™t < Kpgq for each n. We will define a forcing iteration R with length
w such that at each stage n we force with a Radin forcing defined from a carefully
chosen coherent sequence of ultrafilters on Py k.

Define by recursion sequences (R,, : n < w) and (R" : n < w) as follows. We let
RO be the trivial poset and for n > 0 let R” = Rg % ... * R,,_;. We maintain the
following for each n > 0:
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Recursion Hypotheses
(1) R™ forces that k is supercompact, and

(2) if n > 0 then |R"| < 253" and R is (k=) -c.c.

n—

Obviously R? forces that & is supercompact. Suppose that n > 0 and R" is
defined and satisfies the recursion hypotheses. Let G™ be generic for R™ over V
and write V,, = V[G"].

We would like to define a Radin forcing R,, on P;k, in V,, which forces that
% remains supercompact. In order to achieve this we must choose our coherent
sequence carefully. Until further notice we are working in the model V,,. We begin
with a variation of Proposition 2.2.

Proposition 8.1. Suppose that A > 2(’“?), U is a normal ultrafilter on P\ with
j:V—= M =Ul(V,U), and there is a function f : k — K such that j(f)(k) = kn.
Then there exists a coherent sequence of ultrafilters U = (U (1) : o0 < ki < oV ()
on P.k, such that:

(1) 0 < 0% (k) < (205)*,

(2) i) | (k+1)=U, and

(3) (U (ki) i < 0[7(/{)} is a subset of U | kp,.

Proof. Define g : kK — V,; recursively as follows. The domain of g is the set of
strongly inaccessible cardinals a such that f(a) > « is a cardinal and « is closed
under f. Suppose that « is in the domain of g and g [ « is defined. Let X, be the
collection of sequences (U; : i < ) of normal ultrafilters on P, f(«) such that for
all B < 7, letting jg : V. — Ult(V,Up), jg(g | o)(c) = (U; : i < B); moreover, for
each B <, Ug \ | U{U; : i < B} is non-empty. Let g(a) = (U(a,i) : i < oﬁ(a)> be
some maximal element in X, which exists by Zorn’s Lemma.

Let (U(k,i) 14 < oﬁ(m)> be equal to j(g)(x). This defines a coherent sequence
U on Pk, such that j(U) | (k+1) = U.

Note that OU(K‘,) < (20:2"))*+. For otherwise choose X; in U(k,i) \ U{U(x, j) :
j < i} for each i < (2(52"))*. Then X; # X, for i < j, since X is not in U(k, ).
This is a contradiction since there are only 2(re") many subsets of Pgky,.

Let U' = U | Ky, and write i : V. — N = Ult(V,,,U’). Let k : N — M be the
elementary embedding from Lemma 1.3 such that j = ko7 and crit(k) = (2("5”))‘*‘1\7.
Now k maps the critical point of k to (2(5"))* which is larger than Olj(li), SO
i(g)(k) has length oﬁ(n) and in fact is equal to (U(k,7) : i < oﬁ(n». Since U’ is
in M, by the maximality of j(g9)(x), U' \ | U{U(k,i) : i < Oﬁ(lﬁl)} is empty. Suppose
that A is in ({U(k,4) : i < OU(FL)}. If Ais not in U’, then (Pik, \ A) is in U’".
So there is i < oﬁ(m) such that (P.k, \ A) and A are both in U(k,), which is
impossible. (I

Lemma 8.2. There exists a coherent sequence U = (U(,i) : o < ki < oﬁ(a»
of wltrafilters on Pyky in Vi, with 0 < oﬁ(n) < (2(H7<L~,))+ satisfying the following
property: for every \ > 2(52") there is a normal ultrafilter Uy on P with jy :
Vi — My = Ult(V,Uy) such that jx(U) | (k+1) = U and N{U(k,i) : i < Oﬁ(li)} c
U)\ [ Rn -
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Proof. By Lemma 1.3 it suffices to prove there are unboundedly many regular
cardinals A satisfying the required property Suppose for a contradiction that for
cach coherent sequence W on P, k,, with o' (k) < (252))*F | there is (W) > 252"
such that for every regular A > (W), there is no Uy on P, as desired. Choose a
regular cardinal A which is larger than ,u(W) for each coherent sequence w.

Let f : kK — Vj be a Laver function for k. Then there exists a normal ultrafilter U
on P\ with elementary embedding j : V;, — M = Ult(V;,, U) such that j(f)(x) =
K- Apply Proposition 8.1 to obtain U , which contradicts that A is greater than
w(U). O

Now let R,, be an R™-name for a Radin forcing defined from a coherent sequence
on Pk, satisfying the statement of Lemma 8.2. Define R*t! = R"” «R,,.

Proposition 8.3. The poset R™t! forces that k is supercompact.

Proof. Suppose that G™ * G,, is generic for R®*! = R" x R,, over V and write
Vo = V[G"]. Let U = (U(a,i) : o < ki < oﬁ(a)> be the coherent sequence on
Pk, in V, such that R,, = R((j) Fix A > 2(:2") . Let U be a normal ultrafilter
on P with j : Vi, — M = Ult(V, U) such that j(U) | (k41) = U and "{U (k) :
i<0ﬁ(/<;)}§U [ K

Define A* to be the set of a in j(A;) such that j“x, C a. Recall that in M,

T(jnn) =J | j“kn. Let s be the condition

{( G%kn,J " Ag), AT )
in j(R,). Then j(R,)/s factors as R,, x j(R,,) /(A*) with isomorphism ¢ as described

in the proof of Lemma 4.1.
For any p = (di,. ., dn, A) in Ry, j(p) = (i(da), .., j(dn), (A)). Let

P =(j(dr), ... (dn), (j“kn, j A),J(A) N A").

Since A is in ({U(k,i) : i < Oﬁ(li)>7 Aisin U | k. Therefore j“c, € j(A).
It follows that p’ is below j(p). Clearly p’ is below s as well. Moreover, i(p') =
(p, (i(4) N A%) ). |

Define U* in V,,[G,,] by letting X be in U* iff X C P, ), there is a name X for
X, and there is t <* (A*) in j(R,,)/(A*) such that ¢ forces over M[G,] that j“\ is
in j(X).

First we show that the definition does not depend on the choice of the name X.
Suppose that X = XGn = Y% in V, [Gr]. Then there is p = (d1,...,d,, A) in G,
which forces that X = Y. Since p/ < j(p), p’ forces over M that j(X) = j(V).
But i(p') = (p, (j(A) N A*)), so (j(A) N A*) forces over M[G,] that j(X) = j(V).
Applying the Prikry property of R/(A*) in M[G,], let ty (respectively, ty) be
a direct extension of (A*) which decides whether j“\ is in j(X) (respectively, in
§(Y)). But ty, ty, and (j(A) N A*) are compatible, so ¢y and ¢y must decide their
respective statements the same way.

Similar arguments show that U* is a non-principal, fine ultrafilter on P;A which
extends U. To prove normality, suppose that p = (dy,...,d,, A) is in G,, and p
forces that f : P.A — X is a regressive function. Then (j(A) N A*) forces over
MI[G,] that j(f) : j(P\) — j()\) is a regressive function. For each 4 less than A
let ¢; be a direct extension of (j(A) N A*) which decides whether j(f)(5“\) = 5(i).
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By Lemma 5.8 there is ¢ such that ¢ <* ¢; for all ¢. Clearly there must exist ¢ such

that t forces that j(f)(j“\) = j(i). Then the set {a € P,A: f(a) =i} isin U*. O

This proves the first recursion hypothesis. If n = 0 then R! = Ry, which has size
at most 270 ") and is (kg")*-c.c. Suppose that n > 0. Then by recursion R™ has

. <n .
size at most 2(="1) and is (k) t-c.c.

Lemma 8.4. Suppose that G™ is generic for R™ over V. Then the cardinals k5"
and 2055 are computed the same in both V and V[G"].

Proof. First assume that cf(k,) < k in V. Since k is supercompact in V and
VIG"], k5" = k" in both models. But R™ is k,,-c.c. Now suppose that cf(k,) > K
in V. Then 5% = Kk, in V. If cf(k,)" changes its cofinality in V[G"], then by
Proposition 7.1 it must change its cofinality to k. So k5" = Kk, in V[G"] as well.
The poset R™ has at most 2(ki%) many antichains. So there are at most 2(k3")
many canonical names for subsets of x5 ". O

Since R™ is (k") -c.c. and R" forces that R,, is (k%) T-c.c., R is (k") T-

c.c. The chain condition and sizes of R™ and R,,, along with Lemma 8.4, imply
that [R71] < 2(2"),

Now we define the iteration R¥. The poset R“ is basically a Magidor iteration,
except instead of iterating Prikry type forcing posets over different cardinals, we
iterate Radin forcing over a fixed cardinal.

A condition in R¥ is a function p with domain w such that for all n < w, p [ n is
in R™; moreover, there is a finite set a, C w such that for all n < w, nisin w\ a,
iff p | n forces that p(n) <* 1. Let ¢ < pif ¢ [n <p|ninR" for all n. Let ¢ <* p
if for all n, ¢ [ n Ik g(n) <* p(n).

For each n < w, R, factors as R"*R% in the obvious way, where R is a name for
the iteration defined using the sequence (R,, : n < m < w) in the generic extension
by R”.

Proposition 8.5. The poset R“ satisfies the Prikry property.

Proof. Let ¢ be a statement in the forcing language for R“ and let p be a condition
in R¥. Suppose for a contradiction that there is no direct extension of p which
decides ¢. We inductively define a <*-decreasing sequence (g, : n < w) in R¥ as
follows. Let gg = p. Suppose gy, is defined for some n > 0. Let gp41 | [n+ 1,w) be
a sequence of names such that ¢, | (n 4 1) forces the following: if there is a direct
extension of ¢, | [n + 1,w) which decides ¢, then ¢,11 [ [n 4+ 1,w) is such a direct
extension; otherwise g,+1 [ [n+ 1,w) = ¢, | [n + 1,w). Define ¢11 [ 7 = ¢, | n.
Let ¢n+1(n) denote a name for a direct extension of ¢, (n) which decides whether
Gn+1 | [n+ 1,w) decides o, and if so, which way it decides (.

Now define ¢ = (q(n41)(n) : n < w). Clearly ¢ <* p. Also note that for all n < w,
q [ n =g, [ n. By assumption there is no direct extension of ¢ which decides .
For each r < ¢ let b, be the set of m < w such that » [ m does not force that
r(m) <* ¢(m). Then b, C a,, so b, is finite. Choose r < ¢ which decides ¢ such
that |b,| is minimal. Let n = max(b,.), which exists since r is not a direct extension
of ¢. Fix [ < 2 such that r forces ‘. Then

rinlFrn)F(r]n+1lw) < gl n+lw)) & (rln+1Lw)lip).
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Sincer [n<g¢q, [nand ¢ | [n+1,w) <* gpy1 | [n+ 1,w), by the definition of g(n)
we have

rinlkgn)lFql[n+1,w)IF .
It follows that s = (r [ n)"q(n)~(q | [n+ 1,w)) forces ‘p. But by = b, \ {n}, which
contradicts the minimality of |b,|. O

Now we analyze preservation of cardinals and changes in cofinality. We need the
following simple lemma.

Lemma 8.6. Suppose £ is less than k and p is a condition in R¥. Assume that
for each n < w, p [ n forces that if a is in Pyky and appears in p(n), and the order
of a Nk is greater than 0, then a Nk > €. If {p; : i < &} is a collection of direct
extensions of p, then there is q such that ¢ <* p; for i < €.

Proof. Define g inductively. Suppose ¢ | n is defined so that ¢ [ n <* p; [ n
for i < £ Apply Lemma 3.1 to find a name g(n) such that ¢ [ n forces that
a(n) < pi(n) for i < €. 0

Let G be generic for R¥ over V. For n < w let G [ n denote the set {p [n:p €
G}. Then G | n is generic for R™ over V.

Lemma 8.7. Suppose that i < r. Then there is m < w such that PV (1) is in
VIG | m].

Proof. Suppose that p is a condition in G. Let n = max(ap). For each m > n
write p(m) = (Am>, where A,, is a name for a subset of P,.k,,. Define ¢ by letting
gl (n+1)=p] (n+1)and for m > n, let g(m) be a name for { {a € A,, : aNk >
K )

We claim that g forces that P(u) is in V|G | (n + 1)]. Suppose that r < ¢
and 7 forces f : u — 2. For each i < y let s; be a name for a condition in R,
such that » | (n+ 1) forces that s; <* r | [n + 1,w) and s; decides the statement
f(i) = 0. Apply Lemma 8.6 to R« to find a name s such that r [ (n + 1) forces
that s <* s; for i < p. Then r | (n + 1) forces that s decides all the values f(3)
for i < p. Therefore (7 | (n+ 1)) s is a refinement of r which forces that f is in
VIG | (n+1)]. O

In particular, if 4 < & is a cardinal in V' which is collapsed in V[G], then there is
m < w such that p is collapsed in V[G | m]. Also if y < x and cf(p) = § in V]G],
then there is m < w such that cf(u) =0 in V[G | m].

Proposition 8.8. In V[G], k is a strong limit singular cardinal with cofinality w.

Proof. For each n let C,, be the Radin club on Pk, in V[G]. Let D = {min(C, )Nk :
n < w}. We claim that D is unbounded in x, and therefore cf(k) = w in V[G].
Fix £ < k. Suppose that p is in G and let n = max(a,). For each m > n write
p(m) = (Am> Define ¢ < p by letting g [ (n+1) =p [ (n+ 1), and for m > n
let g(m) be a name for ({a € A, : a Nk > £}). Then ¢ forces that for all m > n,
min(C,,) Nk > &. So D is unbounded in k.

To show that x is a strong limit cardinal in V[G] it suffices to show that for all
p < K, 2% < k. Fix g < k. By Lemma 8.7 there is m < w such that PV () =
PVIGTm (1), But & is supercompact in V|G | m]. O
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Suppose we are in the case that k, < kp41 for n < w. Let k, = sup({k, : n <
w}).
Proposition 8.9. Suppose that k < u < Ky and cf(p) > Kk in V. Then cf(p) = w
in V[G]. Therefore all cardinals in the interval (K, ky) are collapsed to k.

Proof. Let C,, be the Radin club on Pk, in V[G]. Define D,, = {sup(min(C,,)Npy) :
n < w}. As in the proof of Proposition 8.8, D,, is an unbounded subset of . O

Proposition 8.10. The poset R¥ is k7 -c.c.

Proof. Suppose for a contradiction that A is an antichain in R* with size 3. Then
there is B C A with size ,%j; and a finite set @ C w such that for all p in B, a, = a.
Let n = max(a). We claim that the set {p | (n+1) : p € B} is an antichain in R"*1,
which will contradict the fact that R"*! is (k%) T-c.c. Suppose that p and ¢ are in
B and r is below both p | (n+ 1) and ¢ | (n+ 1). Then r forces that p | [n+ 1,w)
and ¢ | [n 4+ 1,w) are both direct extensions of 1 and hence are compatible. Let u
be a name such that r forces that u is below both ¢ [ [n + 1,w) and p | [n 4+ 1,w).
Then r~u is below both p and ¢, which is impossible. ([l

Let us summarize the situation. In V[G], k is a strong limit singular cardinal
with cofinality w. If p is a cardinal in V' such that x < pu < K, then p is collapsed
to x in V[G]. The successor of &, in V is preserved and becomes the successor of
k in VI]G].

9. ITERATING RADIN FORCING OVER DIFFERENT CARDINALS

Magidor [6] introduced a method for iterating Prikry forcing over different car-
dinals. In this section we show that the same method works more generally for
Radin forcing.

First we show how to iterate Radin forcing using coherent sequences of arbitrary
length. At each stage we use a coherent sequence derived from a supercompact
ultrafilter. This works as we will see because the iteration preserves supercompact-
ness. Afterwards we refine this construction, iterating Radin forcing defined from
coherent sequences without appealing to a larger supercompact ultrafilter.

Suppose that A is a set of cardinals satisfying the following properties:

(1) There is a map a — A, defined on A, and every § in A is closed under this
map.

Let A* denote the set |J{[a, \}]: a € A}

(2) For each @ in A, there is a normal ultrafilter U, on P,( with elemen-
tary embedding j, : V — Ult(V, U,) such that min(j(A*) \ a) > Ay. In particular,
U, concentrates on a \ A*.

We would like to add a Radin club to P,\, for each « in A.

Define by recursion an iterated forcing (M, R, : @ < sup(A4)), maintaining the

following recursion hypotheses:

<a
220@ ) )

Recursion Hypotheses:

(1) If « is a strong limit cardinal closed under the map 5 — Ag, then |M,| < 2¢
and M, is at-c.c.

Suppose that « is in A.

(2) The poset M, forces there is a normal ultrafilter U} which extends U,

o

: <a 9(AL™) 2008 -
(3) The cardinals AS%, 2%« ) and 2 are computed the same in both V
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and any generic extension by M,,.
(4) Moy | < 2057,

Let a < sup(A) and assume that M, is defined and satisfies the recursion hy-
potheses. If « is not in A then let R, be a name for the trivial poset and define
Ma+1 = Ma * Ra.

Suppose that « is in A. Let G, be generic for M, over V. By the recursion
hypotheses there is a normal ultrafilter U in V[G,] which extends U,. By Lemma
1.5 and Proposition 2.2, for each £ < (2@;@))+ there is a coherent sequence of
ultrafilters U = (U(8,4) : 8 < a,i < oV(3)) on Py, such that each U(S3,1)

concentrates on 3\ A*, the domain of oV is disjoint from A* N «, and oY (k) = &.
Choose some such coherent sequence on P,\, and let R, be the Radin forcing
defined from this coherent sequence. Let M, = M, * R,. The poset M, is a™-
c.c., has size no larger than 2%, and forces that [Ry| < 204", So [Mg | < 20087,

Suppose that o is a limit ordinal and Mg is defined for 3 < a. Define M, as the
set of functions p with domain « such that for all 8 < «, p [ B is in Mg; moreover,
there exists a finite set a, C « such that for § < o, fisin a\ a, iff p [ B forces
that p(3) is a direct extension 1 in Rg. Let ¢ < pifq [ B3 <p | 8 for B < a. Let
g <*pifforall < a,q]!p forces that ¢(3) <* p(B).

The iteration M, satisfies the Prikry property; for a proof see [2] or [6].

We verify the recursion hypotheses. Suppose that « is a strong limit cardinal
closed under the map 3 +— Ag. First assume sup(A) = v < a. Then 7 is a strong
limit cardinal closed under the map 3 +— Ag, so by recursion |M,| = [M,44| < a.
Otherwise sup(A) = a. Then for each v < «, [M,| < a. So J{M, : v < a} has
size «a, and therefore M, has size at most 2°.

Suppose that B C M, with |B| = a™. Since there are only o many finite subsets
of a, there is a finite set @ and C' C B with size o' such that a, = a for all p in C.
But there are fewer than o many possibilities for p [ a,. Let p and ¢ be in C such
that p [ @ = ¢q [ a. Then p and ¢ are compatible.

Lemma 9.1. Suppose that p is a condition in M, & < min(A), and at least one
of the following two statements holds:

(1) p is a direct extension of 1,

(2) for all B in AN, p | B forces that any a in PgAg appearing in p(5) satisfies
that aNfp > €.
If {p; : i < &} is a family of direct extensions of p, there is q such that ¢ <* p; for
1< &.

Proof. For (1), write p;(8) = (A;(8)) for 8 in AN a, where A;(() is a name for a
subset of PgAg. Define ¢ by letting ¢(3) = ( N{A:(B) : i < £} ). Since £ < min(A),
the completeness of the ultrafilters implies that ¢ is a condition in M. The proof
of (2) is similar, using Lemma 3.1. O

Lemma 9.2. Suppose that p is a condition in M, and & < min(A). Assume that
for all B in ANa, p [ B forces that whenever a in Pglg is either in the finite
sequence of p() or in a measure one set appearing in p(B), then anNp > &. Then
p forces that no new subsets of & are added.
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Proof. Any g < p satisfies (2) of Lemma 9.1. Suppose that ¢ < p and ¢ forces
[ & — 2. For each i < ¢ let ¢; <* ¢ decide the value of f(@). Then there is r such
that r <* ¢; for i < £. Clearly r forces that f is in the ground model. O

Now we verify the second recursion hypothesis.

Proposition 9.3. Suppose that « is in A. Then the poset M, forces there is a
normal ultrafilter U which extends U,,.

Proof. If « is not a limit point of A, then [M,| < «, so U, can be lifted. Suppose
that « is a limit point of A.
Write j : V — M = Ult(V,U,). Let 8 = min(j(A) \ @), which by assumption
<a
is larger than .. Factor j(My) = Mg * Mg ;). Write puq = 229 Note that
B> le.
Let G,, be generic for M, over V. Define U} in V[G,] by letting X be in U iff

X C P,us and there is a name X for X and s <* 1 in My () such that s forces

over M[G,] that j“u, € j(X).

We show that the definition does not depend on the choice of X. Suppose that
X = XGo = yGa, By the Prikry property for Mg j(4), there is sy (respectively
sy-) directly extending 1 which decides whether j“u, is in §(X) (respectively, in
§(Y)). Fix p in G, which forces that X = Y. Then j(a,) = a,, so j(p) = p_r
where r is a direct extension of 1 in Mg ;(,). Moreover, r forces over M|[G,] that

J(X) =34(Y). Since r, s¢, and sy are direct extensions of 1, they are compatible.
So sy and sy must decide their respective statements the same way.

Similar arguments show that U7 is an ultrafilter which extends U,. We prove
that UZ is normal. Suppose that f : Pyua — o is regressive. Let f be a name
for f and fix p in G, which forces that f is regressive. Then j (p) = p~r, where r
is a direct extension of 1 and r forces over M[G,] that j(f) is regressive. For each
i < po choose s; <* 1 in Mg ;o) which decides the statement F(HG“ua) = 4(i).
By Lemma 9.1 there is s such that s <* s; for all i. Clearly there must exist ¢ such

that s forces j(f)(j“pa) = j(i). But then {a € Pypqo : f(a) =4} isin UZ. O

The proof of the third recursion hypothesis is similar to the proof of Lemma 8.4.

This completes the construction of the iteration.

Suppose that a is in A and o is the least element of A greater than a. Write
Mgup(a) = Mat1 * Miai. Unlike the case of an Easton support iteration of strate-
gically closed posets or even a Magidor iteration of Prikry forcing, the poset M.
will add bounded subsets to o over the generic extension by M, 1. One might
worry that this tail iteration will damage the universe below o’ in such a way that
it ruins the effect achieved in forcing with M, ;1. It turns out this is not true, due
to a nice factorization of the tail iteration.

Theorem 9.4. Suppose that « is in A and o' = min(A\ (a+1)). Write My,p4) =
Mg 41 #* Mian. Let Goy1 be generic for M1 over V.. Then in V[Gqat1], there is a
dense set of q in Miay such that My /q factors into a finite iteration

PQ**Pn

such that for each i < n, either P; does not add subsets to N} or P; is a Radin
forcing on some P, where ' < a.
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Proof. Working in V[G4+1], let p be in My,;1. We define ¢ < p as follows. Fix &
in A\ (a+1). Let U be a name for the coherent sequence such that R = R(0).
Then p [ & forces that for all @ in P:A¢ appearing in the finite sequence of p(§),
either aNé < aor aN¢ > A}, This is true since « is in A and therefore the
interval [o, A}] is disjoint from the domain of o¥. Write p(¢) = (d¢, A¢). Define
q(€) = (de, Be), where Be = {a € A¢ :ang > A}

Write a4 \ {¢/,sup(A)} = {&1,...,€n—1}, and let § = o/ and &, = sup(A). For
i <mnwrite s; = q [ (&,&+1). Then M,y /q factors as

(Reo/q(€0)) ¥ Mg ,e)/50) % - % (Re,_, /a(n—1)) ¥ Mg,y 6, /5n-1) * (Re,, /q(&n))-

By Lemma 9.2 and the definition of ¢, each Mg, ¢, ,)/s; does not add any subsets
to AT. By the definition of ¢, the Factorization Lemma, and Lemma 5.8(3), each
Re, /q(&) factors into a product of a Radin forcing below o by a Radin forcing
which adds no subsets of 7. O

We show now that the stationarity of A is always destroyed. Let « be a limit
point of A with cofinality greater than w. Suppose that G, is generic for M, over
V. For each £ in AN« let c¢ denote the Radin club added by a generic for the
Radin forcing on P .

Proposition 9.5. Define Cy,, in V|G, as the set of § < « such that for all £ > 3
in ANa, min(cg) NE > 3. Then Cu, is a club subset of o disjoint from AN .

Proof. It £ is in AN« then min(ce) NE < €, so € is not in Chy,,. Suppose that C' is a
bounded subset of Cy, and let 8 = sup(C'). We show that g is in Cy,. Consider
¢ > fin ANa. For all " in C, min(ce)NE > . Therefore min(cg)NE > sup(C) = B.

To show that Cu, is unbounded in ¢, fix v < « and let p be in G,. Fix an
ordinal § < a not in A N« such that 3 is larger than max(a,) and . Define ¢ as
follows. Let ¢ [ (B+ 1) =p [ (64 1). Fix f < £ < a. If £ is not in AN« then
let q(€) = p(€). Otherwise write p(¢) = (Ag). Let ¢(€) be a name for the condition
({a € Ag :an& > G} ). Then g < p and ¢ forces that 5 is in Cyy, . O

Now we will refine this construction somewhat. Ideally we would like to do
something like the following. Start with a set of cardinals A and a coherent sequence
of ultrafilters on each « in A. Define the Magidor iteration as above. Maintain the
recursion hypothesis that for each « in A, the coherent sequence on « can be
lifted after forcing with M. This idea can be made to work when the coherent
sequences are short using Proposition 2.1. But we do not know whether a long
coherent sequence on « can be lifted after forcing with M, without making further
assumptions.

Suppose that A is a set of cardinals satisfying the following properties:

(1) For each « in A there is a <-increasing sequence (U : i < f3,) of normal
ultrafilters on «, for some 3, < a.

(3) Each U2 contains o \ A.

Note that the hypotheses of Proposition 2.1 are satisfied.

Define by recursion an iterated forcing (M, R, : o < sup(A)) using the same
definition as above. The only difference is that we need to prove for all a in A,
M, forces that the sequence (Uf : i < [(4) can be lifted in such a way that it
still satisfies the hypotheses of Proposition 2.1. Clearly it suffices to prove that the
lifted sequence is <-increasing. Then we apply Proposition 2.1 to obtain a coherent
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sequence U = {U(B,1) : 8 < a,i< oﬁ(ﬁ» on « in the generic extension by M,
such that oV (o) = B, each U(3,14) contains 3\ A, and the domain of oV is disjoint
from AN a. Let R, be the Radin forcing defined from this coherent sequence.

To prove that the sequence on « can be lifted, we need a more complicated
recursion hypothesis. In addition to recursion hypotheses 1, 3, and 4 in the previous
construction, we maintain the following.

Recursion Hypothesis: Suppose that a < sup(A) is a limit point of A. Assume
U is a normal ultrafilter on a which contains a\ A. Write ji(Ma) = Mq #M, j, (a)-

Let G, be generic for M, over V. Define U* in V[G,] by letting X be in U* iff
X C a, there is a name X for X, and there is s <* 1 in Ma,jy (o) such that s forces
over My[G,] that « € jy (X) Then U* is a normal ultrafilter on o which extends
U. Moreover, if U <Uy and j; : V — My = Ult(V,Uy), then U* is in M;[G,] and
satisfies the same definition in M;[G,] as it does in V[G,].

Suppose that M, is defined and « is a limit point of A. We verify the recursion
hypothesis. Let U be a normal ultrafilter on « which contains « \ A. Define U*
as in the statement of the recursion hypothesis. The proof that U* is a normal
ultrafilter on « is similar to the proof of Proposition 9.3. Suppose that U <U; and
j1:V — My = Ul(V,Uy). Write k : My — N = Ult(M1,U). Then jy | M1 =k
by Lemma 1.4(2), so k(Ma) = My * Mg j, (o). Define U** extending U in M;[G,]
exactly as U* was defined in V[G,], using k in place of jy. Since M, is a™-c.c.,
M[G,] is a-closed in V[G,]. So U** really is an ultrafilter. We show that U** and
U* are equal by proving U** C U*. Suppose X is a name in M;[Gy], s is a direct

extension of 1 in M, j, (), and s forces over N[G,] that o € k(X ). Then s forces

over N[G,] that a € jy(X). Since N[G,] C My|G,] by Lemma 1.4(1) and the
fact that the statement o € jir(X) is upwards absolute, s forces over M[G,] that
a € jy(X). So XC is in U*.

This completes the proof of the main recursion hypothesis. We omit the proofs
of the other recursion hypotheses since they are the same as above.

Now we prove that when « is in A, M, forces that the sequence of ultrafilters
on « can be lifted as desired. Suppose that « is in A and M, is defined. Let G,
be generic for M, over V.

First assume that « is not a limit point of A. Then |[M,| < a. So each
Uf generates a normal ultrafilter (U%)* in the generic extension. We prove that
((U)* i < Bq) is <-increasing.

Fix ap < a1 < B, We define g5l as follows. The domain of gg! is the set of
§ < « larger than |M,| such that f3!(§) is a normal ultrafilter in V' on £. Let
gal(€) denote the ultrafilter generated by f5!(€) in V[G].

Write ji, : V[Ga] — M;, = Ul(V[G.],(US,)*). We want to show that
Ja, (@ai) () = (US,)*. Write jo, : V — My, = U(V,US)). Since |M,| < a,
Jay “Ga is generic for jo, (My) over My, and jj is equal to the lift of j,, to
VIGal = Ma,lja, “Ga] = M;, . Therefore jg, (f2){a) = U and so 73, (92:)(a) is
the ultrafilter generated by Ug, in M , which is (U$))*.

Now assume that « is a limit point of A. For each i < (3, define (U¥)* as in the
statement of the recursion hypothesis. We prove that the sequence ((U#)* : i < q)
is <-increasing.
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Fix ap < a1 < B4 and define gg! as follows. The domain of gg! is the set of
¢ < a such that £ is a limit point of A and fg1(£) is a normal ultrafilter in V' on £
which contains £ \ A. Note that the domain of gg! is in Ug,. Let gql(£) be equal
to (fS$1(£))* as defined in the statement of the recursion hypothesis in the model
VI[Ga | 0] Let g3} be a name such that M, forces that g5} satisfies the definition
of gg! just given.

Write jo, : V — My, = Ult(V,U)) and j3;, : V[Go] — M, = Ul(VI[G.], (US,)*).
Let U" = j7, (951)(a). We want to show that U’ = (U, )*.

Lemma 9.6. The poset M, j, (a) forces over My, [Ga] that ja,(g57) () is equal
to (Us))*-

Proof. By the recursion hypothesis, M,,[G4] correctly computes (U5 )*. Since
Jou (fa1) () = Ug, the lemma follows. O

«p?

Lemma 9.7. The set of & < « such that g3 (&) is an ultrafilter in V[G,] is in
Ug,)"

Proof. Let B be a name such that M, forces that B is the set of ¢ < o in the domain
of gat such that gl (&) is an ultrafilter in V[G,]. To show that BC is in ug)”
it suffices to find s <* 1 in My, j, (a) which forces over M, [Ga] that ja, (952)(a)
is an ultrafilter. Since ja, (9q1)(a) is in ultrafilter in M,, [G4], it suffices to find
s <* 1 which forces that no new subsets of a are added over M, [G,].

Define s as follows. For & in j,, (A) \ a let s(§) be a name for the maximal
condition intersected with &\ (o + 1). By Lemma 9.2, s forces that every subset of
o is in My, [Gal- O

It follows that U’ is an ultrafilter in M and hence in V[G,]. So to prove that
U' = (Ug,)*, it suffices to prove (Ug,)* C U’

Lemma 9.8. If X C a in V[G,], then X is represented in M} by the function
B— XNPB. SoX isin U iff the set

{B<a:XNpBegy(B)}
is in (US,)*.
The proof is standard. Suppose that X is in (Ug))*. Let X be a name for X
such that M, forces that X is a subset of a. Let Y be a name such that M,, forces

Y:{ﬁ<a:Xﬂﬁ€ggé(ﬁ>}-

By Lemma 9.8, if Y&« is in (Ug))*, then X is in U’. By the definition of (U§,)*,
it suffices to prove there is s which directly extends 1 in M, Jay (@) such that s forces

over M,,[Go] that « is in ju, (Y). In other words, s must force

Jaa (X)Nnae Jaa (ggé)(a)
By Lemma 9.6. it suffices to find s <* 1 which forces that

Jou (X) Na € (Ug,)".
Since X is in (Ug,)*, the following lemma completes the proof.

Lemma 9.9. There is s <* 1 in M, j, (a) which forces over Mo, [Go] that X is a

subset of jo, (X)Na.
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Proof. Fix §in X. Let pg be a condition in G, which forces that 3 is in X. Write
Ja:(ps) = pp~ sp where sg <* 1 in M, j, (a)- Then sg forces over M,,[G,] that

Ja, (B) = B isin jo, (X) Na. So sg forces that § is in the desired set. By Lemma
9.1 there is s such that s <* sg for all such 3. O

By Proposition 2.1, M, forces that there is a coherent sequence on « as de-
sired. Let R, be a name for the Radin forcing defined from such a sequence. This
completes the construction of the iteration.
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