Skip to main content
Log in

Borel complexity and computability of the Hahn–Banach Theorem

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The classical Hahn–Banach Theorem states that any linear bounded functional defined on a linear subspace of a normed space admits a norm-preserving linear bounded extension to the whole space. The constructive and computational content of this theorem has been studied by Bishop, Bridges, Metakides, Nerode, Shore, Kalantari Downey, Ishihara and others and it is known that the theorem does not admit a general computable version. We prove a new computable version of this theorem without unrolling the classical proof of the theorem itself. More precisely, we study computability properties of the uniform extension operator which maps each functional and subspace to the set of corresponding extensions. It turns out that this operator is upper semi-computable in a well-defined sense. By applying a computable version of the Banach–Alaoglu Theorem we can show that computing a Hahn–Banach extension cannot be harder than finding a zero in a compact metric space. This allows us to conclude that the Hahn–Banach extension operator is \({\bf {\Sigma^{0}_{2}}}\) -computable while it is easy to see that it is not lower semi-computable in general. Moreover, we can derive computable versions of the Hahn–Banach Theorem for those functionals and subspaces which admit unique extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banach S. (1929). Sur les fonctionnelles linéaires I. Stud. Math. 1: 211–216

    Google Scholar 

  2. Banach S. and Mazur S. (1937). Sur les fonctions calculables. Ann. Soc. Pol. Math. 16: 223

    Google Scholar 

  3. Bishop E. and Bridges D.S. (1985). Constructive Analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 279. Springer, Berlin

    Google Scholar 

  4. Brattka, V.: Computability of Banach space principles. Informatik Berichte 286, FernUniversität Hagen, Fachbereich Informatik, Hagen (2001)

  5. Brattka V. (2003). Computability over topological structures. In: Cooper, S.B. and Goncharov, S.S. (eds) Computability and Models, pp 93–136. Kluwer, New York

    Google Scholar 

  6. Brattka V. (2003). The inversion problem for computable linear operators. In: Alt, H. and Habib, M. (eds) STACS 2003. Lecture Notes in Computer Science, Vol. 2607, pp 391–402. Springer, Berlin

    Google Scholar 

  7. Brattka, V.: On the Borel complexity of Hahn-Banach extensions. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) Computability and Complexity in Analysis, Informatik Berichte, Vol. 320, pp. 1–13. FernUniversität in Hagen (2004)

  8. Brattka V. (2005). Computability on non-separable Banach spaces and Landau’s theorem. In: Crosilla, L. and Schuster, P. (eds) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics., pp 316–333. Oxford University Press, Oxford

    Google Scholar 

  9. Brattka V. (2005). Effective Borel measurability and reducibility of functions. Math. Logic Q. 51(1): 19–44

    Article  MATH  MathSciNet  Google Scholar 

  10. Brattka, V.: Computable versions of the uniform boundedness theorem. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, Lecture Notes in Logic, Vol. 27. Association for Symbolic Logic, Urbana (2006)

  11. Brattka V. and Presser G. (2003). Computability on subsets of metric spaces. Theor. Comput. Sci. 305: 43–76

    Article  MATH  MathSciNet  Google Scholar 

  12. Bridges D. and Richman F. (1987). Varieties of constructive mathematics, London Mathematical Society Lecture Note Series, Vol. 97. Cambridge University Press, Cambridge

    Google Scholar 

  13. Downey R. and Kalantari I. (1985). Effective extensions of linear forms on a recursive vector space over a recursive field. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 31(3): 193–200

    Article  MATH  MathSciNet  Google Scholar 

  14. Engelking R. (1989). General topology, Sigma series in pure mathematics, Vol. 6. Heldermann, Berlin

    Google Scholar 

  15. Foguel S.R. (1958). On a Theorem by A.E. Taylor. Proc. Am. Math. Soc. 9: 325

    Article  MathSciNet  Google Scholar 

  16. Goffman C. and Pedrick G. (1965). First course in functional analysis. Prentince-Hall, Englewood Cliffs

    MATH  Google Scholar 

  17. Grzegorczyk A. (1957). On the definitions of computable real continuous functions. Fundam. Math. 44: 61–71

    MATH  MathSciNet  Google Scholar 

  18. Hahn H. (1927). Über lineare Gleichungssysteme in linearen Räumen. J. für reine Angew. Math. 157: 214–229

    MATH  Google Scholar 

  19. Ishihara H. (1989). On the constructive Hahn-Banach theorem. Bull. Lond. Math. Soc. 21(1): 79–81

    Article  MATH  MathSciNet  Google Scholar 

  20. Ishihara H. (1990). An omniscience principle, the König lemma and the Hahn–Banach Theorem. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36: 237–240

    Article  MATH  MathSciNet  Google Scholar 

  21. Ko K.I. (1991). Complexity theory of real functions. Progress in theoretical computer science. Birkhäuser, Boston

    Google Scholar 

  22. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I–III. C. R. Acad. Sci. Paris 240, 241, 2478–2480, 13–14, 151–153 (1955)

  23. Metakides G. and Nerode A. (1982). The introduction of non-recursive methods into mathematics. In: Troelstra, A. and Dalen, D.v. (eds) The L.E.J. Brouwer Centenary Symposium, Studies in Logic and the Foundations of Mathematics, Vol. 110, pp 319–335. Amsterdam, North-Holland

    Google Scholar 

  24. Metakides G., Nerode A. and Shore R. (1985). Recursive limits on the Hahn–Banach theorem. In: Rosenblatt, M. (eds) Errett Bishop: Reflections on Him and His Research, Contemporary Mathematics, Vol. 39, pp 85–91. American Mathematical Society, Providence

    Google Scholar 

  25. Phelps R.R. (1989). Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, Vol. 1364. Springer, Berlin

    Google Scholar 

  26. Pour-El M.B. and Richards J.I. (1989). Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin

    Google Scholar 

  27. Schechter E. (1997). Handbook of Analysis and Its Foundations. Academic, San Diego

    MATH  Google Scholar 

  28. Simpson S.G. (1999). Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin

    Google Scholar 

  29. Sims B. and Yost D. (1989). Linear Hahn–Banach extension operators. Proc. Edinburgh Math. Soc. 32: 53–57

    Article  MATH  MathSciNet  Google Scholar 

  30. Taylor A.E. (1939). The extension of linear functionals. Duke Math. J. 5: 538–547

    Article  MATH  MathSciNet  Google Scholar 

  31. Turing A.M. (1936). On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2): 230–265

    MATH  Google Scholar 

  32. Weihrauch K. (2000). Computable Analysis. Springer, Berlin

    MATH  Google Scholar 

  33. Weihrauch K. (2001). On computable metric spaces Tietze–Urysohn extension is computable. In: Blanck, J., Brattka, V. and Hertling, P. (eds) Computability and Complexity in Analysis, Lecture Notes in Computer Science, Vol. 2064, pp 357–368. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Brattka.

Additional information

This work has been partially supported by the National Research Foundation (NRF) Grant FA2005033000027 on “Computable Analysis and Quantum Computing”. An extended abstract version has been published in the conference proceedings [7].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brattka, V. Borel complexity and computability of the Hahn–Banach Theorem. Arch. Math. Logic 46, 547–564 (2008). https://doi.org/10.1007/s00153-007-0057-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-007-0057-z

Keywords

Mathematics Subject Classification (2000)

Navigation